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NON-UNIFORM OBSERVABILITY FOR MOVING HORIZON ESTIMATION
AND STABILITY WITH RESPECT TO ADDITIVE PERTURBATION

EMILIEN FLAYAC ∗ AND IMAN SHAMES†

Abstract.

This paper formalises the concepts of weakly and weakly regularly persistent input trajectory as well as their
link to the Observability Grammian and the existence and uniqueness of solutions of Moving Horizon Estimation
(MHE) problems. Additionally, thanks to a new time-uniform Implicit Function Theorem, these notions are proved
to imply the stability of MHE solutions with respect to small additive perturbation in the measurements and in the
dynamics, both uniformly and non-uniformly in time. Finally, examples and counter-examples of weakly persistent
and weakly regularly persistent input trajectories are given in the case of 2D bearing-only navigation.

Key words. Nonlinear Observability, Persistent input, Moving Horizon Estimation, Implicit Function Theo-
rem, Stability of solutions.
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1 Introduction In tackling nonlinear estimation problems using the machinery of math-
ematical optimisation, two ideas prevail. The most straightforward one is to define a cost on
the complete sequence of past inputs and outputs and to estimate the associated state trajectory
by minimising that cost over state trajectories. The estimator is then built from the resulting
optimal state trajectory. This leads to Full Information Estimation (FIE). To reduce the compu-
tational cost and memory usage, another idea is to use a truncated version of the input/output
sequence on a time window of fixed length and to keep the optimal state trajectories on this mov-
ing horizon. This leads to Moving Horizon Estimation (MHE). See Chapter 4 of [26] for a general
survey on these techniques. In the classical literature on FIE and MHE, robust stability of the
estimation error is usually proved under observability or detectability assumptions. For example,
in [5, 21, 25], the stability of MHE schemes has been shown by assuming the so-called N -step
observability property. This assumption means that on a moving time window in a discrete-time
framework, small errors between output trajectories must imply small errors in the initial states,
for any pair of initial states and uniformly with respect to the control input. In [8, 15, 18, 19, 22],
the FIE and MHE estimators are proved to be Robustly Globally Asymptotically Stable under
several versions of incremental input/output-to-state stability (i-IOSS). It can be interpreted as
a robust detectability condition of any initial conditions in the presence of process noise, mea-
surement noise and/or control input. Note that in the above mentioned works, the comparison
functions used to characterise the i-IOSS property are again independent of any control input
which means that uniform detectability is assumed. Global stability of classical FIE and MHE
schemes require global solutions of the optimal estimation problem which may not be achievable
in a general nonlinear case. This remark has notably been made in [2, 3, 7, 12, 16, 28] where
one only searches for state trajectories that are locally optimal. A direct consequence of this
restriction is that one does not need to be able to distinguish all the states from each other but
only those close to the current state. This means that the required observability conditions can
be weakened accordingly. For instance, in [28], a version of the N -step observability property
localised around the actual state of the system is used to show the convergence of an approximate
MHE scheme. These weaker assumptions are again made uniformly with respect to the control
input. This suggests that the impact of the input trajectory on the performance of the MHE
scheme is overlooked. Nevertheless, it is known that general nonlinear observability properties
of nonlinear controlled systems cannot be stated independently of the input, see [10]. In partic-
ular, some input trajectories might prevent the system from satisfying the N -step observability
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2 E. FLAYAC AND I. SHAMES

property. In this regard, the notion of regularly persistent input trajectories happens to be very
useful, particularly, in the design of global observers for state-affine systems, see [10]. It defines
a class of input trajectories in a continuous time framework that forces the system to satisfy the
equivalent of the N -step observability property on the whole statespace. However, this property
is so strong that such input trajectories might not exist. It is also unnecessary in many appli-
cations of MHE, as mentioned before. That is why, the first two contributions of this paper are
to bring to light the links between classical nonlinear observability concepts and the problems of
FIE and MHE and to formalise and characterise the new concepts of weakly and weakly regularly
persistent input trajectories using the Observability Grammian.

They are written in the language of classical nonlinear observability theory in continuous
time and provide a new framework for the study of existence, local uniqueness and stability of
local solutions of MHE problems. More precisely, as the third and main contribution of this
paper, we show that weakly and weakly regularly persistent input trajectories ensure that MHE
problems still have locally unique local solutions close to the true state in the presence of small
arbitrary bounded additive perturbation in the measurements and in the dynamics. These results
involve a new time-uniform Implicit Function Theorem in Banach spaces. Finally, we provide
examples and counter-examples of weakly and weakly regularly persistent input trajectories for
a two-dimensional bearing-only system. In particular, we show that there exist weakly persistent
input trajectories that do no satisfy our sufficient conditions for weak regular persistence based
on the Observability Grammian.

The rest of the paper is organized as follows. In Section 2, the standard nonlinear observabil-
ity concepts are recalled. In Section 3, explicit connections between these observability notions
and optimisation concepts are established. In Section 4, the notions of weakly and weakly reg-
ularly persistent input trajectories are introduced and characterised through the Observability
Grammian and the stability of the solution of a perturbed MHE problem based on a implicit func-
tion theorem for sequences of solutions of a smooth nonlinear equation is also proved. Finally,
in Section 5, examples of weakly and weakly regularly persistent input trajectories are given
in the case of bearing-only localisation in order to demonstrate the relevance of the proposed
observabilty notions.

2 Observability properties of general nonlinear controlled systems This section
is dedicated to the presentation of classical nonlinear observability concepts.

2.1 Setup and classical nonlinear observability notions To begin with, several well-
known observability concepts are recalled from [10]. In the following, we denote by N the set of
positive integers and by R

+ the set of non-negative real numbers. We fix (nx, nu, ny) ∈ N
3. We

consider the following general nonlinear system:

9x = f(x, u),(2.1)

y = h(x, u),

where
• u : R+ −→ U ⊂ R

nu is a piece-wise continuous input trajectory, x is the correspond-
ing state trajectory valued in R

nx and y the corresponding measurement (or output)
trajectory valued in R

ny ;
• f : Rnx ×R

nu −→ R
nx is the controlled vector field of the system and h : Rnx ×R

nu −→
R

ny is the observation function, also called output function. Mappings f and h are both
assumed to be twice continuously differentiable.

For simplicity, the solutions of system (2.1) are supposed to be uniquely defined at all times. For
s2 ≥ s1 ≥ 0, and ξ ∈ R

nx , we denote by φf (s2; s1, ξ, u) the solution flow of system (2.1) at time
s2 with initial condition ξ, initial time s1 and input trajectory u. Let x0 ∈ R

nx be a fixed initial
condition and t0 = 0 be the reference initial time. In the following, the reference trajectory is
defined, for some input trajectory u, by:

x(t) := φf (t; 0, x0, u).(2.2)

This manuscript is for review purposes only.



NON-UNIFORM OBSERVABILITY FOR MHE AND STABILITY 3

The property of observability of a system is defined as one’s ability to distinguish between two
initial conditions using only an input trajectory and the corresponding output trajectories. The
definitions of distinguishable and indistinguishable pairs are recalled in Definition 2.1.

Definition 2.1 (Distinguishability). Let u be an input trajectory. A pair (ξ1, ξ2) ∈ R
nx ×

R
nx is said to be distinguishable using the input trajectory u if there exists t ≥ 0 such that:

h(φ(t, 0, ξ1, u), u(t)) 6= h(φ(t, 0, ξ2, u), u(t)).

A pair (ξ1, ξ2) is said to be distinguishable if there exists an input trajectory u such that (ξ1, ξ2)
is distinguishable using the input trajectory u. If (ξ1, ξ2) is distinguishable (resp. using input
trajectory u) then it is also said that ξ1 is distinguishable from ξ2 (resp. using input trajectory
u). If (ξ1, ξ2) is not distinguishable, then it is said to be indistinguishable.

Therefore, observable systems are such that every initial state can be distinguished from the
other states.

Definition 2.2 (Observability). System (2.1) is said to be observable at x0 ∈ R
nx if for

any ξ ∈ R
nx , ξ is distinguishable from x0. System (2.1) is said to be observable if for any

(ξ1, ξ2) ∈ (Rnx)2, the pair (ξ1, ξ2) is distinguishable.

Note that, contrary to linear systems, observability of nonlinear systems depends on input tra-
jectories. In fact, observability as defined in Definition 2.2 requires the existence of an input
trajectory for any pair of states in the statespace, that enables one to discriminate them. This
makes observability a strong property that might not be satisfied by a large class of systems. This
justifies the introduction of the concept of weak observability where one focuses on a neighbour-
hood of some state.

Definition 2.3 (Weak observability). The system (2.1) is said to be weakly observable at x0
if there exists an input trajectory u and a neighbourhood, U, of x0 such that for any ξ ∈ U\{x0},
there exists t ≥ 0 such that:

h(φf (t; 0, x0, u), u(t)) 6= h(φf (t; 0, ξ, u), u(t)).

The system (2.1) is said to be weakly observable if it is weakly observable at x0 for any x0 ∈ R
nx .

A slightly stronger concept of observability is used when one also needs to distinguish a pair of
states instantly that is to say by staying close to the initial condition. For this reason, the notion
of local weak observability has been introduced in [13]. Its definition is recalled in Definition 2.4.

Definition 2.4 (Local weak observability). The system (2.1) is said to be locally weakly
observable at x0 if there exists an input trajectory u and a neighbourhood, U, of x0 such that for
any neighbourhood, V ⊂ U, of x0 and any ξ ∈ V\{x0}, there exists t ≥ 0 such that:

h(φf (t; 0, x0, u), u(t)) 6= h(φf (t; 0, ξ, u), u(t)),

φf (t; 0, ξ, u) ∈ V.

The system (2.1) is said to be locally weakly observable if it is locally weakly observable at
x0 for any x0 ∈ R

nx .

In Definition 2.4, the term ‘weak’ specifically refers to the fact that one is trying to distinguish
between states that are near x0 while the term ‘local’ means that one is able to use arbitrarily
short state trajectories to do so. Thus, local weak observability at some initial condition x0
means that x0 can be distinguished from its neighbours using the input and output trajectories
corresponding to state trajectories x that stay close to x0. Its main interest is that it can be
checked using a rank condition on the Lie derivatives of h along the vector fields defined by f .
See [10] for more details.

Note that in Definition 2.2, 2.3 and 2.4, an element of the statespace is fixed and one focuses
on the existence of an input trajectory that allows one to distinguish this element from others.
There exists another take on observability where one fixes a control trajectory and wonders if
it can be used to distinguish between every pair of states. Such input trajectories are called
universal input trajectories.

This manuscript is for review purposes only.



4 E. FLAYAC AND I. SHAMES

Definition 2.5 (Universal input). For t ≥ 0, an input trajectory u is a universal input
trajectory on [0, t] if for any ξ1 6= ξ2, there exists s ∈ [0, t] such that

h(φf (s; 0, ξ1, u), u(s)) 6= h(φf (s; 0, ξ2, u), u(s)).

An input trajectory is said to be a universal input trajectory if there exists t ≥ 0 such that it is
a universal input trajectory on [0, t]. System (2.1) is said to be uniformly observable if all input
trajectories are universal.

In the following, we focus on integral formulations of observability as they typically provide more
quantitative notions. This leads to the definition of the cumulative output error.

Definition 2.6 (Cumulative output error). For 0 ≤ t1 ≤ t2, an input trajectory u and a
pair of states (ξ1, ξ2) we define the cumulative output error of system (2.1) on [t1, t2] at (ξ1, ξ2)
with input trajectory u, denoted by l(t1, t2, ξ1, ξ2, u), as follows:

l(t1, t2, ξ1, ξ2, u) =

∫ t2

t1

‖h(φf (s; t1, ξ1, u), u(s))− h(φf (s; t1, ξ2, u), u(s))‖
2
ds,

where ‖·‖ denotes the Euclidian norm.

Thus, from Definition 2.5, one can derive an equivalent integral characterization of universal
input trajectories.

Proposition 2.7. An input trajectory u is universal if and only if for any ξ1 6= ξ2, there
exists t ≥ 0 such that:

l(0, t, ξ1, ξ2, u) > 0.(2.3)

Proof. Since u is assumed to be piece-wise continuous and h is continuous, for any ξ1 6= ξ2 and
t ≥ 0,

∫ t

0 ‖h(φf (s; 0, ξ1, u), u(s))− h(φf (s; 0, ξ2, u), u(s))‖
2
ds = 0 if and only if for any s ∈ [0, t],

h(φf (s; 0, ξ1, u), u(s)) = h(φf (s; 0, ξ2, u), u(s)). The result follows from this.

In theory, when a universal input trajectory is available, it should be possible to reconstruct
the state of the system at anytime if one waits for a sufficiently long time. However, in practice,
one would like to know an upper bound on the time required to distinguish states using some
input trajectory. We first recall the classical definition of K-functions.

Definition 2.8 ( K-function). A function κ : R+ → R is said to be a K-function if and only
if it is continuous, strictly increasing and satisfies κ(0) = 0.

This leads to the definition of persistent input trajectories.

Definition 2.9 (Persistent input). An input trajectory u is said to be persistent if and only
if there exists T > 0 such that, for any t ≥ T there exists a K-function, κt, such that for any
(ξ1, ξ2) ∈ (Rnx)2:

l(t− T, t, ξ1, ξ2, u) ≥ κt(‖ξ1 − ξ2‖).(2.4)

Note that the definition of persistent input trajectories using a K-function differs from the one in
[10] but they can be shown to be equivalent thanks to Lemma 2.10.

