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Abstract

We study ground states of two-dimensional Bose-Einstein condensates with repul-
sive (a > 0) or attractive (a < 0) interactions in a trap V (x) rotating at the velocity
Ω. It is known that there exist critical parameters a∗ > 0 and Ω∗ := Ω∗(V (x)) > 0
such that if Ω > Ω∗, then there is no ground state for any a ∈ R; if 0 ≤ Ω < Ω∗, then
ground states exist if and only if a ∈ (−a∗,+∞). As a completion of the existing
results, in this paper, we focus on the critical case where 0 < Ω = Ω∗ < +∞ and
classify the existence and nonexistence of ground states for a ∈ R. Moreover, for a
suitable class of radially symmetric traps V (x), employing the inductive symmetry
method, we prove that up to a constant phase, the ground states must be real-
valued, unique and free of vortices as Ω ց 0, no matter whether the interactions of
the condensates are repulsive or not.

Keywords: Bose-Einstein condensate; rotational velocity; ground states; free of vortices

1 Introduction

Because Bose-Einstein condensates (BECs) can show the quantum effects at the macro-
scopic scale, they have become an important subject in experimental investigations since
their first realization in dilute gases of alkali atoms in 1995 [1, 2, 10, 24]. Various inter-
esting quantum phenomena have been so far observed in BECs experiments, such as the
critical-mass collapse [10], the appearance of quantized vortices [1], the center-of-mass
rotation in rotating traps [1, 30], and so on. In particular, the complex structures of
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BECs in rotating traps have been observed and analyzed extensively (cf. [1,2,5,9,10,12])
starting from the late 1990s.

As addressed in [12, 24, 27], the two-dimensional BECs in a rotating trap V (x) can
be well described by the complex-valued wave functions minimizing the following Gross-
Pitaevskii (GP) energy functional:

FΩ,a(u) :=

∫

R2

(

|∇u|2 + V (x)|u|2 + a

2
|u|4

)

dx− Ω

∫

R2

x⊥ · (iu, ∇u)dx, u ∈ H, (1.1)

where the space H is defined as

H :=
{

u ∈ H1(R2,C) :

∫

R2

V (x)|u|2dx <∞
}

, (1.2)

x⊥ = (−x2, x1) with x = (x1, x2) ∈ R
2, and (iu, ∇u) = i(u∇ū − ū∇u)/2. Here the

two-body interaction of the rotating BECs can be either repulsive (a > 0) or attractive
(a < 0), and the parameter Ω ≥ 0 describes the rotational velocity of the rotating
trap. Consequently, the ground states of two-dimensional BECs in a rotating trap
0 ≤ V (x) ∈ L∞

loc(R
2) can be equivalently described (see [12,24,27,31]) by theminimizers

of the following variational problem:

e(Ω, a) := inf
{u∈H, ‖u‖2

2
=1}

FΩ,a(u), Ω ≥ 0, a ∈ R, (1.3)

where the GP energy functional FΩ,a(·) is as in (1.1), and the space H is defined by
(1.2). Here the value |a| characterizes the absolute product for the scattering length of
the two-body interaction times the number N of particles in the condensates.

We first introduce the non-rotational case Ω = 0 of e(Ω, a). As illustrated soon
after (1.17) (see also [17, Section 2]), in this case it suffices to consider the real-valued
minimizers of e(a) := e(0, a), where we define

e(a) := inf
{u∈H, ‖u‖2

2
=1}

Fa(u), (1.4)

and the GP energy functional Fa(u) is given by

Fa(u) :=

∫

R2

(

|∇u|2 + V (x)|u|2 + a

2
|u|4

)

dx. (1.5)

When a > 0, since the functional Fa(u) is convex, one can obtain the existence and
uniqueness of real-valued minimizers for e(a) in a direct way, see for instance [27, The-
orem 2.1]. However, when a < 0, it was shown in [15, 18, 19] that there exists a critical
constant a∗ > 0 such that e(a) admits real-valued minimizers, if and only if a > −a∗.
More precisely, the critical constant a∗ is given by

a∗ := ‖w‖2L2(R2) > 0, (1.6)

where w = w(|x|) > 0 is a positive solution of the following scalar field equation

−∆w +w − w3 = 0 in R
2, where w ∈ H1(R2,R), (1.7)
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which, up to translations, must be unique and radially symmetric (cf. [23,35]). Moreover,
the refined mass concentration and local uniqueness of real-valued minimizers of e(a) as
aց −a∗ were also studied in [15,19] and the references therein.

As for the rotational case Ω > 0 of e(Ω, a), we consider the general trapping potential
0 ≤ V (x) ∈ L∞

loc(R
2) satisfying

lim|x|→∞
V (x)

|x|2 > 0. (1.8)

Under the assumption (1.8), we define the critical rotational velocity Ω∗ = Ω∗(V (x)) by

Ω∗ := sup
{

Ω > 0 : V (x)− Ω2

4
|x|2 → ∞ as |x| → ∞

}

, (1.9)

so that Ω∗ > 0. Considering V (x) = |x|s (s ≥ 2) as an example, we have

Ω∗ :=

{

2, if s = 2;

∞, if s > 2,
(1.10)

which illustrates that both 0 < Ω∗ < ∞ and Ω∗ = ∞ can happen. Recalling from
[17,24,34], we have the following existence and non-existence of minimizers:

Theorem A. ( [17,24,34]) Assume V (x) ∈ L∞
loc(R

2) satisfies (1.8), and let Ω∗ > 0 and
a∗ > 0 be defined in (1.9) and (1.6), respectively. Then we have

1. If Ω ∈ (0,Ω∗) and a ∈ (−a∗,+∞), then there exists at least one minimizer for
e(Ω, a).

2. If Ω ∈ (0,Ω∗) and a ∈ (−∞,−a∗], then there is no minimizer for e(Ω, a).

3. If Ω > Ω∗, then there is no minimizer of e(Ω, a) for any a ∈ R.

One can note from Theorem A that it remains open to discuss the existence and
non-existence of minimizers for e(Ω∗, a), provided that the critical rotational velocity
Ω∗ = Ω∗(V (x)) defined in (1.9) satisfies Ω∗ < +∞. The first main purpose of this paper
is to address this issue.

When 0 < Ω < Ω∗, the detailed analytical properties of minimizers for e(Ω, a) as
either a ր +∞ or a ց −a∗ were studied recently in [2, 9, 16, 17, 21, 22, 24] and the
references therein. Specially, if the interactions in the condensates are repulsive (a > 0),
all kinds of quantized vortices for e(Ω, a) have been analyzed extensively in the Thomas-
Fermi regime where a ր +∞, see [1, 2, 4, 5, 9, 10, 21, 22] for instance. In particular,
the nonexistence of vortices for repulsive BECs under rotation were analyzed in [2,4,5].
However, as far as we know, the above mentioned works of studying vortex structures
focus more on the analysis of the energy, which seems not enough for the attractive case
a < 0 of e(Ω, a). Fortunately, the nonexistence of vortices for e(Ω, a) in the attractive
limiting case as aց −a∗ was proved in our recent work [17] by developing the inductive
symmetry method. The second main purpose of this paper is to address the nonexistence
of vortices for e(Ω, a) as Ω ց 0 by a uniform approach, no matter whether the fixed
parameter a > −a∗ is positive or not.
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1.1 Main results

In this subsection we shall introduce the main results of the present paper. We are
first concerned with the existence and non-existence of minimizers for e(Ω∗, a), provided
that the critical rotational velocity Ω∗ = Ω∗(V (x)) defined in (1.9) satisfies Ω∗ < +∞.
Towards this aim, we consider

V (x) = A|x|2 +W (x), where A > 0 and W (x) ∈ C(R2) satisfies lim|x|→∞
W (x)
|x|2 = 0,

(1.11)
so that the assumption (1.8) holds in a natural way. Under the assumption (1.11), our
first main result of this paper is devoted to the following existence and non-existence of
minimizers for e(Ω∗, a):

Theorem 1.1. Suppose that a∗ > 0 is defined by (1.6), and V (x) satisfies (1.11) such
that Ω∗ = 2

√
A > 0 is defined by (1.9). Then we have

(i). If W (x) satisfies lim|x|→∞W (x) = +∞, then e(Ω∗, a) admits minimizers if and
only if a ∈ (−a∗,∞).

(ii). If W (x) ≡ C ∈ R, then e(Ω∗, a) admits minimizers if and only if a ∈ (−a∗, 0].

When the non-constant functionW (x) is bounded uniformly in R
2, the existence and

non-existence of minimizers for e(Ω∗, a) are more complicated. The following theorem
addresses this case:

Theorem 1.2. Suppose that a∗ > 0 is defined by (1.6), and V (x) satisfies (1.11)
such that Ω∗ = 2

√
A > 0 is defined by (1.9). If W (x) 6≡ const. further satisfies

lim|x|→∞W (x) = B ∈ R, then we have

(i). If W (x) > B in R
2, then e(Ω∗, a) admits no minimizer for any a ∈ R.

(ii). If W (x) < B in R
2, then there exists a constant a∗ ∈ (0,+∞] such that

(a). If a ∈ (−a∗, a∗), there is at least one minimizer for e(Ω∗, a).

(b). If a ∈ (−∞,−a∗] ∪ (a∗,+∞), there is no minimizer for e(Ω∗, a).

The proof of Theorem 1.2 (ii) shows that the constant a∗ ∈ (0,+∞] of Theorem 1.2
(ii) can be characterized as

a∗ := sup
{

a ∈ R : e(Ω∗, a) < 2
√
A+B

}

. (1.12)

We remark that the energy 2
√
A + B is maximal to guarantee that vanishing cannot

occur for the minimizing sequences of e(Ω∗, a). Theorem 1.2(ii) does not address the
existence of minimizers for e(Ω∗, a∗), which may depend on the shape of W (x) < B in
R
2. Additionally, if W (x) satisfies

lim inf
|x|→∞

[

B −W (x)
]

|x|s > 0, where 0 < s < 2, (1.13)

then the following corollary shows that a∗ = +∞ holds true.
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Corollary 1.3. Under the assumptions of Theorem 1.2 (ii), if W (x) satisfies (1.13),
then e(Ω∗, a) admits minimizers if and only if a ∈ (−a∗,+∞).

Related to Corollary 1.3, we expect that if (1.13) holds for s > 2, then it might hold
that a∗ <∞, which however we cannot address rigorously at present.

As far as we know, most existing results focus mainly on the noncritical case e(Ω, a),
where Ω 6= Ω∗ and the energy functional is coercive. But the existence and non-existence
results of minimizers for the critical case e(Ω∗, a) seem very few, no matter whether the
interactions among the BEC system are repulsive or not. The proof of above results shows
actually that the analysis of the critical case e(Ω∗, a) is more challenging, compared with
those involved in [2, 17, 27] for the noncritical case e(Ω, a) where Ω 6= Ω∗. The above
results also illustrate that whether the minimizers of e(Ω∗, a) exist or not depends subtly
on the shape of the trap V (x) and the parameter a ∈ R as well.

