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Abstract. We consider the effect of time-periodic forcing on a one-dimensional

Schrödinger equation with a topologically protected defect (edge) mode. The

unforced system models a domain-wall or dislocation defect in a periodic struc-
ture, and it supports a defect mode which bifurcates from the Dirac point

(linear band crossing) of the underlying bulk medium. We study the ro-

bustness of this state against time-periodic forcing of the type that arises in
the study of Floquet Topological Insulators in condensed matter, photonics,

and cold-atoms systems. Our numerical simulations demonstrate that under

time-periodic forcing of sufficiently high frequency, the defect state under-
goes radiative leakage of its energy away from the interface into the bulk; the

time-decay is exponential on a time-scale proportional to the inverse square
of the forcing amplitude. The envelope dynamics of our Floquet system are

approximately governed, on long time scales, by an effective (homogenized)

periodically-forced Dirac equation. Multiple scale analysis of the effective en-
velope dynamics yields an expansion of the radiating solution, which shows

excellent agreement with our numerical simulations.

1. Introduction

Consider wave propagation in a periodic and non-dissipative medium. In such
a medium, spatially localized defects or extended interfaces often give rise to de-
fect modes, states in which energy can concentrate. These are described by time-
harmonic solutions of the underlying wave equations. In the field of topological
insulators, a class of defect modes of particular interest are those whose existence
is tied to a linear or conical touching of spectral bands (Dirac points) of an under-
lying bulk periodic medium, and whose robustness against perturbations is owed
to the breaking of time reversal symmetry and the associated non-triviality of a
topological invariant associated with the band structure. Such robust states are of
broad interest in applications to storage and transmission of information.

Recently there has been great interest in Floquet materials, in which time-
periodic forcing is applied to spatially periodic media in settings like those above
[7, 32]. As with other perturbations which break time-reversal symmetry, Floquet
systems give rise to chirality (uni-directionality) of modes and topological stabil-
ity against defects. However, Floquet materials have the advantage of a larger
design-space, allowing one to tune a system to convert between being topologically
trivial and non-trivial [9], and even be more conducive to nonlinearly localized
modes [1, 2, 22, 31]. Floquet systems also display a greater variety of topological
properties than their static counterparts; these systems are periodic in one addi-
tional dimension and hence have a larger family of topological invariants defined
on their high dimensional Brillouin zone [36,38].

The topological robustness of defect states in such systems has been explored in
experiments [17,32,33,43], and theoretically, mainly in the context of tight-binding
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2 RADIATIVE DECAY OF EDGE STATES IN FLOQUET MEDIA

(discrete) models [4, 9, 18, 37]. Simulations of one- and two-dimensional optical
systems show Floquet edge modes that persist over long propagation distances, but
eventually disperse and decay [19, 21, 34]. In a class of hierarchical replica models,
edge currents have been shown to exist for arbitrarily long, but finite, time scales [5].

In this article we show, in a class of models, that defect states which exhibit topo-
logical robustness in the autonomous (unforced) setting are only metastable against
time-periodic parametric forcing; on a sufficiently long time scale, such states res-
onantly couple to bulk (radiation) modes and radiate their energy away from the
defect and into the bulk. We derive an asymptotic theory based on a parametrically
forced effective (homogenized) Dirac operator, which gives predictions in agreement
with our numerical simulations of both the Schrödinger and the effective Dirac mod-
els. Our numerical simulations cover a broader set of models than our analysis;
while smoothness plays a key role in the derivation, the phenomenon is demon-
strated for non-smooth domain walls, which are often more similar to experimental
settings.

Our results stand in contrast to the common assertions in the topological insu-
lators literature. There, it is common to consider a discrete (tight-binding) model
with finitely many bands, and then its temporally-driven analog [4,9,18,36]. These
works either compute numerically or assert the existence of Floquet edge states, i.e.,
point-spectrum of the Floquet Hamiltonian (or the monodromy, the period-evolution
operator). But such tight-binding models are phenomenological, or derived as ap-
proximations of a PDE, e.g., the Schrödinger equation. Do Floquet edge states
even exist in the generic PDE model? Our results suggest that, to the contrary,
only metastable modes exist, and those eventually decay into the bulk due to the
resonant effect of forcing. It is an interesting open question, beyond the scope of
this current paper, whether these meta-stable resonant modes can be understood as
topologically protected, or whether this phenomena is universal in PDE models.

1.1. Overview of the model. Our unforced Hamiltonian, Hε
dw ≡ −∂2

x + Uε(x),
is an asymptotically periodic Schrödinger operator; i.e.,

Hε
dw =

{
Hε

+ = −∂2
x + V (x) + εW (x) for x� +1

Hε
− = −∂2

x + V (x)− εW (x) for x� −1,

Here, Hε
+ and Hε

− are Z− periodic. Both Hε
+ and Hε

− are perturbations of the
underlying bulk operator H = −∂2

x + V (x), which has a linear crossing in its band
structure at energy ED (Dirac point). Hε

± have a common spectral gap (called the
bulk gap) of width O(ε) about E = ED, which is induced by the small but spatially
periodic perturbations ±εW (x). The operator Hε

dw interpolates between Hε
− at

x = −∞ and Hε
+ at x = +∞, via a domain wall. The Hamiltonian Hε

dw has, for
all ε small, a protected mid-gap eigenstate ψε?(x) of energy ED +O(ε2). Moreover,
ψε?(x) has a multi-scale structure; with respect to the band structure of H, it is (to
an excellent approximation) a wave-packet which is spectrally concentrated about
the Dirac point with an envelope characterized by the zero energy eigenstate of an
effective (homogenized) Dirac operator. A more detailed discussion of the model
and its analytic properties is given in Section 3. A realization of this model in
photonic waveguides has been studied in [28].
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In this article we study the initial value problem for the parametrically forced
Schrödinger equation

iψt = (Hε
dw + 2iεA(εt)∂x)ψ, 0 < ε� 1 , (1.1a)

where

A(T ) ≡ 2β cos(ωT ) , ω > 0 . (1.1b)

The perturbing operator 2iεA(εt)∂x arises from an effective vector potential, εA(εt),
induced by a time-dependent deformation of Hε

dw. In Section 1.3, we derive (1.1)
in the setting of a coupled array of optical waveguides. This model is also relevant
in the context of a coupled array of trapped ultracold fermions [23]. We ask the
following:

Question: Does the topologically protected edge state ψε? of Hε
dw persist in the

presence of time-period forcing (A(t) 6= 0)?

(a) Unforced

(b) Forced

Figure 1. (a) Numerically computed evolution of edge state, ψε?,
under the unforced Schrödinger equation, (1.1) with A(T ) ≡ 0,
(blue, solid) and its envelope evolution approximated by the ef-
fective (unforced) Dirac equation (red, dashes). (b) Periodically-
forced Schrödinger evolution (A(T ) 6= 0) and its envelope approxi-
mated by an effective periodically-forced Dirac dynamics; see Sec-
tions 4 and 6.2.
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1.2. Summary of analytical and numerical results.

(A) Defect mode decay in the Schrödinger equation. In Figure 1 we con-
trast the time-evolution (1.1) for the initial data ψ(x, 0) = ψε?, in the cases
of unforced (A = 0) and forced (A 6= 0) dynamics; a detailed discussion is
given in Section 4. The top row of Figure 1 is consistent with the persistence
of the edge state; indeed, for all t we have ψ(t, x) = e−iEεtψ?(x). The slow
time-decay of the solution is demonstrated in the bottom row of Figure 1.
For a forcing βA(T ) = β cos(ωT ) with β small and fixed, the envelope de-
cays at an exponential rate ≈ exp(−β2εΓ0t), for some Γ0 = Γ0(ω) > 0.
This type of decay is observed only for driving frequencies ω above some
threshold frequency, which we discuss in item (C) below.

(B) Effective Dirac equation. In Section 5 we derive and prove the validity
of an effective (spatially homogenized) time-periodically forced Dirac equa-
tion (Theorem 5.1 and [39]), as an approximation to the envelope dynamics
of forced Schrödinger evolution for initial data which are spectrally local-
ized near the Dirac point. The Dirac dynamics accurately approximate
the envelope dynamics for data corresponding to the multiple scale edge
state ψε?(x).

The time-dependent Schrödinger equation (1.1) excites a wide range of
spatial and temporal scales. In contrast, the effective Dirac approximation
is comparatively easy to solve numerically on long time-scales; its numerical
solution does not require the simultaneous resolution of multiple temporal
and spatial scales.

A numerical comparison between the Schrödinger equation with ψ(0, x) = ψε?
and the effective forced Dirac equation, for data given by the envelope of
ψε?, shows excellent agreement on long time scales. In Figure 1 we plot
both the numerically computed solution of the (multi-scale) Schrödinger
equation (1.1) and the solution of the effective forced Dirac equation. Fig-
ure 1 demonstrates that the Schrödinger envelope is very well tracked by
the (slowly varying) solution of the effective forced Dirac equation. For
nontrivial forcing A(T ), the envelope-decay in the effective Dirac equation,
matches that of the Schrödinger equation on large time-scales.

(C) Multiscale analysis of radiation damping. Our results on the approx-
imation of (1.1) by an effective Dirac equation, and an asymptotic solution
(β small) of the effective Dirac equation, imply that on large and finite
time-scales, 0 ≤ t ≤ ε−1β−2, the wave-packet decays exponentially

∣∣∣Projection of ψε(t, ·) on ψε?

∣∣∣ ≈ e−Γ0(ω)β2εt . (1.2)

The mechanism of decay is radiation damping; parametric forcing reso-
nantly couples the edge state to radiation modes associated with the con-
tinuous spectrum, which acts as an energy sink; see Figure 2. The radiation
rate is given by a variant of the Fermi golden rule, see, e.g., [40, Chapter
5]. A derivation of this radiation damping effect and, in particular, its rate
is given in Section 7. Specifically, we show a threshold effect: if the driving
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!1

Figure 2. Top: The spectrum of the unforced Hamiltonian (star
and bold lines denote point and continuous spectrum, respec-
tively). Bottom: Simulations of the effective forced Dirac equa-
tion (5.1), see details in Section 6.2. When the frequency of the
forcing is small (ω1, blue dashes), the defect mode does not cou-
ple to the continuum modes, and the mode’s localization persists.
When the frequency is sufficiently large to couple the point and
continuous spectrum, i.e., ω2 > bulk spectral gap, (solid red),
power is transferred between the localized mode and the radiation;
the defect mode decays.

frequency ω in the effective Dirac operator is larger than half the spectral
gap width, then radiative decay takes place on the time scale β−2.1

Figure 3. Left: The domain-wall potential Uε(x), see (3.4) (in

particular U
(2)
1/2, see App. B). Right: The coiled waveguides po-

tential Uε(x− h(t)) with h(t) = 2ω−1β sin(ωεt) with a zoom-in in
the inset.

1If ω does not satisfy this resonance condition, then the time scale on which radiative decay
takes place is expected to be T ≈ β−2r, for some r ≥ 2, with a corresponding result for the

Schrödinger evolution.
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1.3. Derivation of the effective vector potential, A(T ). We briefly explain
how an effective vector potential in (3.12), A(t), arises in the context of nearly
monochromatic light-propagation in a planar array of undulating waveguides; see,
for example, [1, 2, 24, 33]. Consider a planar array of waveguides, whose index of
refraction variations along the transverse (x) direction are described by the time-
independent potential Uε(x); see the left panel of Fig. 3. Illumination of the array on
its input side (left) by a continuous wave (CW, nearly monochromatic) laser results
in propagation along the longitudinal direction (a time-like direction, labeled t)
which is approximated by the paraxial Schrödinger equation iψt = (−∂2

x + Uε)ψ.
Consider now a planar array of undulating waveguides, where the propagation is
given by

i∂tψ(t, x) =
[
−∂2

x + Uε(x− h(t))
]
ψ .

Here h : R → R describes the center-point of waveguides in the array; see right
panel of Fig. 3. Switching to the undulating system of coordinates x̃ = x − h(t),
t̃ = t, one gets

[i∂t̃ − ih′(t)∂x̃]ψ(t̃, x̃) =
[
−∂2

x̃ + Uε(x̃)
]
ψ .

Dropping the tilde notation and setting h′(t) ≡ 2A(t), we obtain (1.1).

Note that by the further change of variables: φ ≡ ψ exp(−i
∫ t

0
|A(s)|2 ds) we

obtain a Schrödinger equation i∂tφ = (∂x+iA(t))2φ+Uε(s)φ with a vector-potential
term. By Maxwell’s equations, a spatially-independent vector potential A(t) gives
rise to a time-periodic electric field and zero magnetic field.