Lemma 2.10. [Lemma 4.3, [17]] Let n ∈ N and F : Rn → R be a continuous function such
that F (0) = 0 and for any ξ ∈ R

n\{0}, F (ξ) > 0 then there exists a K-function κ such that for
any ξ ∈ R

n:

F (ξ) ≥ κ(‖ξ‖).

Persistent input trajectories allows one to distinguish every state during a time window of
bounded length. In other words, one is then able to distinguish every pair of states without
having to wait for more than a time span of length T . However, this property is not time-
invariant. In some cases, κt(‖ξ1 − ξ2‖) might vanish as t → +∞ for fixed ξ1 and ξ2 making the
system potentially less and less observable along the state trajectory. This can be avoided by
considering a time invariant equivalent namely the regular persistence input trajectories.

This manuscript is for review purposes only.
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Definition 2.11 (Regularly persistent input). An input trajectory u is said to be regularly
persistent if and only if there exist T > 0 and a K-function κ such that for any t ≥ T and any
ξ1 6= ξ2:

l(t− T, t, ξ1, ξ2, u) ≥ κ(‖ξ1 − ξ2‖).(2.5)

Remark 2.12. In Definitions 2.6, 2.9 and 2.11, weighted Euclidian norms could be considered.
This would lead to equivalent definitions because of the inequality relationships between weighted
Euclidian norms and the standard one. Thus, it is without loss of generality that we limit our
discussion to the standard Euclidian norm.

It is very common to look for estimators that minimise the cumulative output error, see
Chapter 4 of [26] for a general review and analysis on the topic. As a consequence, the first
contribution of this paper is to provide an interpretation of the previously stated integral observ-
ability definitions in terms of optimization notions. This is the topic of next section.

3 Observability and optimization-based estimation Optimization-based estimation
aims to build estimators by minimizing a cost that depends on the input and output trajectories
on some time interval. In this paper, we focus on this cost being the cumulative output error.
One of the main theoretical issue in the deterministic setting is to ensure that the potential
multiple solutions of the resulting optimization problems coincide locally or globally with the
reference trajectory. In this section, we link the classical nonlinear observability concepts to Full
Information and Moving Horizon Estimation.

To avoid confusion with the several definitions of observability stated above, we recall the
definition of several concepts of solution of an optimization problem.

Definition 3.1. Let F : Rnx −→ R. Consider the optimization problem:

inf
ξ∈Rnx

F (ξ).(3.1)

It is said that ξ∗ ∈ R
nx is a global solution of Problem (3.1) if for any ξ ∈ R

nx , F (ξ∗) ≤ F (ξ).
It is said that ξ∗ ∈ R

nx is a local solution of Problem (3.1) if there exists a neighbourhood,
U, of ξ∗ such that for any ξ ∈ U, F (ξ∗) ≤ F (ξ). It is said that ξ∗ ∈ R

nx is a strict local
solution of Problem (3.1) if there exists a neighbourhood of ξ∗, U, such that for any ξ ∈ U\{ξ∗},
F (ξ∗) < F (ξ).

3.1 Nonlinear observability and optimisation We include straightforward properties
of l(t1, t2, ·, ·, u) for 0 ≤ t1 ≤ t2 and its derivatives in Lemma 3.2 below. In the following, dξ2 l
denotes the first order differential of l(t1, t2, ξ1, ·, u).

Lemma 3.2. For any ξ1 ∈ R
nx , 0 ≤ t1 ≤ t2 and any input trajectory u, l(t1, t2, ξ1, ·, u) is con-

tinuously differentiable, l(t1, t2, ξ1, ξ1, u) = 0, ξ1 is a global solution of the following optimisation
problem:

(3.2) inf
ξ2∈Rnx

l(t1, t2, ξ1, ξ2, u),

and dξ2 l(t1, t2, ξ1, ξ1, u) = 0.

Proof. Note that because f and h are continuously differentiable then, according to Theorem
2.3.2 in [11], for any (ξ1, ξ2) ∈ (Rnx)2, 0 ≤ t1 ≤ t2 and an input trajectory u, l(t1, t2, ξ1, ·, u)
is continuously differentiable too. Besides, l(t1, t2, ξ1, ξ1, u) = 0 and l(t1, t2, ξ1, ξ2, u) ≥ 0 from
Definition 2.6 which means that ξ1 is a global solution of Problem (3.2). As a consequence, from
first order necessary optimality conditions of unconstrained problems, dξ2 l(t1, t2, ξ1, ξ1, u) = 0.

3.1.1 Full Information Estimation (FIE) Full Information estimation is a straightfor-
ward optimization-based estimation technique. In FIE, the estimator is computed by minimising
the cumulative measurement error between the reference trajectory x(·) and an estimated trajec-
tory φf (·; 0, ξ, u) on a interval [0, t] for some t ≥ 0. It leads to the following optimization problem
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6 E. FLAYAC AND I. SHAMES

for any t ≥ 0 and x0 ∈ R
nx :

inf
ξ∈Rnx

l(0, t, x0, ξ, u).(FIEt,u)

Full Information estimation requires finding a global solution to Problem (FIEt,u). Proposition 3.3
ensures that one recovers any initial condition x0, if and only if u is a universal input trajectory.

Proposition 3.3. For t ≥ 0, u is a universal input trajectory on [0, t] if and only if, for any
x0 ∈ R

nx , x0 is the unique global solution of Problem (FIEt,u).

Proof. First, Lemma 3.2 leads to l(0, t, ξ, x0, u) ≥ 0 = l(0, t, x0, x0, u), for any t ≥ 0 and
(ξ, x0) ∈ (Rnx)2, so x0 is a global solution of Problem (FIEt,u) independently of u. Then, by
Proposition 2.7, u is a universal input trajectory if and only if for any ξ 6= x0, l(0, t, ξ, x0, u) > 0.
This means that x0 is the unique global solution of Problem (FIEt,u) for any x0 ∈ R

nx if and
only if u is a universal input trajectory.

Since the size of the integration window in (FIEt,u) grows with t, the numerical computation of
l(0, t, x0, ξ, u) and thus the practical resolution of (FIEt,u) become progressively more difficult
as time goes. A common alternative is to consider the input/output trajectories only on a time
window of fixed length which leads to Moving Horizon Estimation.

3.1.2 Moving Horizon Estimation (MHE) As an alternative to Problem (FIEt,u),
one can consider a similar estimation problem where one keeps only the knowledge of y(·) on
[t − T, t] for some memory time T > 0 and look for a Moving Horizon estimator by minimising
l(t − T, t, x(t − T ), ξ, u) instead. This typically leads to the following optimization problem, for
t ≥ T :

(MHEt,T,u) inf
ξ∈Rnx

l(t− T, t, x(t− T ), ξ, u).

Problem (MHEt,T,u) is written in the so-called ‘sequential form’ where the goal is to recover
x(t − T ) by solving Problem (MHEt,T,u) at time t and reconstruct the rest of the trajectory by
applying the flow φf with the input trajectory u. Similar to Problem (FIEt,u), persistence of the
input trajectory implies in particular uniqueness of a global solution of Problem (MHEt,T,u).

Proposition 3.4. An input trajectory u is persistent if and only if, there exists T > 0 such
that for any t ≥ T and any initial condition x0 ∈ R

nx , x(t−T ) = φf (t−T ; 0, x0, u) is the unique
global solution of Problem MHEt,T,u.

Proof. The proof is very similar to that of Proposition 3.3.

Remark 3.5. Proposition 3.4 states that Moving Horizon Estimation is enabled by persistent
input trajectories. In the case of regularly persistent input trajectories, the presence of function
κ in Definition 2.11 typically allows one to build global nonlinear observers. See Chapter 5 of [10]
for an example. Related works have used similar conditions but they are considered uniformly
with respect to control inputs. For example, in [5, 25], a condition called N -step observability or
uniform observability is assumed. It ensures that a small cumulative output error on a rolling
time window of size N implies a small error in the initial conditions. This condition is formally
very similar to the concept of uniform observability stated in Definition 2.5 and ignores the
influence that an input trajectory might have on observability. Besides, in [8, 15, 18, 19, 22],
global robust stabilty of FIE/MHE schemes are proved under a detectabilty assumption called
incremental input/output-to-state stability (i-IOSS) or its discounted version. Note that i-IOSS
implies that the error between the current state of two trajectories can be bounded by the error
in trajectories of process noise, measurement noise, control input and output. However, contrary
to the observability conditions introduced in Section 4, the comparison functions used in i-IOSS
are independent of the control input which makes it a uniform detectability assumption.

Remark 3.6. Even if there exist regularly persistent input trajectories, they can be very
hard to find because of the strong nature of the property. Moreover, one cannot hope to solve
(MHEt,T,u) globally but only locally as it is generally nonconvex. Indeed, if one is only able
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to find local solutions of (MHEt,T,u), then regular persistence seems unnecessary and one needs
a less demanding concept of observability. This notion of observability is discussed in the next
section.

4 Weak persistence and Moving Horizon Estimation In this section, we introduce
the notions of weakly and weakly regularly persistent input trajectories that ensure quantitative
distinguishibility between states that are near the reference one while having only access to
the past observations on a moving time-window. These notions are extensions of classical ones
presented in Section 2 and are designed to ensure that MHE problems can be solved. In particular,
throughout this section, we show that weakly and weakly regularly persistent input trajectories
ensure that the MHE has a locally unique local solution that is stable in the presence of small
additive measurement noise.

4.1 Definitions and first properties Note that a regularly persistent input trajectory u
is such that every possible state can be distinguished with the output of the system if one waits
for no more than a fixed time. Thus, if one keeps the terminology from Definition 2.4, regular
persistence is a strong and non-local property of the input trajectories. As mentioned previously,
persistence of the input might be too demanding. Besides, it is generally very complicated to
verify that an input trajectory is persistent for a general nonlinear system because it requires
checking that (2.4) holds for every pair of states. As a result, the concepts of persistent and reg-
ularly persistent inputs are too strong and unusable in many practical applications of MHE. One
would prefer to ensure that only pairs of states in a neighborhood of x(t− T ) are distinguishable
on a rolling horizon for an appropriate choice of input trajectory. As a consequence, the second
contribution of this paper is to state the definitions of weakly persistent and weakly regularly
persistent input trajectories based on Definitions 2.9 and 2.11. They enable the practical reso-
lution of Moving Horizon Estimation problems and emphasize the role of the input trajectories
in the proposed observability notions. Leveraging the notion of the Observability Grammian, we
also give a necessary and a sufficient condition for weak and weak regular persistence of input
trajectories based on second order derivatives.

Definition 4.1 (Weakly persistent input). Fix an initial condition x0 ∈ R
nx . An input

trajectory u is said to be weakly persistent at x0, if there exists T > 0 such that for any t ≥ T

there exist Rt > 0 and a K-function κt such that for any (ξ1, ξ2) ∈ ( sB(x(t− T ), Rt))
2:

l(t− T, t, ξ1, ξ2, u) ≥ κt(‖ξ1 − ξ2‖),(4.1)

where sB(x(t−T ), Rt) denotes the closed ball for the Euclidian norm centered at x(t−T ) of radius
Rt. System (2.1) is said to be weakly persistently observable if for any x0 ∈ R

nx there exists a
weakly persistent input trajectory at x0.

Definition 4.2 (Weakly regularly persistent input). Fix an initial condition x0 ∈ R
nx . An

input trajectory u is said to be weakly regularly persistent at x0, if there exists T > 0, R > 0 and
a K-function κ such that, for any t ≥ T and any (ξ1, ξ2) ∈ ( sB(x(t − T ), R))2:

l(t− T, t, ξ1, ξ2, u) ≥ κ(‖ξ1 − ξ2‖),(4.2)

where x(t − T ) = φf (t − T ; 0, x0, u). For X ⊂ R
nx , an input trajectory u is said to be weakly

regularly persistent on X if u is weakly regularly persistent at x0 for any x0 ∈ X and if (T,R, κ)
from (4.2) depend only on X and u. System (2.1) is said to be weakly regularly observable if for
any x0 ∈ R

nx there exists a weakly regularly persistent input trajectory at x0.

It is clear from Definitions 2.9 and 2.11 that persistent input trajectories (resp. regularly
persistent) are weakly persistent (resp. weakly regularly persistent). Besides, from the properties
of κ in (4.2), it is clear that weakly regularly persistent input trajectories are weakly persistent.
Roughly speaking, weakly persistently observable systems are such that, for some initial con-
dition and some associated input trajectory, the rolling cumulative measurement error between
state trajectories starting close enough to the reference one does not vanish. Weakly regularly
observable systems have the additional property that small rolling cumulative error in the output
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8 E. FLAYAC AND I. SHAMES

implies small ‘estimation’ error uniformly in time. In the sequel, we give several characterizations
of weakly and weakly regularly persistent input trajectories.

4.2 Characterization of weakly persistent inputs Contrary to the observability con-
cepts discussed in Section 2.1, weakly persistent input trajectories only ensure that Problem
(MHEt,T,u) has a strict local and a global solution at x(t − T ) and potentially allows several
global solutions. This is the topic of Proposition 4.3.

Proposition 4.3. Let x0 ∈ R
nx be an initial condition and u be an input trajectory. Then,

u is a weakly persistent input trajectory at x0 if and only if there exists T > 0 such that for any
t ≥ T , there exists Rt > 0 such that for any ξ1 ∈ sB(x(t − T ), Rt), the following optimisation
problem:

(4.3) inf
ξ2∈Rnx

l(t− T, t, ξ1, ξ2, u)

admits a global solution at ξ1 that is unique on sB(x(t−T ), Rt). In particular, in this case, x(t−T )
is a global solution and a strict local solution of Problem (MHEt,T,u).