It should also be mentioned that the mass-subcritical version of e(Ω, a), where the
nonlinear term |u|4 is replaced by |u|p for 2 < p < 4, was studied in the pioneering
work of Esteban-Lions [11] by the concentration-compactness lemma. However, those
methods used in [11] are not sufficient to prove Theorem 1.1, especially in the repulsive
case where a > 0. To overcome this difficulty, we shall borrow some ideas from [2, 3],
where the properties of the first eigenpairs of

−∆ψ + 2i (x⊥ · ∇ψ) + |x|2ψ = λψ in R
2 (1.14)

were fully employed. Note from [29, Theorem 2] that the first eigenvalue of (1.14) is
λ1 = 2 and all the first eigenfunctions are given by

S :=
{

e−
|x|2

2 f(x) : f(x) is any entire function such that e−
|x|2

2 f(x) ∈ L2(R2,C)
}

,

(1.15)
where the entire function means the complex analytic function on the entire plane. In
Section 2 below, we shall seek for appropriate test functions in S to derive the desired
energy estimates, which then help us obtain the existence and nonexistence of minimizers
for the repulsive case where a > 0.

We now recall the non-rotational case of e(Ω, a) at Ω = 0, i.e., e(a) := e(0, a) defined
in (1.4). By the variational theory, any minimizer ua of e(a) satisfies the following
Euler-Lagrange equation

−∆ua + V (x)ua = µaua − a|ua|2ua in R
2, (1.16)

where µa ∈ R is the associated Lagrange multiplier satisfying

µa = e(a) +
a

2

∫

R2

|ua|4dx. (1.17)

Since Fa(u) ≥ Fa(|u|), we obtain that |ua| is also a minimizer of e(a) and Fa(ua) =
Fa(|ua|) holds. Moreover, we can deduce from (1.16) that |ua| > 0 by the maximal

principle. Since
∫

R2 |∇ua|2dx =
∫

R2

∣

∣∇|ua|
∣

∣

2
dx and |ua| > 0, we conclude that there

exists a constant θ ∈ (0, 2π] such that ua(x) ≡ |ua(x)|eiθ holds in R
2. Hence, up to a

constant phase, any minimizer ua of e(a) must be positive.
Under the assumption that the trap V (x) is radially symmetric and satisfies
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(V ). V (x) = V (|x|) ∈ C1,α(R2), V ′(|x|) ≥ 0, lim|x|→∞ V (x) = +∞ and there exists
some constant p ≥ 2 such that |V (x)|, |∇V (x)| ≤ C|x|p as |x| → ∞,

combining [27, Theorem 2.1] with [19, Corallary 1.1] yields immediately the following
uniqueness of positive minimizers for e(a):

Theorem B. ( [19, 27]) Suppose that a∗ > 0 is defined by (1.6), and V (x) satisfies the
assumption (V ). For any a ∈ [0,+∞) and a.e. a ∈ (−a∗, 0), then e(a) admits a unique
positive minimizer u0 = u(a, 0) > 0, which must be radially symmetric.

Based on the uniqueness of Theorem B, the second main result of this paper is the
following nonexistence of vortices for any fixed a ∈ [0,+∞) and a.e. a ∈ (−a∗, 0).

Theorem 1.4. Suppose that a∗ > 0 is defined by (1.6), V (x) satisfies (1.8) and the
assumption (V ). Then for any fixed a ∈ [0,+∞) or a.e. a ∈ (−a∗, 0), there exists a
sufficiently small δ := δ(a) > 0 such that, up to a constant phase, all minimizers of
e(Ω, a) are real-valued, unique and free of vortices for any Ω ∈ [0, δ).

The assumption V ′(|x|) ≥ 0 of Theorem 1.4 can be removed in the repulsive case,
since it is used only in the attractive case to guarantee the uniqueness of positive minimiz-
ers for e(a). The proof of Theorem 1.4 gives us that for any sufficiently small Ω ∈ [0, δ),
any minimizer uΩ of e(Ω, a) satisfies uΩ ≡ u0e

iθ in R
2, where θ := θ(Ω) ∈ [0, 2π) is a

suitable constant depending on Ω. Thus |uΩ| = |u0| > 0 never vanishes in R
2 as Ω ց 0,

which implies that it is free of vortices for ground states of e(Ω, a) as Ω ց 0.
We next illustrate the general strategy of proving Theorem 1.4. Denote {Ωn > 0}

to be a sequence satisfying limn→∞Ωn = 0. Choose some suitable constant θn ∈ [0, 2π)
such that the minimizer un of e(Ωn, a) satisfies the following orthogonal condition

∫

R2

u0Im(une
iθn)dx ≡ 0 for all n ∈ N

+, (1.18)

where u0 is the unique positive minimizer of e(a), see Theorem B. As the first step, we
shall follow (1.18) to prove that

lim
n→∞

une
iθn = u0 uniformly in L∞(R2,C). (1.19)

Rewrite now une
iθn = qn+ irn, where qn and rn denote the real and imaginary parts

of une
iθn , respectively. One can show that (qn, rn) satisfies the following elliptic system:

{

Lnqn = Ωn(x
⊥ · ∇rn) in R

2,

Lnrn = −Ωn(x
⊥ · ∇qn) in R

2,
(1.20)

where the operator Ln is defined by

Ln := −∆+ V (x)− µn + a|un|2, (1.21)

and µn ∈ R is a suitable Lagrange multiplier. The refined analysis gives that µn → µ0
as n → ∞, where µ0 ∈ R is the Lagrange multiplier associated to u0. By applying
(1.19), we then follow the system (1.20) to investigate the linearized operators L :=
−∆+V (x)−µ0+ au20 and N := −∆+V (x)−µ0 +3au20 in R

2. As the second step, this
yields finally Corollary 4.1 on the first estimates of qn − u0 and rn as n→ ∞.
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Stimulated by the inductive symmetry method (cf. [17]), in the third step we shall
follow Corollary 4.1 to further prove the inductive process of Lemma 4.2 in the following
sense: once we have an estimate on the non-radial part of qn−u0, then a better estimate
on the non-radial part of qn−u0 can be derived. As a consequence, we finally prove that
the non-radial part of qn − u0 is arbitrarily small and rn ≡ 0 as n → ∞. This implies
finally that une

iθn ≡ qn ≡ u0 in R
2 as Ωn ց 0, and Theorem 1.4 is therefore proved, see

Section 4 for more details.
Similar nonexistence results of Theorem 1.4 in the repulsive case a > 0 were obtained

in [2, 4, 5] and the references therein by applying vortex ball constructions, jacobian
estimates, and some other arguments, all of which make full use of the refined energy
analysis and the Ginzburg-Landau theory. As far as we know, the above mentioned
arguments however seem not applicable for the attractive case of e(Ω, a), since it does
not admit the variational structure of the Ginzburg-Landau type. The above proof
strategy shows that Theorem 1.4 is established essentially by the inductive symmetry
method, which was first imposed in [17] to study the nonexistence of vortices for e(Ω, a)
in a different situation where 0 < Ω < Ω∗ is fixed and a ց −a∗. This approach relies
more on the refined analysis of the governing equations of minimizers. The advantage
of this approach lies in the fact that Theorem 1.4 can be proved by a uniform approach,
i.e, no matter whether the interactions of the condensates are repulsive (a > 0) or not.
As a byproduct, Theorem 1.4 therefore yields the first result that the nonexistence of
vortices for repulsive BECs under rotation can be investigated by the inductive symmetry
method.

This paper is organized as follows. In Section 2, we shall prove Theorem 1.1 on the
existence and non-existence of minimizers for e(Ω∗, a). In Section 3, we first investigate
the limit behavior of un as Ωn ց 0, based on which we then address the detailed analysis
of the linearized problem (1.21). In Section 4 we shall complete the proof of Theorem
1.4 by the inductive symmetry method.

2 Existence of minimizers for e(Ω∗
, a)

The purpose of this section is to prove Theorem 1.1 on the existence and nonexistence
of minimizers for e(Ω∗, a), where Ω∗ = 2

√
A > 0 is defined by (1.9) under the assump-

tion (1.11). Towards this purpose, we first introduce the following Gagliardo-Nirenberg
inequality

∫

R2

|u(x)|4dx ≤ 2

a∗

∫

R2

|∇u(x)|2dx
∫

R2

|u(x)|2dx, u ∈ H1(R2,R), (2.1)

where the equality is attained (cf. [35]) at the unique positive radial solution w of (1.7).
Moreover, following [13, Proposition 4.1], we obtain that w = w(|x|) > 0 satisfies

∫

R2

|∇w|2dx =

∫

R2

w2dx =
1

2

∫

R2

w4dx, (2.2)

and
w(x) , |∇w(x)| = O(|x|− 1

2 e−|x|) as |x| → ∞. (2.3)

7



Given any vector functionA ∈ L2
loc(R

2,R2), we have the following diamagnetic inequality
[25]:

|(∇− iA)u|2 ≥
∣

∣∇|u|
∣

∣

2
a.e. on R

2, u ∈ H1(R2,C). (2.4)

We also recall from [21, Lemma 2.1] the following compactness lemma:

Lemma 2.1. Suppose V (x) ∈ L∞
loc(R

2) satisfies lim|x|→∞ V (x) = ∞, then the embedding
H →֒ Lq(R2,C) is compact for any 2 ≤ q <∞.

Applying Lemma 2.1, we first prove Theorem 1.1 as follows.

Proof of Theorem 1.1. Without loss of generality, we may assume A = 1 so that
Ω∗ = 2. If a ∈ (−∞,−a∗], the argument of proving [17, Theorem 2.3] then gives the
nonexistence of minimizers for e(2, a) = e(Ω∗, a). Therefore, the rest is to consider the
case where a ∈ (−a∗,+∞).

(i). Assume a ∈ (−a∗,+∞) and lim|x|→∞W (x) = +∞, hence we get that e(2, a) >
−∞. By the constraint condition, we may assume W (x) ≥ 0 for simplicity. Let {un} be
a minimizing sequence of e(2, a). We then deduce from (2.1) and (2.4) that

e(2, a) = lim
n→∞

{

∫

R2

(

|(∇− ix⊥)un|2 +W (x)|un|2 +
a

2
|un|4

)

dx

≥
∫

R2

(a∗ + sgn(a)|a|
2

|un|4 +W (x)|un|2
)

dx,

which implies that {un} is bounded uniformly in L4(R2,C)∩H1
A(R

2,C), whereH1
A(R

2,C)
is defined in (2.21).

Taking a subsequence if necessary, now we may assume that un ⇀ u0 weakly in
H1

A(R
2,C) as n → ∞. On the other hand, since lim|x|→∞W (x) = +∞, we also obtain

from Lemma 2.1 that up to a subsequence if necessary, {|un|} converges to {|u0|} strongly
in Lp(R2,R) (2 ≤ p < ∞). We thus have ‖u0‖2L2(R2) = 1 and limn→∞ ‖un‖L4(R2) =

‖u0‖L4(R2). By the weak lower semicontinuity, we further obtain that e(2, a) = F2,a(u0),
and hence e(2, a) admits a minimizer u0 if a ∈ (−a∗,+∞).