We comment here that, from a physical point of view, A(T ) could be any time-
dependent function, or even spatially dependent (if the coiling is not uniform in
x). However, in the context of demonstrating and deriving the Fermi Golden Rule,
we focus on the simple periodic forcing A(T ) = β cos(ωT ). For a study of multi-
frequency (almost periodic) Fermi Golden Rule radiation damping, see [25].

1.4. Future directions and open problems.

• Analytic challenges in rigorously establishing radiative decay. In
our study of the time-decay of defect modes for the effective periodically-
forced Dirac Hamiltonian, /D(T ) = /D0 +A(T )σ1, we derive a formal asymp-
totic solution, whose validity on the radiation damping time-scale is sup-
ported by estimating the expansion terms on the appropriate time-scale. A
fully rigorous analysis of this derivation is an open question, which cannot
be addressed by an application of previous methods developed in the study
of radiative decay in linear and nonlinear radiation damping problems; see,
e.g., the time-dependent resonance approach in [8, 30,41].

We elaborate on the analytic issues. The first challenge arises from
the matrix character of the effective Dirac equation; the forcing operator,
βA(T )σ1, does not commute with the unperturbed Dirac operator /D0 and
hence cannot be removed via a change of phase. Even if β is assumed to
be small, this operator cannot be treated perturbatively; indeed there is no
spatial localization in the perturbing operator, which would have allowed
for the control of this perturbation via local energy time-decay estimates for
exp(−i /D0t) (on the continuous spectral part of /D0). What could succeed is
a variant of the above methods for Floquet Dirac Hamiltonians; in partic-
ular, dispersive estimates for forced Dirac Hamiltonians and the necessary
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spectral decomposition with which to reduce to an appropriate parametri-
cally forced particle-field model (compare with our analysis in Section 8).
Research in this direction is currently in progress.
• Resonant decay in discrete models. Our study of resonant decay of

defect modes is in the context of continuum PDE models. However, the
question of existence of Floquet edge modes also appears in the context of
discrete (e.g., tight-binding ) models in the physics literature [4,9,37]. For
concreteness, consider the Su-Schrieffer-Heeger (SSH) model, which for a
certain parameter regime has a localized edge mode inside a bulk spectral
gap. In the numerical investigations of [9], the existence and non-existence
of defect modes of time-periodically driven SSH, and the dependence on the
driving frequency, is studied. We believe that our approach is applicable to
the analysis of such Floquet models.
• Non-smooth potentials. Finally we believe that our smoothness assump-

tions on the coefficients of Hε
dw can be relaxed. However, our discontinuous-

transition domain wall / dislocation model, U
(3)
ε , (see Section 4.1 and Ap-

pendix B) violates the assumption of a slowly varying domain wall transi-
tion. In this case, our derivation of an effective Dirac operator and hence
the asymptotic theory would seem not to apply. Nevertheless, numerical
investigation shows that the midgap mode persists and undergoes radia-
tion damping on the time-scale of the previous examples. Furthermore,
and remarkably, the damped envelope dynamics are well-described by the

effective Dirac operator /D
(3)

(T ). It would be of interest to understand
this robustness of radiative phenomena against large deformation, i.e., in
regimes other than those allowing for a multi-scale structure.

One natural setting to consider would be Schrödinger Hamiltonians, and
corresponding effective Dirac Hamiltonians, within the same “topological
class”; those which can be continuously deformed into each other with-
out closing the bulk gap. For a study of topological robustness of defect
modes against such deformations within a family of dislocation Hamiltoni-
ans, see [10].

1.5. Structure of the paper. In Section 2 we introduce notation, conventions
and briefly review Floquet-Bloch theory for Schrödinger operators on the line with
a Z− periodic potential. The autonomous Hamiltonian Hε

dw and the parametri-
cally forced Schrödinger equation are discussed in Section 3. Detailed numerical
simulations of the parametrically forced Schrödinger equation are presented in Sec-
tion 4 for concrete choices of domain-wall Schrödinger Hamiltonians. In Section 5
we derive, via a multiple scales analysis, the parametrically forced effective Dirac
system and state a theorem on its validity on time-scales of interest. In Section 6 we
present results on the radiation damping mechanism in terms of an effective Dirac
model, and corroborate our predictions by numerical simulations. The derivation of
the radiative decay phenomena is presented in Section 7, and necessary dispersive
decay estimates for the unperturbed Dirac operator are derived in Section 8
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2. Preliminaries

2.1. Floquet-Bloch theory. We begin with general remarks on the Floquet-
Bloch spectral theory of periodic self-adjoint differential operators; for details, see,
e.g., [12,16,27,35]. Let V be a sufficiently smooth real-valued Z periodic potential,
i.e., V (x+1) = V (x) for all x ∈ R, and introduce the periodic Schrödinger operator

H ≡ −∂2
x + V (x) , (2.1)

acting in the space L2(R). H is self-adjoint and commutes with translations in the
integer lattice, Z.

Any f ∈ L2(R) can be represented, via the Floquet-Bloch transform, as a su-
perposition of eigenstates of the integer translation operator f(x)→ f(x+ 1), i.e.,

L2(R) =
∫ ⊕
B L2

k dk, where

L2
k ≡

{
f ∈ L2

loc : f(x+ 1; k) = eikf(x; k)
}
,

where k varies over B ≡ [0, 2π], the fundamental cell of the dual lattice 2πZ (the
Brillouin zone). Since H commutes with integer translations, the spectral theory
of H acting on L2(R) can be reduced to the study of H acting in each L2

k space:

H =

∫ ⊕
B
Hk dk , where Hk = H

∣∣
L2
k

.

For each k ∈ B, Hk is a self-adjoint operator and has compact resolvent. Hence,
each Hk has an infinite sequence of finite multiplicity real eigenvalues, tending to
infinity

E1(k) ≤ E2(k) ≤ · · · ≤ Eb(k) ≤ · · · .

The corresponding eigenmodes (Bloch modes) Φb(·; k) ∈ L2
k satisfy

HΦb(x; k) = Eb(k)Φb(x; k) , Φb(·; k) ∈ L2
k . (2.2)

The maps Eb : B → R are Lipschitz continuous, and their graphs Eb(k) are called
the dispersion curves of H. The collection of all pairs (Eb(k),Φb(x; k)) for all k ∈ B
and b ≥ 1 is called the band structure of H.

3. Hamiltonians; Hε
dw and its periodic forcing, (1.1)

In this section we present a concise systematic discussion (more detailed than
in the introduction) of the underlying bulk Hamiltonian, H, the domain-wall Hamil-
tonianHε

dw with asymptoicsHε
±, and the parametrically forced HamiltonianHε(t) =

Hε
dw + 2iεβA(εt)∂x. Figure 4 will serve as a guide to the of hierarchy of time-

independent operators and their spectra.
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(a) (b) (c)

Figure 4. Step by step construction of multi-scale domain wall
potential Uε (top row) and corresponding spectra (bottom row),
following Section 3. (a) Z− periodic potential, V (x), and its lin-
ear band-crossing (Dirac point) due to additional 1

2Z-translation
symmetry. (b) Perturbed potentials V (x) ± εW (x) (bulk struc-
ture) with minimal period lattice Z, and its spectral gap about the
Dirac point, due to broken symmetry. (c) Asymptotically periodic
potential with domain wall defect, Uε(x); see (3.4). Interpolating
domain wall function κ(εx) superimposed. Mid-gap point eigen-
value is indicated. Note that since Uε is not translation invariant,
k is not indicated in the lower panel, just the energy spectrum.

3.1. Schrödinger Hamiltonians with Dirac points. We begin with a Schrödinger
operator H = −∂2

x+V (x), where V is real-valued and 1
2Z− periodic, i.e., V (x+ 1

2 ) =
V (x). For simplicity, we assume that V (x) is even; for modifications required to
treat the general case, see [11]. We shall embed H in a family of Hamiltonians
Hε
±, with H0

± = H and Hε
± of minimal period equal to one. Hence, it is natural to

consider H as acting in L2(R/Z) as having an additional symmetry; H commutes
with 1

2Z lattice translations.

Due to this additional symmetry, the band structure of H acting in L2(R/Z)
has Dirac points [14, 16]: quasi-momentum / energy pairs (kD, ED), where kD =
π. Specifically, there exists b ≥ 1 such that there are dispersion curves k 7→
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Eb(k), Eb+1(k) curves, which cross linearly:

Eb(k)− ED = −vD|k − kD|(1 +O(|k − kD|)) , (3.1a)

Eb+1(k)− ED = +vD|k − kD|(1 +O(|k − kD|)) , (3.1b)

for |k − kD| � 1, where vD > 0 is a constant, the Dirac (or Fermi) velocity. The
band structure around a Dirac point (k,E) = (π,ED) is shown in the first column
of Figure 4.

It is convenient to introduce a basis {Φ1,Φ2} of the two-dimensional L2
kD

eigenspace
of ED, such that Φ2(x) = Φ1(−x). In terms of this basis

vD ≡ 2i〈Φ1, ∂xΦ1〉L2([0,1]) = −2i〈Φ2, ∂xΦ2〉L2([0,1]) . (3.2)

By this appropriate choice of Φ1, one arranges for vD > 0.

Figure 5. Three examples of the potential Uε (3.12) Top: Co-
sine potential (B.1). Middle: Periodic array of square-wells
(B.4). Bottom: Periodic array of square-wells with a sharp tran-
sition (B.5).

3.2. Bulk Hamiltonians Hε
±. Let W (x) be real-valued and periodic with minimal

period 1. We introduce, for ε 6= 0 and real, bulk operators which break the 1/2−
periodicity of H

Hε
± = H ± εW (x), where W (x+ 1/2) = −W (x).
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Since W (x) is a non-compact perturbation of H, it may change the essential spec-
trum. Indeed, the operators Hε

± have a spectral gap about ED of width O(ε);

see [16, Appendix F]. Introducing the shift operator S 1
2
[f ](x) ≡ f(x+ 1

2 ), we have

that S∗1
2

= S− 1
2

and S 1
2
Hε

+S
∗
1
2

= Hε
−. Thus, Hε

+ and Hε
− have the same spectrum

and, in particular, have a common spectral gap about ED. We refer to this common
gap as the bulk spectral gap.

3.3. Hε
dw, asymptotically periodic Hamiltonian with domain wall defect.

Introduce a domain wall function, κ(X), which is real-valued and such that

κ(X)→ ±κ∞ as X → ±∞, where κ∞ > 0. (3.3)

We then define a domain wall Hamiltonian which interpolates between the bulk
Hamiltonians Hε

− and Hε
+:2

Hε
dw ≡ −∂2

x + Uε(x) , Uε(x) ≡ V (x) + εκ(εx)W (x) , (3.4)

Two examples of asymptotically periodic potentials with domain wall defects are
displayed in the top and middle panels of Figure 5.

The essential spectrum of Hε
dw is equal to that of the operators Hε

±, but point
spectrum may arise in the spectral gaps of Hε

dw and, in particular, in the bulk
spectral gap about the Dirac energy ED. We next give a brief discussion of the
bifurcation of discrete eigenvalues of Hε

dw, from the Dirac point at ε = 0 into the
spectral gap about ED for ε non-zero and small.

Introduce the effective Dirac operator, /D0, defined in terms of the domain wall
function κ(X), Dirac velocity vD, and ϑ] ≡ 〈Φ1,WΦ2〉:

/D0 ≡ ivDσ3∂X + ϑ]κ(X)σ1, (3.5)

where the Pauli matrices are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.6)

Note that the parameters vD and ϑ] are determined by the “Dirac eigenspace” for
the energy ED. Since κ(X) → ±κ∞ as X → ±∞, the continuum spectrum of /D0

acting in L2(R;C2) is equal to (−∞,−|ϑ]|κ∞] ∪ [|ϑ]|κ∞,∞).
The spectrum of /D0 also contains a discrete eigenvalue at zero energy, α?(X),

satisfying:

/D0α? = 0, ‖α?‖L2(R;C2) = 1

It is easily verified that α? is given, up to a constant phase, by

α?(X) = C

(
1
i

)
e−(ϑ]/vD)

∫X
0
κ(s) ds, (3.7)

where C > 0 is a normalization constant. Since κ∞ > 0, the function (3.7) is
exponentially decaying at infinity. Thus it is the change in sign of κ(X) that is
responsible for the existence of a robust zero energy eigenstate; zero is a rigid
eigenvalue, with respect to perturbations of κ(X) which are spatially localized.

2We take V (x), W (x) and κ(X) to be sufficiently smooth and κ2(X) − κ2∞ tending to zero
sufficiently rapidly. Precise smoothness hypotheses on these functions, which we believe can be

somewhat relaxed, are spelled out in [16].
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To simplify the discussion, we make the

Assumption: 0 is the only eigenvalue of /D0. (3.8)

Its corresponding normalized eigenstate is denoted α?:

/D0α? = 0, ‖α?‖L2(R;C2) = 1.