Proof. By definition, u is a weakly persistent input trajectory at x0 if and only if there exists
T > 0 such that for any t ≥ T there exists Rt > 0 and a a K-function κt such that for any
(ξ1, ξ2) ∈ ( sB(x(t− T ), Rt))

2 with ξ1 6= ξ2:

l(t− T, t, ξ1, ξ2, u) = κt(‖ξ1 − ξ2‖) > 0.(4.4)

From Lemma (3.2), for any x0 ∈ R
nx , T > 0. any t ≥ T , any input trajectory u, and any

(ξ1, ξ2) ∈ ( sB(x(t − T ), Rt))
2, l(t − T, t, ξ1, ξ1, u) = 0, l(t − T, t, ξ1, ξ2, u) ≥ 0 and ξ1 is a global

solution of Problem (4.3). By also invoking Lemma 2.10, this precisely means that u is a weakly
persistent input trajectory at x0 if and only if there exists T > 0 such that for any t ≥ T there
exists Rt > 0 such that for any ξ1 ∈ sB(x(t− T ), Rt), ξ1 is the unique global solution of Problem
(4.4) on sB(x(t − T ), Rt). In the case that one of the two statements in Proposition 4.3 holds,
one can choose ξ1 = x(t − T ) and (4.4) shows directly that x(t − T ) is a strict local solution of
(MHEt,T,u).

In the sequel, for (n1, n2,m) ∈ N
3, and any twice differentiable function F : Rn1 → R

m

we denote by dF and d2F respectively the first and second order differential of F . In addition,
for any twice differentiable function G : Rn1 × R

n2 → R
m and (ξ1, ξ2) ∈ R

n1 × R
n2 , we denote

by dξ2G(ξ1, ξ2) the differential of G(ξ1, ·) at ξ2 and by d2ξ2G(ξ1, ξ2) the second order differential
of G(ξ1, ·) at ξ2. In particular, for any T > 0, any t ≥ T , any input trajectory u and any
(ξ1, ξ2) ∈ (Rnx)2, we respectively denote by dξ2 l(t − T, t, ξ1, ξ2, u) and d2ξ2 l(t − T, t, ξ1, ξ2, u) the
differential and the hessian of l(t − T, t, ξ1, ·, u) at ξ2. Their explicit expression are included in
Lemma A.1 in Appendix A as well as a proof of their existence.

We first give the definition of a K-function with finite sensitivity taken from [6].

Definition 4.4 (Finite sensitivity). A K-function κ is said to have finite sensitivity if and
only if there exists r > 0 such that:

inf
‖ξ‖6=0,‖ξ‖≤r

κ(‖ξ‖)

‖ξ‖2
> 0.(4.5)

Intuitively, a K-function with finite sensitivity is lower bounded by a positive definite quadratic
form locally around 0. As it is discussed in Proposition 4.5, this property allows one to link
weak regular persistence of an input trajectory u to the positive definiteness of the Hessian of
l(t− T, t, ξ1, ·, u) at ξ2, for any (ξ1, ξ2) close to x(t − T ).

Proposition 4.5. Let x0 ∈ R
nx and u be an input trajectory. Assume there exists T > 0

such that for any t ≥ T , there exists Rt > 0 such that for any (ξ1, ξ2) ∈ ( sB(x(t − T ), Rt))
2:

d2ξ2 l(t− T, t, ξ1, ξ2, u) ≻ 0,(4.6)
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where � and ≻ denote Loewner partial order on positive semi-definite matrices. Then, u is a
weakly persistent input trajectory at x0.

Conversely, if u is a weakly persistent input trajectory at x0 and all the associated K-functions
κt have finite sensitivity, then there exists T > 0 such that for any t ≥ T , there exists Rt > 0
such that for any (ξ1, ξ2) ∈ ( sB(x(t − T ), Rt))

2, (4.6) holds.

Proof. See Appendix B.

One of the main advantage of the concept of weak persistence is that it can be checked by
computing the Observability Grammian of system (2.1) on a time interval of constant length. Its
definition is stated in Definition 4.6.

Definition 4.6 (Observability Grammian). Let T > 0 be a time horizon, x0 ∈ R
nx be

an initial condition and u be an input trajectory. For t ≥ T , the Observability Grammian
of system (2.1) on [t − T, t], denoted by C(t, T, x(t − T ), u) is defined as half the Hessian of
l(t− T, t, x(t− T ), ·, u) taken at x(t− T ) and reads:

C(t, T, x(t− T ), u) =
1

2
d2ξ2 l(t− T, t, x(t− T ), x(t− T ), u),

=

∫ t

t−T

ΦT
fH

T (x(s), u(s))H(x(s), u(s))Φfds,(4.7)

where H(x(s), u(s)) = dxh(x(s), u(s)) and Φf (s; t− T, x(t− T ), u) = dxφf (s; t− T, ·, u).

Lemma 4.7 states the link between the Observability Grammian and the hessian of l around
x(t− T ).

Lemma 4.7. There exists T > 0 such that for any t ≥ T ,

C(t, T, x(t− T ), u) ≻ 0,(4.8)

if and only if there exists T > 0 such that for any t ≥ T , there exists Rt > 0 such that for any
(ξ1, ξ2) ∈ ( sB(x(t − T ), Rt))

2:

d2ξ2 l(t− T, t, ξ1, ξ2, u) ≻ 0.(4.9)

Proof. We first recall that C(t, T, x(t− T ), u) = 1
2d

2
ξ2
l(t− T, t, x(t− T ), x(t− T ), u). Thus by

invoking the same continuity argument as in the proof of Proposition 4.5 in Appendix B, one can
show that if there exists T > 0 such that for any t ≥ T (4.8) holds, then there exists T > 0 such
that for any t ≥ T , there exists Rt > 0 such that for any (ξ1, ξ2) ∈ ( sB(x(t − T ), Rt))

2:

d2ξ2 l(t− T, t, ξ1, ξ2, u) ≻ 0.

The converse follows by setting (ξ1, ξ2) = (x(t − T ), x(t− T )) in (4.9).

Finally, Corollary 4.8 gives another characterization of weakly persistent input trajectories
in terms of positive definiteness of the Observability Grammian that is inspired by [24].

Corollary 4.8. Let x0 ∈ R
nx and u be an input trajectory. If there exists T > 0 such that

for any t ≥ T :

C(t, T, x(t− T ), u) ≻ 0,(4.10)

then u is a weakly persistent input trajectory at x0.
Conversely, if u is a weakly persistent input trajectory and all the associated K-functions κt

have finite sensitivity then there exists T > 0 such that for any t ≥ T , (4.10) holds.

Proof. The result follows from Lemma 4.7 and Proposition 4.5.
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4.3 Characterization of weakly regularly persistent inputs In this section, we derive
results in Proposition 4.9 and 4.15 that are the counterpart of those of Section 4.2 in the case of a
weakly regularly persistent input trajectory. The main conceptual difference between Proposition
4.5 and Proposition 4.9 is that one now requires the Hessian of l(t − T, t, ξ1, ·, u) at ξ2 to be
lower bounded independently of t for (ξ1, ξ2) in a neighbourhood of x(t− T ) whose radius is also
independent of t.

Proposition 4.9. Let x0 ∈ R
nx be an initial condition and u be an input trajectory. If there

exist T > 0, µ > 0 and R > 0 such that for any t ≥ T and for any (ξ1, ξ2) ∈ ( sB(x(t− T ), R))2:

d2ξ2 l(t− T, t, ξ1, ξ2, u) � µInx
,(4.11)

where Inx
denotes the identity matrix of Rnx×nx , then u is a weakly regularly persistent input

trajectory at x0.

Proof. The result follows from the mean value form of the Taylor expansion of l(t−T, t, ξ1, ·, u)
and is similar to that of Proposition 4.5 in Appendix B with κ(r) = µ

2 r
2.

A converse of Proposition 4.9 in the spirit of the second statement of Proposition 4.5 is not
straightforward. Indeed, the proof of the latter uses a continuity argument of d2ξ2 l(t− T, t, ·, ·, u)
at x(t−T ) to prove the existence of an adequate radius Rt. Because of the explicit dependence of
d2ξ2 l on t, this argument does not allow one to obtain a radius R that is independent of t. Thus,
new assumptions are needed to bridge the gap.

Hypothesis 4.10. The functions f and h are three times continuously differentiable.

Hypothesis 4.11. The set U of feasible inputs is compact.

Definition 4.12. Let x0 ∈ R
nx be an initial condition, T > 0 a time horizon and u be an

input trajectory. System (2.1) is said to be regularly bounded at x0 with horizon T if there exist
R > 0 and L > 0 such that for any t ≥ T , any s ∈ [t− T, t] and any ξ ∈ sB(x(t− T ), R),

‖φf (s; t− T, ξ, u)‖≤ L,(4.12)

where x(t − T ) = φf (t− T ; 0, x0, u).

Lemma 4.13. Let x0 ∈ R
nx be an initial condition, T > 0 a time horizon and u be an input

trajectory. Under Hypothesis 4.11, if System (2.1) is regularly bounded at x0 with horizon T then
there exist L1 > 0, L2 > 0 and R > 0 such that for any t ≥ T , any s ∈ [t − T, t] and any
ξ ∈ sB(x(t− T ), R),

‖Φf (s; t− T, ξ, u)‖ ≤ L1,(4.13)

‖dξΦf (s; t− T, ξ, u)‖ ≤ L2.(4.14)

Moreover, under Hypothesis 4.10, there exist L3 > 0 and R > 0 such that for any t ≥ T , any
s ∈ [t− T, t] and any ξ ∈ sB(x(t − T ), R)

‖d2ξ2Φf (s; t− T, ξ, u)‖ ≤ L3,(4.15)

where ‖·‖ denotes here the appropriate operator norm derived from the Euclidian norm.

Proof. See Appendix C.

Lemma 4.14. Let x0 ∈ R
nx be an initial condition, T > 0 a time horizon and u be an input

trajectory. Under Hypothesis 4.10 and 4.11, if System (2.1) is regularly bounded at x0 with horizon
T then the following statements are equivalent:

(a) There exists µ > 0 such that for any t ≥ T :

C(t, T, x(t− T ), u) � µInx
,

where C is defined in Definition 4.6;
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(b) There exist R > 0, µ > 0 such that for any t ≥ T and any (ξ1, ξ2) ∈ ( sB(x(t − T ), R))2:

d2ξ2 l(t− T, t, ξ1, ξ2, u) � µInx
.(4.16)

Proof. See Appendix D.

Proposition 4.15. Let x0 ∈ R
nx be an initial condition and u be an input trajectory. Under

Hypotheses 4.10 and 4.11, suppose that u is a weakly regularly persistent input trajectory at x0
with an associated K-function κ that has finite sensitivity and an associated time horizon T such
that System (2.1) is regularly bounded at x0 with horizon T . Then, there exist T > 0, R > 0,
µ > 0 such that for any t ≥ T and any (ξ1, ξ2) ∈ ( sB(x(t − T ), R))2:

d2ξ2 l(t− T, t, ξ1, ξ2, u) � µInx
.(4.17)

Proof. See Appendix E.

In the spirit of Corollary 4.8, Corollary 4.16 gives a sufficient and a necessary condition for
weak regular persistence in terms of lower boundedness of the Observability Grammian uniformly
with time.

Corollary 4.16. Let x0 ∈ R
nx be an initial condition and u be an input trajectory. Under

Hypotheses 4.10 and 4.11, if there exist T > 0 and µ > 0 such that that System (2.1) is regularly
bounded at x0 with horizon T and such that for any t ≥ T :

C(t, T, x(t− T ), u) � µInx
,(4.18)

then u is a weakly regularly persistent input trajectory at x0.
Conversely, under Hypotheses 4.10 and 4.11, suppose that u is a weakly regularly persistent

input trajectory at x0 with an associated K-function κ that has finite sensitivity and an associated
time horizon T such that System (2.1) is regularly bounded at x0 with horizon T , then there exist
T > 0 and µ > 0 such that for any t ≥ T , (4.18) holds.

Proof. The result follows from Proposition 4.9, Lemma 4.14, and Proposition 4.15.

Remark 4.17. Although several notions of weakly persistent observability have already been
defined for MHE notably in [5, 12, 16, 28], weak persistence and weak regular persistence of the
input do not seem to have been stated in this form and put into perspective with other nonlinear
observability and optimization concepts. Furthermore, in the above cited work, it is typically
assumed that a solution of a perturbed MHE problem is available. Then, it is shown that, under
an observability assumption very close to the one introduced in this paper, the estimation error
of an approximate MHE scheme is ultimately bounded by the noise provided that it is small.
However, to the best of our knowledge, the stability of local solutions of MHE problems in the
presence of output noise has not been treated so far in the literature.

Following Remark 4.17, it seems critical to wonder whether small disturbances in the mea-
surements imply a small drift between the true state of the system and the solution of a perturbed
MHE problem under weak persistent or weak regular persistent observability. This the topic of
Section 4.4.

4.4 Stability of solutions of MHE problems under additive perturbation In this
section, we prove that weak and weak regular persistence of an input trajectory imply the existence
and the local uniqueness of a local solution of the associated MHE problem in the presence of
small additive process and output noise. A bound on the magnitude of the difference between the
true state of the system and the perturbed local solution is also derived. In the case of a weakly
regularly persistent input, this bound is independent of the time t.

