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Abstract. Motivated by the analysis of the performance of the simplex method we study the
behavior of families of pivot rules of linear programs. We introduce normalized-weight pivot
rules which are fundamental for the following reasons: First, they are memory-less, in the sense
that the pivots are governed by local information encoded by an arborescence. Second, many
of the most used pivot rules belong to that class, and we show this subclass is critical for
understanding the complexity of all pivot rules. Finally, normalized-weight pivot rules can be
parametrized in a natural continuous manner.

We show the existence of two polytopes, the pivot rule polytopes and the neighbotopes, that
capture the behavior of normalized-weight pivot rules on polytopes and linear programs. We
explain their face structure in terms of multi-arborescences. We compute upper bounds on the
number of coherent arborescences, that is, vertices of our polytopes.

Beyond optimization, our constructions provide new perspectives on classical geometric com-
binatorics. We introduce a normalized-weight pivot rule, we call the max-slope pivot rule which
generalizes the shadow-vertex pivot rule. The corresponding pivot rule polytopes and neigh-
botopes refine monotone path polytopes of Billera–Sturmfels. Moreover special cases of our
polytopes yield permutahedra, associahedra, and multiplihedra. For the greatest improvement
pivot rules we draw connections to sweep polytopes and polymatroids.

1. Introduction

For A ∈ Rn×d, b ∈ Rn, c ∈ Rd we consider the linear program (LP)

max ctx
s.t. Ax ≤ b

The simplex method is one of the most popular algorithms for solving linear programs (see
[11, 17, 33]). The key ingredient, which is decisive for the running time on a given instance, is
the choice of a pivot rule. Since the inception of the simplex algorithm, many different pivot rules
have been proposed and analyzed. Starting with Klee and Minty in 1972 [27] many of the popular
pivot rules have been shown to require an exponential number of steps; see [4, 6, 21, 25, 40, 41, 43]
and references there. To this day, no pivot rule is known to take only polynomially many steps on
every LP. In this paper we study the behavior of parametric families of pivot rules and uncover
a rich polyhedral structure. We define polytopes whose geometry capture the behavior of pivot
rules on given LPs. This provides a new perspective on the study of the performance of the
simplex method.

Our constructions are also of interest to the (geometric) combinatorics community. A generic lin-
ear function c induces an acyclic orientation on the graph of the polytope P = {x ∈ Rd : Ax ≤ b}.
The collection of c-monotone paths has a natural topological structure that is studied under the
name Baues poset. In the seminal paper [12], Billera, Kapranov, and Sturmfels showed that
the Baues poset has the homotopy type of a sphere and is represented by the boundary of the
monotone path polytope from [13]. The vertices of monotone path polytopes are in bijection to
special monotone paths, called coherent. Later, many important combinatorial constructions and
polytopes arose as monotone path polytopes. By replacing c-monotone paths by c-monotone ar-
borescences, our constructions provide a generalization of the theory of monotone path polytopes
and many prominent combinatorial polytopes.
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Figure 1. A footprint and three arborescences on the unit cube. The second
arborescence from the left does not come from a NW-rule.

Formalizing the notion of a pivot rule is complicated; for example, several authors showed that
pivot rules can be used to encode problems that are hard in the sense of complexity theory
[2, 18, 20]. We will not try to give a precise definition of what constitutes a pivot rule because
our taxonomy of pivot rules relies only on a polyhedral geometry perspective. Throughout, we
will refer to (P, c) as the linear program. Geometrically the simplex method finds a c-monotone
path in the graph of P from any initial vertex v of P to the optimal vertex vopt. The algorithm
proceeds along directed edges. At any non-sink v, the pivot rule chooses a neighboring vertex u
of v with ctu > ctv.

Definition 1.1. The footprint of a pivot rule R on an LP (P, c) is the directed acyclic subgraph
obtained as the union of all c-monotone paths produced by R for every starting vertex. The
pivot rule R is a memory-less pivot rule if its footprint for every LP is an arborescence, i.e.,
a directed tree with root at the optimal vertex vopt.

Figure 1 shows a footprint and three such arborescences on a 3-cube. Equivalently, a pivot rule is
memory-less if it chooses the neighbor of v 6= vopt using only local information provided by the set
of neighbors NbP (v) of v. Many rules that are used in practice, including greatest improvement
and steepest edge, are memory-less (c.f. Section 2). Pivot rules not in this class include Zadeh’s
least-entered facet rule as well as the original shadow vertex rule.