This assumption is satisfied, for example, by /D0 for κ(X) = tanh(X); see [29,
Appendix A]. A schematic of the spectrum of /D0 is shown in Figure 6.

Figure 6. Spectrum of the (unforced) Dirac operator /D0,
see (3.5).

The defect mode α? of the Dirac equation (3.5) seeds a corresponding defect
mode of the Schrödinger equation (3.4):

Theorem 3.1 (Theorem 5.1 in [16]; see also [11,14]). There exists ε0 > 0 such that
for all 0 < |ε| < ε0, the following is a characterization of all point spectrum in the
spectral gap about ED, bounded away from the edges of the continuous spectrum:

(1) There exists a smooth curve defined for ε ∈ [0, ε0):

ε 7→ Eε = ED +O(ε2) ∈ (ED − |ϑ]|κ∞ε, ED + |ϑ]|κ∞ε) ,
ε 7→ ψε? ∈ H1(R)

such that (Eε, ψε?) is a normalized eigenpair of Hε
dw

Hε
dwψ

ε
? = Eεψε? . (3.9)

(2) The eigenstate ψε? has a multi-scale structure; to leading order in ε, it is
a Dirac wave packet, a slow modulation of the two-dimensional eigenspace
span{Φ1,Φ2}, associated with the Dirac point at (k,E) = (π,ED) (see Sec-
tion 3.1):

ψε?(x) = ε
1
2

(
α?,1(εx)Φ1(x; kD) + α?,2(εx)Φ2(x; kD)

)
+OH2(R)(ε)

≡ ε 1
2α?(εx)>Φ(x) +OH2(R)(ε) . (3.10)

The envelope, α?(X) = (α1?(X), α2?(X))>, is given by (3.7), the zero en-
ergy eigenstate of the effective Dirac operator /D0.

In Appendix A we present a derivation of the effective Dirac equation in the more
general (temporally-forced) setting of (1.1); see also [16,39]. Two examples of defect
states ψε?(x) and the corresponding envelopes α?(X) are displayed in Figure 7.

Remark 3.2. We may relax the assumption (3.8). In general /D0 has 2N + 1 of
eigenvalues in its bulk gap (−|ϑ]|κ∞,+|ϑ]|κ∞) for some N ≥ 0: a zero energy
eigenvalue, (3.7), and 2N eigenvalues located symmetrically about zero. In [11], a
more general version of Theorem 3.1 is proved in which the point spectrum of Hε

dw is
given by 2N+1 eigenvalues in its O(ε) width spectral gap about ED, with analogous
multiple scale expansions of the corresponding edge eigenstates. We believe that
the results of this article (numerical and analytical) on radiation damping can be
extended to this multimode setting; see [26] for relevant analysis.
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Figure 7. The amplitude of |ψε?|, the defect mode of the
Schrödinger Hamiltonian Hε

dw((3.9), grey), showing its multi-

scale (carrier + envelope) structure for (a) U
(1)
ε (B.1), and (b)

U
(2)
ε (B.4), see also Figure 5 . The envelope is well-approximated

by α∗, ((3.8), black), of the corresponding Dirac operator /D0, see
(3.5).

3.4. Floquet model; parametric time-periodic forcing of Hε
dw. Our goal in

this paper is to study the effect of time-periodic (parametric) forcing on the defect
state ψ? of Hε

dw; see (3.4) and (3.10). Denote our time-periodic Hamiltonian by

Hε(t) ≡ Hε
dw + 2iεβA(εt)∂x = −∂2

x + Uε(x) + 2iεA(εt)∂x (3.11)

where A(T ) = 2β cos(ωT ). We shall study the initial value problem:

i∂tψ(t, x) = Hε(t)ψ , (3.12a)

ψ(0, x) = ψε?(x) . (3.12b)

In Section 4, we present long-time numerical simulations of (3.12) showing the res-
onant radiation damping effect, and in In Sections 5 and 6, we provide an analytical
understanding of this phenomenon on the physically interesting time-scale.

4. Long-time simulations of the forced Schrödinger equation, (3.12);
slow radiative decay of the defect state

In this section we numerically investigate the long-time behavior of solutions of
the initial value problem (3.12) for two Hamiltonians:

H(`)
ε (t) = −∂2

x + U (`)
ε (x) + 2i εβ cos(εωt)∂x , ` = 1, 2 , (4.1)

(1) U
(1)
ε smoothly interpolates between asymptotic phase shifted cosine-potentials

(2) U
(2)
ε interpolates between asymptotic phase-shifted arrays of double square

wells

for different choices of the parameters β, ω > 0. See the top two panels of Figure 5

for illustrations of U
(1)
ε and U

(2)
ε . Throughout our simulations, we set ε = 1/2.
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(a) U
(1)
1
2

, Unforced (β = 0) (b) U
(1)
1
2

, Forced (β = 0.01)

(c) U
(2)
1
2

, Unforced (β = 0) (d) U
(2)
1
2

, Forced (β = 0.01)

Figure 8. Solutions of (3.12) with ψ(0, x) = ψ?(x). (a) U
(1)
1
2

with β = 0, the unforced problem, and (b) with β = 0.01 and

ω = 0.6. (c) and (d) Same as (a) and (b), respectively, for U
(2)
1
2

with ω = 1.1.

The precise definitions of U
(j)
ε are given in Appendix B. Details concerning the

numerical method are given in Appendix C.
Consider first the case β = 0. Defect-mode initial data ψ(x, 0) = ψ?(x) gives rise

to the solution ψ(t, x) = e−iE
εtψε?(x); see (3.9). Figures 8a and 8c indeed show, for

both potential choices, that |ψ(t, x)| = |ψ?(x)| for 0 ≤ t ≤ 100.

We next consider the dynamics under temporal forcing. For U
(1)
ε (and U

(2)
ε ) we

fix ω = 0.6 (and ω = 1.1, respectively) and β > 0 and observe decay of the solution
with advancing time; see Figs. 8b and 8d. 3

In Fig. 9, we explore the decay rate by tracking the time-dependence of projection
of the solution, ψ(·, t), onto the defect state , i.e., 〈ψε?, ψ(t, ·)〉L2(R). Our numerical

results (U
(1)
ε with ε = 1/2) are consistent with exponential decay of this projection

over the very long time scale, t ≤ 1000, 〈ψ?, ψ(t, ·)〉L2(R) ≈ exp(−Γt). Further, we
studied the dependence of the exponential rate, Γ, on β over a range of small β. The

3The choice of ω = 1.1 in Fig. 8d is not an arbitrary one. In Section 6 we show that radiation

damping occurs if |ω| exceeds half the bulk spectral gap width of /D0, the effective Dirac Hamil-

tonian, see Fig. 2. For /D
(1)
0 , which is derived from U

(1)
ε , the size of the bulk spectral gap is 1, and

therefore |ω| > 0.5 satisfies the resonance condition (similarly with |ω| > 1 for /D
(2)
0 ).



RADIATIVE DECAY OF EDGE STATES IN FLOQUET MEDIA 15

Figure 9. Projections of solutions of (3.12) with U
(1)
ε , ω = 0.6,

and ψ(0, x) = ψ?(x) onto ψ?(x). Top: An exponential decay
fitted to the projection for β = 0.01. The projection curve and the
fitted line are nearly indistinguishable. Bottom: The projection
|〈ψ?, ψ(t, ·)〉L2(R)| for β = 0, 0.008, 0.009, 0.01.

decay is consistent with a decay ∼ exp(−Γ(β)t), where Γ(β) ∼ β2.07 and ∼ β2.10

for U
(1)
ε and U

(2)
ε , respectively.

4.1. The case of a sharp transition. In the potential U
(2)
ε , the transition be-

tween the asymptotics at −∞ and +∞ is done slowly via a piecewise constant
domain wall function κ(X). A more common configuration in optical experiments
is a sharp transition between phase-shifted waveguide arrays [6]; see lower panel of
Figure 5.

Thus we consider (4.1) with U
(3)
ε , where the asymptotic bulk potentials, V (x)±

εW (x), are identical to those of U
(2)
ε (see Appendix B), but now κ(X) = sgn(X).

Due to the very different scaling properties of U
(3)
ε , the analysis leading to Theo-

rem 3.1 does not apply. However, we expect similar qualitative behavior.

We repeated our simulations for U
(3)
ε and have corroborated these heuristics.

We observe, as in the previous examples, that Hε
dw has a defect mode which, under

periodic forcing, radiation damps on time scales of order β−2; see Figure 10.

5. The effective Dirac equation

Our goal in this section is to approximate the multi-scale evolution of the Schrödinger
equation (3.12) by simpler effective envelope dynamics. The separation of fast scales
(x and t) of the underlying Bloch modes and slow scales (X = εx and T = εt) of
the domain wall and parametric forcing, allow for the derivation of an effective
homogenized equation for wave-packet envelope.
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Figure 10. Top: The decay rate Γ against the forcing amplitude
β on a log-log scale (triangles) and an exponential fit of Γ ∼ β1.83.

Middle and Bottom: Same as the first row, for U
(2)
ε and U

(3)
ε

respectively, with ω = 1.1, and exponential fits of Γ ∼ β2.14 and
Γ ∼ β2.04.

In Appendix A we show that the envelope of the solution of the time-periodically
forced initial value problem (3.12), with initial data

ψ(0, x) = ψε?(x) ≈ ε1/2α?(εx)>Φ(x)

evolves in the form
ψ(t, x) ≈ ε 1

2α(εt, εx)>Φ(x)e−iEDt

where α(T,X) is governed by the initial value problem for an effective periodically-
forced Dirac equation:

i∂Tα(T,X) = /D(T )α , α(0, X) = α0(X) ∈ H4(R;C2) . (5.1a)

/D(T ) ≡ /D0 + vDA(T )σ3 , (5.1b)

Here, /D0 is given by (3.5) and the Pauli matrices σ1 and σ3, see (3.6). The effective
Dirac model, and its validity guaranteed in Theorem 5.1, hold for all smooth and
periodic choices of A(T ).

Let ψ0 7→ Uε[ψ0](t, x) denote the solution of Schrödinger equation (3.12) with
ψ(0, ·) = ψ0, and α0(X) 7→ UDir[α0](T,X) denote the solution of the effective Dirac
equation (5.1) with α(0, ·) = α0.
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Theorem 5.1 (Effective Dirac dynamics). Suppose κ has bounded derivatives to
all orders. There exists ε0 > 0 such that for all 0 < ε < ε0, the following holds:
Consider (3.12), the Schrödinger equation with time periodic Hamiltonian, and
initial data of the form, ψ0(x) = ε1/2α0(εx)>Φ(x), with α0 ∈ H4(R2;C2). Fix
constants T0 > 0 and 0 < ρ < 1.

Then, there is a constant, C, which depends on the Hamiltonian H, ρ and α0,
such that for 0 ≤ t ≤ T0 ε

−(3/2−ρ),∥∥∥Uε[ψ0](t, x)− ε 1
2UDir[α0](εt, εx)>Φ(x; kD)e−iEDt

∥∥∥
L2(Rx)

≤ Cερ . (5.2)

The proof is presented in Appendix A. Analogous results on the effective Dirac
dynamics in two-dimensional analogs of (3.12), unforced and forced, were obtained
in [15, 39]. Theorem 5.1 follows from arguments which closely follow those in [39,
Section 8].

Note that, of the three potentials considered in this paper (see Fig. 5), Theo-
rem 5.1 is only applicable to (B.1). However, our numerical simulations suggest
that the formally-derived Dirac equations effectively approximate the correspond-
ing Schrödinger equation for very long times, even if slightly less so than in the
smooth settings. The study of this robustness in non-smooth settings remains an
interesting open problem.

6. Metastability of edge states and radiation damping

In Section 6.1 we summarize our analytical results on radiation damping for
initial value problem for the periodically forced Dirac equation:

i∂Tα = ( /D0 + βA(T )σ3)α , α(0, X) = α?(X) . (6.1)

Here,

(1) A(T ) is Tper-periodic and of mean zero
(2) /D0 = iσ3∂X + κ(X)σ1, and
(3) α? is the zero-energy defect mode of /D0:

/D0α? = 0, ‖α?‖L2(R;C2) = 1.

The parameter β, the strength of periodic forcing, is taken to be small.
After discussing our results for the forced Dirac initial value problem (6.1),

we apply them to radiation damping in the initial value problem for the forced
Schrödinger equation. In Section 6.2 we present numerical simulations which cor-
roborate our theoretical predictions. The multiscale analysis underlying the results
in Section 6.1 is presented in Section 7.