In the following, for any n ∈ N, any 0 ≤ t1 < t2 ≤ +∞, and any measurable b : [t1, t2] → R
n,

we denote by ‖b‖∞,[t1,t2] the L∞ norm of b on [t1, t2]. If t1 = 0 and t2 = +∞, we denote by
‖b‖∞ the L∞ norm of b on R

+. We denote by L∞([t1, t2],R
n) the Banach space of measurable

functions b : [t1, t2] → R
n such that ‖b‖∞,[t1,t2]< +∞. For any T > 0 and t ≥ T , we also

set Θt,T = L∞([t − T, t],Rny) × L∞([0, t],Rnx) and Θ = L∞([0,+∞[,Rny ) × L∞([0,+∞[,Rnx).
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For any η = (v, w) ∈ Θt,T (resp. Θ), we set ‖η‖t,T= max(‖v‖∞,[t−T,t], ‖w‖∞,[0,t]) (resp. ‖η‖=
max(‖v‖∞, ‖w‖∞)). For any T > 0 and any t ≥ T , we respectively denote by Bt,∞ and sBt,∞ the
open and closed ball in Θt,T . We also use B∞ and sB∞ to denote the open and closed ball in Θ
respectively. We can now state the stability result of the section in both the cases of a weakly
persistent and a weakly regularly persistent input trajectory.

First, for any 0 ≤ s1 ≤ s ≤ s2 < +∞, any ξ ∈ R
nx , any control input trajectory u and any

process noise signal w ∈ L∞([s1, s2],R
nx), we define the following perturbed Cauchy problem:

9x(s) = f(x(s), u(s)) + w(s),(4.19)

x(s1) = ξ.

We assume for any 0 ≤ s1 ≤ s ≤ s2 < +∞, any ξ ∈ R
nx , any control input trajectory u and any

w ∈ L∞([s1, s2],R
nx) that the solution of (4.19) at time s, is uniquely defined and we denote it

by φ̃f (s; s1, ξ, u, w). Since w is only measurable, (4.19) is only satisfied almost everywhere, see
Theorem 2.1.1 and 2.1.3 in [11]. Moreover, let x0 ∈ R

nx be an initial condition, u be an input
trajectory and w ∈ L∞([0, t[,Rnx) be a process noise signal. The perturbed reference trajectory
is defined for any t ≥ 0 by:

x̃(t, w) = φ̃f (t; 0, x0, u, w).(4.20)

Note that (4.20) is a fortiori also defined for any w ∈ L∞([0,+∞[,Rnx). For conciseness, the
dependence of x̃ on u and x0 is removed. Clearly, φ̃f coincides with φf in the unperturbed case
leading to:

φ̃f (s; s1, ξ, u, 0) = φf (s; s1, ξ, u),

x̃(t, 0) = x(t),

where φf (s; s1, ξ, u) and x(t) are defined in (2.1) and (2.2).
Thus, for any T > 0, any t ≥ T , any ξ ∈ R

nx and any perturbation signals η = (v, w) ∈ Θt,T ,
we define the perturbed version of (MHEt,T,u) as follows:

(PMHEt,T,u,v,w) inf
ξ∈Rnx

l̃(t− T, t, ξ, u, η),

where for ξ ∈ R
nx :

l̃(t− T, t, ξ, u, η) =

∫ t

t−T

‖h(x̃(s, w), u(s)) + v(s)− h(φf (s; t− T, ξ, u), u(s))‖2ds.(4.21)

Remark 4.18. Note that in (PMHEt,T,u,v,w), w and v do not play the same role. Indeed, v
represents a measurement noise that is pointwise additive in time, thus, only its values on the
interval [t − T, t] matter in the computation of l̃. On the contrary, w is a process noise that is
integrated through (4.19) Hence, the perturbed reference trajectory x̃(·, w) on [t− T, t], depends
on the values of w on the whole interval [0, t] and not only on those on [t− T, t].

Consequently, in the following, we study the properties of x̃ and its differential when w ∈
L∞([0, t],Rnx). Lemma 4.19 states the boundedness of x̃(·, w) on [t−T, t] for any t while Lemma
4.20 gives differentiability properties of x̃(s, w) with respect to w as well as the boundedness of
the differential.

Lemma 4.19. Under Hypothesis 4.11, for any x0 ∈ R
nx , any T > 0, any t ≥ T , any input

trajectory u, any process noise signal w ∈ L∞([0, t],Rnx) and any νt > 0:

sup
s∈[t−T,t]

sup
‖w‖∞,[0,t]≤νt

‖x̃(s, w)‖< +∞.(4.22)

Proof. See Theorem 3.2.3 in [11].
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Lemma 4.20. Under Hypothesis 4.11, for any T > 0, t ≥ T , x0 ∈ R
nx , and s ∈ [t − T, t],

x̃(s, ·) is continuously differentiable in L∞([0, t],Rnx). Furthermore, its differential is denoted by
dwx̃(s, w) and dwx̃(s, w)∆w = z(s) for any (w,∆w) ∈ (L∞([0, t],Rnx))2, where z is the unique
solution of the following Cauchy problem for almost all s ∈ [0, t]:

9z(s) = A(s)z(s) + ∆w(s),(4.23)

z(0) = 0,

with A(s) = dxf(x̃(s, w), u(s)).
Additionally, T > 0 t ≥ T and νt > 0:

sup
s∈[t−T,t]

sup
‖w‖∞,[0,t]≤νt

‖dwx̃(s, w)‖< +∞.(4.24)

Proof. See Theorem 3.2.6 in [11] and Proposition 5.1.1. in [27] for (4.23) and Theorem 3.2.3
in [11] for (4.24).

Note that the suprema in Lemma 4.19 and 4.20 still depend on t. In order to get results that are
uniform with respect to t, for an initial condition x0 ∈ R

nx and u a control input trajectory, we
introduce the following hypothesis:

Hypothesis 4.21. There exists ν > 0 such that:

sup
t≥0

sup
‖w‖∞≤ν

‖dwx̃(t, w)‖< +∞.(4.25)

We can deduce the following Lemma:

Lemma 4.22. Let x0 ∈ R
nx be an initial condition and u be a control input trajectory. Assume

Hypothesis 4.21 holds an that:

sup
t≥0

‖x(t)‖< +∞.

Then, there exists ν > 0 such that:

sup
t≥0

sup
‖w‖∞≤ν

‖x̃(t, w)‖< +∞.(4.26)

Proof. The result follows from the fact that, for any t ≥ 0 any ν > 0, and any w ∈ sB∞(0, ν),
‖x̃(t, w)‖≤ ‖x(t)‖+‖x̃(t, w) − x(t)‖ and that, from the Mean Value Theorem:

‖x̃(t, w) − x(t)‖≤ ν sup
‖w‖∞≤ν

‖dwx̃(t, w)‖.

Lemma F.1 in Appendix F gathers the important differentiability properties of l̃ with respect
to ξ and η as well as the explicit expressions. We now state the first result of the section knowing
the existence, local uniqueness and stability the solution of (PMHEt,T,u,v,w) in the case of weakly
persistent input trajectory.

Theorem 4.23. Let x0 ∈ R
nx be an initial condition and u be an input trajectory. Assume

that u is a weakly persistent input trajectory at x0 and all the associated K-functions κt have finite
sensitivity. Then, there exists T > 0 such that for any t ≥ T , there exist νt > 0, Rt > 0, Kt > 0
such that for any η ∈ Bt,∞(0, νt), (PMHEt,T,u,v,w) has a unique local solution on sB(x(t−T ), Rt)
denoted by ξ∗t (η) and it satisfies:

‖ξ∗t (η) − x(t− T )‖≤ Kt‖η‖t,T .(4.27)

Proof. See Appendix G.

This manuscript is for review purposes only.



14 E. FLAYAC AND I. SHAMES

In order to prove the analogue of Theorem 4.23 that involves time-independent quantities
in the case of a weakly regularly persistent input trajectory, we first prove a uniform Implicit
Function Theorem on Banach spaces with explicit neighbourhoods. The classical Implicit Func-
tion Theorem on Banach spaces typically involves a pair (x0, y0) valued in two Banach spaces
and satisfying an equation of the form F (x0, y0) = 0. The goal is then to prove the existence of
δ > 0, ǫ > 0 and a function φ such that y = φ(x) if ‖x − x0‖< δ and ‖y − y0‖< ǫ. The idea
of Proposition 4.24 is to extend the classical Implicit Function Theorem to the case where one
has a family of pairs of solutions (x0,t, y0,t)t∈J valued in Banach spaces and satisfying equations
of the form F (t, x0,t, y0,t) = 0 for any t ∈ J . The main hurdle is that, in order to obtain a new
interesting result in the MHE analysis, one is looking for radii δ > 0 and ǫ > 0 that are uniform in
t. The proof of Proposition 4.24 is largely inspired by those of the Theorem in [14] and Theorem
3.13 in [23].

Proposition 4.24 (Uniform Implicit Function Theorem on Banach spaces with explicit
neighbourhoods). Let J be a set and X, Y , Z be three Banach spaces. In the following, we
do not distinguish the different norms, including those on linear operator spaces, and denote
them by ‖·‖. Let Ω ⊂ X×Y be an open set and F : J×Ω → Z be a map on J×Ω. Let ΩJ be the
set of mappings from J to Ω and let ((x0,t, y0,t))t∈J ∈ ΩJ be a family of elements of Ω indexed
by J . Let ǫ > 0, δ >, L > 0 and 0 < α < 1 and for any t ∈ J , set St = B(x0,t, δ) × sB(y0,t, ǫ)
where B and sB respectively denote the open and closed ball. Assume that:

(i) for any t ∈ J , St ⊂ Ω;
(ii) for any t ∈ J , F (t, x0,t, y0,t) = 0;
(iii) for any t ∈ J , F (t, ·, ·) is continuously differentiable on Ω so that, in particular, dyF (t, ·, ·)

exists and is continuous on Ω;
(iv) for any t ∈ J , the linear operator dyF (t, x0,t, y0,t) : Y → Z is invertible, and its inverse

Γt = pdyF (t, x0,t, y0,t)q−1
is such that ‖Γt‖≤ L;

(v) there exists g1 : [0, δ] × [0, ǫ] → R such that for any r ∈ [0, δ] and any s ∈ [0, ǫ], g1(r, ·)
and g1(·, s) are non-decreasing and such that, for any t ∈ J and any (x, y) ∈ St:

‖dyF (t, x, y)− dyF (t, x0,t, y0,t)‖≤ g1(‖x− x0,t‖, ‖y − y0,t‖);

(vi) there exists a non-decreasing function g2 : [0, δ] → R such that for any t ∈ J and any
x ∈ B(x0,t, δ):

‖F (t, x, y0,t)‖≤ g2(‖x− x0,t‖);

(vii) the positive numbers δ, ǫ, L and α satisfy:

Lg1(δ, ǫ) ≤ α < 1, Lg2(δ) ≤ ǫ(1− α).

Then, for any t ∈ J , there exists a unique continuously differentiable maps φt : B(x0,t, δ) →
B(y0,t, ǫ) such that:

(a) y0,t = φt(x0,t);
(b) for any x ∈ B(x0,t, δ), F (t, x, φt(x)) = 0;
(c) for any x ∈ B(x0,t, δ), dyF (t, x,φt(x)) is invertible and

‖(dyF (t, x, φt(x)))
−1‖≤

L

1− Lg1(δ, ǫ)
,

dφt(x) = (dyF (t, x,φt(x)))
−1dxF (t, x,φt(x)),

where (dyF (t, x,φt(x)))
−1 : R(t, x) ⊂ Z → X and R(t, x) = image(dyF (t, x, φt(x))).

Proof. See Appendix H.

We can now state the main result of the section.

Theorem 4.25. Let x0 ∈ R
nx be an initial condition, u be an input trajectory. Assume that

Hypotheses 4.10, 4.11 and 4.21 hold and that u is a weakly regularly persistent input trajectory
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at x0 with an associated K-function κ that has finite sensitivity and an associated time horizon
T such that System (2.1) is regularly bounded at x0 with horizon T . Then, there exist µ > 0,
R′ > 0, ν′ > 0 and variable-wise non-decreasing functions vanishing at 0, g1 : R+ × R

+ → R
+,

g2 : R
+ → R

+ g3 : R+ ×R
+ → R

+ such that for any 0 < ν < ν′, 0 < R < R′, 0 < α < 1 and any
η ∈ B∞(0, ν), if

g1(ν,R)

µ
≤ α < 1,

g2(ν)

µ
≤ R(1− α),(4.28)

then for any t ≥ T , (PMHEt,T,u,v,w) has a unique local solution in sB(x(t − T ), R), denoted by
ξ∗t (η), and it satisfies:

‖ξ∗t (η) − x(t− T )‖≤
g3(ν,R)

µ− g1(ν,R)
‖η‖.(4.29)

Proof. See Appendix I.

Remark 4.26. Both results in Theorem 4.23 and Theorem 4.25 state that the distance between
the local solution of (PMHEt,T,u,v,w) and the true state is at most proportional to the norm of the
measurement and process noises. Theorem 4.23 is a direct consequence of the classical Implicit
Function Theorem. We state it as it gives an element of comparison to Theorem 4.25 which is
the main contribution of the section. Indeed, depending on the evolution of Kt in t in Theorem
4.23, the norm of the noise ‖η‖t,T may need to vanish when t goes to infinity in order to keep the
right-hand side bounded. It significantly limits the class of noise trajectories that can be dealt
with by the system. On the contrary, in the setting of Theorem 4.25, the stability of the solution
of (PMHEt,T,u,v,w) is ensured for any sufficiently small bounded perturbation trajectory since
the parameters (R, ν, µ) do not depend on t. Therefore, weak regular persistence is more useful
in practice than weak persistence.