For a given LP (P, c) a memory-less pivot rule is represented by its arborescence, that is, at every
vertex, the choice made by that pivot rule is encoded in the outgoing arc of the arborescence. In
particular, every memory-less pivot rule corresponds to a choice of an arborescence for every LP
(P, c). From this perspective, for every pivot-rule, there is a memory-less pivot rule, given by the
shortest-path arborescence of the footprint, which takes at most the same number of steps. In
consequence, if every memory-less pivot rule takes exponentially many steps, then so does every
pivot rule.

The two main questions that we address in this paper are

(A) How do the arborescences vary for fixed objective function c and varying pivot rule?
(B) How do the arborescences vary for fixed pivot rule and varying objective function c?

To be able to change the pivot rules in a controlled and continuous manner, we restrict to the
following setup: For given P ⊂ Rd and c ∈ Rd, choose a normalization η : Rd → R and a
weight w ∈ Rd. For v 6= vopt, the next vertex on the simplex-path from v to vopt is

u∗ = argmax

{
wt(u− v)

η(u− v)
: u adjacent to v and ctu > ctv

}
. (1)

A choice of w and η for given (P, c) is called a normalized-weight pivot rule, or NW-rule for
short. If R is a normalized-weight pivot rule, we sometimes write ηR(P, c) and wR(P, c) to stress
the dependence of η and w on the LP (P, c). NW-rules are memory-less pivot rules: for a fixed
LP (P, c) Equation (1) determines an arborescence A, that is, a map on the vertices of P with
A(vopt) = vopt and A(v) = u∗ otherwise.

As we explain in the next section, several well-known pivot rules (greatest-improvement, steepest-
edge, etc.) as well as the max-slope pivot rule, a memory-less generalization of the shadow-vertex
rule (see below), belong to that class. While NW-rules are a strict subclass of memory-less pivot
rules, we show that they are universal in the following sense.
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Theorem 1.2. For every simple polytope P there is a perturbation P ′, combinatorially isomor-
phic to P , such that for any memory-less pivot rule there is a NW-rule that produces the same
arborescence for (P ′, c) for every c.

If (P, c) is a non-degenerate LP, then (P ′, c) has the same optimal basis and we may assume
that (P, c) is already sufficiently generic. Hence, NW-rules are essentially all we need to study
to understand memory-less rules. Furthermore, by our earlier argument, memory-less rules are
essentially all we need to study to understand all pivot rules. We may put these observations
together in the following Corollary.

Corollary 1.3. If there is a pivot rule for which the simplex method takes polynomially many
steps on every LP, then there is an NW-rule that takes takes polynomially many steps on every
LP.

We can continuously change the pivot rule by varying the weight w. We call an arborescence
that arises via (1) for a fixed weight w a coherent arborescence and write A = AηP,c(w). This
terminology underlines the proximity to the theory of coherent monotone paths [12, 13] (see
below).

An answer to question (A) is provided by the following theorem. For a polytope Q ⊆ Rd and
w ∈ Rd, we write Qw = {x ∈ Q : wtx ≥ wty, y ∈ Q} to denote the face that maximizes x 7→ wtx.

Theorem 1.4. Let (P, c) be a linear program and η a normalization. There is a polytope
Πη
P,c ⊂ Rd, called the pivot rule polytope of (P, c) and η, such that the following holds: For

any generic weights w,w′

AηP,c(w) = AηP,c(w
′) ⇐⇒ (Πη

P,c)
w = (Πη

P,c)
w′ .

Question (B) is strongly related to parametric linear programming. Whereas a basic question
there is roughly which objective functions yield the same optimum, we will address the more
subtle question which objective functions yield the same arborescence. We make two assumptions
on the NW-rule R, namely that ηR(P, c) is independent of c and that wR(P, c) = c. Thus,
for a fixed normalization function η, we will write BηP (c) := AηP,c(c) for the arborescence of
(P, c) obtained from (1) with respect to η and weight w = c. We show that the collection of
arborescences BηP (c) is governed by another polytope.