6.1. Summary of analytical results on radiation damping. For β = 0, the
solution of (7.1) is α(T,X) = α?(X) for all T ∈ R.

For β small, it is natural to represent the solution to the perturbed evolution
equation (7.1) using the spectral theory of the operator /D0, outlined in Section 3.3.
In particular, for the case that /D0 has only one bound state we have:

spec( /D0) = {0} ∪ R \ [−ϑ]κ∞, ϑ]κ∞].

The L2(R;C2)-orthogonal projections onto the bound (defect) state subspace and
the continuous (dispersive) spectral subspace of /D0 are, respectively:

P0 = 〈α?, ·〉α? and Pc = I −P0 (P0 + Pc = I) . (6.2)
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Thus, we decompose the solution of (5.1) relative to these orthogonal projections:

α(T,X) = g(T )α?(X) + αd(T,X) ,
〈
α?(·), αd(T, ·)

〉
= 0 , T ≥ 0 . (6.3)

In Section 7 we derive a coupled dynamical system for the oscillator-like degree of
freedom, g(T ;β) and field-like degree of freedom αd(T,X;β), which we solve for
small β via a multiple scale expansion. Our constructed g(T ) decays on the time
scale O(β−2). In particular, we show the following:
Leading order multiscale expansion: Fix T0 > 0 and arbitrary. Then, there
exist ρ0, β0 > 0 such that for all 0 < β < β0 and 0 ≤ T ≤ T0β

−2

g(T ;β) = ei(β
2Λ0T−βηA(T )) e−Γ0β

2T ( 1 + o(1) ) (6.4a)

αd(T,X) = O
(
βe−Γ0β

2T
)

in L2(〈x〉−ρ0dx), as β → 0. (6.4b)

Here, Γ0 = Γ0(ω) is given by

Γ0(ω) ≡ π

4

〈
Pcσ3α?,

(
δ( /D0 + ω) + δ( /D0 − ω)

)
Pcσ3α?

〉
≥ 0 , (6.5)

is generically strictly positive,

Λ0(ω) ≡ 1

4

〈
Pcσ3α?,

(
PV

1

/D0 + ω
+ PV

1

/D0 − ω

)
Pcσ3α?

〉
, (6.6)

and

ηA(T ) = 〈α?, σ3α?〉
∫ T

0

A(s)ds

is a real, bounded, and Tper-periodic.

Exponential decay on the time scale O(β−2): Note from (6.4) that exponential
decay on the time-scale T ∼ β−2 holds if Γ0(ω) > 0. Since δ( /D0 ± ω) are non-
negative self-adjoint operators, Γ0(ω) ≥ 0 for any ω. The vector δ( /D0±ω)Pcσ3α?
is the projection of vector Pcσ3α? onto the continuous spectral subspace of /D0 at
frequency ∓ω. Hence, if |ω| < κ∞|ϑ]|, i.e., ω is in the spectral gap of /D0, then
Γ0(ω) = 0, see Fig. 11.

On the other hand, suppose |ω| > κ∞|ϑ]|, then ω is in the continuous spectrum of
/D0. For generic data, δ( /D0±ω)Pcσ3α? is non-zero, as we expect generic functions
to have non-zero projection on every part of the continuous spectrum [3, Section
4]. Hence, generically Γ0 > 0 implying exponential decay.

Since Pcσ3α? ∈ L2(R;C2), the inner product (6.5) which gives the exponential
rate of decrease, Γ0(ω), decays to zero for |ω| → ∞. Our numerical simulations
in the bottom row of Figure 11 are consistent with this behavior; we observe that
ω 7→ g(T ;ω)|T=500 increases for ω sufficiently large, consistent with rate of decay
of g(T ;ω) being slower for large |ω|.

Remark 6.1. We expect that the exponential decay is a large-time transient, which
applies on the time scale T . β−2. While our analysis does not cover |T | � β−2,
we expect the time-decay to be algebraic and given by the free dispersive rate,
O(t−1/2); see, e.g., [41].

Radiative time-decay in parametrically forced Schrödinger equation:
In terms of the original variables of the parametrically forced Schrödinger equa-
tion (3.12) we have, by (6.4a), for ρ ∈ (0, 1) and 0 ≤ t ≤ T0ε

−(2−ρ),

〈ψ?, ψ(t, ·)〉L2(R) = e−iβηA(εt)e−iE
εte−β

2ε(Γ0+iΛ0)t +O(β, ερ) ,
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(a)

�ess( /D0)

(b)

(c)

Figure 11. The effect of the frequency ω of the forcing A(T )
on the decay of the Dirac zero mode α?, see (3.8). (a) When
|ω| > ϑ]κ∞ (red), α? couples to the essential spectrum. Other-
wise |ω| < ϑ]κ∞ (blue), and the coupling effect is expected to be
negligible. (b) Same settings as in Fig. 1a, where ϑ]κ∞ = 0.5.
The projection onto the zero mode g(T ) = 〈α?, α(·, T )〉L2(R;C2) for
β = 0.01, with ω ∈ {0.3, 0.4, 0.6}. The curves for ω = 0.3 and
ω = 0.4 are nearly indistinguishable. (c) g(500) for varying values
of ω (triangles) and a dotted line for the ω = ϑ]κ∞ threshold.

and where Eε = ED +O(ε2); see (3.9). This gives exponential decay on the time-
scale O(ε−1β−2).

6.2. Simulations of the effective Dirac equation. For the time-periodically

forced Schrödinger equations (3.12) with the potentials U
(`)
ε (` = 1, 2, 3), introduced

in Section 4, we consider the effective periodically-forced Dirac Hamiltonians

/D
(`)

(T ) = /D
(`)
0 + vDA(T )σ3 (` = 1, 2, 3) ;

see (5.1b). The parameters which define these effective operators are given in
Appendix B.

To confirm the analytical asymptotic results outlined in Section 6.1, we simulate

the evolution under the effective Hamiltonians /D
(1)

(T ) (Fig. 1) and /D
(2)

(T )(Fig.
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(a) Unforced

(b) Forced

Figure 12. Same as Fig. 1, only for the square well Schrödinger
and Dirac equations, (B.4) and (B.8), respectively, with ω = 1.1.

12), and compare the solution α(T,X) with the wave-envelope of the solution of
the corresponding Schrödinger equations (3.12) with ε = 1/2. In the unforced case
(β = 0), the envelope of the Schrödinger defect mode |ψ?(x)| is tracked very well
by |α?(εx)| for 0 ≤ t ≤ 100, as we expect from (3.10).4 For the forced cases, we
see that the Dirac envelope decays and fits the multi-scale Schrödinger solution
extremely well for t = 50, and quite well (though small discrepancies do appear)
up to t = 100.

Figure 13 presents numerical results on radiation damping rate for the effective

Dirac Hamiltonians /D
(`)

(T ), (` = 1, 2, 3) which are consistent with the predicted
exponential decay rate, Γ(β) = Γ0β

2, (see (6.4a)). These results are almost one-to-
one comparable with those of the corresponding Schrödinger equations; compare
with Figure 10.

It is remarkable that the effective dynamics given by /D
(3)

(T ) (with a discontin-
uous κ(X)) tracks the Schrödinger dynamics for large time, since the Hamiltonian
violates the scaling assumptions used to derive the effective Dirac dynamics from
the Schrödinger dynamics. We remarked on this as an open problem in Section 1.4.

4Note that, since ε = 1/2 in (3.12), the simulation of (5.1) runs on the slow time-scale of
0 ≤ T ≤ 50.
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Figure 13. Decay rates for the effective Dirac equations as a func-

tion of β, see (5.1). Top: /D
(1)
0 . Middle: /D

(2)
0 . Bottom: /D

(3)
0 .

7. Multiscale analysis of radiation damping

In this section, we provide a multiple scale analysis and derivation of the radiation
damping phenomena observed in our numerical simulations. Consider the initial-
value-problem (IVP) for α(T,X), the effective parametrically forced Dirac equation
(5.1) with initial data given by the zero energy defect mode, α?(X), of the unforced
Dirac operator /D0:

i∂Tα = ( /D0 + βA(T )σ3)α , α(0, X) = α?(X) . (7.1)

From here on, it will be useful to make the forcing amplitude parameter β explicit,
multiplying the forcing function A(T ) = cos(ωT ), by a slight abuse of notation; β
is real and will be taken sufficiently small. Recall that since α? is the zero energy
eigenstate of /D0, we have that if β = 0, then α(T,X) = α?(X).

Since β is small it is natural to decompose α into its projection onto the bound
state and the dispersive part of /D0, orthogonal to α?

α(T,X) = g(T )α?(X) + αd(T,X) ,
〈
α?(·), αd(T, ·)

〉
= 0 ; (7.2)

see also (6.3).
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Inserting (6.3) into (5.1), and using the relation /D0α? = 0, we obtain5

i∂T g(T )α?+i∂Tαd(T ) = /D0αd(T )+βvDA(T )g(T )σ3α?+βvDA(T )σ3αd(T ) . (7.3)

Applying the projections P0 and Pc, as defined in (6.2), to (7.3), we obtain the
coupled system for g(T ) and αd(T ):

i∂T g(T ) = β
〈
α?, σ3α?

〉
A(T )g(T ) + βA(T )

〈
α?, σ3αd(T )

〉
, (7.4)

i∂Tαd(T ) = /D0αd(T ) + β Pcσ3α? A(T )g(T ) + βA(T )Pcσ3αd(T ) , (7.5)

g(0) = 1 , αd(0) = 0. (7.6)

To avoid cumbersome expressions, we have set ϑ] = vD = 1. The first term on the
right hand side of (7.4) contributes a rapidly varying phase, which we can remove
by setting

G(T ) ≡ eiβηA(T )g(T ), where

ηA(T ) ≡
〈
α?, σ3α?

〉 ∫ T

0

A(s) ds . (7.7)

Note that since A(T ) has mean zero,6 ηA(T ) is bounded on R. Equations (7.4),
(7.5), (7.6) becomes a system for G(T ) and αd(T ):

i∂TG(T ) = βeiβηA(T )A(T )
〈
α?, σ3αd(T )

〉
, (7.8a)(

i∂T − /D0

)
αd(T ) = βPcσ3α?e

−iβηA(T )A(T ) G(T ) + βPcσ3 A(T ) αd(T ) ,
(7.8b)

G(0) = 1, αd(0) = 0. (7.8c)

The structure of (7.8) and numerical simulations (Section 6.2) suggest that solu-
tion varies on disparate temporal scales: from the rapid time-scale of order β0 = 1,
of the forcing function, A(T ), to the decay time-scale of the bound state ampli-
tude, β−2. Thus, we shall seek the solution of (7.8) in the form of a multiple scale
expansion. First, introduce the hierarchy of time scales

T, τ1 = βT, τ2 = β2T, (β small)

and view G and αd as functions of these variables. Thus, (7.8) becomes:

i
(
∂T + β∂τ1 + β2∂τ2

)
G(T, τ1, τ2) = βeiβηA(T )A(T )

〈
α?, σ3αd(T, τ1, τ2)

〉
, (7.9a)

i
(
∂T + β∂τ1 + β2∂τ2

)
αd(T, τ1, τ2)− /D0αd(T, τ1, τ2)

= βPcσ3α?e
−iβηA(T )A(T ) G(T, τ1, τ2) + βPcσ3A(T ) αd(T, τ1, τ2) .

(7.9b)

Next, we expand the solution (G(·;β), αd(·;β)) of (7.9) in the small parameter β:

G = G(0) + βG(1) + β2G(2) + · · · , G(n)(T, τ1, τ2) ∈ C , (7.10a)

αd = α(0) + βα(1) + β2α(2) + · · · , α(n)(T, τ1, τ2) ⊥ α? . (7.10b)

5In the calculations below, we shall frequently suppress the X-dependence of αd. Thus, α(T ) =

g(T )α? + αd(T ).
6Without loss of generality, we can assume A(T ) has mean zero. Otherwise, the mean of A(T )

can be removed by a change of variables.
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We capture the initial data (7.8c) by imposing the initial conditions:

G(0) = 1, for T = 0, τ1 = 0, τ2 = 0 , (7.11a)

G(n) = 0, for T = 0, τ1 = 0, τ2 = 0 and all n ≥ 1 , (7.11b)

α(n) = 0, for T = 0, τ1 = 0, τ2 = 0 and all n ≥ 0 . (7.11c)

Substitution of (7.10) into (7.9) and equating like terms in powers of β, leads to a
hierarchy of equations for the functions {G(n)}n≥0 and {α(n)}n≥0. These functions
are determined by the requirement that contributions from terms at one order in β
are smaller or equal to terms of lower order in β on the radiation damping time-scale
T ∼ β−2.