(ii). Without loss of generality, by the constraint we may assume W (x) ≡ C = 0 so
that Ω∗ = 2, and

F2,a(u) :=

∫

R2

|(∇− ix⊥)u|2dx+
a

2

∫

R2

|u|4dx, u ∈ H. (2.5)

The proof is then divided into two cases: a ∈ (−a∗, 0] and a ∈ (0,+∞).
(1). We first consider the case a ∈ (−a∗, 0]. The existence of minimizers of e(2, a) =

e(Ω∗, a) at a = 0 is trivial. Indeed, it follows from [29, Theorem 2] (see also [11, Remark
2.5]) that if u ∈ H satisfies ‖u‖22 = 1, then

∫

R2

|(∇− ix⊥)u|2dx ≥ 2

∫

R2

|u|2dx = 2, (2.6)

where the equality is attained at u = 1√
π
e−

|x|2

2 . On the other hand, by choosing 1√
π
e−

|x|2

2

as a test function, one can obtain that e(2, 0) ≤ 2, which hence yields that e(2, 0) = 2.

Therefore, e(2, 0) admits at least one minimizer which is 1√
π
e−

|x|2

2 .
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Next, we shall use the concentration-compactness lemma [28] to deal with the case
a ∈ (−a∗, 0). Note from (2.1) and (2.4) that for any u ∈ H satisfying ‖u‖22 = 1,

F2,a(u) ≥
∫

R2

∣

∣∇|u|
∣

∣

2
dx+

a

2

∫

R2

|u|4dx ≥ a∗ − |a|
2

∫

R2

|u|4dx. (2.7)

Therefore, e(2, a) is bounded from below in this case. Let {un} be a minimizing sequence
of e(2, a), i.e., ‖un‖22 = 1 and

e(2, a) = lim
n→∞

F2,a(un) = lim
n→∞

{

∫

R2

(

|(∇− ix⊥)un|2 −
|a|
2
|un|4

)

dx
}

.

We then derive from (2.7) that there exists a constant C(a) > 0, depending only on a,
such that {un} satisfies

∫

R2

|un|4dx ≤ C(a) and

∫

R2

|(∇− ix⊥)un|2dx ≤ C(a). (2.8)

Denote
fn(x) := |(∇− ix⊥)un|2 + |un|2 ≥ 0, (2.9)

so that the nonnegative sequence {fn} is bounded uniformly in L1(R2) in view of (2.8).
By the concentration-compactness lemma [28, Lemma I.1], either the vanishing or the
dichotomy or the compactness holds for some subsequence of {fn}.

We first claim that the vanishing

lim
n→∞

sup
y∈R2

∫

BR(y)
fn(x)dx = 0, ∀R > 0 (2.10)

cannot occur. On the contrary, suppose that (2.10) holds true. We then get from [36,
Lemma 1.21] that up to a subsequence if necessary,

lim
n→∞

∫

R2

|un|4dx = 0. (2.11)

Following [29, Theorem 2], we thus obtain from (2.11) that

e(2, a) = lim
n→∞

{

∫

R2

(

|(∇− ix⊥)un|2 −
|a|
2
|un|4

)

dx
}

≥ 2,

which however contradicts to the estimate

e(2, a) ≤ F2,a

( 1√
π
e−

|x|2

2

)

= 2− |a|
π2

∫

R2

e−2|x|2dx < 2. (2.12)

Hence, the vanishing cannot occur.
To rule out the dichotomy, we first claim that

e(2, a) < eλ(2, a) + e1−λ(2, a) for any λ ∈ (0, 1), (2.13)

where eλ(2, a) is defined by

eλ(2, a) := inf
{u∈H, ‖u‖2

2
=λ}

F2,a(u), 0 < λ < 1. (2.14)
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Indeed, one can check from the definition of F2,a that

λF2,a(u) = F2,a(
√
λu)− |a|λ(1 − λ)

2

∫

R2

|u|4dx for any λ ∈ (0, 1). (2.15)

Moreover, let {
√
λv1,n} and {

√
1− λv2,n} be the minimizing sequences of eλ(2, a) and

e1−λ(2, a), respectively. The argument of proving the above vanishing gives that

lim inf
n→∞

∫

R2

|v1,n|4dx ≥ δ and lim inf
n→∞

∫

R2

|v2,n|4dx ≥ δ, (2.16)

where δ > 0 is independent of n. Combining (2.15) and (2.16) then yields that

e(2, a) ≤ lim
n→∞

[

λF2,a(v1,n) + (1− λ)F2,a(v2,n)
]

= lim
n→∞

[

F2,a

(
√
λv1,n

)

+ F2,a

(
√
1− λv2,n

)

− |a|λ(1− λ)

2

∫

R2

(|v1,n|4 + |v2,n|4)dx
]

≤ eλ(2, a) + e1−λ(2, a)− |a|λ(1 − λ)δ

< eλ(2, a) + e1−λ(2, a),

and the claim (2.13) is hence proved.
Based on (2.13), we now prove that the dichotomy cannot occur. Indeed, taking a

subsequence if necessary, we may assume that

lim
n→∞

∫

R2

fn(x)dx = α > 0. (2.17)

By contradiction, suppose that the dichotomy occurs. Then there exist β ∈ (0, α),
0 < 2R0 < Rn → +∞ as n→ +∞ and {yn} ⊂ R

2 such that for any ε > 0, we have

∣

∣

∣

∫

BR0
(yn)

fn(x)dx− β
∣

∣

∣
≤ ε,

∣

∣

∣

∫

R2/B2Rn (yn)
fn(x)dx− (α− β)

∣

∣

∣
≤ ε as n→ ∞. (2.18)

Set

u1n(x) := ψ
(x− yn

R0

)

un(x), u2n(x) := φ
(x− yn

Rn

)

un(x),

where 0 ≤ ψ(x) ≤ 1 and 0 ≤ φ(x) ≤ 1 are smooth cut-off functions and satisfy: ψ ≡ 1 if
|x| ≤ 1, and ψ ≡ 0 if |x| ≥ 2; φ ≡ 0 if |x| ≤ 1, and φ ≡ 1 if |x| ≥ 2. By the definition of
{u1n} and {u2n}, we have

dist(supp u1n, supp u2n)→ +∞ as n→ ∞. (2.19)

We claim that as n→ ∞,

∣

∣

∣
‖u1n‖2H1

A
− β

∣

∣

∣
≤ Cε,

∣

∣

∣
‖u2n‖2H1

A
− (α− β)

∣

∣

∣
≤ Cε,

‖un − u1n − u2n‖H1
A
≤ Cε,

(2.20)
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where we denote

H1
A(R

2,C) :=
{

u ∈ L2(R2,C) : (∇− ix⊥)u ∈ L2(R2,C)
}

(2.21)

associated with the norm

‖u‖H1
A
:=

(

∫

R2

(|(∇− ix⊥)u|2 + |u|2)dx
)

1

2

.

We now prove the claim (2.20). Actually, we obtain from (2.17) and (2.18) that as
n→ ∞,

∣

∣

∣
‖u1n‖2H1

A
− β

∣

∣

∣

≤
∣

∣

∣
‖u1n‖2H1

A
−

∫

BR0
(yn)

fn(x)dx
∣

∣

∣
+

∣

∣

∣

∫

BR0
(yn)

fn(x)dx − β
∣

∣

∣

≤
∣

∣

∣

∫

B2R0
(yn)/BR0

(yn)

{

∣

∣(∇− ix⊥)
[

ψ(
x− yn
R0

)un
]
∣

∣

2
+ |ψ(x− yn

R0
)un|2

−
∣

∣(∇− ix⊥)un
∣

∣

2 − |un|2
}

dx
∣

∣

∣
+ ε

≤
∫

B2R0
(yn)/BR0

(yn)

(

3|(∇− ix⊥)un|2 + 2
∣

∣

∣
∇ψ

(x− yn
R0

)
∣

∣

∣

2
|un|2 + 2|un|2

)

dx+ ε

≤
∫

B2Rn (yn)/BR0
(yn)

C
(

|(∇− ix⊥)un|2 + |un|2
)

dx+ ε ≤ Cε.

Similarly, we can also get that as n→ ∞,
∣

∣‖u2n‖2H1
A
− (β − α)

∣

∣ ≤ Cε.

Following (2.17) and (2.18), we also have

‖un − u1n − u2n‖2H1
A

=

∫

B2Rn (yn)/BR0
(yn)

∣

∣

∣

(

∇− ix⊥
)

(

1− ψ(
x− yn
R0

)− φ(
x− yn
Rn

)
)

un

∣

∣

∣

2

+
∣

∣

∣

(

1− ψ(
x− yn
R0

)− φ(
x− yn
Rn

)
)

un

∣

∣

∣

2
dx

≤
∫

B2Rn (yn)/BR0
(yn)

C
[

|(∇− ix⊥)un|2 +
∣

∣

∣
∇
[

ψ(
x− yn
R0

) + φ(
x− yn
Rn

)
]

∣

∣

∣

2
|un|2 + |un|2

]

dx

≤
∫

B2Rn (yn)/BR0
(yn)

Cfn(x)dx ≤ Cε as n→ ∞.

We now conclude from above that the claim (2.20) holds true.
Since the embedding H1

A(R
2,C) →֒ Lp(R2,C) (2 ≤ p < ∞) is continuous, cf. [11,

Proposition 2.1], we derive from (2.20) that
∣

∣F2,a(un)− F2,a(u1n)− F2,a(u2n)
∣

∣ ≤ Cε, (2.22)

∣

∣

∣

∫

R2

(

|un|p − |u1n|p − |u2n|p
)

dx
∣

∣

∣
≤ Cε for any p ∈ [2,∞). (2.23)

11



Moreover, following (2.1), (2.6) and (2.20), there exists a constant δ > 0 such that for
i = 1, 2,

F2,a(uin) ≥ (1− a

a∗
)

∫

R2

|(∇− ix⊥)uin|2dx

≥ 2(a∗ − a)

3a∗
‖uin‖2H1

A
(R2) ≥ δ for all n,

(2.24)

which then implies that there exist subsequences of {u1n} and {u2n}, still denoted by
{u1n} and {u2n}, satisfying limn→∞ ‖u1n‖2L2(R2) = θ and limn→∞ ‖u2n‖2L2(R2) = 1 − θ

for some constant θ ∈ (0, 1) by applying (2.23). Since eλ(2, a) is continuous in λ, we
conclude from (2.23) and (2.24) that

lim
n→∞

F2,a(u1n) ≥ eθ(2, a), lim
n→∞

F2,a(u2n) ≥ e1−θ(2, a),

which then yield that e(2, a) ≥ eθ(2, a) + e1−θ(2, a) holds for some constant θ ∈ (0, 1)
in view of (2.22). This however contradict to (2.13). Therefore, the dichotomy cannot
occur.