Remark 4.27. The explicit expressions of g1 and g2 in Theorem 4.25 are not included in order
to clarify its link to the time-uniform Implicit Function Theorem as presented in Proposition 4.24.
However, by looking more closely at Equations (I.8) and (I.11) in Appendix I then the conditions
(4.28) read:

a1(ν,R)(ν +R) ≤ αµ,
a2(ν)ν

R
≤ (1− α)µ,(4.30)

where a2(ν) > 0 and a1(ν,R) > 0 are non-decreasing with respect to ν and R. Note that R
represents the radius of the neighbourhood of x(t− T ) where (PMHEt,T,u,v,w) is known to have
a unique local solution and that ν represents the maximal amount of noise allowed in order to
keep stability. It is clear that (4.30) encodes a trade-off between R and ν regulated by the choice
of 0 < α < 1 which is arbitrary.

Remark 4.28. Similar existing observability concepts for MHE which can be found in [5, 4,
12, 16, 28] are all stated uniformly with respect to the input unlike the ones introduced in this
paper. In Section 5, we provide an example of system that is not observable uniformly with
respect to the input.

5 An example: bearing-only localisation In this section, we present the problem
of bearing-only localisation where one wants to recover the position of a mobile sensor using
measurements of the direction toward a beacon. Thus, we consider the following 2D dynamics
and observation equation:

9x =u,(5.1)

y =h(x) :=
ℓ− x

‖ℓ− x‖
,(5.2)
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16 E. FLAYAC AND I. SHAMES

where ℓ ∈ R
2 is assumed to be known a priori and u is an input trajectory valued in R

2. Let
x0 ∈ R

2 be an initial condition such that x0 6= ℓ and t0 = 0 be the reference initial time. In this
case the solution flow φ and its differential Φ read:

φ(t; 0, x0, u) =x0 +

∫ t

0

u(s)ds,(5.3)

Φ(t; 0, x0, u) =I2.(5.4)

For any ξ = (ξ1, ξ2) ∈ R
2 and any ℓ = (ℓ1, ℓ2) ∈ R

2 such that r = ‖ℓ− ξ‖> 0, let H = dh be:

H(ξ) =
1

r3

„
−(ξ2 − ℓ2)

2 (ξ1 − ℓ1)(ξ2 − ℓ2)
(ξ1 − ℓ1)(ξ2 − ℓ2) −(ξ1 − ℓ1)

2


.(5.5)

From (5.3), (5.4), and (5.5) and straightforward computations one gets, for any T > 0, any
t ≥ T and any ξ ∈ R

2, that:

C(t, T, ξ, u) =

∫ t

t−T

1

r4(s)

„
e22(s) −e1(s)e2(s)

−e1(s)e2(s) e21(s)


ds,

where r(s) = ‖ℓ−x(s)‖, e(s) = (e1(s), e2(s)) = x(s)−ℓ and x(s) = φ(s; 0, x0, u). In the following,
we define three classes of input trajectories.
1. Radial constant input trajectory

for any σ ∈ R, and any s ≥ 0, we define the radial constant input trajectory ucst(s, σ) as
follows:

ucst(s, σ) = σ(ℓ − x0);(5.6)

2. Circular input trajectory
for any ω > 0 and r0 > 0 and any s ≥ 0, we define the circular input trajectory as follows:

ucirc(s, ω, r0) = ωr0

„
− sin(ωs+ ψ0)
cos(ωs+ ψ0)


,(5.7)

where r0 = ‖ℓ− x0‖, ψ0 = atan2(ℓ1 − x0,1, ℓ2 − x0,2) and x0 = (x0,1, x0,2);
3. Outward spiral input trajectory

for any ω > 0, α > 0, r0 > 0 and any s ≥ 0, we define the outward spiral trajectory as
follows:

uspi(s, ω, α, r0) = ωr0 exp(αs)

ˆ„
− sin(ωs+ ψ0)
cos(ωs+ ψ0)


+ α

„
cos(ωs+ ψ0)
sin(ωs+ ψ0)

˙
.(5.8)

In Proposition 5.1, we show that input trajectories in (5.6) represent those that are not weakly
persistent. Then we show that input trajectories in (5.7) represent weakly regularly persistent ones
and that (5.8) represent weakly persistent input trajectories such that the associated Observability
Grammian can never be lower bounded as in Corollary 4.16.

Proposition 5.1. The following statements are true:
• For any σ ∈ R, ucst(·, σ) is neither a universal input trajectory of system (5.1) nor a
weakly persistent input trajectory at x0.

• For any ω > 0 and r0 > 0 , ucirc(·, ω, r0) is a weakly regularly persistent input trajectory
of system (5.1) at x0.

• For any ω > 0, α > 0 and r0 > 0, uspi(·, ω, α, r0) is a weakly persistent input trajectory
of system (5.1) at x0 and for any T > 0, limt→+∞‖C(t, T, x(t− T ), uspi)‖= 0.

Proof. See Appendix J.

Remark 5.2. The first item in Proposition 5.1 shows that System (5.1) is not uniformly
observable in the sense of Definition 2.5. Thus, the MHE algorithms mentioned in Remark 4.17,
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which require uniform observability properties, could not directly be applied to this example
without an adequate choice of input trajectory. However, the second item in Proposition 5.1
shows that by using circular input trajectories, one recovers the properties of the associated
MHE problem discussed in Section 4. The last item shows that there exist input trajectories that
can never be proved to be weakly regularly persistent using the Observability Grammian.

Remark 5.3. Note that System (5.1) does not satisfy Hypothesis 4.21 as any nonzero constant
process noise would make x̃ unbounded. However, System (5.1) could be modified by adding a
linear locally stabilising control feedback term to ucirc in order to robustly track a circle for
example. In this case, Hypothesis 4.21 would hold as System (4.23) in Lemma (4.20) would
become robustly stable in the presence of small perturbations.

Conclusion In this paper, we have first studied connections between classical nonlinear
observability and optimisation notions. Then, we have introduced the concepts of weakly and
weakly regularly persistent input trajectory along with their connection to the Observability
Grammian and the existence and uniqueness of solutions to the problem of Moving Horizon
Estimation. Then, thanks to a specifically designed time-uniform Implicit Function Theorem,
we have shown that these conditions imply the stability of MHE solutions with respect to small
additive perturbations in the measurements both uniformly and non-uniformly in time. Finally,
we presented an example of a nonlinear system where classical uniform observability conditions
do not hold along with examples and counter-examples of weakly persistent and weakly regularly
persistent input trajectories. In future works, one could introduce an arrival cost in the MHE
problem and study the stability properties of the resulting optimisation problem in the spirit of
[29].
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Abhishek Bhardwaj for his comments.

Appendix A. Differentials of l.

Lemma A.1 (First and second order differential of l(t − T, t, ξ1, ·, u) ). For any T > 0,
any t ≥ T , any input trajectory u, l(t, T, ξ1, ·, u) is twice continuously differentiable and for any
(ξ1, ξ2) ∈ (Rnx)2, dξ2 l(t− T, t, ξ1, ξ2, u) and d2ξ2 l(t− T, t, ξ1, ξ2, u) read:

dξ2 l(t− T, t, ξ1, ξ2, u) = 2

∫ t

t−T

(h(x2(s), u(s)) − h(x1(s), u(s)))
TH(x2(s), u(s))Φf (s, ξ2)ds,

(A.1)

where H(ξ1, u(s)) = dxh(ξ1, u(s)), x1(s) = φf (s; t − T, ξ1, u), x2(s) = φf (s; t − T, ξ2, u) and
Φf (s, ξ2) = dxφf (s; t− T, ξ2, u).

d2ξ2 l(t− T, t, ξ1, ξ2, u) = 2C(t, T, ξ2, u) + 2R(t, T, ξ1, ξ2, u),(A.2)

where for any (∆ξ2,∆
′ξ2) ∈ (Rnx)2:

∆ξT2 C(t, T, ξ2, u)∆
′ξ2 =

∫ t

t−T

∆ξT2 Φf (s, ξ2)
THT (x2(s), u(s))H(x2(s), u(s))Φf (s, ξ2)∆

′ξ2ds,

∆ξT2 R(t, T, ξ1, ξ2, u)∆
′ξ2 =

∫ t

t−T

(h(x2(s), u(s)) − h(x1(s), u(s)))
T ξ2(HΦf (s, ξ2)∆

′ξ2) ·∆ξ2ds,

where for any ξ2 ∈ R
nx , HΦf (s, ξ2) = H(x2(s), u(s))Φf (s, ξ2) and for any ∆ξ2 ∈ R

nx :

dξ2HΦf (s, ξ2) ·∆ξ2 =

H(x2(s), u(s))(dξ2Φf (s, ξ2) ·∆ξ2) + (dxH(x2(s), u(s)) · (Φf (s, ξ2) ·∆ξ2))Φf (s, ξ2).

Besides, d2ξ2 l(t− T, t, ξ1, ξ1, u) = 2C(t, T, ξ1, u).
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Proof. Note that, for any T > 0, any t ≥ T , any input trajectory u, and ξ ∈ R
nx and according

to Theorem 2.3.2 in [11] applied twice, φf (s; t−T, ξ1, u) is twice continuously differentiable since
f is. Since h is also twice continuously differentiable then dξ2 l and d2ξ2 l exist. Note that (A.1) and
(A.2) can be derived by the theorems of derivation inside integrals and the application of the chain
rule while the last equation results from the fact that for any ξ1 ∈ R

nx , R(t, T, ξ1, ξ1, u) = 0.

Appendix B. Proof of Proposition 4.5.

Proof. Assume that there exists T > 0 such that for any t ≥ T , there exists Rt > 0 such that
for any (ξ1, ξ2) ∈ ( sB(x(t − T ), Rt))

2, (4.6) holds. From Lemma 3.2, for T > 0 and t ≥ T , and
ξ1 ∈ R

nx one has l(t, T, ξ1, ξ1, u) = 0 and dξ2 l(t, T, ξ1, ξ1, u) = 0. Moreover, from the mean value
form of the Taylor expansion of l(t − T, t, ξ1, ·, u) at ξ1 (see Equation (b) in Proposition A.23 of
[9]), one has that for any (ξ1, ξ2) ∈ ( sB(x(t − T ), Rt))

2:

l(t, T, ξ1, ξ2, u) =
1

2
(ξ2 − ξ1)

Td2ξ2 l(t− T, t, ξ1, χ, u)(ξ2 − ξ1),(B.1)

with χ = (1 − λ)ξ1 + λξ2 and 0 < λ < 1. Since χ ∈ sB(x(t − T ), Rt), one has, from (4.6), that
d2ξ2 l(t− T, t, ξ1, χ, u) ≻ 0. By denoting by µt the smallest eigenvalue of d2ξ2 l(t− T, t, ξ1, χ, u), one

gets that for any (ξ1, ξ2) ∈ ( sB(x(t − T ), Rt))
2, l(t, T, ξ1, ξ2, u) ≥ µt

2 ‖ξ2 − ξ1‖
2, and the results

is proven by choosing κt(r) = µt

2 r
2. For the converse, assume that if u is a weakly persistent

input trajectory at x0 and all the associated K-functions κt have finite sensitivity. Then, there
exists T > 0 such that for any t ≥ T there exist Rt > 0, and a K-function κt such that for any
(ξ1, ξ2) ∈ ( sB(x(t− T ), R′

t))
2:

l(t− T, t, ξ1, ξ2, u) ≥ κt(‖ξ1 − ξ2‖),(B.2)

µ′
t = inf

‖ξ‖≤R′

t

κt(‖ξ‖)

‖ξ‖2
> 0.(B.3)

In particular, for any ξ ∈ sB(x(t− T ), R′
t):

l(t− T, t, x(t− T ), ξ, u) ≥ µ′
t‖ξ − x(t− T )‖2.(B.4)

From the Taylor’s expansion of l(t − T, T, x(t − T ), ·, u) at x(t − T ), see Equation (c) in
Proposition A.23 of [9], and from Lemma 3.2, for ξ in a neighborhood of x(t− T ), one gets that:

l(t, T, x(t− T ), ξ, u) =
1

2
wT d2ξ2 l(t− T, t, x(t− T ), x(t− T ), u)w + ‖w‖2θ(ξ),(B.5)

where w = ξ − x(t − T ) and limξ→x(t−T ) θ(ξ) = 0. By further combining (B.4) and (B.5), one
gets for ξ in a neighborhood of x(t− T ) such that ξ 6= x(t− T ):

wT d2ξ2 l(t− T, t, x(t− T ), x(t− T ), u)w

‖w‖2
≥ µ̃′

t + 2θ(ξ),

wT d2ξ2 l(t− T, t, x(t− T ), x(t− T ), u)w

‖w‖2
≥ µt,

where µt = µ̃t

2 . Thus, d2ξ2 l(t − T, t, x(t − T ), x(t − T ), u) ≻ 0. Then by continuity of the

smallest eigenvalue and of (ξ1, ξ2) → d2ξ2 l(t− T, t, ξ1, ξ2, u), there exist Rt > 0 such that for any

(ξ1, ξ2) ∈ ( sB(x(t− T ), Rt))
2, d2ξ2 l(t− T, t, ξ1, ξ2, u) ≻ 0, and the result is proven.