For any fixed T̂ > 0 and n ≥ 1, we require that:

lim
β↓0

sup
0≤T≤T̂ /β2

βn |G(n)(T, βT, β2T )| = 0 , (7.12)

lim
β↓0

sup
0≤T≤T̂ /β2

βn ‖ 〈X〉−ρ α(n)(T, βT, β2T,X)‖L2(RX) = 0 . (7.13)

Here, ρ > 0 is fixed and is taken sufficiently large.
The norm in (7.13) is a measure of spatially localized energy and below we see

how it naturally arises. We shall construct the order β0, β1 and β2 terms of the
expansion (7.9) in order to exhibit the transient exponential decay on the time-scale
T ∼ β−2. The expansion can be carried out systematically to any finite order in β.
Section 7.1 assembles some technical tools used along the way and the expansion
is constructed in Section 7.2.

7.1. Technical interlude. Throughout this section, assume that κ∞ = 1, i.e.,
that limX→±∞ κ(X) = ±1, and furthermore, that the convergence to ±1 is suffi-
ciently fast. 7 We shall also assume that κ(X) is smooth. While such assumptions
are stringent, our numerical simulations in Sections 4 and 6.2 suggest that the
phenomena is not dependent on such smoothness properties.

For any ε > 0, the operator e−i /D0s/( /D0−λ− iε) is bounded in L2(R). Introduce
the operator

e−i /D0s

( /D0 − λ− i0)
≡ lim
ε→0+

e−i /D0s

( /D0 − λ− iε)
. (7.14)

Proposition 7.1. Assume λ ∈ specess( /D0) but that λ is not an endpoint of
specess( /D0). Then, for any r ≥ r0 > 0 sufficiently large, there exist ρ > 0 such that

the operator e−i /D0s( /D0−λ− i0)−1 is well-defined from L2(〈x〉r dx) to L2(〈x〉−r dx)
and satisfies the following local energy decay bound for all s > 0:∥∥∥ 〈x〉−r e−i /D0s

( /D0 − λ− i0)
〈x〉−r

∥∥∥
B(L2)

≤ C 〈s〉−ρ .

See Section 8 for the proof of Proposition 7.1.

7A sufficient condition for the decay rate of κ(X) emerges from our application of wave oper-
ators in Section 8.2; see [44,45].
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Proposition 7.2. (1) For f ∈ S(R), the following identity holds in L2(〈x〉−ρ dx)
for a fixed ρ > 0:∫ s

0

e−i /D0(s−s1)A(s1)Pcf ds1 = G (s)f . (7.15)

Here, A(T ) = cos(ωT ) and G (t) denotes the operator

G (s) =
1

2i
eiωsPV

1

/D0 + ω
Pc +

1

2i
e−iωsPV

1

/D0 − ω
Pc (7.16a)

+
π

2

(
eiωsδ( /D0 + ω) + e−iωsδ( /D0 − ω)

)
Pc (7.16b)

− 1

2

e−i /D0s

i( /D0 + ω − i0)
Pc −

1

2

e−i /D0s

i( /D0 − ω − i0)
Pc . (7.16c)

(2) For f1, f2 ∈ S(R),〈
Pcf1 ,

∫ s

0

e−i /D0(s−s1)A(s1)Pcf2 ds1

〉
= 〈Pcf1,G (s)Pcf2〉 . (7.17)

(3) For f ∈ S(R), we have sups≥0 ‖〈x〉−ρG (s)f‖L2 <∞.

Proof of Proposition 7.2. The lemma is a consequence of the following calculation
which holds in S ′(R). For any fixed s ≥ 0, we evaluate the integral via a regular-
ization procedure. Using that A(s) = cos(ωs) we have:

s∫
0

e−i /D0(s−s1)A(s1)Pc ds1 =
1

2

s∫
0

e−i /D0s
(
ei( /D0+ω)s1 + ei( /D0−ω)s1

)
Pc ds1

= lim
ε→0+

1

2

s∫
0

e−i /D0s
(
ei( /D0+ω−iε)s1 + ei( /D0−ω−iε)s1

)
Pc ds1

=
1

2
lim
ε→0+

[
eiωs − e−i /D0s

i( /D0 + ω − iε)
+
e−iωs − e−i /D0s

i( /D0 − ω − iε)

]
Pc .

Recall the distributional identity (Plemelj-Sokhotski relation)

1

x− i0
= lim
ε→0+

1

x− iε
= PV

1

x
+ iπδ(x) , (7.18)

where PV denotes the Cauchy Principal Value. Applying (7.18) we obtain

s∫
0

e−i /D0(s−s1)A(s1)Pc ds1 = G (s).

Here, G (s) is displayed in (7.16). Finally, to prove the uniform bound in item (3),
we return to the decomposition of G (s) as given in (7.16). That the operators in
(7.16c) satisfy the desired bound is a direct result of Proposition 7.1. The other
terms (7.16a)–(7.16b), can be written (and are obtained from) as e±iωs[ /D0±ω]−1.
The required bound can be reduced to the analogous bounds for e±iωs[Z0 ± ω]−1,
where Z0 is the free Schrödinger Hamiltonian. The details of a similar argument
are presented in Section 8, and in particular Section 8.2.

�
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7.2. Implementing the expansion through order β2. A hierarchy of equations
for the functions G(n) and α(n) is obtained by substituting (7.10) into (7.9) and
equating terms of like power in β. We carry this out to second order in β. The
only non-algebraic term, eiβA(T ), is expanded to

eiβηA(T ) = 1 + iβηA(T ) +O(β2) .

By recalling that ηA(T ) is bounded, we obtain the hierarchy equations, the first
several of which we now display and solve.

O(β0) equation.

i∂TG
(0) = 0 ,

(
i∂T − /D0

)
α(0) = 0 . (7.19)

O(β1) equation.

i∂TG
(1) = −i∂τ1G(0) +A(T )

〈
σ3α?, α

(0)
〉
, (7.20a)(

i∂T − /D0

)
α(1) = −i∂τ1α(0) + Pcσ3α?A(T )G(0)

+ Pcσ3α?A(T )α(0). (7.20b)

O(β2) equation.

i∂TG
(2) = −i∂τ1G1 − i∂τ2G(0) +A(T )

〈
σ3α?, α

(1)
〉

+ iηA(T )
〈
σ3α?, α

(0)
〉
, (7.21a)(

i∂T − /D0

)
α(2) = −i∂τ1α(1) − i∂τ2α(0) − iPcσ3α?ηA(T )A(T )G(0)

+ Pcσ3α?A(T )α(1) + Pcσ3α?A(T )G(1). (7.21b)

. . . . . . . . .

O(βn) : . . . . . . . . .

We next solve the equations of this hierarchy through order β2.

O(β0) solution. Since i∂TG
(0) = 0, we have that

G(0) = G(0)(τ1, τ2) . (7.22)

Furthermore,
(
i∂T − /D0

)
α(0) = 0 with initial data α(0)(0) = 0 implies that we can

take

α(0)(T ) ≡ 0 . (7.23)
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O(β1) solution. Using that α(0)(T ) ≡ 0, the next order of equations simplifies to

i∂TG
(1) = −i∂τ1G(0) , (7.24)(

i∂T − /D0

)
α(1) = Pcσ3α?A(T )G(0) . (7.25)

Integrating (7.24) and using that G(1) vanishes for T = 0, we have

iG(1)(T, τ1, τ2) = −i∂τ1G(0)(τ1, τ2)T .

Condition (7.12) for n = 1 then implies ∂τ1G
(0)(τ1, τ2) = 0 and hence i∂TG

(1) = 0.
Therefore,

G(0) = G(0)(τ2) and G(1) = G(1)(τ1, τ2) .

The degrees of freedom offered by G(1)(τ1, τ2) are not required to remove resonances
in subsequent terms of the hierarchy; we however need to satisfy (7.11b) for n = 1.
We can therefore set

G(1) ≡ 0 . (7.26)

We solve (7.25) using Duhamel’s principle and obtain, using Proposition 7.2, that

α(1)(T, τ2) = −i
∫ T

0

e−i /D0(T−s)Pcσ3α?A(s) ds G(0)(τ2)

= −iG (T )Pcσ3α? G
(0)(τ2) , (7.27)

where G (T ) is defined in Proposition 7.2. Hence, by item (3) of Proposition 7.2,
for ρ taken sufficiently large we have

‖ 〈X〉−ρ α(1)(T,X, τ2)‖L2(RX) . |G(0)(τ2)| , for T ≥ 0 . (7.28)

Below we determine G(0)(τ2) = G(0)(β2T ), which we shall see is bounded on the
time scale β−2. Therefore, by (7.28), (7.13) is satisfied for n = 1.

O(β2) solution. The system (7.21) reduces to (using (7.23) and (7.26))

i∂TG
(2) = −i∂τ2G(0) +A(T )

〈
σ3α?, α

(1)(T, τ2)
〉
, (7.29a)(

i∂T − /D0

)
α(2) = −iPcσ3α?ηA(T )A(T )G(0) + Pcσ3α?A(T )α(1). (7.29b)

Integration of (7.29a), using the initial condition G(2)(0) = 0, implies

iG(2)(T, τ2) = T

(
−i∂τ2G(0)(τ2) +

1

T

∫ T

0

A(s)
〈
σ3α?, α

(1)(s, τ2)
〉
ds

)
. (7.30)

Since we seek an expansion where sup0≤T≤β−2 β2|G(2)(T )| = o(1) as β ↓ 0 (see
(7.12)), we require that

i∂τ2G
(0)(τ2) = lim

T→∞

1

T

∫ T

0

A(s)
〈
σ3α?, α

(1)(s, τ2)
〉
ds . (7.31)

Let’s next study the inner product:
〈
σ3α?, α

(1)(s, τ2)
〉

appearing in (7.31). By (7.27),〈
σ3α?, α

(1)(s, τ2)
〉

= 〈σ3α?,−iG (T )Pcσ3α?〉G(0)(τ2) .

Therefore, G(0)(τ2) satisfies:

i∂τ2G
(0)(τ2) = lim

T→∞

1

T

∫ T

0

A(s)Υ(s)ds G(0)(τ2), (7.32)
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where

Υ(s) ≡ 〈σ3α?,−iG (T )Pcσ3α?〉 .
In order to evaluate the limit in (7.32), we apply Proposition 7.2 with f1 = f2 =
σ3α? to expand the expression for Υ(s)

Υ(s) = 〈Pcσ3α?,−iG (T )Pcσ3α?〉 (7.33)

= −e
iωs

2

〈
Pcσ3α?,PV

1

/D0 + ω
Pcσ3α?

〉
− e−iωs

2

〈
Pcσ3α?,PV

1

/D0 − ω
Pcσ3α?

〉
− iπ

2
eiωs

〈
Pcσ3α?, δ( /D0 + ω)Pcσ3α?

〉
− iπ

2
e−iωs

〈
Pcσ3α?, δ( /D0 − ω)Pcσ3α?

〉
+ Υ1(s) .

The first four terms in Υ(s) lead to the resonant decay formulas (6.5)–(6.6). The
error term, Υ1(s), is given by:

Υ1(s) ≡ 1

2

〈
Pcσ3α? ,

(
e−i /D0s

( /D0 + ω − i0)
+

e−i /D0s

( /D0 − ω − i0)

)
Pcσ3α?

〉
,

and will now be shown to decay with s.
Since α? is exponentially decaying (see (3.7)), 〈x〉rα∗ ∈ L2 for any fixed r > 0,

and therefore by inserting 〈x〉r〈x〉−r and applying Cauchy-Schwartz inequality, we
have

| Υ1(t)| ≤
∥∥∥ 〈x〉r σ3α?

∥∥∥
L2
·
∑
±

∥∥∥〈x〉−r e−i /D0t

i( /D0 ± ω − i0)
Pcσ3α?

∥∥∥
L2

. (7.34)

Here again, since α∗ is exponentially decaying, there exists r > 0 such that Propo-
sition 7.1 is applicable and yields

|Υ1(s)| . 〈s〉−ρ , with ρ > 0. (7.35)

Next, substituting A(s) = cos(ωs) = 1
2 (eiωs + e−iωs) into (7.33) and using the

bound (7.35) we obtain

lim
T→∞

1

T

∫ T

0

A(s)Υ(s)ds = −iΓ0−Λ0 , (7.36)

where (see also (6.5) and (6.6))

Γ0(ω) ≡ π

4

(〈
Pcσ3α?, δ( /D0 + ω)Pcσ3α?

〉
+
〈
Pcσ3α?, δ( /D0 − ω)Pcσ3α?