Since both the vanishing and the dichotomy cannot occur, we now conclude that only
the compactness occurs for the sequence {fn}, i.e., there exists {xn} ⊂ R

2 such that for
any fixed ε > 0,

∫

R2/BR(xn)
fn(x)dx ≤ ε, if R = R(ε) > 0 is large enough. (2.25)

Since {un} is bounded in H1
A(R

2,C), we obtain from (2.9) and (2.25) that {un(·+ xn)}
is relatively compact in L2(R2) by [11, Proposition 2.1] and thus relatively compact in
Lp(R2) (2 < p < +∞) by Hölder inequality. Note that

ũn(x) := ûn(x)e
−ixn·x⊥

= un(x+ xn)e
−ixn·x⊥

satisfies
∫

R2

|(∇−ix⊥)ũn|2dx =

∫

R2

∣

∣

(

∇−ix⊥
)(

ûne
−ixn·x⊥)∣

∣

2
dx =

∫

R2

∣

∣(∇−ix⊥)un
∣

∣

2
dx. (2.26)

Moreover, since |ũn(x)| = |un(x + xn)| holds in R
2, by (2.17) and (2.25) we now derive

from above that there exists a subsequence, still denoted by {ũn}, of {ũn} satisfying

lim
n→∞

ũn = u0 strongly in Lp(R2) (2 ≤ p <∞) for some u0 ∈ H, (2.27)

and

lim inf
n→∞

∫

R2

∣

∣(∇− ix⊥)un
∣

∣

2
dx = lim inf

n→∞

∫

R2

∣

∣(∇− ix⊥)ũn
∣

∣

2
dx ≥

∫

R2

∣

∣(∇− ix⊥)u0
∣

∣

2
dx.

Therefore, e(2, a) admits at least one minimizer u0 in the case a ∈ (−a∗, 0).
(2). We now consider the case a ∈ (0,∞). By selecting a suitable eigenvalue function

of (1.14) as a test function, we first prove that

e(2, a) ≤ 2, a ∈ (0,∞). (2.28)
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Towards the proof of (2.28), motivated by [2, 3], we define the following lattice

ℓ := v(Z⊕ e
2iπ
3 Z) = v(m+ ne

2iπ
3 ), (2.29)

where m,n ∈ Z are arbitrary integers, and the constant v ∈ R
+ is chosen such that√

3v2

2 > π. Let Q be a unit cell (i.e., a regular hexagon) centered at the origin, whose

area satisfies |Q| =
√
3v2

2 . Here 1
|Q| denotes an average spatial density of the point in the

lattice. Choose the following test function

ψR(z) = ARe
− 1

2
|z|2 ∏

j∈ℓ⋂BR(0)

(z − j), (2.30)

where we identify any complex number z = x1 + ix2 with the point x = (x1, x2) ∈ R
2,

and the Lebesgue measure dz with dxdy, respectively. Here AR > 0 is chosen properly
such that ‖ψR‖L2(R2) = 1. Obviously, ψR ∈ S, where S is defined by (1.15), and (2, ψR)
is the first eigenpair of (1.14). We hence obtain from (1.14) that

∫

R2

∣

∣(∇− ix⊥)ψR

∣

∣

2
dx = 2. (2.31)

Moreover, it follows from [2, Theorem 5.2] that as R→ ∞,

|ψR(z)| → ψ(z) =
1√
πσ

|η(z)|e−
|z|2

2σ2 in Lp
(

R
2, (1 + |z|2)dz

)

, p ≥ 1, (2.32)

where
1

σ2
= 1− π

|Q| → 0 as |Q| → π, (2.33)

and |η(z)| is periodic and vanishes at each point of the lattice ℓ, see more details in [2,
Theorem 5.1]. We should remark that the main feature of the periodic lattice ℓ is to

modify the decay of the Gaussian from e−
|z|2

2 to e−
|z|2

2σ2 , where σ > 0 depends on the area
of Q through the relation (2.33). Therefore, we have

lim
R→∞

∫

R2

|ψR(z)|4dz =

∫

R2

1

π2σ4
|η(z)|4e−

2|z|2

σ2 dz

=

∫

R2

1

π2σ2
|η(σz)|4e−2|z|2dz

≤ C

π2σ2

∫

R2

e−2|z|2dz ≤ C

σ2
→ 0 as σ → ∞,

(2.34)

and thus
e(2, a) ≤ lim

σ→∞, R→∞
F2,a(ψR)

= 2 + lim
σ→∞, R→∞

∫

R2

|ψR|4dz ≤ 2, if a ∈ (0,∞),

i.e., the estimate (2.28) holds true.
We now assume that e(2, a) admits a minimizer ua for any a ∈ (0,∞). We then

obtain from (2.6) that
∫

R2

∣

∣(∇− ix⊥)ua
∣

∣

2
dx ≥ 2

∫

R2

|ua|2dx = 2,
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which and (2.5) thus yield that

e(2, a) > 2, if a ∈ (0,∞),

a contradiction to (2.28). We therefore conclude that there is no minimizer for e(2, a) in
the case a ∈ (0,∞). This therefore completes the proof of Theorem 1.1

Proof of Theorem 1.2. Without loss of generality, as before we may assume A = 1
so that Ω∗ = 2. If a ∈ (−∞,−a∗], the argument of proving [17, Theorem 2.3] then gives
the nonexistence of minimizers for e(2, a) = e(Ω∗, a). Therefore, we only consider the
case where a ∈ (−a∗,+∞).

(i). Assume a ∈ (−a∗,+∞) and W (x) > B in R
2. For simplicity we may assume

B = 0 so that W (x) > 0 in R
2.

We first consider the case a ∈ (−a∗, 0]. In this case, we claim that

e(2, a) = e⋆(2, a), where e⋆(2, a) denotes the value of e(2, a) at W ≡ 0. (2.35)

Recall from Theorem 1.1 (i) that e⋆(2, a) admits a minimizer û(x) ∈ H. Under the
assumptions of W (x), we have

e(2, a) ≥ e⋆(2, a). (2.36)

On the other hand, taking the following test function

ûk(x) := û(x+ xk)e
−ix⊥

k
·x, where |xk| → ∞ as k → ∞,

we have
e(2, a) ≤ F2,a(ûk) → e⋆(2, a) as k → ∞.

We then obtain from (2.36) and above that the claim (2.35) is true. Following this esti-
mate, sinceW (x) > 0 in R

2, as in [18, Theorem 1] one can further derive the nonexistence
of minimizers for e(2, a) in the case a ∈ (−a∗, 0].

We next consider the case a ∈ (0,+∞). Similar to Theorem 1.1 (ii), we take a test
function as follows:

ψR,σ(z) := ψR(z + zσ)e
−ix⊥

σ ·x, (2.37)

where ψR(z) and the parameter σ are defined by (2.30) and (2.33), respectively. Here
xσ = (x1,σ, x2,σ) and zσ = x1,σ + ix2,σ satisfy |xσ| = |zσ| = σ2. One can check that
ψR,σ(z) ∈ S satisfies

∫

R2

∣

∣(∇− ix⊥)ψR,σ

∣

∣

2
dx =

∫

R2

∣

∣(∇− ix⊥)ψR

∣

∣

2
dx = 2,

and
∫

R2

|ψR,σ |2dx =

∫

R2

|ψR|2dx = 1.

Note from (2.34) that

lim
R→∞

∫

R2

|ψR,σ |4dx = lim
R→∞

∫

R2

|ψR|4dx→ 0 as σ → +∞.
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Moreover, because |zσ | = σ2, we derive from (2.32) that

lim
R→∞

∫

R2

W (z)|ψR(z)|2dz =

∫

R2

1

πσ2
W (z + zσ)|η(z)|2e−

|z|2

2σ2 dz

=

∫

|z|<σ
1
2

1

π
W (σz + zσ)|η(σz)|2e−

|z|2

2 dz +

∫

|z|≥σ
1
2

1

π
W (σz + zσ)|η(σz)|2e−

|z|2

2 dz

:=I + II.

Since lim|x|→∞W (x) = 0 and |η(z)| ∈ L∞(R2), we get that |I| ≤ C(σ) → 0 as σ → ∞.

Moreover, the exponential decay of e−
|z|2

2 yields that |II| ≤ C(σ) → 0 as σ → ∞.
Therefore, we obtain from above that

lim
R→∞

∫

R2

W (x)|ψR,σ(x)|2dx = lim
R→∞

∫

R2

W (x+ xσ)|ψR(x)|2dx→ 0 as σ → ∞.

We thus conclude from (2.36) and above that e(2, a) = e⋆(2, a). Since W (x) > 0 in R
2,

as before one can further obtain the nonexistence of minimizers for e(2, a) in the case
a ∈ (0,+∞). This completes the proof of Theorem 1.1 (i).

(ii). Let a ∈ (−a∗,+∞) and W (x) < B in R
2. For simplicity we may assume B = 0

so thatW (x) < 0 in R
2. Following the definition of a∗ in (1.12), we can show that a∗ > 0

by using [29, Theorem 2]. Indeed, for A = 1 and B = 0, we can take u = e−
|x|2

2 as a test
function to obtain that

e(2, a) ≤ F2,a(u) = 2 +

∫

R2

W (x)e−|x|2

π
dx+

a

2

∫

R2

e−2|x|2

π2
dx.

Since W (x) < 0 in R
2, we get that e(2, a) < 2 if a > 0 is small enough and thus a∗ > 0

holds.
(a). We first consider a ∈ (−a∗, a∗). By the definition of a∗, it is obviously that

e(2, a) < 2 for any a ∈ (−a∗, a∗). (2.38)

Similar to Theorem 1.1 (ii) we shall prove the existence of minimizers for e(2, a) by
the concentration-compactness lemma. Towards this aim, we denote {un} a minimizing
sequence of e(2, a), i.e., ‖un‖22 = 1 and e(2, a) = limn→∞ F2,a(un). As in Theorem 1.1
(ii), we denote

fn(x) := |(∇− ix⊥)un|2 + |un|2 ≥ 0 in R
2. (2.39)

One can check that the nonnegative sequence {fn} is bounded uniformly in L1(R2).
Following (2.38), the same argument of Theorem 1.1 (ii) yields that the vanishing

cannot occur for {fn(x)} defined in (2.39). Moreover, applying (2.38), one can also
derive that (2.13) holds for any a ∈ (−a∗,+∞). Following this estimate, the same
argument of Theorem 1.1 (ii) yields that the dichotomy cannot occur for {fn(x)}. By
the concentration-compactness lemma, we therefore conclude that the compactness holds
for {fn(x)}.