Theorem 1.5. Let P ⊂ Rd be a polytope and η a normalization. There is a polytope ΓηP ⊂ Rd,
called the neighbotope of P and η, such that the following holds: For any generic objective
functions c, c′ ∈ Rd

BηP (c) = BηP (c′) ⇐⇒ (ΓηP )c = (ΓηP )c
′
.

We prove Theorems 1.4 and 1.5 in Section 3.

We describe the face structure of pivot rule polytopes and neighbotopes in terms of multi-
arborescences and discuss the relation to general arborescences of LPs that were studied and
enumerated by Athanasiadis et al. in [5]. In particular, we give bounds on the number of
coherent arborescences; see Section 5.

As a memory-less version of the shadow-vertex pivot rule we introduce the max-slope (MS)
pivot rule: For given LP (P, c) choose ηMS(u− v) = ct(u− v) and wMS ∈ Rd generic and linearly
independent of c. Thus the resulting arborescence A satisfies

A(v) = argmax

{
wt(u− v)

ct(u− v)
: u adjacent to v and ctu > ctv

}
, (2)

for v 6= vopt.

Let r = Pw be the vertex selected by w, the unique path in the arborescence A above, starting
at r, is precisely the path followed by the shadow-vertex pivot rule (see Proposition 6.1). Let
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v−opt be the vertex of P minimizing c. The unique path in the arborescence A starting at v−opt
passes through r. It is the coherent monotone path of (P, c) with respect to w in the sense of
[13]. For varying w the resulting coherent monotone paths are parametrized by the vertices of
the monotone path polytope Σc(P ). Obviously the arborescence contains more information
than just the monotone path from v−opt. This refinement can be seen geometrically in terms of
Minkowski sums (see Section 6.1).

Theorem 1.6. Let P ⊂ Rd be a polytope and c a generic objective function. Then the monotone
path polytope Σc(P ) is a weak Minkowski summand of the max-slope pivot rule polytope ΠMS

P,c . If
P is a zonotope, then Σc(P ) is normally equivalent to ΠMS

P,c .

Interestingly the construction of pivot rule polytopes is fundamentally different from that of
monotone path polytopes in [13]. In particular, the result gives a new way of studying mono-
tone path polytopes of zonotopes. In Section 4 we highlight that Stasheff’s associahedra and
multiplihedra can be realized as max-slope pivot rule polytopes.

The pivot rule polytopes for the greatest improvement pivot rule relate to yet another important
construction from geometric combinatorics going back to classical work of Goodman and Pollack;
see [22] and references therein. The sweep polytope SP(p1, . . . , pn), introduced by Padrol and
Philippe in [30], captures the orderings of a point configuration p1, . . . , pn induced by varying
linear functions. For a polytope P ⊂ Rd and a normalization η, define the set of normalized
edge directions EDη(P ) := { u−v

η(u−v) : uv ∈ E(P )}. If c is a generic objective function, then
let EDη(P, c) := { u−v

η(u−v) : uv ∈ E(P ), ctu > ctv} the collection of normalized c-improving edge
directions.

Theorem 1.7. Let (P, c) be a linear program and η a normalization. Then the pivot rule poly-
tope Πη

P,c is a weak Minkowski summand of the sweep polytope of normalized c-improving edge
directions SP(EDη(P, c)).

Furthermore, the neighbotope ΓηP is a weak Minkowski summand of the sweep polytope of nor-
malized edge directions SP(EDη(P )).

We show that in a particularly interesting case the neighbotope and the sweep polytope of edge
directions are normally equivalent. Let us write ED(P ) = ED1(P ) for the unnormalized edge
directions. If Φ ⊂ Rn is an irreducible crystallographic root system, then we associate to it the
Coxeter zonotope ZΦ = 1

2

∑
α∈Φ[−α, α]. It is easy to see that ED(ZΦ) = Φ.

Theorem 1.8. Let Φ be an irreducible crystallographic root system with Coxeter zonotope ZΦ.
Then the greatest-improvement neighbotope ΓGI

ZΦ
is normally equivalent to SP(ED(ZΦ)) = SP(Φ).

The proof relies on a result (Theorem 6.11) on irreducible crystallographic root systems that is
of independent interest: for every pair α, β of elements that are incomparable in the root poset
of Φ there is a simple system ∆ ⊆ Φ whose only positive roots are α and β.