〉)
,

(7.37)

Λ0(ω) ≡
(〈

Pcσ3α?,PV
1

/D0 + ω
Pcσ3α?

〉
+

〈
Pcσ3α?,PV

1

/D0 − ω
Pcσ3α?

〉)
.

(7.38)

Equation (7.32) and (7.36) imply

∂τ2G
(0)(τ2) = (−Γ0 + iΛ0)G(0)(τ2) . (7.39)

The operators δ( /D0 ± ω) are non-negative self-adjoint operators. Generically,
since ω ∈ specess( /D0), Γ is strictly positive [3, Section 4] and hence G(0)(τ2) is
exponentially decaying. Since τ2 = β2T , the decay is on the time scale T ∼ β−2.

Returning now to the expression for G(2)(τ2) in (7.30) we have
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G(2)(T, τ2) = −iT

(
1

T

∫ T

0

A(s)Υ(s) ds− (−iΓ0 − Λ0)

)
G(0)(τ2) . (7.40)

Using (7.36) we see that the expression in parenthesis in (7.40) tends to zero as
T →∞.

Recall from (7.10) and (7.26) that G(T ;β) ≈ G(0)(τ2)+β2G(2)(T, τ2). By (7.40),
we have

β2G(2)(T, τ2) = β2 o(T )×G(0)(τ2) as T →∞.
Therefore,

G(T ;β) ≈
(
1 + β2 o(T )

)
G(0)(β2T ) =

(
1 + β2 o(T )

)
e(−Γ0+iΛ0)β2T , (7.41)

which satisfies (7.12) through order β2.

Finally α(2), which satisfies (7.29b), can be bounded using the bound on α(1)

in (7.28), Proposition 7.2 and Theorem 7.1. Together with (7.41) we have verified
that our approximate solution

G ≈ G(0) + βG(1) + β2G(2) , (7.42)

αd ≈ α(0) + βα(1) + β2α(2) , (7.43)

satisfies (7.12), (7.13). This completes our derivation of the radiation damping
effect on the time-scale β−2.

8. Proof of the time decay estimate of Proposition 7.1

We prove the following: There exists ρ > 0 and r > 0 such that for any f ∈ S(R)
we have

sup
t≥0

tρ
∥∥∥〈x〉−r e−i /D0t

i( /D0 − ω − i0)
Pcf

∥∥∥
L2
<∞ . (8.1)

Here, Pc denotes the continuous (dispersive) spectral part of /D0.
Bounds similar to (8.1) are proved in [42] for scalar 3D Klein-Gordon equations

with spatially varying and decaying potentials. Our strategy is to make an alge-
braic reduction to a problem of this type and to apply appropriate 1D dispersive
estimates. In particular, to prove (8.1) (and hence the decay of Υ1(t), see (7.34)),

we shall re-express e−i /D0t in terms of a diagonal Klein-Gordon evolution operators
to which we can apply known time-decay estimates.

We begin with the an algebraic observation.

Lemma 8.1. (1)

/D
2
0 = SDS∗ , (8.2)

S ≡ 1√
2

(
1 1
i −i

)
, D ≡

(
Z+ 0
0 Z−

)
,

and

Z± ≡ −vD∂
2
X + ϑ2

]κ
2(X)∓ vDϑ]κ

′(X) .

(2) For any continuous function φ on the spectrum of /D
2
0,

φ( /D
2
0)Pc( /D0) = Sφ(D)S∗
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Note that Z+ and Z− are non-negative self-adjoint operators, by (8.2). It is also
useful to note that Z+ and Z− can be expressed as spatially localized perturbations
of the constant coefficient operator

Z0 = −∂2
x + κ2

∞; namely, (8.3)

Z± = Z0 + ϑ2
] (κ

2(X)− κ2
∞)∓ vDϑ]κ

′(X) . (8.4)

Proof of Lemma 8.1. Using the commutation relation σ3σ1 = −σ1σ3, we obtain

/D
2
0 = (ivDσ3∂X + ϑ]κ(X)σ1)2

= I(−v2
D∂

2
X + ϑ2

]κ
2(X))− vDϑ]σ2 κ

′(X) .

Hence, /D
2
0 is diagonalizable using the eigenvectors of σ2. �

Define P+ ≡Pc( /D0 > 0) and P− ≡Pc( /D0 < 0) so that Pc = P+ + P−.

Proposition 8.1.

/D0P±f = ±SD 1
2S∗P±f

and, in particular,

e−i /D0t

i( /D0 − ω − i0)
P±f = S

e∓iD
1
2 t

i(±D 1
2 − ω − i0)

S∗P±f . (8.5)

Proof of Proposition 8.1. Since D is similar to the positive semi-definite /D
2
0 (pos-

itive definite on its continuous part), we have /D0P±f = ± (SDS∗)
1
2 P±f . For

simplicity, we restrict our attention to f ∈ Range(P+). The case where f ∈
Range(P−) negative case follows analogously.

Recall that for any positive-semidefinite operator A we have the following for-
mula8

A
1
2 = πA

∞∫
0

z−
1
2 (zI +A)

−1
dz .

Therefore

(SDS∗)
1
2 = SDS∗ π

∞∫
0

z−
1
2 (zI + SDS∗)−1

dz

= SDS∗ π
∞∫

0

z−
1
2 (S(zI +D)S∗)

−1
dz

= SDS∗ S

π ∞∫
0

z−
1
2 (zI +D)

−1
dz

S∗
= S

πD ∞∫
0

z−
1
2 (zI +D)

−1
dz

S∗ = SD 1
2S∗ .

Hence, /D0P±f = ±SD 1
2S∗P±. The equation (8.5) now follows. �

8This formula is obtained by using functional calculus and calculating the integral∫∞
0 z−1/2(z + a)−1 dz for a scalar a > 0.
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8.1. Proof of Proposition 7.1, time-decay estimate (8.1). Let J be a non-
empty open interval in R containing zero and let χ

J
(y) denote a smoothed out

characteristic function with support in J . The support of J will be fixed below.
We write R = J + Jc and hence 1 = χ

J
(y) + χ

Jc
(y). Therefore,

∥∥∥〈x〉−rS e−iD
1
2 t

i(D 1
2 − ω − i0)

S∗P+f
∥∥∥
L2
≤ Term I + Term II , where

Term I ≡

∥∥∥∥∥〈x〉−rS e−iD
1
2 t

i(D 1
2 − ω − i0)

χ
J
(|D 1

2 − ω|)S∗P+f

∥∥∥∥∥
L2

(8.6)

Term II ≡

∥∥∥∥∥〈x〉−rS e−iD
1
2 t

i(D 1
2 − ω − i0)

χ
Jc

(|D 1
2 − ω|)S∗P+f

∥∥∥∥∥
L2

. (8.7)

We next estimate the expressions Term I and Term II. In particular, we show that
for any N , there exists r = r(N) such that

Term I ≤ t−N‖〈x〉Nf‖L2 , (8.8)

Term II ≤ t− 1
4 ‖f‖

W 1, 4
3
. (8.9)

We first bound Term II and then Term I.

8.2. Time-decay estimates for Term II, given by (8.7).

Let q−1 + (p′)−1 = 1/2. Then,

Term II =

∥∥∥∥∥〈x〉−rS e−iD
1
2 t

i(D 1
2 − ω − i0)

χ
Jc

(|D 1
2 − ω|)S∗P+f

∥∥∥∥∥
L2

≤ ‖〈x〉−r‖Lq
∥∥∥∥∥S e−iD

1
2 t

i(D 1
2 − ω − i0)

χ
Jc

(|D 1
2 − ω|)S∗P+f

∥∥∥∥∥
Lp′

.

Next, we prove a time-decay estimate for the latter factor.
For j = +,−, introduce wave operators Wj which intertwine each Zj on its

continuous spectral part [44, 45], i.e., ZjPc(Zj) = WjZ0W
∗
j , and define the block

diagonal operator W = diag(W+,W−). For any Borel measurable function, φ, we
have

φ(Z±)Pc(Z±) = W±φ(Z0)W ∗±, (8.10)

and hence for matrix operator-valued Borel functions

φ(D)Pc(D) = Wφ(Z0σ0)W ∗,

where σ0 is the 2× 2 identity matrix. Therefore,

φ( /D
2
0)Pc( /D0) = Sφ(D)Pc(D)S∗ = SWφ(D0)(SW )∗, (8.11)

where D0 = σ0Z0. In particular, (SW )(SW )∗ = Pc( /D0).
As shown in [44, 45] the wave operators Wj , and hence W , are bounded in

W k,p(Rn). This then allows us to reduce decay estimates for e−iD
1
2 tPc(D) to
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those for e−iZ
1
2
0 t. Therefore, we have with p−1 + (p′)−1 = 1:

Term II .

∥∥∥∥∥∥SW e−iD
1
2
0 t

i(D
1
2
0 − ω − i0)

χ
Jc

(|D
1
2
0 − ω|)(SW )∗f

∥∥∥∥∥∥
Lp′

.

∥∥∥∥∥∥ e−iD
1
2
0 t

i(D
1
2
0 − ω − i0)

χ
Jc

(|D
1
2
0 − ω|)(SW )∗f

∥∥∥∥∥∥
Lp′

.

∥∥∥∥e−iD 1
2
0 t

∥∥∥∥
Lp′←W 1,p

∥∥∥(D
1
2
0 − ω)−1χ

Jc
(|D

1
2
0 − ω|)(SW )∗f

∥∥∥
W 1,p

.

∥∥∥∥e−iD 1
2
0 t

∥∥∥∥
Lp′←W 1,p

∥∥∥D 1
2
0 (D

1
2
0 − ω)−1χ

Jc
(|D

1
2
0 − ω|)(SW )∗f

∥∥∥
Lp

.

∥∥∥∥e−iD 1
2
0 t

∥∥∥∥
Lp′←W 1,p

∥∥∥D 1
2
0 (D

1
2
0 − ω)−1χ

Jc
(|D

1
2
0 − ω|)

∥∥∥
Lp←Lp

‖(SW )∗f‖Lp .

The second factor just above is bounded because it can be expressed in terms of a
Fourier multiplier on Lp and the third factor is controlled by ‖f‖Lp by boundness
of wave operators. Hence,

Term II .

∥∥∥∥e−iD 1
2
0 t

∥∥∥∥
W 1,p→Lp′

· ‖f‖Lp .
∥∥∥∥e−iZ 1

2
0 t

∥∥∥∥
W 1,p→Lp′

· ‖f‖Lp .

Dispersive time-decay estimates for the 1D Klein-Gordon equation yield:

‖e−iZ
1
2
0 tf‖L∞ ≤ t−1/2‖(I − ∂2

x)
1
4 f‖L1 , t� 1;

for general results, see, e.g., [13]. Together with the unitarity of the Klein-Gordon

flow ‖e−iZ
1
2
0 tf‖L2 = ‖f‖L2 we have, using interpolation, that

‖e−iZ
1
2
0 tf‖Lp′ . ‖e

−iZ
1
2
0 tf‖

2
p′

L2 · ‖e−iZ
1
2
0 tf‖

1− 2
p′

L∞

. ‖f‖
2
p′

L2 ·
(
t−

1
2 ‖(I − ∂2

x)
1
4 f‖L1

)1− 2
p′

. t−
1
2 + 1

p′ ‖f‖
2
p′

L2 · ‖f‖
1− 2

p′

W
1
2
,1
,

where p−1 + (p′)−1 = 1. Finally, let us fix p = 4/3 and p′ = 4. Then, we have that

Term II ≤ t− 1
4 ‖f‖

L
4
3
· ‖f‖

1
2

L2 · ‖f‖
1
2

W
1
2
,1
.

8.3. Time decay estimate for Term I given by (8.6). Recall that

Term I ≡

∥∥∥∥∥〈x〉−rS e−iD
1
2 t

i(D 1
2 − ω − i0)

χ
J
(|D 1

2 − ω|)S∗P+f

∥∥∥∥∥
L2

.
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Noting that, by integrating the right hand side of (??) for ε > 0 and taking the
upper limit of the integral to τ →∞,

e−iD
1
2 t

i(D 1
2 − ω − i0)

χJ(|D 1
2 − ω|)S∗P+

= −e−iωt lim
ε→0+

∞∫
t

e−i(D
1
2−ω−iε)τχJ(|D 1

2 − ω|)S∗P+ dτ , (8.12)

it suffices to show sufficient decay of an appropriate operator norm of the integrand
of (8.12). Since we have D = diag(Z+, Z−), time-decay bounds of the integrand
in (8.12) can be reduced to e−iZ±tPc(Z±). The Mourre approach to scattering
estimates, as applied in [42, Section 2], yields

‖〈x〉−rSe−iD
1
2 τχJ(|D1/2−ω|)S∗P+f‖L2 .