Finally, the same argument of proving (2.27) yields that ũn = un(· + xn)e
ixn·x⊥

converges to some u0 ∈ H in Lp(R2) (2 ≤ p <∞) as n→ ∞. To obtain a true minimizer
of e(2, a), we next show that {xn} is bounded uniformly in R

2. On the contrary, suppose

|xn| → +∞ as n→ ∞.
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Then up to a subsequence if necessary, we have

lim
n→∞

∫

R2

W (x)|un(x)|2dx = lim
n→∞

∫

R2

W (x+ xn)|un(x+ xn)|2dx = 0.

By the definition of e∗(2, a) defined in (2.35), we thus have

e(2, a) = lim
n→∞

F (2, a)(un) ≥
∫

R2

(

|(∇− ix⊥)u0|2 +
a

2
|u0|4

)

dx ≥ e⋆(2, a),

which however contradicts to (2.35). Once {xn} is bounded uniformly in R
2, we may

assume that up to a subsequence if necessary, xn → y0 for some y0 ∈ R
2 as n → ∞.

Moreover, since W (x) ∈ C(R2) and lim|x|→∞W (x) = 0, we obtain that W (x + xn)
converges to W (x+ y0) uniformly in R

2 as n→ ∞. Therefore, we get that

lim
n→∞

∫

R2

W (x)|un(x)|2dx = lim
n→∞

∫

R2

W (x+ xn)|un(x+ xn)|2dx

= lim
n→∞

∫

R2

W (x+ y0)|un(x+ xn)|2dx

=

∫

R2

W (x+ y0)|u0(x)|2dx,

where we used the fact thatW (x) ∈ L∞(R2) and limn→∞
∫

R2 |un(·+xn)|2dx =
∫

R2 |u0|2dx
in the last equality. This further implies that

e(2, a) = lim
n→∞

F2,a(un) ≥
∫

R2

(

|(∇− ix⊥)u0|2 +W (x+ y0)|u0|2 +
a

2
|u0|4

)

dx

= F2,a

(

u0(· − y0)e
iy0·x⊥)

,

i.e., u0(·− y0)eiy0·x⊥
is a minimizer of e(2, a) for the case a ∈ (−a∗, a∗), and we are done.

(b). We next consider a ∈ (a∗,+∞). By the definition of a∗, we obtain that e(2, a) ≥
2 for any a ∈ (a∗,+∞). On the other hand, taking the same test function as in (2.37),
we can obtain that e(2, a) ≤ 2 and hence e(2, a) ≡ 2 for any a ∈ (a∗,+∞). Therefore, we
can prove that there is no minimizers for e(2, a) = 2 in this case. Indeed, assume that
there is some u0 ∈ H1(R2,C) satisfying ‖u0‖2L2(R2) = 1 such that e(2, a) = 2. We then

have 2 = e(2, a) ≥ e(2, a∗)+ (a− a∗)
∫

R2 |u0|4dx = 2, and thus u0 ≡ 0, which contradicts
with ‖u0‖2L2(R2) = 1. This completes the proof of Theorem 1.2.

Proof of Corollary 1.3. Without loss of generality, as before we may assume A = 1
so that Ω∗ = 2, and B = 0. Following Theorem 1.2 (ii), we only need to prove that
a∗ = +∞, or equivalently, that e(2, a) < 2 for any a > 0. Taking ψR as a test function,
where ψR is defined by (2.30), we have

e(2, a) ≤ lim
R→∞

F2,a(ψR) = 2 + lim
R→∞

∫

R2

(

W (z)|ψR(z)|2 +
a

2
|ψR(z)|4

)

dz

= 2 +

∫

R2

(

W (z)
|η(z)|2e−

|z|2

σ2

πσ2
+
a

2

|η(z)|4e−
2|z|2

σ2

π2σ4

)

dz

= 2 +

∫

R2

(

W (σz)
|η(σz)|2e−|z|2

π
+
a

2

|η(σz)|4e−2|z|2

π2σ2

)

dz,
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where η(z) is as in (2.32). Since |η(z)| is a periodic function, we obtain from [6] that
|η(σz)|2 and |η(σz)|4 converge L∞−weak star to the constants −

∫

|η(z)|2dz > 0 and
−
∫

|η(z)|4dz > 0 as σ → ∞, respectively, where −
∫

|η(z)|pdz = 1
|Q|

∫

Q |η(z)|pdz denotes the

average of |η(z)|p in Q. Following (1.13), lim sup|x|→∞W (x)|x|s < 0 holds for 0 < s < 2,
we obtain that there exists a small δ > 0 such that

∫

R2

(

W (σz)
|η(σz)|2e−|z|2

π
+
a

2

|η(σz)|4e−2|z|2

π2σ2

)

dz

≤
∫

R2/B1(0)

−δ|η(σz)|2e−|z|2

πσs|z|s dz +
C

σ2

≤ −C(δ)

σs
+
C

σ2
< 0 as σ → ∞,

which then gives that
e(2, a) < 2 for any a > 0,

and hence a∗ = +∞ and the proof is completed in view of Theorem 1.2 (ii).

3 Limit behavior of minimizers as Ω ց 0

For any fixed a ∈ [0,+∞) or a.e. a ∈ (−a∗, 0), in this section we analyze the refined
limit behavior of minimizers for e(Ω, a) as Ω > 0 approaches to zero, where the trap
V (x) ≥ 0 satisfies all assumptions of Theorem 1.4.

Towards the above purpose, we denote un a complex-valued minimizer of e(Ωn, a),
where Ωn ց 0 as n→ ∞, so that un satisfies the following Euler-Lagrange equation

−∆un +
(

V (x)− µn
)

un + iΩn (x
⊥ · ∇un) + a|un|2un = 0 in R

2, (3.1)

where µn ∈ R is a Lagrange multiplier and satisfies

µn = e(Ωn, a) +
a

2

∫

R2

|un|4dx. (3.2)

Under the assumptions of Theorem 1.4, recall from Theorem B that u0 > 0 is the unique
positive minimizer of e(a). Denote µ0 ∈ R the Lagrange multiplier associated to u0, so
that (u0, µ0) satisfies

−∆u0 + V (x)u0 = µ0u0 − au30 in R
2. (3.3)

We start with the following estimates of e(Ωn, a) and µn as n→ ∞.

Lemma 3.1. Under the assumptions of Theorem 1.4, let un be a complex-valued min-
imizer of e(Ωn, a), where a ∈ (−a∗,+∞) is fixed, and Ωn ց 0 as n → ∞. Then we
have

1. The energy e(Ωn, a) satisfies

lim
n→∞

e(Ωn, a) = e(a), (3.4)

where the energy e(a) is defined in (1.4).
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2. There exists θn ∈ [0, 2π) such that un satisfies

lim
n→∞

une
iθn = u0 strongly in H1(R2,C), (3.5)

where u0 > 0 is the unique positive minimizer of e(a), and the Lagrange multiplier
µn = µ(Ωn, a) of (3.1) satisfies

lim
n→∞

µn = µ0, (3.6)

where µ0 ∈ R is the Lagrange multiplier of (3.3).

3. un satisfies the following exponential decay

|un(x)|, |∇un(x)| ≤ C(a)e−2|x| in R
2, (3.7)

where the constant C(a) > 0 depends only on a.

Proof. 1. Taking u0 as a test function, we obtain the following upper bound estimate:

lim
n→∞

e(Ωn, a) ≤ lim
n→∞

FΩn,a(u0) = e(a). (3.8)

On the other hand, we claim that there exists a constant C > 0, independent of n, such
that

∫

R2

(

|∇un|2 + V (x)|un|2
)

dx ≤ C uniformly in n. (3.9)

Indeed, following (3.8), we obtain from (2.1) and (2.4) that

1 + e(a) ≥ e(Ωn, a)

=

∫

R2

(

|∇un|2 − Ωnx
⊥ · (iun,∇un) + V (x)|un|2 +

a

2
|un|4

)

dx

≥
∫

R2

(

∣

∣∇|un|
∣

∣

2
+

[

V (x)− Ω2
n

4
|x|2

]

|un|2 +
a

2
|un|4

)

dx

≥
∫

R2

(

∣

∣∇|un|
∣

∣

2
+
a

2
|un|4

)

dx− C

≥
(a∗ + a

2

)

∫

R2

|un|4dx− C uniformly in n.

Since a ∈ (−a∗,∞) is fixed, we deduce from above that
∫

R2

|un|4dx ≤ C(a) uniformly in n, (3.10)

which further implies that

C(a) ≥
∫

R2

(

|∇un|2 − Ωnx
⊥ · (iu,∇u) + V (x)|un|2

)

dx

≥
∫

R2

(1

2
|∇un|2 +

[

V (x)− Ω2
n

2
|x|2

]

|un|2
)

dx

≥ 1

2

∫

R2

[

|∇un|2 +
(

V (x)− C
)

|un|2
]

dx uniformly in n.
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This proves the claim (3.9).
By the assumptions of V (x), we now deduce from (3.9) that

Ω2
n

4

∫

R2

|x|2|un|2dx ≤ Ω2
n

4

[

C

∫

R2

V (x)|un|2dx+ C
]

≤ Ω2
n

4
C(a) → 0 as n→ ∞,

which then gives that

lim
n→∞

e(Ωn, a) = lim
n→∞

FΩn,a(un)

= lim
n→∞

∫

R2

(
∣

∣

∣
∇un − iΩnx

⊥

2
un

∣

∣

∣

2
+

[

V (x)− Ω2
n

4
|x|2

]

|un|2 +
a

2
|un|4

)

dx

≥ lim
n→∞

∫

R2

(

∣

∣∇|un|
∣

∣

2
+

[

V (x)− Ω2
n

4
|x|2

]

|un|2 +
a

2
|un|4

)

dx

= lim
n→∞

(

Ea(|un|)−
Ω2
n

4

∫

R2

|x|2|un|2dx
)

≥ e(a).

(3.11)

Therefore, (3.4) is proved in view of (3.8) and (3.11).
2. For the unique positive minimizer u0 > 0 of (1.4), we choose θn ∈ [0, 2π) properly

such that
∥

∥une
iθn − u0

∥

∥

L2(R2)
= min

θ∈[0,2π)

∥

∥une
iθ − u0

∥

∥

L2(R2)
, (3.12)

which further implies the following orthogonal condition
∫

R2

u0Im(une
iθn)dx = 0 for all n ∈ N

+, (3.13)

where Im(u) denotes the imaginary part of u. Taking a subsequence if necessary, we
deduce from (3.9) and Lemma 2.1 that there exists û ∈ H1(R2,C) such that une

iθn ⇀ û
weakly in H1(R2,C) and une

iθn → û strongly in Lp(R2) (2 ≤ p < ∞) as n → ∞. Thus,
we get ‖û‖L2(R2) = 1. Moreover, by the weak lower semi-continuity and Fatou’s Lemma,
we have

e(a) = lim
n→∞

FΩn(un) ≥
∫

R2

(

|∇û|2 + V (x)|û|2 + a

2
|û|4

)

dx ≥ e(a),

which therefore implies that e(a) = E(û) and û = u0 in view of (3.13).
Note from Theorem B that u0 > 0 is the unique positive minimizer of e(a). We then

conclude that the above convergence une
iθn → u0 strongly in Lp(R2) (2 ≤ p < ∞) as

n→ ∞ holds for the whole sequence. Moreover, since limn→∞ FΩn(un) = e(a) and un ⇀
u0 weakly in H1(R2), we obtain that limn→∞

∫

R2 |∇un|2dx = limn→∞
∫

R2 |∇u0|2dx, and
thus (3.5) holds true. Finally, one can deduce from (3.2)–(3.5) that (3.6) also holds true.