We give several of examples of pivot rule polytopes and neighbotopes in Section 4 but defer a
detailed discussion to the forthcoming paper [15].

From Equation (1) one can see that arborescences for NW-rules in general are obtained by
local greedy choices. For the greatest improvement pivot rule we show in Section 7 that its
arborescences can be derived from a basic combinatorial optimization problem, we named the
Max Potential Energy Branching. This problem has the structure of a polymatroid and
can be solved by the greedy algorithm. We explain the associated polytope in detail, which also
justifies the name “neighbotope”.

Acknowledgements. The first and second author were supported by the NSF through the NSF
graduate research fellowship program and grant DMS-1818969. They are also grateful for the
wonderful hospitality of the Goethe-Universität Frankfurt where this paper was written. We are
grateful for comments and suggestions from Samuel Fiorini, Martin Skutella, Laura Sanità, and
Christian Stump.
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2. LPs, pivot rules, and arborescences

Let P ⊆ Rd be a fixed polytope. We will denote by V (P ) the vertex set of P and by
G(P ) = (V (P ), E(P )) the graph of P . A linear function c ∈ Rd is (edge) generic if ctu 6= ctv
for all edges uv ∈ E(P ). Every generic linear function c induces an acyclic orientation on G(P )
by orienting v → u if ctu > ctv. The directed graph has a unique sink vopt and, in fact, every
subgraph of a face will have a unique sink. Such an orientation is called a unique sink orien-
tation and we call (P, c) a linear program. For a vertex v ∈ V (P ), we write NbP (v) := {u :
uv ∈ E(P )} for the neighbors of v in G(P ) and we write NbP,c(v) := {u ∈ NbP (v) : ctu > ctv}
for the c-improving neighbors.

A c-arborescence of P is a map A : V (P )→ V (P ) satisfying A(v) = v if and only if v = vopt
and A(v) ∈ NbP,c(v) for all v ∈ V (P ) \ vopt. For a memory-less pivot rule, the choice of the
neighboring vertex u∗ ∈ NbP,c(v) for v 6= vopt results in a c-arborescence A, which captures
the behavior of the pivot rule on the linear program (P, c). Arborescences of polytopes have
appeared as oracles that allow geometric enumeration output-sensitive algorithms [7].

For a given normalization η and weight w, (1) determines an arborescence A = AηP,c(w) given
by

A(v) := argmax

{
wt(u− v)

η(u− v)
: u ∈ NbP,c(v)

}
(3)

for v 6= vopt and A(vopt) := vopt.

The following well-known and important pivot rules belong to the class of NW-rules (this requires
the assumption that P is a simple polyhedron):

Greatest improvement (GI): choose wGI = c and ηGI(u− v) ≡ 1;
p-Steepest edge (pSE): choose wpSE = c and ηpSE(u− v) = ‖u− v‖p for some fixed p ≥ 1;
Max-slope (MS): choose ηMS(u− v) = ct(u− v) and wMS linearly independent of c.

The max-slope rule is a memory-less version of the shadow-vertex rule, that we will treat in
depth in Section 6.1. Figure 2 shows the six arborescences of the tetrahedron including the five
arborescences obtained from the max-slope rule.

Figure 2. The arborescences of the tetrahedron.

It turns out that all 3! = 6 arborescences of the tetrahedron can be obtained from a NW-rule for
a suitable choice of a normalization. However, this is not true in general.

Indeed, the arborescence in middle of Figure 1 cannot be obtained from an NW-rule. Observe
that any NW-rule makes a choice based only on the set of edge directions

DP,c(v) := {u− v : u ∈ NbP,c(v)} .
Hence, if two vertices v, v′ ∈ V (P ) satisfy DP,c(v

′) ⊆ DP,c(v) and A(v) − v ∈ DP,c(v
′), then

A(v) − v = A(v′) − v′. So, the choice of the improving neighbor for v forces the improving
neighbor for v′ to be the same. The middle arborescence of Figure 1 violates this constraint.

We call a polytope P edge-generic if u− v 6= u′− v′ for any two distinct edges uv, u′v′ ∈ E(P ).
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Proposition 2.1. Let P be an edge-generic polytope and c a generic objective function. For any
c-arborescence A there is a normalization η and a weight w such that A = AηP,c(w).