(
〈t〉−r + 〈t〉−N/2

)
‖〈x〉N/2f‖L2 , N ∈ N

(8.13)
where r and N can be taken large. The desired bound on the expression Term I
(see (8.6)) now follows from estimating the integrand of (8.12) using (8.13) and
integrating.

With the estimates (8.8) and (8.9) on Term I and Term II now proved, the proof
of Proposition 7.1 is now complete.

Appendix A. Derivation of the effective Dirac equation

Our proof proceeds in two parts. We first formally derive the effective Dirac
equation and the corrector equations using multiple scales methods. Then, using
energy estimates, we bound the corrector term for large but finite times.

Introduce X = εx and T = εt, the slow space and time variables, respectively.
Formally, we view ψ as dependent on all four variables, i.e., we seek Ψ(t, T, x,X)
such that ψ(t, x), the true solution of the Schrödinger equation (3.12), is well ap-

proximated by Ψ(t, T, x,X)
∣∣∣
T=εt,X=εX

. Hence, ∂x 7→ ∂x + ε∂X and ∂t 7→ ∂t + ε∂T ,

and (3.12) is rewritten into

i(∂t −H0)Ψ(t, x, T,X) = εH1Ψ + ε2H2Ψ , (A.1a)

where H0 = −∂2
x + V (x) as usual, and

H1 ≡ −i∂T −2∂x∂X+κ(X)W (x)+2iA(T )∂x , H2 ≡ −∂2
X+2iβA(T )∂X . (A.1b)

Since we are looking for wavepackets which are spectrally centered at the Dirac
point, the boundary conditions (or function space) in which we solve (A.1) is
kD = π-pseudo periodicity in x and L2

X(R) in X.
We seek Ψ as an expansion in orders of ε,

ψ = ψ(0)(t, T, x,X) + εψ(1)(t, T, x,X) + ε2ψ(2)(t, T, x,X) + ηε(t, x) . (A.2)

Substituting (A.2) into (A.1) and collecting terms by orders of ε, at the ε0 order
we obtain the initial value problem(

i∂t −H0

)
ψ(0) = 0 , (A.3a)

ψ(0)(0, 0, x,X) = α∗,1(X)Φ1(x; kD) + α∗,2(X)Φ2(x; kD) , (A.3b)
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with α? ∈ L2
X(R;C2) as defined in (3.5).9 As noted in Section 3.1, the L2

kD
-nullspace

of EDI − Hbulk is spanned by the Bloch modes {Φ1,Φ2}, and so the solution of
(A.3) is given by

ψ(0) = e−iEDt
2∑
j=1

αj(T,X)Φj(x) , (A.4)

where α1(T,X) and α2(T,X) are rapidly-decaying functions yet to be determined
with αj(0, X) = α∗,j(X) for j = 1, 2.

Proceeding to order ε, we obtain(
i∂t −H0

)
ψ(1) =

(
− i∂T − 2∂x∂X + κ(X)W (x) + 2iA(T ) ∂x

)
ψ(0) . (A.5)

Since ψ(0) oscillates with frequency ED, it will be convenient to extract the fast
oscillatory behavior of ψ(1) by defining

ψ(1)(t, T, x,X) = e−iEDtψ̃(1)(T, x,X) .

Substituting the above ansatz and (A.4) into (A.5), we obtain

(
EDI −H0

)
ψ̃(1)(T, x,X) = −

2∑
j=1

i∂Tαj(T,X) Φj + i

2∑
j=1

∂Xαj · 2i∂xΦj

+

2∑
j=1

κ(X)αjW (x)Φj +

2∑
j=1

A(T )αj · 2i∂xΦj . (A.6)

The solvability of (A.6) for ψ̃(1) ∈ L2
kD

requires the L2
kD

-orthogonality of its right-
hand side to Φ1 and Φ2. In [11, Propsition 2.2], it is shown that(〈

Φ1, 2i∂xΦ1

〉 〈
Φ2, 2i∂xΦ1

〉〈
Φ1, 2i∂xΦ2

〉 〈
Φ2, 2i∂xΦ2

〉) = vDσ3 , (A.7a)(〈
Φ1,WΦ1

〉 〈
Φ2,WΦ1

〉〈
Φ1,WΦ2

〉 〈
Φ2,WΦ2

〉) = ϑ]σ1 , (A.7b)

where vD, ϑ] 6= 0. Thus, the solvability conditions reduce to

i∂Tα1 =
〈
Φ1, 2i∂xΦ1

〉
(i∂X + βA(T ))α1 +

〈
Φ1,WΦ2

〉
κ(X)α2 ,

i∂Tα2 =
〈
Φ2, 2i∂xΦ2

〉
(i∂X + βA(T ))α2 +

〈
Φ2,WΦ1

〉
κ(X)α1 ,

from which we obtain the Dirac equation

i∂Tα(T,X) = (ivDσ3∂X + ϑ]κ(X)σ1 + vDA(T )σ3)α , (A.8)

with α(0, X) = α?(X), as first introduced in (5.1).
Let π⊥ denote the projection onto the orthogonal complement of span{Φ1,Φ2}

in L2
kD

:

π⊥ = I −
2∑
j=1

〈Φj , ·〉Φj =
∑
j≥3

〈Φj , ·〉Φj ;

9Admittedly, the initial condition ψ? is only well-approximated by α>? Φ, but since we are only
formally exapnding the initial value problem and disregard small error term, we can take this

approximation in (A.3b).
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for convenience we indexed the L2
kD

eigenpairs of H0 such that span{Φ1,Φ2}⊥ =

span{Φj : j ≥ 3}. If (α1, α2) is constrained to satisfy (A.8), then π⊥ (H1Ψ0) =

H1ψ
(0) and so:

ψ̃(1)(t, x, T,X) = (EDI −H0)−1H1ψ
(0) + ε

∑
j=1,2

βj(T,X)Φj(x) , (A.9)

where εβj are decaying functions of X which are to be determined at the next order

equation (order ε2)), and finally ψ(1) = ψ̃(1)e−iEDt.
Turning next to the ε2 order equations, we get

(i∂t −H0)ψ(2) = H1ψ
(1) +H2ψ

(0) , ψ(2)(0, x, 0, X) = 0 , (A.10)

we again write ψ(2)(t, x, T,X) = ψ̃(2)(x, T,X)e−iEDt. In analogy with our first
order analysis, the condition for solvability condition of (A.10) in L2

kD
is that

H1(ψ̃(1) +
∑
j βjΦj) is orthogonal to Φ1 and Φ2. In a manner analogous to the

derivation of (5.1), we obtain a system of forced Dirac equations for β ≡ (β1, β2)>:

i∂Tβ(T,X)− /DA(T )β(T,X) = F2(T,X) , (A.11)

where F2 = (F2,1, F2,2)
>

, and for j = 1, 2:

F2,j = 〈Φj , H1(ED −H0)−1H1ψ
(0)〉L2(Ω) . (A.12)

We note that F2 is independent of β, and is therefore a forcing term in (A.11). Cor-
responding to any solution of the initial value problem for (A.11) in C(R;L2(R;C2)),
we have that

ψ(2)(t, x, T,X) = e−iEDt(ED −H0)−1π⊥ψ̃(1) . (A.13)

Remark A.1. In writing H1ψ̃
(1) and H1(ED − H0)−1H1ψ

(0) above, we apply the
operator ∂X to κ(X). This is the reason we require that the domain-wall function κ
have bounded derivatives of all orders - a sufficient, but perhaps not necessary con-
dition. Such derivatives will be applied further in the subsequent sections without
further notice.

Finally, to close the multiple scales expansion (A.2), the corrector ηε is required
to satisfy

(i∂t −H0 − 2iεA(εt)∂x − κ(εx)W (x)) ηε(t, x) = ε3F ε(t, x) , (A.14)

where

F ε ≡
[
H1ψ

(2) +H2ψ
(1) + εH2ψ

(2)
] ∣∣∣
T=εt ,X=εx

. (A.15)

A.1. Bounding the corrector, ηε(t, x). So far, (A.2) is a formal multiple scale
expansion. To estimate the quality of the approximation of ψε(t, x) by ψ(0), we
need to estimate the L2 norms of ψ(1), ψ(2), and the corrector ηε.

By self-adjointness of H0+2iεA(εt)∂x+κ(εx)W (x) on the left hand side operator
in (A.14), we have that ∂t‖ηε(t)‖2 = 2ε3Re 〈η,F ε(t, ·)〉. This implies, by the
Cauchy-Schwarz inequality, that ∂t‖ηε(t)‖ ≤ ε3‖F ε(t, ·)‖. Therefore, for all t ≥ 0:

‖ηε(t, ·)‖L2(R2) ≤ tε3 sup
s∈[0,t]

‖F ε(s, ·)‖L2(R2) , (A.16)

where F ε is given by (A.15). By bounding the norm of F ε we obtain the following
proposition:
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Proposition A.1. For all t > 0, we have the following L2(R2) bounds

‖ηε(t, ·)‖
L2(R2

x)
. tε3 sup

s∈[0,t]

(
‖α(εs, ·)‖

H3(R2)
+ ‖β(εs, ·)‖

H2(R2)

)
. (A.17)

Here, α = (α1, α2)> and β = (β1, β2)> are solutions of the homogeneous and inho-
mogeneous Dirac equations (A.8) and (A.11), respectively. The implicit constant
in (A.17) depends only on the functions V,W, κ, and A.

Proof. We shall use the following convention. If G(t, T, x,X) is a multi-scale func-

tion, then we write Gε(t, x) ≡ G(t, T, x,X)
∣∣∣
T=εt,X=εx

. The proof of Proposition

A.1 makes use of the following bounds:

‖ψ(1)
ε (t, ·)‖2 . ‖α(εt, ·)‖H1 + ‖β(εt, ·)‖2 , (A.18)

‖ψ(2)
ε (t, ·)‖2 . ‖α(εt, ·)‖H1 + ‖β(εt, ·)‖2 , (A.19)

‖H1ψ
(2)
ε (t, ·)‖2 . ‖α(εt, ·)‖H2 + ‖β(εt, ·)‖H1 , (A.20)

‖H2ψ
(1)
ε (t, ·)‖2 . ‖α(εt, ·)‖H3 + ‖β(εt, ·)‖H2 , (A.21)

‖H2ψ
(2)
ε (t, ·)‖2 . ‖α(εt, ·)‖H3 + ‖β(εt, ·)‖H2 , (A.22)

‖F ε(εt, ·)‖2 . ‖α(εt, ·)‖H3 + ‖β(εt, ·)‖H2 . (A.23)

It will be useful to decompose ψ̃(1) into two separate terms and bound each of these
elements separately

Ψ̃11 = (ED −H0)−1π⊥H1ψ
(0) , Ψ̃12 =

∑
j

βjΦj .

We start with bounding ‖Ψ̃1,1‖2. By definition

−H1ψ
(0) = ε

1
2

∑
j=1,2

(
i∂Tαj(T,X)Φj + 2∂xΦj · ∂Xαj(T,X)

− 2iαj(T,X)A(T ) · ∂xΦj − κ(X)W (x)αj(T,X)Φj

)

where Φ = (Φ1,Φ2)>. Since (ED − H0)−1 operates on L2
kD

, we can represent

(ED − H0)−1π⊥H1ψ
(0) in the basis of the Bloch modes {Φb}b≥3. Using that, by
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the derivation of (A.8), we enforced that π⊥H1Ψ0 = H1Ψ0, we have[
Ψ̃1,1

]
ε

(t, x) = Ψ̃1,1(t, εt, x, εx)

= (ED −H0)−1H1ψ
(0)
∣∣∣
T=εt,X=εx

= ε
1
2

∑
b≥3

∑
j=1,2

Φb
Eb − ED

〈
Φb,

− i∂Tαj(T,X)Φj − 2∂xΦj · ∂Xαj(T,X) + iαj(T,X)A(T ) · ∂xΦj + κ(X)W (x)Φj

〉
L2(Ω)

= ε
1
2

∑
b≥3

Φb
Eb − ED

[
− 〈Φb,Φj〉L2(Ω) · /D(T )α(T,X)

+
∑
j=1,2

〈Φb, ∂xΦj〉L2(Ω) · (2∂Xα(T,X)− 2iA(T )αj(T,X))
]
T=εt,X=εx

.