3. Define Un(x) = |un(x)|2 ≥ 0 in R
2. We then derive from (3.1) that

−1

2
∆Un + |∇un|2 − Ωn x

⊥ · (iun,∇un) +
[

V (x)− µn + aUn

]

Un = 0 in R
2. (3.14)

By Cauchy’s inequality,

|∇un|2 − Ωn x
⊥ · (iun,∇un) +

Ω2
n

4
|x|2Un ≥ 0 in R

2,
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we have

− 1

2
∆Un +

[

V (x)− Ω2
n|x|2
4

− µn

]

Un + aU2
n ≤ 0 in R

2. (3.15)

Note that lim|x|→∞
(

V (x) − Ω2
n|x|2
4

)

= +∞ and limn→∞ µn = µ0. By De Giorgi-Nash-

Moser theory [20, Theorem 4.1], we derive from above and (3.5) that

0 ≤ Un(x) ≤ C(a) in R
2 uniformly in n. (3.16)

It follows from (3.16) that there exists a sufficiently large R = R(a) > 0 such that

V (x) − Ω2
n|x|2
4 − µn − |a|Un ≥ 18 holds in R

2/BR(0) as n → ∞. This then implies from
(3.15) that

−1

2
∆Un + 18Un ≤ 0 in R

2/BR(0) uniformly in n.

By the comparison principle, we obtain from above and (3.16) that

|un(x)| ≤ C(a)e−3|x| in R
2 uniformly in n. (3.17)

Based on (3.17), the same argument of proving [17, Lemma 4.2] then yields that the
gradient estimate of (3.7) also holds true, and we are done.

Applying (3.5) and (3.7), by a standard bootstrap argument one can further verify
from (3.1) that

lim
n→∞

une
iθn = u0 uniformly in L∞(R2,C), (3.18)

where u0 > 0 is the unique positive minimizer of e(a), see [17, Propostion 3.3] for the
related argument. We now rewrite

une
iθn := qn + irn, (3.19)

where θn ∈ [0, 2π) is as in (3.5), while qn and rn denote the real and imaginary parts of
une

iθn , respectively. It then follows from (3.18) that

qn → u0 and rn → 0 uniformly in L∞(R2) as n→ ∞. (3.20)

Note from (3.1) that (qn, rn) satisfies the following system:

{

Lnqn = Ωn(x
⊥ · ∇rn) in R

2,

Lnrn = −Ωn(x
⊥ · ∇qn) in R

2,
(3.21)

where the operator Ln is defined by

Ln := −∆+ V (x)− µn + a|un|2. (3.22)

In order to obtain some refined estimates of (qn, rn), we need to analyze the associated
linearized operators L and N : M(R2,R) 7−→ L2(R2,R) defined by

L := −∆+ V (x)− µ0 + au20, (3.23)

N := −∆+ V (x)− µ0 + 3au20, (3.24)
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where M(R2,R) is denoted by

M(R2,R) := H2(R2,R) ∩
{

u ∈ L2(R2,R) :

∫

R2

V (x)u2dx <∞
}

.

Since V (x) ≥ 0 is radially symmetric and satisfies the assumption (V ), we next address
the following analytical properties of L and N .

Lemma 3.2. Under the assumptions of Theorem 1.4, we have

1. The linearized operator L satisfies

kerL = {u0} and 〈Lu, u〉 ≥ 0 for all u ∈ L2(R2,R), (3.25)

where u0 > 0 is the unique positive minimizer of e(a). Moreover, there exists ρ > 0
such that for all u ∈ H1(R2,R),

〈Lu, u〉 ≥ ρ‖u‖2H1(R2), if

∫

R2

u(x)u0(x)dx = 0. (3.26)

2. If a 6= 0, then the linearized operator N is non-degenerate, in the sense that

kerN = {0}, (3.27)

and N−1: L2(R2) 7−→ L2(R2) exists and is a continuous linear operator. Moreover,
there exists ρ̂ > 0 such that for all u ∈ H2(R2,R),

‖Nu‖L2(R2) ≥ ρ̂‖u‖H2(R2). (3.28)

3. If a 6= 0 and φ(|x|) ∈ L2(R2) is radially symmetric, then ψ(x) = N−1φ(|x|) ∈
M(R2,R) is also radially symmetric.

Proof. (1). Define the first eigenvalue λ1 of L by

λ1 := inf
{

∫

R2

|∇u|2 + (V (x)− µ0 + a|u0|2)|u|2dx : u ∈M(R2,R), ‖u‖L2(R2) = 1
}

,

(3.29)
and let (λ1, φ) be the first eigenpair of L. One can derive easily that φ does not change
sign in R

2. Since (0, u0), where u0 > 0, is an eigenpair of L, we claim that λ1 = 0.
Otherwise, if λ1 < 0, then the eigenfunction u0 > 0 must be orthogonal to φ, which is
impossible in view of the fact that φ > 0. Therefore, we conclude from Theorem B that
u0 > 0 is the unique eigenfunction associated to the first eigenvalue λ1 = 0.

Following [32, Theorem XIII.47 and XIII.67], we deduce from above that L has a
non-degenerate ground state and purely discrete spectrum σ(L) = σd(L), which further
imply that

kerL = {u0} and 0 ∈ σd(L).
Therefore, for any u ∈ H1(R2) satisfying

∫

R2 u(x)u0(x)dx = 0, we have

〈Lu, u〉 ≥ ρ‖u‖2L2(R2).
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On the other hand, since u0 ∈ L∞(R2), we also reduce from (3.29) that for any u ∈
H1(R2) satisfying

∫

R2 u(x)u0(x)dx = 0,

〈Lu, u〉 ≥ ‖∇u‖2L2(R2) − C‖u‖2L2(R2).

We conclude from above two estimates that (3.26) holds true.
(2). If a ∈ (0,∞), it is obvious that N > L ≥ 0 and thus kerN = {0}. On

the other hand, if a ∈ (−a∗, 0), then the non-degenerate of N is a well-known result
of [7, Corollary 11.5], which thus implies that (3.27) holds true. Moreover, the same
argument of [17, Theorem 5.3] yields that N−1: L2(R2) 7−→ L2(R2) exists and is a
continuous linear operator satisfying (3.28).

(3). Similar to [17, Theorem 5.3]), since the operator N−1 commutes with the angular
momentum, one can get that if a 6= 0 and φ(|x|) ∈ L2(R2) is radially symmetric, then
ψ(x) = N−1φ(|x|) ∈ M(R2,R) is also radially symmetric, and the proof is therefore
complete.

Applying Lemma 3.2, we next derive the following refined estimates.

Lemma 3.3. Under the assumptions of Theorem 1.4, let {αn} be a positive bounded
sequence, and consider positive constants C > 0 and K > 0, which are independent of
n.

1. If qn satisfies
|x⊥ · ∇qn| ≤ Cαne

−K|x| in R
2, (3.30)

then there exists a constant C = C(a,K) > 0, depending only on a and K, such
that

|rn(x)| ≤ C(a,K)Ωnαne
−K|x|, |∇rn(x)| ≤ C(a,K)Ωnαne

−K
2
|x| in R

2. (3.31)

2. If fn(x) ∈M(R2,R) and gn(x) ∈ L2(R2,R) satisfy

N fn(x) = gn(x), |gn(x)| ≤ Cαne
−K|x| in R

2, (3.32)

then there exists a constant C(a,K) > 0, depending only on a and K, such that

(a) If a 6= 0, then we have

|fn(x)| ≤ C(a,K)αne
−K|x|, |∇fn(x)| ≤ C(a,K)αne

−K
2
|x| in R

2. (3.33)

(b) If a = 0 and fn(x) satisfies
∫

R2 fn(x)u0(x)dx = 0, then we have

|fn(x)| ≤ C(K)αne
−K|x|, |∇fn(x)| ≤ C(K)αne

−K
2
|x| in R

2. (3.34)

Proof. 1. Recall from (3.21) that rn satisfies the following equation

(−∆+ V (x)− µn + a|un|2)rn = −Ωn(x
⊥ · ∇qn) in R

2. (3.35)
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Following (3.6), (3.20) and (3.26), we then have

− Ωn

∫

R2

[

(x⊥ · ∇qn) rn
]

dx

=

∫

R2

[

|∇rn|2 + (V (x)− µn + a|un|2)r2n
]

dx

≥
∫

R2

(Lrn · rn)dx+

∫

R2

[

(µ0 − µn) + a(|un|2 − u20)
]

r2ndx

≥ ρ‖rn‖2H1(R2) − o(1)

∫

R2

r2ndx ≥ ρ

2
‖rn‖2H1(R2).

We then get from (3.30) and above that

ρ

2
‖rn‖2H1(R2) ≤

∣

∣

∣
Ωn

∫

R2

[

(x⊥ · ∇qn) rn
]

dx
∣

∣

∣
≤ CΩnαn‖rn‖L2(R2),

which further implies that
‖rn‖H1(R2) ≤ CΩnαn, (3.36)

where αn > 0 is as in (3.30). On the other hand, we derive from (3.35) that r2n satisfies
the following equation

[

− 1

2
∆ +

(

V (x)− µn + a|un|2
)]

r2n + |∇rn|2 = −Ωn(x
⊥ · ∇qn) rn in R

2,

which then implies that

− 1

2
∆r2n − µnr

2
n + a|un|2r2n ≤ −Ωn(x

⊥ · ∇qn)rn in R
2. (3.37)

By De Giorgi-Nash-Moser theory [20, Theorem 4.1], we thus obtain from (3.37) that for
any y ∈ R

2,

sup
x∈B 1

2

(y)
|rn(x)|2 ≤ C

(

‖rn‖2L2(B1(y))
+ ‖Ωn(x

⊥ · ∇qn)rn‖L2(B1(y))

)

. (3.38)

Combining (3.36) and (3.38) yields that

‖rn‖L∞(R2) ≤ CΩnαn. (3.39)

Moreover, since µn → µ0 as n → ∞, there exists a sufficiently large constant R =
R(a,K) > 0 such that

V (x)− µn + a|un|2 ≥ K2 + 1 in R
2/BR(0).