Appendix C. Proof of Lemma 4.13.

Proof. Assume that System (2.1) is regularly bounded at x0 with horizon T . Then there
exists L > 0 and R > 0 such that for any t ≥ T , any s ∈ [t− T, t] and any ξ ∈ sB(x(t− T ), R),

‖φf (s; t− T, ξ, u)‖≤ L.(C.1)
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According to Theorem 2.3.2 in [11], for any t ≥ T and s ∈ [t−T, t], and any ξ ∈ sB(x(t−T ), R),
Φf (s; t−T, ξ, u) =M(s, t−T ) is the solution of the following matrix-valued linear Cauchy problem:

dsM(s, t− T ) = dxf(φf (s; t− T, ξ, u), u(s))M(s, t− T ),

M(t− T, t− T ) = Inx
.

By integrating on [t− T, t] and taking the norm, one gets for any t ≥ T and s ∈ [t− T, t]:

‖M(s, t− T )‖ ≤ ‖M(t− T, t− T )‖+

∫ t

t−T

‖dxf(φf (s; t− T, ξ, u), u(s))‖‖M(s, t− T )‖ds.

(C.2)

By assumption, dxf is continuous. Thus, from Hypothesis 4.11 and (C.1), there exists σ1 > 0 such
that for any t ≥ T , s ∈ [t− T, t], and any ξ ∈ sB(x(t− T ), R), ‖dxf(φf (s; t− T, ξ, u), u(s))‖≤ σ1.
This leads for any t ≥ T , s ∈ [t− T, t], and any ξ ∈ sB(x(t − T ), R) to:

‖M(s, t− T )‖≤ 1 + σ1

∫ t

t−T

‖M(s, t− T )‖ds.

By Gronwall Lemma, ‖Φf(s; t − T, ξ, u)‖≤ L1 where L1 = exp(σ1T ) > 0. One can obtain
(4.14) using the same argument by applying Theorem 2.3.2 in [11] to the system represented
by (M(s, t − T ), ξ) and combining it with (C.1) and (4.13). Finally, under Hypothesis 4.10,
d2ξ2Φf (s; t− T, ξ, u) is well defined and (4.15) can be obtained similarly.

Appendix D. Proof of Lemma 4.14.

Proof. (a) ⇒ (b): Assume that (a) holds. Then, there exists µ′ > 0 such that for any t ≥ T :

C(t, T, x(t− T ), u) � µ′Inx
.(D.1)

We recall that for any t ≥ T :

C(t, T, x(t− T ), u) =
1

2
d2ξ2 l(t− T, t, x(t− T ), x(t− T ), u).(D.2)

Furthermore, since System (2.1) is regularly bounded at x0 with horizon T then there exist
R′ > 0 and L > 0 such that for any t ≥ T , any s ∈ [t− T, t] and any ξ ∈ sB(x(t − T ), R′),

‖φf (s; t− T, ξ, u)‖≤ L.(D.3)

From Lemma 4.13 and Hypothesis 4.10, there exist L′ > 0 such that for any t ≥ T , any s ∈ [t−T, t]
and any ξ ∈ sB(x(t− T ), R′):

max(‖Φf (s; t− T, ξ, u)‖, ‖dξΦf (s; t− T, ξ, u)‖, ‖d2ξ2Φf (s; t− T, ξ, u)‖) ≤ L′.(D.4)

From Assumptions 4.10, d2ξ2 l(t − T, t, ·, ·, u) is continuously differentiable. The differential of

d2ξ2 l(t−T, t, ·, ·, u) is denoted by d(ξ1,ξ2)d
2
ξ2
l(t−T, t, ·, ·, u). By combining Lemma A.1 with (D.3),

(D.4) and Hypotheses 4.10 and 4.11, one gets for any 0 < R ≤ R′ that:

L(R) = sup
t≥T

sup
(ξ1,ξ2)∈( sB(x(t−T ),R))2

‖d(ξ1,ξ2)d
2
ξ2
l(t− T, t, ξ1, ξ2, u)‖< +∞.(D.5)

Additionally, for any 0 < R ≤ R′, any (ξ1, ξ2) ∈ ( sB(x(t−T ), R))2, by combining (D.1), (D.5) and
the mean value theorem applied to d2ξ2 l(t− T, t, ·, ·, u) between (x(t − T ), x(t − T )) and (ξ1, ξ2),
one gets:

‖d2ξ2 l(t− T, t, ξ1, ξ2, u)−d2ξ2 l(t− T, t, x(t− T ), x(t− T ), u)‖≤

L(R)(‖ξ1 − x(t− T )‖2+‖ξ2 − x(t− T )‖2)
1
2 ,

‖d2ξ2 l(t− T, t, ξ1, ξ2, u)−d2ξ2 l(t− T, t, x(t− T ), x(t− T ), u)‖≤
?
2L(R)R.(D.6)
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Combining, (D.1), (D.6) and applying the reverse triangle inequality yields d2ξ2 l(t−T, t, ξ1, ξ2, u) �

(2µ′ −
?
2L(R)R)Inx

. Since L(R) is non increasing with R from (D.5), there exist R > 0 such
that µ = 2µ′ −

?
2L(R)R > 0. Finally, this means that, there exist T > 0, R > 0 and µ > 0 such

that for any t ≥ T (ξ1, ξ2) ∈ ( sB(x(t − T ), R))2 and d2ξ2 l(t − T, t, ξ1, ξ2, u) � µInx
. Hence, the

result is proven.
(b) ⇒ (a): Take (ξ1, ξ2) = (x(t− T ), x(t− T )) in (4.16).

Appendix E. Proof of Proposition 4.15.

Proof. Under the assumptions of the proposition and from Definition 4.4 and, there exist
T > 0, R′ > 0, L > 0 and a K-function κ such that for any t ≥ T , s ∈ [t − T, T ] and (ξ1, ξ2) ∈
( sB(x(t−T ), R′))2, l(t−T, t, ξ1, ξ2, u) ≥ κ(‖ξ1−ξ2‖), and ‖φf (s; t−T, ξ, u)‖≤ L. By using the same
proof technique as in the proof of Proposition 4.5 in Appendix B, one gets that there exists µ′ > 0
such that: d2ξ2 l(t−T, t, x(t−T ), x(t−T ), u) � µ′Inx

. Finally, from Lemma 4.14, there exist R > 0

and µ > 0 such that for any t ≥ T , (ξ1, ξ2) ∈ ( sB(x(t − T ), R))2, d2ξ2 l(t − T, t, ξ1, ξ2, u) � µInx
,

thus proving the result.

Appendix F. Differential of l̃.

Lemma F.1. For any T > 0 and any t ≥ T , ξ ∈ R
ny , any input trajectory u and any

perturbation signal η = (v, w) ∈ Θt,T , l̃(t − T, t, x(t− T ), ·, u, η) is continuously differentiable in

R
nx and dξ l̃(t − T, t, x(t − T ), ·, u, ·) is continuously differentiable in R

nx × Θt,T . Additionally,

under Hypothesis 4.10, d2ξ l̃(t− T, t, x(t− T ), ·, u, ·) is continuously differentiable in R
nx ×Θt,T .

The respective differentials read for any x0 ∈ R
nx any T > 0, any t ≥ T , any ξ ∈ R

nx , any
η = (v, w) ∈ Θt,T and any ∆η = (∆v,∆w) ∈ Θt,T :

dξ l̃(t− T, t, ξ, u, η) = 2

∫ t

t−T

(h(x̂(s, ξ), u(s))− h(x̃(s, w), u(s)) − v(s))THΦf (s, ξ)ds,(F.1)

where x̂(s, ξ) = φf (s; t − T, ξ, u), HΦf(s, ξ) = H(x̂(s, ξ), u(s))Φf (s; t − T, ξ, u), and x̃(s, w) is
defined as in (4.19);

d2ξ l̃(t− T, t, ξ, u, η) = 2C(t, T, ξ, u) + 2 rR(t, T, x(t− T ), ξ, u, η),(F.2)

where for any (∆ξ,∆′ξ) ∈ (Rnx)2:

∆ξT rR(t, T, x(t− T ), ξ, u, η)∆′ξ =
∫ t

t−T

(h(x̂(s, ξ), u(s))− h(x̃(s, w), u(s)) − v(s))T (dξHΦf(s, ξ)∆
′ξ) ·∆ξds.(F.3)

The differential of dξ l̃ with respect to η reads:

dηdξ l̃(t− T, t, ξ, u, η)∆η =

dvdξ l̃(t− T, t, ξ, u, η)∆v + dwdξ l̃(t− T, t, ξ, u, η)∆w,(F.4)

dvdξ l̃(t− T, t, ξ, u, η) ·∆v = 2

∫ t

t−T

HΦT
f (s, ξ)∆v(s)ds,(F.5)

dwdξ l̃(t− T, t, ξ, u, η) ·∆w = 2

∫ t

t−T

HΦT
f (s, ξ)(H(x̃(s, w), u(s))dwx̃(s, w)∆w)ds.(F.6)

Proof. Equations (F.1) and (F.2) can be obtained in the same way as (A.1) and (A.2) in
Lemma A.1. To get (F.5),first notice from (F.1) that dξ l̃(t − T, t, x(t − T ), ξ, u, v) is affine in v.
Secondly, note that for any T > 0, any t ≥ T , ξ ∈ R

nx and any ∆v ∈ L∞([t− T, t],Rny ):
∥

∥

∥

∥

2

∫ t

t−T

HΦT
f (s, ξ)∆v(s)ds

∥

∥

∥

∥

≤ K1(t, ξ)‖∆v‖[t−T,t],∞,(F.7)

(F.8)
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where 0 ≤ K1(t, ξ) = 2T sups∈[t−T,t]‖HΦT
f (s, ξ)‖< +∞

From (F.7), one gets that J(t, ξ) : ∆v → 2
∫ t

t−T
HΦT

f (s, ξ)∆v(s)ds is continuous on L∞([t−
T, t],Rny) and (F.5) follows. Furthermore, concerning the continuity of J(t, ·), fix T > 0, t ≥ T .
For any (ξ,∆ξ) ∈ (Rnx)2 and any v ∈ L∞([t−T, t],Rny) such that ‖v‖[t−T,t],∞= 1, |J(t, ξ+∆ξ) ·

v − J(t, ξ) · v|≤
∫ t

t−T
‖HΦT

f (s, ξ + ∆ξ) − HΦT
f (s, ξ)‖ds. By denoting ‖·‖, the operator norm of

bounded linear form on L∞([t− T, t],Rny), one gets that:

‖J(t, ξ +∆ξ) − J(t, ξ)‖≤

∫ t

t−T

‖HΦT
f (s, ξ +∆ξ)−HΦT

f (s, ξ)‖ds.(F.9)

Consequently, lim∆ξ→0‖J(t, ξ + ∆ξ) − J(t, ξ)‖= 0, by the theorem of continuity under integral
and continuity of HΦT

f (s, ·). This means that J(t, ·) and thus (ξ, v) → J(t, ξ) are continuous.

This further proves that dvdξ l̃(t − T, t, x(t − T ), ·, u, ·) is continuous on R
nx × Θt,T . One can

notice that, in (F.1), dξ l̃(t− T, t, ξ, u, η) only depends on w through x̃(s, w). Then, by removing
constant terms with respect to w in (F.1) and adapting the differentiation rule under the integral
sign on Banach space in Example 2.4.16 of [1] to the case of integrands that are only piece-wise
continuous in time, one gets (F.6) and for any t ≥ T , ξ ∈ R

nx and any ∆v ∈ L∞([t− T, t],Rny ):

∥

∥

∥

∥

∫ t

t−T

HΦT
f (s, ξ)(H(x̃(s, w), u(s))dwx̃(s, w)∆w)ds

∥

∥

∥

∥

≤ K2(t, ξ, w)‖∆w‖[0,t],∞(F.10)

where 0 ≤ K2(t, ξ, w) = 2T sups∈[t−T,t]‖HΦT
f (s, ξ)‖‖H(x̃(s, w), u(s))‖‖dwx̃(s, w)‖.

As far as the continuity of d2ξ l̃(t − T, t, x(t − T ), ·, u, ·) is concerned, for any (ξ,∆ξ,∆ξ′) ∈

(Rnx)3 and η = (v, w) ∈ (Θ), one has:

d2ξ l̃(ξ, η) = 2C(ξ) + rR1(ξ, v) + rR2(ξ, w),(F.11)

where:

∆ξ′
T rR1(ξ, v)∆ξ = −

∫ t

t−T

v(s)T (dξHΦf (s, ξ)∆
′ξ) ·∆ξds,

∆ξ′
T rR2(ξ, w)∆ξ =

∫ t

t−T

(h(x̂(s, ξ), u(s))− h(x̃(s, w), u(s)))T (dξHΦf (s, ξ)∆
′ξ) ·∆ξds,

and unnecessary dependencies have been removed. Besides, C(t, T, ·, u) is continuous on R
nx

from Lemma A.1. Moreover, from Lemma 4.20, and Example 2.4.16 of [1], rR2 is continuous on
R

nx × L∞([0, t],Rnx).
Note that for any (ξ, δξ) ∈ (Rnx)2 and (v, δv) ∈ ((L∞([t− T, t]))2, one gets from (F.11):

‖ rR1(ξ + δξ, v + δv)− rR1(ξ, v)‖ ≤ ‖ rR1(ξ + δξ, v + δv)− rR1(ξ, v + δv)‖(F.12)

+ ‖ rR1(ξ, v + δv)− rR1(ξ, v)‖.