We estimate [Ψ̃1,1]ε in L2(R) using that, since Φb ∈ L∞, then ‖Φb(·)f(·)‖2 . ‖f‖2
for any f ∈ L2. Hence,

‖[Ψ̃1,1]ε(t, ·)‖L2(R) . ε
1
2

∑
b≥3

∑
j=1,2

‖Φb‖L∞
|Eb − ED|

∣∣〈Φb,Φj〉L2(Ω)

∣∣ ε− 1
2 ‖∂Xαj(εt, ·)‖L2(RX)

+ ε
1
2

∑
b≥3

‖Φb‖L∞
|Eb − ED|

|
∣∣〈Φb, ∂xΦj〉L2(Ω)

∣∣ ε− 1
2 ‖αj(εt, ·)‖H1(RX)

. ‖α(εt, ·)‖H1(RX)

∑
j=1,2

∑
b≥3

‖Φb‖∞
|Eb − ED|

(∣∣〈Φb,Φj〉L2(Ω)

∣∣+ |〈Φb, ∂xΦj〉L2(Ω)
|
)
.

(A.24)

By the Sobolev inequality and the relation ∂2
xΦb = (V − Eb)Φb, we have (with

Ω = [0, 1]) that any b ≥ 1:

‖Φb‖L∞(Ω) . ‖Φb‖H2(Ω) . ‖Φb‖L2(Ω)+‖∂2
xΦb‖L2(Ω) = ‖Φb‖L2(Ω)+‖(V−Eb)Φb‖L2(Ω) .

Furthermore, since V is bounded ‖Φb‖L∞(Ω) . Eb‖Φb‖L2(Ω) . |b|2 , where we have

used that ‖Φb‖ = 1, and that Eb ∼ b2 as b → ∞, by Weyl asymptotics in one
dimension. Hence, the factor ‖Φb‖∞/|Eb−ED| in (A.24) is uniformly bounded for

all b. Therefore, bounding ‖[Ψ̃1,1]ε‖L2(R) reduces to showing, for j = 1, 2:∑
b≥3

∣∣〈Φb,Φj〉L2(Ω)

∣∣+
∣∣〈Φb, ∂xΦj〉L2(Ω)

∣∣ <∞
We claim that both summands decay rapidly with b. Indeed, by the self-adjointedness
of H0, for r = 0, 1:

〈Φb, ∂rxΦj〉 = E−2
b 〈(H0)2Φb, ∂

r
xΦj〉 = E−2

b 〈Φb, (H0)2∂rxΦj〉 ,

and therefore∣∣〈Φb, ∂rxΦj〉
∣∣ . b−2‖(H0)2∂rxΦj‖ . b−2‖Φj‖H4+r , r = 0, 1 ,

which is sufficient to ensure summability. It follows that

‖[Ψ̃1,1]ε(t, ·)‖L2(Rx) . ‖α(εt, ·)‖H1(RX) . (A.25)
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Together with the bound ‖[Ψ̃1,2]ε(t, ·)‖2 . ε‖β(εt, ε·)‖L2(R2
x) . ‖β(εt, ·)‖L2(RX), we

obtain (A.18).
The upper bounds (A.19)–(A.22) proceed in a similar fashion. The upper bound

(A.23) follows directly from the triangle inequality and F = H1Ψ2+H2Ψ1+εH2Ψ2.
Finally, we prove (A.17) by combining (A.15), (A.16), and (A.23).

�

Proposition A.1 provides upper bounds for ηε, the expansion corrector, in terms
of the Sobolev norms of α(T,X) and β(T,X), which satisfy the Dirac equations
(A.8) and (A.11), respectively. We now turn to estimating these norms.

Lemma A.2. Let α satisfy and β denote solutions of homogeneous and non-
homogeneous Dirac equations (5.1) and (A.11). As initial data we take α(0, ·) =
α0 ∈ H4(R;C2) and β(0, x) ≡ 0. Then, for all T > 0

‖α(T, ·)‖Hs . T‖α(0, ·)‖Hs , s > 0 , (A.26)

‖β(T, ·)‖Hs . T 2‖α(0, ·)‖Hs+2 , s ≥ 0 . (A.27)

Proof. For s > 0, we apply ∂sX to (A.8) to get

i∂T (∂sXα) = /D(T )∂sXα+ σ1κ
(s)(X)α .

Next, we this equation from the left by the raw vector (∂sX ᾱ1, ∂
s
X ᾱ2), subtract the

complex conjugate equation, and integrate over RX . By the self-adjointednees of
/D(T ), we get

i∂T ‖∂sXα‖22 =

∫
R

[
(∂sXα(T,X))

∗
σ1κ

(s)(X)α(T,X) − c.c.
]
dX . (A.28)

We bound each term in the integrand on the right-hand side separately, e.g.,∫
R

∂sX ᾱ1(T,X)κ(s)(X)α2(T,X) dX ≤ ‖∂sXα(T, ·‖2 · ‖κ(s)‖∞‖α2(T, ·)‖2 .

and so, by substituting back into (A.28), we get that

i∂T ‖∂sXα‖2 ≤ ‖κ(s)‖∞‖α(T, ·)‖2 . (A.29)

Now, since the Dirac equation (A.8) is unitary, ‖α(T, ·)‖2 = ‖α0‖2, and so by
integrating the differential inequality in (A.29) we get the upper bound in (A.26).

To obtain (A.27), we have from (A.11), in L2(R;C2), that

i∂T ‖∂sXβ(T, ·)‖22 = 2 Im〈β(T, ·), ∂2s
X F2〉 = (−1)s · 2 Im(〈∂sXβ(T, ·), ∂sXF2〉) , (A.30)

where F2 was defined in (7.1) and (A.12). Therefore, by the Cauchy-Schwarz in-
equality, ∂T ‖∂sXβ(T, ·)‖2 ≤ ‖F2(T, ·)‖Hs(R2) . Finally, we bound the Hs(R;C2) norm
of F2 . Since, by definition

F2,j = 〈Φj , H1(ED −H0)−1H1ψ
(0)〉L2

x(Ω) ,

we, as in Lemma A.1, using (A.26) that ‖F2(T, ·)‖Hsx . ‖α(T, ·)‖Hs+2
X

= T‖α0‖Hs+2
X

.

Thus,

‖∂sXβ‖L2(R2) .

>∫
0

‖F2(T ′, ·)‖Hs+2
X

dT ′ . T 2‖α0‖Hs+2
X

,

which proves (A.27). �
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We now complete the proof of Theorem 5.1. With the notation and definitions
introduced above our solution of the Schrödinger equation (1.1) is:

ψε(t, x) = ψ(0)
ε (t, x) + εψ(1)

ε (t, x) + ε2ψ(2)
ε (t, x) + ηε(t, x).

We shall estimate the size of the corrector to the leading order (effective Dirac)
approximation:

ψε(t, x)− ψ(0)
ε (t, x) = εψ(1)

ε (t, x) + ε2ψ(2)
ε (t, x) + ηε(t, x) .

Using Lemmas A.1 and A.2 we have that

‖ψε(t, x)− ψ(0)
ε (t, ·)‖2 . ε‖ψ(1)

ε (t, ·)‖2 + ε2‖ψ(2)
ε (t, ·)‖2 + ‖ηε(t, ·)‖2

. ε (‖α(εt, ·)‖H1 + ‖β(εt, ·)‖2)︸ ︷︷ ︸
ψ(1)

+ε2 (‖α(εt, ·)‖H1 + ‖β(εt, ·)‖2)︸ ︷︷ ︸
ψ(2)

+ tε3(‖α(εt, ·)‖H3 + ‖β(εt, ·)‖H2)︸ ︷︷ ︸
η

. ε
(
εt‖α0‖H1 + ε2t2‖α0‖H2

)
+ ε2

(
εt‖α0‖H1 + ε2t2‖α0‖H2

)
+ tε3

(
εt‖α0‖H3 + t2ε2‖α0‖H4

)
. ε2t‖α0‖H1 + ε3t2‖α0‖H2 + t2ε4‖α0‖H3 + t3ε5‖α0‖H4 .

Therefore, for any ρ > 0 and ε sufficiently small, sup0≤t.ε−(3/2−ρ) ‖ψε(t, x) −
Ψ0(t, ·)‖2 . ερ. This completes the proof of Theorem 5.1.

Appendix B. The potentials U
(`)
ε and their effective Dirac
Hamiltonians

To construct U
(1)
ε , we choose V (x) = cos(4πx), W (x) = cos(2πx), κ(X) =

tanh(X), A(T ) = cos(ωT ), and ε = 1
2 . The initial value problem (3.12) becomes

i∂tψ =
[
−∂2

x + cos(4πx) + 1
2 tanh( 1

2x) cos(2πx) + iβ cos( 1
2ωt)∂x

]
ψ , (B.1a)

ψ(0, x) = ψ?(x) , (B.1b)

where β, ω > 0. The potential U
(2)
ε models a chain of isolated and dimerized square

wells, a more realistic model for an array of coiled optical waveguides as in Fig. 3.
Let Θ(x; a) be a square function of radius 1� a > 0

Θ(x; a) ≡

{
1, |x| ≤ a ,
0, |x| > a .

and define

Q±(x; a) ≡
∑
z∈Z

Θ(x+ z; a)±Θ(x+ z + 1
2 ; a). (B.2)

We choose V (x) = −5Q+(x; 1
20 ), W (x) = −5Q−(x; 1

20 ), κ = κpw where

κpw(y) ≡


0 , 0 ≤ y < y0 ,
1
2 , y0 ≤ y < 2y0 ,

1 , y ≥ 2y0 ,

−κpw(−y) , y < 0 ,

y0 ≡ tanh−1( 1
2 ) ≈ 0.549 . (B.3)

Hence, the initial value problem (3.12) becomes

i∂tψ(x, t) =
[
−∂2

x − 5Q+(x; 1
20 )− 5

2κpw( 1
2x)Q−(x; 1

20 ) + iβ cos( 1
2ωt)∂x

]
ψ . (B.4)



RADIATIVE DECAY OF EDGE STATES IN FLOQUET MEDIA 39

The potential U
(3)
ε is similar to U

(2)
ε , and the only change is that we now set

κ(X) = sgn(X + 1/2), the signum function, where the shift is introduced so as to
avoid changes in the middle of one of the potential wells.

i∂tψ(x, t) =
[
−∂2

x − 5Q+(x; 1
20 )− 5

2 sgn(x+ 1
4 )Q−(x; 1

20 ) + iβ cos( 1
2ωt)∂x

]
ψ .
(B.5)

The corresponding Dirac Hamiltonians are denoted by /D
(`)
0 , where for ` = 1

(5.1) with vD = 2π , ϑ] =
1

2
, κ(X) = tanh(X) , (B.6)

for ` = 2

(5.1) with vD ≈ 6.45 , ϑ] ≈ 1.03 , κ(X) = κpw(X) , see (B.3) . (B.7)

and for ` = 3

(5.1) with vD ≈ 6.45 , ϑ] ≈ 1.03 , κ(X) = sgn(X) , see (B.3) . (B.8)

Appendix C. Numerical methods

To solve the initial value problems (3.12) and (5.1), we use three-points sten-
cil finite-difference discretization of the Hamiltonians, and the Crank-Nicholson
method for time integration [20]. As for boundary conditions, we observe that for
a computational domain [−L,L] with L � 1 sufficiently large, both periodic and
vanishing boundary conditions yield seemingly identical results. The defect modes
ψ? and α? were both computed using direct diagonlization of the corresponding
discretized Hamiltonians.

To derive the Dirac equation (5.1) from the Schrödinger equation (3.12), we
compute the parameters vD and ϑ] in the following way: first, we construct a
second-order finite difference matrix approximation of H0,k, the Hamiltonian with
k quasi-periodic boundary conditions, see (2.2). The Bloch modes Φ1 and Φ2 are
then the lower-most eigenvectors with k = kD = π. Second, the inner-products in
(3.2) and (A.7b) are computed using a trapezoid quadrature rule.

Finally, whenever curve fitting is required, we use the SciPy curve fit nonlinear
least squares framework.
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19. Jonathan Guglielmon, Sheng Huang, Kevin P Chen, and Mikael C Rechtsman, Photonic

realization of a transition to a strongly driven floquet topological phase, Physical Review A
97 (2018), no. 3, 031801.

20. Arieh Iserles, A first course in the numerical analysis of differential equations, no. 44, Cam-

bridge university press, 2009.
21. Sergey K Ivanov, Yaroslav V Kartashov, Matthias Heinrich, Alexander Szameit, Lluis Torner,

and Vladimir V Konotop, Topological dipole floquet solitons, Physical Review A 103 (2021),

no. 5, 053507.
22. Sergey K Ivanov, Yaroslav V Kartashov, Lukas J Maczewsky, Alexander Szameit, and

Vladimir V Konotop, Edge solitons in lieb topological floquet insulator, Optics letters 45

(2020), no. 6, 1459–1462.
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