Proof. It follows from edge-genericity that DP,c(v) ∩ DP,c(v
′) = ∅ for all v 6= v′. Define the

normalization η : Rd → R by η(A(v)−v) := 1 for all v ∈ V (P ) and η(x) := κ for x 6∈ {A(v)−v :
v ∈ V (P )} and some sufficiently large constant κ� 0. For w := c, we then get for all v 6= vopt

A(v) = argmax

{
ct(u− v)

η(u− v)
: u ∈ NbP,c(v)

}
and hence A = AηP,c(w). �

Proof of Theorem 1.2. Let P be a simple polytope given by P = {x : Ax ≤ b} for some matrix
A and vector b. Simplicity implies that for every A′ there is an ε > 0 such that P ′ := {x :
(A + εA′)x ≤ b} is combinatorially isomorphic to P . It is straightforward to verify that for a
sufficiently general A′, the polytope P ′ is edge-generic. Let A1, . . . ,As be the c-arborescences
produced by the given memory-less pivot rule and let c1, . . . , cs objective functions such that
Ai was produced for (P ′, ci). Let ηi be the normalization of Proposition 2.1 and let R be
the NW-rule with wR(P ′, ci) = ci and ηR(P ′, ci) = ηi. It follows from Proposition 2.1 that
ARP ′,ci = AηiP ′,ci(c) = Ai, which proves the claim. �

3. Two constructions: Proof of Existence Theorems 1.4 and 1.5

We prove the existence of the two polytopes parametrizing NW pivot rules. They correspond to
Theorems 1.4 and 1.5.

3.1. Pivot rule polytopes. Let (P, c) be a fixed linear program and η a normalization. In
this section we prove Theorem 1.4, which provides a complete answer to question (A) from the
introduction:

How does the arborescence of a memory-less pivot rule change when the weight w changes?

For an arborescence A of G(P ) we define

ψη(A) :=
∑
v

A(v)− v
η(A(v)− v)

, (4)

where we tacitly declare 0
η(0) = 0. The pivot polytope of (P, c) and a fixed normalization η is

defined as
Πη
P,c := conv{ψη(A) : A c-arborescence of (P, c)} . (5)

We remind the reader that for w, the arborescence of (P, c) determined by (1) is denoted
by AηP,c(w). We can now prove Theorem 1.4. Recall that for polytopes P1 = conv(V1) and
P2 = conv(V2), the Minkowski sum is the polytope

P1 + P2 = {p1 + p2 : p1 ∈ P1, p2 ∈ P2} = conv(v1 + v2 : v1 ∈ V1, v2 ∈ V2) .

Proof of Theorem 1.4. For a vertex v 6= vopt define

Πη
P,c(v) := conv

{
u− v

η(u− v)
: u ∈ NbP,c(v)

}
. (6)

It follows from the definition of Minkowski sums that

Πη
P,c =

∑
v 6=vopt

Πη
P,c(v) . (7)
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For a generic weight w ∈ Rd note that

(Πη
P,c)

w =
∑
v 6=vopt

(Πη
P,c(v))w .

Hence (Πη
P,c)

w is a vertex if and only if (Πη
P,c(v))w is a vertex for all v 6= vopt. Now, u∗−v

η(u∗−v)

is this vertex if and only if wt(u∗−v)
η(u∗−v) > wt(u−v)

η(u−v) for all u ∈ NbP,c(v) \ u∗. Set A(v) := u∗ and
A(vopt) := vopt. It now follows from (1) that ψη(A) = (Πη

P,c)
w if and only if A = AηP,c(w), which

proves the claim. �

3.2. Neighbotopes. Let P ⊂ Rd be a polytope and c a generic objective function that induces a
unique sink orientation on the graph G(P ) with optimum vopt. The question of basic parametric
linear programming is for which objective functions c′ will vopt be the sink. Geometrically, this
is given by the interior of the normal cone NP (vopt) = {y : ytvopt > ytu for all u ∈ NbP (vopt)}.
The collection NP = {NP (v) : v ∈ V (P )} gives rise to the normal fan of P , whose cones give
a conical subdivision of Rd.
A more refined question is which c′ yield the same unique sink orientation as c. Obviously c′ has
to satisfy (c′)tu > (c′)tv for all edges uv ∈ E(P ) such that ctu > ctv, which defines the interior
of a polyhedral cone. The collection of these cones for varying c again yield a fan structure, that
is the normal fan of a polytope. To be precise, we define the edge zonotope (or EZ-tope)

E(P ) :=
∑

uv∈E(P )

[u− v, v − u]

and it is straightforward to verify that the vertices of E(P ) are in bijection to unique sink orienta-
tions induced by objective functions. The EZ-tope was introduced by Gritzmann–Sturmfels [23]
under the name edgotope.