From (F.11), one further gets:

‖ rR1(ξ + δξ, v + δv)− rR1(ξ, v + δv)‖

≤

ˆ
∫ t

t−T

‖dξHΦf(s, ξ + δξ)− dξHΦf(s, ξ)‖ds

˙
‖v + δv‖[t−T,t],

‖ rR1(ξ, v + δv)− rR1(ξ, v)‖≤

ˆ
∫ t

t−T

‖dξHΦf(s, ξ)‖ds

˙
‖δv‖[t−T,t],
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leading to lim(δξ,δv)→0‖ rR1(ξ+δξ, v+δv)− rR1(ξ, v)‖= 0 by continuity of dξHΦf (s, ·) which proves
that R1 is continuous on R

nx × L∞([t − T, t]). Furthermore, C, R1 and R2 are continuous on
R

nx ×Θt,T when seen as function of (ξ, η) which implies d2ξ l̃(t−T, t, x(t−T ), ·, u, ·) is continuous
on R

nx ×Θt,T . Finally under Assumption 4.10, HΦf (s, ·) is twice continuously differentiable and

one can show, from (F.11), by reproducing analogous arguments that d2ξ l̃(t− T, t, x(t− T ), ·, u, ·)
is continuously differentiable on R

nx ×Θt,T .

Appendix G. Proof of Theorem 4.23.

Proof. Assume that u is a weakly persistent input trajectory at x0 and all the associated
K-functions κt have finite sensitivity. Then, by Corollary 4.8, there exists T > 0 such that for
any t ≥ T

C(t, T, x(t− T ), u) ≻ 0.(G.1)

In the sequel, we denote by µt the smallest eigenvalue of C(t, T, x(t− T ), u): From Lemma (F.1),
one can see that d2ξ l̃(t− T, t, x(t− T ), ·, u, ·) is continuous on R

nx ×Θt,T and that for any t ≥ T :

d2ξ l̃(t− T, t, x(t− T ), u, 0) = 2C(t, T, x(t− T ), u) � 2µt.

Therefore, by continuity, for any t ≥ T there exist ν
(1)
t > 0 and Rt > 0 such that for any

ξ ∈ sB(x(t− T ), Rt) and any η ∈ Bt,∞(0, ν
(1)
t > 0):

d2ξ l̃(t− T, t, ξ, u, η) � µt ≻ 0.(G.2)

From Lemma 3.2 and F.1, one gets that for any t ≥ T :

dξ l̃(t− T, t, x(t− T ), u, 0) = dξ2 l(t− T, t, x(t− T ), x(t− T ), u) = 0.(G.3)

Furthermore, Lemma F.1 shows that dξ l̃(t−T, t, ·, u, ·) is continuously differentiable on R
nx×Θt,T

and (G.2) proves that d2ξ l̃(t − T, t, x(t − T ), u, 0) is invertible. The Implicit Function Theorem

on Banach spaces, see Theorem 3.13 in [23], states that for any t ≥ T , there exist ν
(2)
t > 0,

0 < R′
t ≤ Rt and a unique continuously differentiable function ξ∗t : Bt,∞(0, ν

(2)
t ) → sB(x(t−T ), R′

t)

such that ξ∗(0) = x(t− T ) and for any η ∈ Bt,∞(0, ν
(2)
t ), ξ∗t (η) ∈

sB(x(t − T ), R′
t) and:

dξ l̃(t− T, t, ξ∗t (η), u, η) = 0.(G.4)

Set νt = min(ν
(1)
t ν

(2)
t ). Then, the differential of ξ∗t reads for any η ∈ Bt,∞(0, νt):

dηξ
∗
t (η) = (d2ξ l̃(t− T, t, ξ∗t (η), u, η))

−1dηdξ l̃(t− T, t, ξ∗t (η), u, η),(G.5)

where the inverse of d2ξ l̃(t− T, t, x(t− T ), ξ∗t (η), u, η) is ensured to exist by (G.2). By combining
(G.2) and (G.4), one has that, for any t ≥ T and any η ∈ Bt,∞(0, νt):

dξ l̃(t− T, t, ξ∗t (η), u, η) = 0, d2ξ l̃(t− T, t, ξ∗t (η), u, η) ≻ 0.(G.6)

Note that (G.6) implies that ξ∗t (η) is a strict local solution of Problem PMHEt,T,u,v,w. Moreover,

(G.2) implies that, for any t ≥ T , and any η ∈ Bt,∞(0, νt), l̃(t − T, t, ·, u, η) is strictly convex on
sB(x(t−T ), Rt). Since ξ

∗
t (η) ∈

sB(x(t−T ), Rt) for any η ∈ Bt,∞(0, νt), then ξ
∗
t (η) is the only local

solution of Problem (PMHEt,T,u,v,w) on sB(x(t − T ), Rt). Finally, to prove that (4.27) holds, we
can combine (G.2) and (G.5) to get that, for any t ≥ T and any η ∈ Bt,∞(0, νt):

‖dηξ
∗
t (η)‖≤

1

2µt

‖dηdξ l̃(t− T, t, ξ∗t (η), u, η)‖,(G.7)

From (F.7) and (F.10) in the proof of Lemma F.1, for any ∆η = (∆v,∆w) ∈ Θt,T
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‖dηdξ l̃(t− T, t, ξ∗t (η), u, η)∆η‖ ≤ ‖dvdξ l̃(t− T, t, ξ∗t (η), u, η)∆v‖

+ ‖dwdξ l̃(t− T, t, ξ∗t (η), u, η)∆w‖(G.8)

‖dvdξ l̃(t− T, t, ξ∗t (η), u, η)∆v‖ ≤ C1,t‖∆v‖∞,[t−T,t],(G.9)

‖dwdξ l̃(t− T, t, ξ∗t (η), u, η)∆v‖ ≤ C2,t‖∆w‖∞,[t−T,t],(G.10)

where for any s ∈ [t−T, t] and any ξ ∈ R
nx , HΦf (s, ξ) = H(φf (s; t−T, ξ, u), u(s))Φf(s; t−T, ξ, u)

and:

C1,t = 2T

˜
sup

s∈[t−T,t]

sup
η∈Bt,∞(0,νt)

‖HΦT
f (s, ξ

∗
t (η))‖

¸
,

C2,t = 2T

˜
sup

s∈[t−T,t]

sup
η∈Bt,∞(0,νt)

‖HΦT
f (s, ξ

∗
t (η))‖‖H(x̃(s, w), u(s))‖‖dwx̃(s, w)‖

¸
.

Note that C1,t < +∞ since H , φf (·; t− T, ·, u) and Φf (·; t− T, ·, u) are continuous, u is assumed
to be piecewise continuous, and for any η ∈ Bt,∞(0, νt), ξ

∗
t (η) ∈ sB(x(t − T ), Rt). Besides, from

Lemma 4.19 and 4.20:

sup
s∈[t−T,t]

sup
‖w‖∞,[t−T,t]≤νt

‖x̃(s, w)‖ < +∞,

sup
s∈[t−T,t]

sup
‖w‖∞,[t−T,t]≤νt

‖dwx̃(s, w)‖ < +∞.

Thus, one has C2,t < +∞ since ‖w‖∞,[t−T,t]≤ ‖η‖t,T by definition. Finally, from (G.8)- (G.10),
one has for any ∆η = (∆v,∆w) ∈ Θt,T :

‖dηdξ l̃(t− T, t, ξ∗t (η), u, η)∆η‖≤ Ct‖∆η‖,

where Ct = C1,t + C2,t, which leads to:

‖dηdξ l̃(t− T, t, ξ∗t (η), u, η)‖≤ Ct,

Consequently, from (G.7) , one gets for any t ≥ T and any v ∈ Bt,∞(0, νt), ‖dηξ
∗
t (η)‖≤ Kt,

where Kt =
Ct

2µt
. Further applying the mean value theorem to ξ∗t between 0 and η for ‖η‖t,T≤ νt,

results in ‖ξ∗t (η) − x(t− T )‖≤ Kt‖η‖t,T ,which proves (4.27).

Appendix H. Proof of Proposition 4.24. We start by stating a useful lemma to
determine an upper bound on the norm of the inverse of a linear operator.

Lemma H.1. Let X and Y be two normed vector spaces. Let A : X → Y be a continuous
linear operator and c > 0. Set R = image(A) ⊂ Y . The following are equivalent:

(i) A−1 : R → X exists and ‖A−1‖≤ 1
c
;

(ii) for any x ∈ X, ‖Ax‖≥ c‖x‖;

Proof. (i) ⇒ (ii): Fix x ∈ X , and set y = Ax. By (i), ‖A−1y‖≤ 1
c
‖y‖. Thus, ‖x‖≤ 1

c
‖Ax‖

and (ii) follows.
(ii) ⇒ (i): See Section 2.7, Problem 7 in [20].

We can now show Proposition 4.24.

Proof of Proposition 4.24 . Assume that (i)-(vii) hold. For any t ∈ J and (x, y) ∈ St, set
G(t, x, y) = y − ΓtF (t, x, y). From (iii), one has that for t ∈ J , G(t, ·, ·) is continuously differen-
tiable and that for any (x, y) ∈ St:

dyG(t, x, y) = IY − ΓtdyF (t, x, y),

= −Γt(dyF (t, x, y)− dyF (t, x0,t, y0,t)),

‖dyG(t, x, y)‖ ≤ ‖Γt‖‖dyF (t, x, y)− dyF (t, x0,t, y0,t)‖.
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From (iv), (v) and (vii), one gets that:

‖dyG(t, x, y)‖ ≤ Lg1(‖x− x0,t‖, ‖y − y0,t‖),

‖dyG(t, x, y)‖ ≤ Lg1(δ, ǫ) ≤ α < 1.(H.1)

Besides, for any t ∈ J and any (x, y) ∈ St:

‖G(t, x, y)− y0,t‖ ≤ ‖G(t, x, y)−G(t, x, y0,t)‖+‖G(t, x, y0,t)− y0,t‖,

‖G(t, x, y)− y0,t‖ ≤ ‖G(t, x, y)−G(t, x, y0,t)‖+‖ΓtF (t, x, y0,t)‖.

The Mean Value Theorem on Banach spaces (see Theorem 3.2 in [23]) and (H.1) yield:

‖G(t, x, y)− y0,t‖ ≤ α‖y − y0,t‖+‖ΓtF (t, x, y0,t)‖.

From (iv), (vi) and (vii):

‖G(t, x, y)− y0,t‖ ≤ α‖y − y0,t‖+Lg2(‖x− x0,t‖),

‖G(t, x, y)− y0,t‖ ≤ αǫ+ Lg2(δ),

‖G(t, x, y)− y0,t‖ ≤ αǫ+ (1− α)ǫ = ǫ.(H.2)

Then, (H.1) and (H.2) imply that for any t ∈ J and x ∈ B(x0,t, δ), G(t, x, ·) is a contraction
from sB(y0,t, ǫ) to itself. From the Fixed Point Theorem on Banach spaces (see Proposition 3.1 in
[23]) and for any t ∈ J , there exists a unique continuous function φt : B(x0,t, δ) → sB(y0,t, ǫ) such
that for any x ∈ B(x0,t, δ):

y0,t = φt(x0,t), F (t, x, φt(x)) = 0,

which proves (a) and (b). To show that φt is continuously differentiable and that (c) holds, we
first show that for (x, y) ∈ St, dyF (t, x, y) is invertible. To do so, notice that from the reverse
triangle inequality and for any h ∈ Y :

‖dyF (t, x, y) · h‖ ≥ ‖Γ−1
t · h‖−‖dyF (t, x, y) · h− dyF (t, x0,t, y0,t) · h‖.

Using (iv), (v), and Lemma H.1 applied to Γt, one gets ‖dyF (t, x, y) · h‖≥
`
1
L
− g1(δ, ǫ)

˘
‖h‖.

From (vii), 1
L
− g1(δ, ǫ) > 0 so by Lemma H.1, dyF (t, x, y) is invertible and for any (x, y) ∈ St,

‖(dyF (t, x, y))
−1‖≤ L

1−Lg1(δ,ǫ)
. Since φt(x) ∈ sB(y0,t, ǫ), then ‖(dyF (t, x, φt(x)))

−1‖≤ L
1−Lg1(δ,ǫ)

,

and the rest of the proof follows from that of Theorem 3.13 in [23].

Appendix I. Proof of Theorem 4.25.

Proof. Assume that Hypotheses 4.10,4.11 and 4.21 hold and that u is a weakly regularly
persistent input trajectory at x0 with an associated K-function κ that has finite sensitivity and
an associated time horizon T such that System (2.1) is regularly bounded at x0 with horizon T .
Then, by Corollary 4.16, there exists µ > 0 such that for any t ≥ T :

C(t, T, x(t− T ), u) �
µ

2
Inx

.(I.1)

Furthermore, from Hypothesis 4.10 and by Lemma 4.13, there exist R′ > 0, L′ > 0 such that for
any t ≥ T , any s ∈ [t− T, t] and any ξ ∈ sB(x(t − T ), R′),

max(‖φf (s; t− T, ξ, u)‖, ‖Φf(s; t− T, ξ, u)‖, ‖dξΦf (s; t− T, ξ, u)‖, ‖d2ξΦf (s; t− T, ξ, u)‖) ≤ L′.