By the comparison principle, we then deduce from (3.30) and (3.35) that

|rn(x)| ≤ CΩnαne
−K|x| in R

2/BR(0),

from which and (3.39) we derive that

|rn(x)| ≤ CΩnαne
−K|x| in R

2. (3.40)
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Furthermore, applying gradient estimates (see (3.15) in [14]) to the equation (3.35), we
conclude from above that

|∇rn(x)| ≤ CΩnαne
−K

2
|x| in R

2, (3.41)

which therefore implies that (3.31) holds true in view of (3.40).
2. We first prove that (3.33) holds true, if a 6= 0. Since fn satisfies (3.32), we derive

from (3.28) that
ρ̂‖fn‖H2(R2) ≤ ‖gn‖L2(R2) ≤ C(a,K)αn,

which then implies that
‖fn‖L∞(R2) ≤ C(a,K)αn. (3.42)

By the comparison principle, we then derive from (3.32) that

|fn(x)| ≤ C(a,K)αne
−K|x| in R

2. (3.43)

Applying again gradient estimates (see (3.15) in [14]), we further obtain from (3.43) that
|∇fn| also satisfies the desired estimate (3.33).

Next, we prove that (3.34) holds true, if a = 0 and fn(x) satisfies
∫

R2 fn(x)u0(x)dx =
0. Indeed, in this case, we have

N = L = −∆+ V (x)− µ0.

Since fn satisfies (3.32) and
∫

R2 fn(x)u0(x)dx = 0, we derive from Lemma 3.2 (1) that

‖fn‖2H1(R2) ≤ C〈Lfn, fn〉 ≤ C‖gn‖L2(R2)‖fn‖L2(R2) ≤ C(K)αn‖fn‖L2(R2), (3.44)

which implies that
‖fn‖H1(R2) ≤ C(K)αn. (3.45)

Similar to the proof of (3.39), since fn satisfies (3.45), we obtain from De Giorgi-Nash-
Moser theory [20, Theorem 4.1] that

‖fn‖L∞(R2) ≤ C(K)αn. (3.46)

Following (3.46), the comparison principle applied to (3.32) then yields that

|fn(x)| ≤ C(K)αne
−K|x| in R

2, (3.47)

from which one can further obtain (3.34) on the similar exponential decay of |∇fn|. This
completes the proof of Lemma 3.3.

4 Proof of Theorem 1.4

For any fixed a ∈ [0,+∞) or a.e. a ∈ (−a∗, 0), this section is devoted to the complete
proof of Theorem 1.4 on the nonexistence of vortices for minimizers of e(Ω, a) in the case
where Ω > 0 is small enough, since the case Ω = 0 follows directly in view of Theorem B
and those explanations below (1.17). Under the assumptions of Theorem 1.4, consider
the minimizer un of e(Ω, a), and let (qn, rn) be as in (3.19). We also recall from Theorem
B that u0 > 0 is the unique positive minimizer of e(a), and (u0, µ0) satisfies the elliptic
equation (3.3).

Following the estimates of the previous section, we first establish the following corol-
lary.
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Corollary 4.1. Under the assumptions of Theorem 1.4, define

wn(x) := qn(x)− u0(x), εn := max
{

Ωn, |µn − µ0|
}

> 0, (4.1)

where µn and µ0 are as in (3.1) and (3.3), respectively. Then we have

1. There exists a constant C > 0, independent of n, such that

|rn(x)| ≤ CΩne
−|x|, |∇rn(x)| ≤ CΩne

− 1

2
|x| in R

2. (4.2)

2. There exists a constant C > 0, independent of n, such that

(a) If a 6= 0, then wn satisfies

|wn(x)| ≤ Cεne
−|x|, |∇wn(x)| ≤ Cεne

− 1

2
|x| in R

2. (4.3)

(b) If a = 0, then w⊥
n = wn −

(∫

R2 wnu0dx
)

u0 satisfies

|w⊥
n (x)| ≤ Cεne

−|x|, |∇w⊥
n (x)| ≤ Cεne

− 1

2
|x| in R

2. (4.4)

Proof. Following Lemma 3.1 (3), the estimates of (4.2) follow directly from Lemma 3.3
by taking αn ≡ 1 and K = 1.

Next, we prove that (4.3) holds if a 6= 0. Direct calculations give from (3.21) that
wn satisfies the following equation

Nwn + a(qn + 2u0)w
2
n = (µn − µ0)qn − ar2nqn +Ωn(x

⊥ · ∇rn) in R
2, (4.5)

where the linearized operator N is defined by (3.24). The left-hand side of (4.5) satisfies

‖Nwn + a(qn + 2u0)w
2
n‖L2(R2) ≥ ‖Nwn‖L2(R2) − C(a)‖wn‖2L4(R2)

≥ ρ̂‖wn‖H2(R2) − C(a)‖wn‖2H2(R2),

where (3.28) is used in the second inequality. On the other hand, following (4.2), the
right-hand side of (4.5) satisfies

∣

∣(µn − µ0)qn − ar2nqn +Ωn(x
⊥ · ∇rn)

∣

∣ ≤ Cεne
−|x| in R

2.

We thus derive from above that

ρ̂‖wn‖H2(R2) − C(a)‖wn‖2H2(R2) ≤ Cεn,

where Lemma 3.2 (2) is also used. This further implies that

‖wn‖L∞(R2) ≤ C‖wn‖H2(R2) ≤ Cεn. (4.6)

Similar to the proofs of (3.39) and (3.40), one can further conclude from (4.5) and (4.6)
that (4.3) holds true.

Finally, we prove that (4.4) holds for the case a = 0. In this case, the operator
N = L = −∆+V (x)−µ0, and w⊥

n = wn−
(∫

R2 wnu0dx
)

u0 satisfies
∫

R2 w
⊥
n (x)u0(x)dx = 0

and

Nw⊥
n = −∆w⊥

n + V (x)w⊥
n − µ0w

⊥
n = (µn − µ0)qn +Ωn(x

⊥ · ∇rn) in R
2. (4.7)

Following Lemma 3.1 (3), we obtain that the right-hand side of (4.7) satisfies
∣

∣(µn − µ0)qn +Ωn(x
⊥ · ∇rn)

∣

∣ ≤ Cεne
−|x| in R

2.

Thus, we derive from Lemma 3.3 (2) that (4.4) holds true, and we are done.
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Lemma 4.2. Under the assumptions of Theorem 1.4, for some m ≥ 2 suppose wn =
qn − u0 can be decomposed as

wn(x) = ψm,n(|x|) + Tm,n(x), (4.8)

where ψm,n(|x|) is radially symmetric, and Tm,n satisfies

|Tm,n(x)| ≤ Amεmn e
−|x|, |∇Tm,n(x)| ≤ Amεmn e

− 1

2
|x| in R

2 as n→ ∞, (4.9)

for some constant A > 0, independent of m and n, where εn > 0 is defined in (4.1).
Then the decomposition of (4.8) and (4.9) holds for m+ 1.

Proof. Note that qn is the real part of une
iθn , u0 > 0 and εn > 0 are as in (4.1).

For some large constant A > 0, we may assume that εn > 0 is small enough so that

0 < Aε
1

2
n < 1 for sufficiently large n > 0. Moreover, we always use the same symbol C

to denote various positive constants which are independent of A > 0, m ≥ 2 and εn > 0.
Since u0(|x|) + ψm,n(|x|) is radially symmetric, we derive from (4.8) and (4.9) that

for some m ≥ 2,

∣

∣x⊥ · ∇qn
∣

∣ =
∣

∣x⊥ · ∇Tm,n

∣

∣ ≤ CAmεmn e
− 1

4
|x| in R

2,

which and Lemma 3.3 (1) then yield that

|rn(x)| ≤ CAmεm+1
n e−

1

4
|x|, |∇rn(x)| ≤ CAmεm+1

n e−
1

8
|x| in R

2. (4.10)

The rest proof is divided into two steps.

Step 1. We claim that there exists a decomposition wn = ψm+1,n + Tm+1,n, where
ψm+1,n(x) = ψm+1,n(|x|) is radially symmetric and Tm+1,n(x) satisfies

|Tm+1,n| ≤ CAmεm+1
n e−

1

16
|x|, |∇Tm+1,n| ≤ CAmεm+1

n e−
1

32
|x| in R

2. (4.11)

To prove (4.11), we shall consider separately the following two cases:

Case 1: a = 0. In this case, we define

ψm+1 ≡
(

∫

R2

wnu0dx
)

u0, and Tm+1 ≡ w⊥
n = wn −

(

∫

R2

wnu0dx
)

u0. (4.12)

Note from (4.7) that for a = 0, N = L = −∆+V (x)−µ0, kerL = {u0}, and w⊥
n satisfies

Lw⊥
n = (µn − µ0)qn +Ωn(x

⊥ · ∇rn) in R
2,

∫

R2

w⊥
n u0dx = 0. (4.13)

Since
0 = 〈Lu0, w⊥

n 〉 = 〈u0,Lw⊥
n 〉 = 〈u0, (µn − µ0)qn +Ωn(x

⊥ · ∇rn)〉,
and qn → u0 strongly in L∞(R2,R) as n→ ∞, we can deduce from (4.10) that

1

2
|µn − µ0|〈u0, u0〉 ≤ |〈u0, (µn − µ0)qn〉|

= |〈u0,Ωn(x
⊥ · ∇rn)〉| ≤ CAmεm+1

n .
(4.14)
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Therefore, we deduce from (3.7), (4.10) and above that the right-hand side of (4.13)
satisfies

|(µn − µ0)qn +Ωn(x
⊥ · ∇rn)| ≤ CAmεm+1

n e−
1

16
|x| in R

2.

By Lemma 3.3 (2b), we thus obtain from (4.13) that

|w⊥
n (x)| ≤ CAmεm+1

n e−
1

16
|x|, |∇w⊥

n (x)| ≤ CAmεm+1
n e−

1

32
|x| in R

2,

which shows that the claim (4.11) holds true in the case a = 0.

Case 2: a 6= 0. In this case, for above m ≥ 2 we obtain from (4.3), (4.8) and (4.9)
that

|ψm,n(x)| ≤ Amεmn e
−|x| + Cεne

−|x| ≤ Cεne
−|x| in R

2. (4.15)

Similarly, we have

|∇ψm,n(x)| ≤ Cεne
− 1

2
|x| in R

2. (4.16)

Since qn = u0 + ψm,n + Tm,n, we get from (4.5) that

Nwn : = (µn − µ0)(u0 + wn)− a(qn + 2u0)w
2
n − ar2nqn +Ωn(x

⊥ · ∇rn)
= Ωn

(

x⊥ · ∇rn
)

− ar2nqn +B1,n(x) +B2,n(x) in R
2,

(4.17)

where the radially symmetric function B1,n(x) satisfies

B1,n(x) = (µn − µ0)(u0 + ψm,n)− a
(

ψ3
m,n + 3u0ψ

2
m,n

)

, (4.18)

and the non-radially symmetric function B2,n(x) satisfies

B2,n(x) =(µn − µ0)Tm,n − a
(

3ψ2
m,n + 3ψm,nTm,n

+ T 2
m,n + 6u0ψm,n + 3u0Tm,n

)

Tm,n.
(4.19)

Following Lemma 3.2 (3) and (4.18), there exists a unique function ψm+1,n ∈ C2(R2) ∩
L∞(R2) of

Nψm+1,n = B1,n(x) in R
2, (4.20)

and moreover, ψm+1,n is also radially symmetric.
We now define

Tm+1,n(x) := wn(x)− ψm+1,n(x), (4.21)

where ψm+1,n(x) is given by (4.20), so that Tm+1,n(x) satisfies

NTm+1,n = Ωn

(

x⊥ · ∇rn
)

− ar2nqn +B2,n(x) in R
2, (4.22)

due to (4.17). Following (4.9), (4.10) and (4.15), we deduce that there exists a constant
C > 0 such that

|Ωn(x
⊥ · ∇rn)− ar2nqn| ≤ CAmεm+1

n e−
1

16
|x| in R

2, (4.23)
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and

|B2,n(x)| ≤ CAmεm+1
n e−|x|, |∇B2,n(x)| ≤ CAmεm+1

n e−
1

2
|x| in R

2. (4.24)

In view of (4.23) and (4.24), we conclude from Lemma 3.3 (2a) that the claim (4.11) also
holds true for the case a 6= 0.