We address our second primary question of the paper:

Given a fixed P and NW-rule, how does the arborescence change when c is varied?

We will answer it but make the following assumption on the NW-rule R:

i) The normalization function does not depend on c: ηR(P, c) = ηR(P, c′) for all c, c′;
ii) The rule R chooses c as the weight: wR(P, c) = c.

For example, greatest-improvement as well as p-steepest-edge belong to this class but max-slope
with normalization ηMS(u − v) = ct(u − v) does not. To stress the two requirements above, we
write BηP (c) := AηP,c(c) for the arborescence obtained from the linear program (P, c) with respect
to the NW-rule with normalization η and weight w = c. If B = BηP (c), we note that for all
v ∈ V (P )

B(v) = argmax

{
ct(u− v)

η(u− v)
: u ∈ N(P, v) ∪ {v}

}
. (8)

Indeed, let us denote by vopt the unique sink of P with respect to c. For v 6= vopt there is a
neighbor u ∈ NbP (v) with ctu > ctv and the right-hand side of (8) coincidences with (1). If
v = vopt, then the maximum is attained at u = v and we get B(v) = v.

Let G(P ) be the undirected graph of P . An arborescence on G(P ) is a map B : V (P )→ V (P )
such that

(a) there is a unique vopt ∈ V (P ) with B(vopt) = vopt,
(b) for all v 6= vopt we have B(v) ∈ NbP (v), and
(c) for all v there is k ≥ 1 such that Bk(v) = vopt.

In particular, every c-arborescence of (P, c) is an arborescence; cf. Section 2.
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Consistently, we define for an arborescence B

ψη(B) :=
∑
v

B(v)− v
η(B(v)− v)

,

and we define the neighbotope of P for the normalization η

ΓηP := conv{ψηP (B) : B arborescence of G(P )} . (9)

Let us emphasize that the neighbotope is defined in terms of all arborescences of the undirected
graph G(P ).

Proof of Theorem 1.5. The proof is along similar lines as that of Theorem 1.4. For a vertex
v ∈ V (P ) we define

ΓηP (v) := conv

{
u− v

η(u− v)
: u ∈ NbP (v) ∪ {v}

}
. (10)

Let c be a generic objective function and let B = BηP (c). For v ∈ V (P ) it follows directly from (8)
that

ΓηP (v)c =
u− v

η(u− v)
if and only if B(v) = u .

Hence the coherent arborescences are precisely the vertices of

Q :=
∑

v∈V (P )

ΓηP (v) ,

which is the convex hull over all ψη(f) where f ranges over all maps f : V (P ) → V (P ) with
f(v) ∈ NbP (v) for all v ∈ V (P ). However, the above argument shows that we can discard those
f that are not arborescences of G(P ) and hence Q = ΓηP as claimed. �

The structural similarity between pivot polytopes and neighbotopes can be made more precise.

Corollary 3.1. Let P ⊂ Rd be a polytope, and let η be a normalization. Then the neighbotope
ΓηP is given by

ΓηP = conv

( ⋃
c∈Rn

Πη
P,c

)
.

So far we have presented two constructions, which help classify and organize all pivot rules of
a linear program. We will now present some examples to illustrate the construction and, at the
same time, highlights the incredibly rich combinatorics that the constructions bring to light.

4. Examples of pivot rule polytopes and neighbotopes

Let us begin with three examples that illustrate the richness of pivot rule polytopes:

Example 4.1 (GI- and pSE-Pivot polytopes of simplices). Let ∆d−1 = conv(e1, . . . , ed) ⊂ Rd
be the standard d-simplex. An objective function c is generic for ∆d−1 if and only if ci 6= cj
for all i 6= j. Up to symmetry, we may assume that c1 < c2 < · · · < cd. Observe that
ηpSE(ei − ej) = ||ei − ej ||p = 21/p for all i 6= j ∈ [n], which implies that the pivot rule polytopes
for the greatest-improvement and p-steepest-edge normalizations are the same up to scaling.
Thus, it suffices to focus on the greatest-improvement normalization ηGI ≡ 1.