(I.2)

Note that since, x(t) = φf (s; t − T, x(t − T ), u) then the reference trajectory is bounded
meaning that:

sup
t≥0

‖x(t)‖< +∞.(I.3)
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Thus, from Hypothesis 4.21, (I.3) and Lemma 4.22, there exists ν′ > 0 such that for any
0 < ν < ν′:

sup
t≥0

sup
‖w‖∞≤ν

‖x̃(t, w)‖ < +∞,(I.4)

sup
t≥0

sup
‖w‖∞≤ν

‖dwx̃(t, w)‖ < +∞.(I.5)

From Lemma F.1, for any t ≥ T , any ξ ∈ R
nx and any η ∈ Θ,

d2ξ l̃(t− T, t, ξ, u, η) = 2C(t, T, ξ, u) + 2 rR(t, T, x(t− T ), ξ, u, η),(I.6)

where for any (∆ξ,∆′ξ) ∈ (Rnx)2:

∆ξT rR(t, T, x(t− T ), ξ, u, η)∆′ξ =
∫ t

t−T

(h(x̂(s, ξ), u(s))− h(x̃(s, w), u(s)) − v(s))T (ξHΦf (s, ξ)∆
′ξ) ·∆ξds.

Moreover, From Hypotheses 4.10, and Lemma 4.20, d2ξ l̃(t − T, t, x(t − T ), ·, u, ·) is continuously

differentiable. We denote d(ξ,η)d
2
ξ l̃(t− T, t, ξ, u, η) , the differential of d2ξ l̃(t− T, t, x(t− T ), ·, u, ·)

at (ξ, η) where R
nx ×Θ is equipped with the norm ‖(ξ, η)‖= ‖ξ‖+‖η‖.

Therefore, from Hypothesis 4.11, (I.2), (I.4), (I.5) and by expanding d(ξ,η)d
2
ξ l̃(t− T, t, ξ, u, η)

from (I.6), one gets that, for any 0 < ν < ν′ and 0 < R < R′:

a1(ν,R) := sup
t≥T

sup
‖η‖≤ν

sup
ξ∈ sB(x(t−T ),R)

‖d(ξ,η)d
2
ξ l̃(t− T, t, ξ, u, η)‖< +∞.(I.7)

From the Mean Value Theorem one gets that, for any t ≥ T , any ξ ∈ sB(x(t − T ), R) and any
η ∈ B∞(0, ν):

‖d2ξ l̃(t− T, t, ξ, u, η)− 2C(t, T, x(t− T ), u)‖≤ g1(‖ξ − x(t− T )‖, ‖η‖),(I.8)

where for any δ > 0 and ǫ > 0, g1(δ, ǫ) = a1(ν,R)(δ + ǫ). Besides, from (F.5) and (F.7), one has
for any 0 < R < R′, any t ≥ T , any ξ ∈ sB(x(t − T ), R) and any η ∈ Θ:

‖dvdξ l̃(t− T, t, ξ, u, η)‖ ≤ 2

∫ t

t−T

‖HΦT
f (s, ξ)‖ds,

Similarly from (F.6) and (F.10), one has for any 0 < R < R′, any t ≥ T , any ξ ∈ sB(x(t− T ), R)
and any η ∈ Θ:

‖dwdξ l̃(t− T, t, ξ, u, η)‖ ≤ 2

∫ t

t−T

‖HΦT
f (s, ξ)(H(x̃(s, w), u(s))dwx̃(s, w))‖ds.

Lemma F.1 yields:

‖dηdξ l̃(t− T, t, ξ, u, η)‖ ≤(I.9)

2

∫ t

t−T

‖HΦT
f (s, ξ)‖(1 + ‖(H(x̃(s, w), u(s))dwx̃(s, w))‖)ds.

In particular,

‖dηdξ l̃(t− T, t, x(t− T ), u, η)‖ ≤

2

∫ t

t−T

‖HΦT
f (s, x(t− T ))‖(1 + ‖(H(x̃(s, w), u(s))dwx̃(s, w))‖)ds,
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From (I.2), Hypothesis 4.11, (I.4) and (I.5), one gets for any ν > 0 that:

a2(ν) := 2 sup
t≥T

sup
‖w‖∞≤ν

∫ t

t−T

‖HΦT
f (s, x(t− T ))‖(1 + ‖(H(x̃(s, w), u(s))dwx̃(s, w))‖)ds < +∞.

Thus, by recalling that for any t ≥ T :

dξ l̃(t− T, t, x(t− T ), u, 0) = 0,(I.10)

and one has, from the Mean Value theorem, for any ν > 0 and any η ∈ B∞(0, ν):

‖dξ l̃(t− T, t, x(t− T ), u, η)‖ ≤ g2(‖η‖),(I.11)

where for any δ > 0, g2(δ) = a2(ν)δ. We now fix 0 < R < R′, ν > 0 and 0 < α < 1, and assume
that:

g1(ν,R)

µ
≤ α < 1,

g2(ν)

µ
≤ R(1− α).(I.12)

Applying Proposition 4.24 with J = [T,+∞[, X = Θ, Y = R
nx , Z = R

nx and Ω = Θ×R
nx ; one

obtains that for any t ≥ 0, y0,t = x(t − T ) and x0,t = 0 and F = dξ l̃; δ = ν, ǫ = R and L = 1
µ
.

Note that in this case, (i) is clear, (ii) holds thanks to (I.10), (iii) holds thanks to Lemma F.1 and

(iv) holds from (I.1) with Γt = p2C(t, T, x(t− T ), u)q−1. Note also that (v) and (vi) hold from
(I.8) and (I.11) with g1 and g2 being variable-wise non-decreasing and vanishing at 0, and (vii)
is ensured by (I.12).Therefore, by Proposition 4.24, there is a unique continuously differentiable
mapping ξ∗t : B∞(0, ν) → sB(x(t − T ), R) such that for any t ≥ T , ξ∗t (0) = x(t − T ) and for any
η ∈ B∞(0, ν):

dξ l̃(t− T, t, x(t− T ), ξ∗t (η), u, η) = 0.(I.13)

Additionally, d2ξ l̃(t− T, t, ξ∗t (η), u, η) is invertible and its inverse satisfies:

‖(d2ξ l̃(t− T, t, ξ∗t (η), u, η))
−1‖ ≤

1

µ− g1(ν,R)
.(I.14)

Also, the differential of ξ∗t for any η ∈ B∞(0, ν) is:

dξ∗t (η) = (d2ξ l̃(t− T, t, ξ∗t (η), u, η))
−1dηdξ l̃(t− T, t, ξ∗t (η), u, η).(I.15)

The uniqueness in Proposition 4.24 ensures that for any t ≥ T , and for any η ∈ B∞(0, ν),
ξ∗t (η) is the only element of sB(x(t − T ), R) satisfying (I.13) and thus the only local solution of
(PMHEt,T,u,v,w) in sB(x(t − T ), R). Furthermore, from Lemma H.1, (I.14) ensures that for any
t ≥ T , and for any η ∈ B∞(0, ν):

d2ξ l̃(t− T, t, ξ∗t (η), u, η) � (µ− g1(ν,R))Inx
,(I.16)

which implies that ξ∗t (η) is a strict local solution of (PMHEt,T,u,v,w).
Moreover, (I.15) and (I.14) also imply that for any t ≥ T , and any η ∈ B∞(0, ν):

‖dξ∗t (η)‖≤
1

µ− g1(ν,R)
‖dηdξ l̃(t− T, t, ξ∗t (η), u, η)‖.(I.17)

Hypothesis 4.11 and (I.2) and Lemma 4.19 and 4.20 lead to

g3(ν,R) :=

2 sup
t≥T

sup
η∈B∞(0,ν)

sup
ξ∈ sB(x(t−T ),R)

∫ t

t−T

‖HΦT
f (s, ξ)‖(1 + ‖(H(x̃(s, w), u(s))dwx̃(s, w))‖)ds < +∞,
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and from (I.9) and (I.17), one has ‖dξ∗t (η)‖≤
g3(ν,R)

µ−g1(ν,R) . Finally, by the Mean Value Theorem,

one gets that, for any t ≥ T , and any η ∈ B∞(0, ν), ‖ξ∗t (η)− x(t − T )‖≤ g3(R)
µ−g1(ν,R)‖η‖∞ and the

result is proven since g3 is variable-wise non decreasing.

Appendix J. Proof of Proposition 5.1.

Proof. 1. Radial constant input trajectory Let σ ∈ R. From (5.3) and (5.6), one gets
for any ξ ∈ R

nx , any T > 0, any t ≥ T and any s ∈ [t− T, t]:

φ(s; t− T, ξ, ucst) = ξ + σ(s− t+ T )(ℓ− x0).(J.1)

Thus, for any ξ ∈ ℓ + R(ℓ − x0), φ(s; t − T, ξ, ucst) ∈ ℓ + R(ℓ − x0) and h(φ(s; t −
T, ξ, ucst)) =

ℓ−x0

‖ℓ−x0‖
which implies that for any T > 0, any t ≥ T and ξ ∈ ℓ + R(ℓ− x0),

l(t, T, x0, ξ, ucst) = 0. Since one can find vectors ξ ∈ ℓ+R(ℓ− x0) arbitrarily close to x0,
this implies, by Definition 4.1, that for any σ ∈ R, ucst(·, σ) is not a weakly persistent
input trajectory of System (5.1) at x0. Besides for any s > 0 by choosing T = s and
t = T ,, one gets l(s, 0, x0, ξ, ucst) = 0, for any ξ ∈ ℓ+ R(ℓ − x0) According to Definition
2.5, this also proves that for any σ ∈ R, ucst(·, σ) is not a universal input.

2. Circular input trajectory Let ω > 0 and rc > 0. From (5.3) and (5.7), one gets for any
T > 0, any t ≥ T and any s ∈ [t− T, t], that:

φ(s; t− T, x0, ucirc) = ℓ+ r0

„
cos(ω(s− t+ T ) + ψt−T )
sin(ω(s− t+ T ) + ψt−T )


, r(s) = r0 > 0,(J.2)

where ψt−T = ψ0 + ω(t − T ). For any T > 0 and any t ≥ T , we denote by λcirc+ (t, T )
and λcirc− (t, T ) the two eigenvalues of C(t, T, ξ, ucirc). Following straightforward but cum-

bersome computations, one gets λcirc± (t, T ) = 1
2r20

”
T ± |sin(ωT )|

ω

ı
. Since ω > 0, then

|sin(ωT )|< ωT and for any T > 0 and any t ≥ T , λcirc+ (t, T ) ≥ λcirc− (t, T ) > 0 and do not
depend on t. Thus, ucirc(·, ω, r0) satisfies (4.18) in Corollary 4.16 for any T > 0. Besides,
from (J.2), for any ξ ∈ R

nx , ‖φ(s; t − T, ξ, ucirc)‖≤ ‖ℓ‖+‖ξ − ℓ‖. Thus, for any T > 0,
System (5.1) is regularly bounded at x0 with horizon T . Moreover, ucirc is valued in a
compact set, satisfying Hypothesis 4.11 and System 5.1 satisfies Hypothesis 4.10 as it is
linear. Therefore, by Corollary 4.16, for any ω > 0 and r0 > 0 ucirc(·, ω, r0) is a weakly
regularly persistent input trajectory of System 5.1 at x0.

3. Outward spiral input trajectory Let ω > 0, α > 0 and r0 > 0. From (5.3) and (5.8), one
gets for any T > 0, any t ≥ T and any s ∈ [t− T, t], that:

φ(s; t− T, x0, uspi) = ℓ+ r(t− T ) exp(α(s − t+ T ))

„
cos(ω(s− t+ T ) + ψt−T )
sin(ω(s− t+ T ) + ψt−T )


,(J.3)

where r(t − T ) = r0 exp(α(t − T )). For any T > 0 and any t ≥ T , we denote by
λ
spi
+ (t, T ) and λspi− (t, T ) the two eigenvalues of C(t, T, ξ, uspi). Following again simple but

cumbersome computations, λspi± (t, T ) read for any T > 0 and any t ≥ T :

λ
spi
± (t, T ) =

1

4αr(t− T )2
rexp(2Tα)− 1± b(α, ω, T )s ,(J.4)

where b(α, ω, T ) = α
?

α2+ω2 (exp(4Tα)−2 exp(2Tα) cos(2Tω)+1)
1
2 . Since cos(2ωT ) ≥ −1,

one gets for any T > 0 and any t ≥ T and from (J.3):

b(α, ω, T ) ≤
α?

α2 + ω2
(exp(4Tα) + 2 exp(2Tα) + 1)

1
2 ,

λ
spi
− (t, T ) ≥

1

4αr(t− T )2

„ˆ
1−

α?
α2 + ω2

˙
exp(2Tα)−

ˆ
1 +

α?
α2 + ω2

˙
.(J.5)
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Thus, from (J.5), for any T > 0 and any t ≥ T , if T > 1
2α ln

´
?

α2+ω2+α
?

α2+ω2−α

¯
, then

λ
spi
− (t, T ) > 0 and C(t, T, x0, uspi) ≻ 0. Therefore, by Corollary 4.8, one gets that,

for any ω > 0, any α > 0 and any r0 > 0, uspi(·, ω, α, r0) is a weakly persistent input

trajectory of System (5.1) at x0. Furthermore, by (J.3) and (J.4), limt→+∞ λ
spi
+ (t, T ) = 0

and 0 � C(t, T, x0, uspi) � λ
spi
+ (t, T )I2. This implies that limt→+∞‖C(t, T, ξ, uspi)‖= 0

and the second result is proven.
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