Step 2. Under the decompositions (4.12) or (4.21), we shall prove that (4.9) holds for
m + 1, which then completes the proof of the lemma. Towards this aim, actually it
suffices to show that Tm+1,n decays faster than (4.11) as |x| → ∞.

Recall from (3.21), (4.13), (4.21) and (4.22) that (rn, Tm+1,n) satisfies the following
system

{

NTm+1,n = Ωn

(

x⊥ · ∇rn
)

− ar2nqn + B̂2,n(x) in R
2,

Lnrn = −Ωn(x
⊥ · ∇Tm+1,n) in R

2,
(4.25)

where B̂2,n(x) = (µn − µ0)qn if a = 0, and B̂2,n(x) = B2,n(x) if a 6= 0. Multiplying the
first equation of (4.25) by Tm+1,n and the second one of (4.25) by rn, respectively, we
then have



























− 1

2
∆|Tm+1,n|2 + |∇Tm+1,n|2 +

[

V (x)− µ0 + 3au20

]

|Tm+1,n|2

=
[

Ωn

(

x⊥ · ∇rn
)

− ar2nqn + B̂2,n

]

Tm+1,n in R
2,

− 1

2
∆r2n + |∇rn|2 +

[

V (x)− µn + a|un|2
]

r2n = −Ωn(x
⊥ · ∇Tm+1,n)rn in R

2.

By the diamagnetic inequality, we have

|∇Tm+1,n|2 +
Ω2
n|x|2
4

|rn|2 +Ωn(x
⊥ · ∇Tm+1,n)rn ≥ 0 in R

2, (4.26)

and

|∇rn|2 +
Ω2
n|x|2
4

|Tm+1,n|2 − Ωn(x
⊥ · ∇rn)Tm+1,n ≥ 0 in R

2.

By the exponential decay (3.7) of |un|, we also get from (4.10), (4.14) and (4.24) that as
n→ ∞,

(

− ar2nqn + B̂2,n

)

Tm+1,n ≤ 1

2
|Tm+1,n|2 +

1

2

(

− ar2nqn + B̂2,n

)2

≤ 1

2
|Tm+1,n|2 + Cε2(m+1)

n A2me−2|x| in R
2/BR,

where and below R > 0 is sufficiently large. We then obtain from above that as n→ ∞,

1

2
V (x)− µ0 + 3a|u0|2 + a|un|2 ≥ 3 in R

2/BR,

which further implies that

− 1

2
∆
(

|Tm+1,n|2 + r2n
)

+
5

2

(

|Tm+1,n|2 + r2n
)

≤CA2mε2(m+1)
n e−2|x| in R

2/BR.
(4.27)
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By the comparison principle, we thus derive from (4.11) and (4.27) that as n→ ∞,

|Tm+1,n(x)|, |rn(x)| ≤ CAmεm+1
n e−|x| in R

2. (4.28)

We next address the desired exponential decay of |∇Tm+1,n| and |∇rn|. Note from

(4.25) that ∂iTm+1,n :=
∂Tm+1,n

∂xi
satisfies

N∂iTm+1,n +
[

∂iV (x) + 6au0∂iu0

]

Tm+1,n

= ∂i

[

Ωn

(

x⊥ · ∇rn
)

− ar2nqn + B̂2,n(x)
]

in R
2, i = 1, 2.

Multiplying the above equation by ∂iTm+1,n and summing it for i = 1, 2, we obtain that

− 1

2
∆|∇Tm+1,n|2 +

[

V (x)− µ0 + 3au20

]

|∇Tm+1,n|2

+

2
∑

i=1

|∇∂iTm+1,n|2 +
2

∑

i=1

[

∂iV (x) + 6au0∂iu0

]

Tm+1,n∂iTm+1,n

=

2
∑

i=1

∂i

[

Ωn

(

x⊥ · ∇rn
)

− ar2nqn + B̂2,n(x)
]

∂iTm+1,n in R
2.

(4.29)

By the exponential decay of u0 and |un|, we calculate from (4.11) and (4.28) that as
n→ ∞,

2
∑

i=1

[

∂iV (x) + 6au0∂iu0

]

Tm+1,n∂iTm+1,n

≤
2

∑

i=1

[

|∂iV (x)|2 + C
]

|Tm+1,n|2 +
2

∑

i=1

1

4
|∂iTm+1,n|2

≤ CA2mε2(m+1)
n e−|x| +

1

4
|∇Tm+1,n|2 in R

2/BR,

(4.30)

where and below R > 0 is as before sufficiently large, and the assumption (V ) is used in
the last inequality.

Similar to (4.30), we have

2
∑

i=1

∂i

[

− ar2nqn + B̂2,n(x)
]

∂iTm+1,n

≤ 1

4

2
∑

i=1

|∂iTm+1,n|2 +
2

∑

i=1

[

∂i
(

− ar2nqn + B̂2,n

)

]2

≤ 1

4
|∇Tm+1,n|2 + CA2mε2(m+1)

n e−|x| in R
2/BR,

which further implies that as n→ ∞,

− 1

2
∆|∇Tm+1,n|2 +

[

V (x)− µ0 + 3au20 −
1

2

]

|∇Tm+1,n|2 +
2

∑

i=1

|∇∂iTm+1,n|2

≤
2

∑

i=1

∂i

[

Ωn

(

x⊥ · ∇rn
)

]

∂iTm+1,n + CA2mε2(m+1)
n e−|x| in R

2/BR,

(4.31)
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in view of (4.29) and (4.30). Similar to (4.31), we also get that as n→ ∞,

− 1

2
∆|∇rn|2 +

[

V (x)− µn + a|un|2 −
1

2

]

|∇rn|2 +
2

∑

i=1

|∇∂irn|2

≤ −
2

∑

i=1

∂i

[

Ωn

(

x⊥ · ∇Tm+1,n

)

]

∂irn + CA2mε2(m+1)
n e−|x| in R

2/BR.

(4.32)

Using the diamagnetic inequality as in (4.26), one can derive from (4.31) and (4.32) that
as n→ ∞,

−1

2
∆
(

|∇rn|2 + |∇Tm+1,n|2
)

+
(

|∇rn|2 + |∇Tm+1,n|2
)

≤ CA2mε2(m+1)
n e−|x| in R

2/BR.

By the comparison principle, we then derive from above that as n→ ∞,

|∇rn|, |∇Tm+1,n| ≤ CAmε(m+1)
n e−

1

2
|x| in R2/BR. (4.33)

Therefore, we conclude from (4.10), (4.11) and (4.33) that there exists a sufficiently large
C > 0 such that as n→ ∞,

|∇rn(x)|, |∇Tm+1,n(x)| ≤ CAmε(m+1)
n e−

1

2
|x| in R

2. (4.34)

Because the positive constant C in (4.34) is independent of the values A > 0, m ≥ 2
and n, one can choose a sufficiently large constant A such that A > C. We thus conclude
that (4.9) holds for m + 1 in view of (4.28) and (4.34), and the proof of Lemma 4.2 is
therefore complete.

Proof of Theorem 1.4. Set T1,n(x) = w⊥
n (x) = wn −

( ∫

R2 wnu0dx
)

u0 and ψ1,n =
( ∫

R2 wnu0dx
)

u0 if a = 0, while T1,n(x) = wn(x) and ψ1,n ≡ 0 if a 6= 0. We then obtain
from Corollary 4.1 (2) that

|T1,n(x)| ≤ C1εne
−|x|, |∇T1,n(x)| ≤ C1εne

− 1

2
|x| in R

2, (4.35)

where C1 > 0 is independent of n > 0. Set T2,n(x) = T1,n(x) if a = 0, and T2,n :=
qn − u0 − ψ2,n if a 6= 0, where ψ2,n ∈ C2(R2) ∩ L∞(R2) is the unique solution of

Nψ2,n = (µn − µ0)u0 in R
2.

It then follows from Lemma 3.2 (3) that ψ2,n(|x|) is radially symmetric. Moreover, based
on (4.35), the same argument of proving Lemma 4.2 gives that there exists a constant
C2 > 0, independent of n > 0, such that

|T2,n(x)| ≤ C2ε
2
ne

−|x|, |∇T2,n(x)| ≤ C2ε
2
ne

− 1

2
|x| in R

2 as n→ ∞.

Take A > 0 large enough that A2 > C2, from which we have

|T2,n(x)| ≤ A2ε2ne
−|x|, |∇T2,n(x)| ≤ A2ε2ne

− 1

2
|x| in R

2 as n→ ∞. (4.36)

By Lemma 4.2, we deduce from (4.36) that for any m ≥ 2,

|Tm,n(x)| ≤ Amεmn e
−|x|, |∇Tm,n(x)| ≤ Amεmn e

− 1

2
|x| in R

2 as n→ ∞.
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Recall from (4.8) that qn(x) = [u0(x) + ψm,n(|x|)] + Tm,n(x), where u0(x) + ψm,n(|x|) is
radially symmetric. Applying Lemma 3.3, we thus derive from above that for any m ≥ 2,

|rn(x)| ≤ CAmεm+1
n e−

1

4
|x|, |∇rn(x)| ≤ CAmεm+1

n e−
1

8
|x| in R

2 as n→ ∞. (4.37)

Therefore, we conclude from (4.37) that for any m ≥ 2,

‖rn‖C1(R2) ≤ Cε
m+2

2
n in R

2 for sufficiently large n,

which further implies that rn ≡ 0 as n→ ∞.
Since rn(x) ≡ 0 as n → ∞, qn must be a positive minimizer of (1.4), and hence qn

satisfies
−∆qn +

(

V (x)− µ0 + aq2n
)

qn = 0 in R
2, (4.38)

which implies the absence of vortices for qn as n → ∞. Following Theorem B, we also
obtain the uniqueness of qn ≡ u0 for any fixed a ∈ [0,+∞) or a.e. a ∈ (−a∗, 0). This
therefore completes the proof of Theorem 1.4.
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