An arborescence of (∆d−1, c) can be identified with a map A : [d] → [d] with A(d) = d and
A(j) > j for all j < d. There are precisely (d−1)! arborescences, since there are d−j independent
choices of an outgoing edge for each j. However, not all of these arborescences will necessarily
arise from GI-rules. To characterize those that do, choose w ∈ Rd such that wi 6= wj for all i 6= j.
We can associate to w the permutation σ such that wσ−1(1) < wσ−1(2) < · · · < wσ−1(d). This
permutation uniquely identifies the arborescence in the sense that w′ yields the same coherent
arborescence as w if and only if w′σ−1(1) < w′σ−1(2) < · · · < w′σ−1(d). A left-to-right maximum
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of σ = (σ1, σ2, . . . , σd) is an index j such that σi < σj for all i < j. Let 1 ≤ j1 < j2 < · · · < jk ≤ d
be the positions of left-to-right maxima. It follows from (1) that the coherent arborescence with
respect to w is given by A(i) = js if js−1 ≤ i < js, where we set j0 = 0. Although all possible
subsets of [d] can occur as positions of left-to-right maxima, the position 1 is never relevant.
Therefore, there are exactly 2d−2 coherent arborescences.

For an arborescence A, let δi := |A−1(i)|, so that δ(A) = (δ1, . . . , δd) is the in-degree sequence
of A. It now follows from (4) that ψGI(A) = δ − 1[d−1] and hence

ΠGI
∆d−1,c

+ 1[d−1] = conv{δ(A) : A arborescence of (∆d−1, c)} .

From (7), we infer that

ΠGI
∆d−1,c

+ 1[d−1] =
d−1∑
i=1

conv{ei+1, . . . , ed} .

Following the exposition [31, Sect. 8.5], this shows that ΠGI
∆d−1,c

is the Pitman–Stanley poly-
tope [38].

Example 4.2 (Pivot rule polytopes of cubes). Let Cd = [0, 1]d be the d-dimensional standard
cube. Up to symmetry, we can assume that a generic objective function c satisfies 0 < c1 <
· · · < cd. We can identify vertices of Cd with characteristic vectors 1J ⊆ {0, 1}d for J ⊆ [d].
In particular, NbCd,c(1J) = {1J∪k : k 6∈ J} and for u ∈ NbCd,c(1J), we have u − 1J = ek for
some k 6∈ J . This again shows that the pivot polytopes for greatest improvement and p-steepest-
edge are identical. For the max-slope normalization, it follows from (4) that ΠMS

Cd,c
is linearly

isomorphic to ΠGI
Cd,c

with respect to the linear transformation x 7→ diag(c1, . . . , cd)x. Thus, we
only consider the pivot polytope for greatest improvement.

An arborescence can be identified with a map A : 2[d] → 2[d] with A([d]) = [d] and A(J) = J∪{i}
for some i ∈ [d] \ J . Since all choices are independent, the total number of arborescences is

∏
J

2d−|J | =
d∏
i=0

(2i)(
d
i) = 2d·2

d−1
.

Let w ∈ Rd be a generic weight. We can again assume that there is a unique permutation σ
such that wσ−1(1) < wσ−1(2) < · · · < wσ−1(d). The corresponding coherent arborescence A then
satisfies that A(J) = J ∪ k whenever σ(k) > σ(h) for all h 6∈ J ∪ k. To see that every such
arborescence A determines a unique permutation σ, we set σ(d) := A(∅) and σ(k) := A({σ(k+
1), . . . , σ(d)}) for 1 ≤ k < d. This establishes a bijection between d-permutations σ and coherent
arborescences Aσ of (Cd, c) for the greatest improvement normalization. If σ = (1, 2, . . . , d), then
ψGI(Aσ)k is the number of proper subsets J ⊆ [d] such that max([d] \ J) = k. Thus ψGI(Aσ) =
(1, 2, . . . , 2d−1). For any other permutation σ′ one observes that ψGI(Aσ′) = σ′(ψGI(Aσ)). Hence

ΠGI
Cd,c

= conv{(2σ(1)−1, 2σ(2)−1, . . . , 2σ(d)−1) : σ d-permutation}

is a permutahedron; cf. [31]. The pivot polytope for C3 together with the corresponding
arborescences is depicted in Figure 3. We will see a stronger relation in Section 6.1.

Now we present another rich example

Example 4.3 (Max-slope pivot polytopes of simplices). Let P be (d − 1)-dimensional simplex
and c a generic linear function. We briefly sketch the pivot polytope of (P, c) associated to the
max-slope normalization ηMS(u − v) = ct(u − v) and defer the reader to [15] for details. Let
v1, . . . , vd be the vertices of P labeled such that ctvi < ctvj if and only if i < j. As in Example 4.1,
we identify an arborescence with a map A : [d]→ [d] with A(d) = d and A(i) > i for i < d. We
call such an arborescence non-crossing if there are no i < j with j < A(i) < A(j). We show
in [15] that an arborescence is coherent if and only if it is non-crossing.
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Figure 3. The pivot polytope of [0, 1]3 with arborescences associated to the vertices.

It is easy to see that non-crossing arborescences are in bijection to binary trees on d− 1 nodes.
If d = 1, then there is a unique arborescence that we map to the empty binary tree. For d > 1,
let i be minimal with A(i) = d. Let AL : [i] → [i] be defined by AL(a) = A(a) for a < i and
AL(i) = i. Further, define AR : [d − i] → [d − i] by AR(a) := A(i + a) − i. Then AL and AR
are non-crossing arborescences on fewer nodes that yield the left and right subtrees of the binary
tree associated to A. Binary trees can be equipped with a natural partial order and the resulting
poset is called the associahedron.

It is a famous result due to Milnor (unpublished), Haiman (unpublished), and Lee [29] that the
associahedron is isomorphic to the face lattice of a convex polytope. We further show in [15]
that ΠMS

P,c is combinatorially isomorphic to the associahedron.

Example 4.4 (Max-slope pivot polytopes of prisms over simplices). The associahedron was
originally introduced as the poset of partial bracketings of a product of n elements in a non-
associative multiplicative structure. Stasheff’s multiplihedron Jn extends this to the following
setup; see [39]. Let f : A → B be a morphism between two non-associative multiplicative
structures. For elements a1, a2, . . . , an ∈ A. What the multiplihedron roughly encodes is the
possible ways of (partially) evaluating f(a1a2 · · · an). Figure 4 gives an example for n = 3.
It turns out that the multiplihedron is combinatorially isomorphic to the max-slope pivot rule
polytope for the prism over the simplex. More precisely, if P = ∆n−1 × ∆1 and c = (c1 <
c2 < · · · < cn−1 < cn) is any linear function, then ΠMS

P,c is combinatorially isomorphic to the
multiplihedron Jn. The relation between of max-slope arborescences of products of simplices
and non-associative structures will be the main subject of [15].

Example 4.5 (Greatest-improvement neighbotope of the cube). Let Cd = [0, 1]d be the unit
cube. As in Example 4.2, we observe that the neighbotope for η will be homothetic to ΓGI

Cd
if the

normalization satisfies η(±ei) = const for all i.

To get the number of arborescences of the d-cube, we observe that every arborescence B is given
by a spanning tree of G(Cd) together with the choice of a root vopt ∈ V (Cd). The arborescence is
then obtained by directing edges of the spanning tree towards the root. The number of spanning
trees τ(Cd) of Cd can be found in [36, Example 5.6.10] and gives the number of arborescences

2n · τ(Cd) =
d∏

k=1

(2k)(
d
k) = 22d−1

d∏
k=1

k(dk) .

For a vertex 1J ∈ {0, 1}d, we have

ΓGI
Cd

(1J) = conv({−ei : i ∈ J} ∪ {0} ∪ {ei : i 6∈ J}) .

Let S = (Z/2Z)d ∼= {−1,+1}d be the group of sign flips. Every element is of the form s = 1−21J
for some J ⊆ [d] and ΓGI

Cd
(1J) = s · ΓGI

Cd
(1∅). Thus

ΓGI
Cd

=
∑
s∈S

s · ΓGI
Cd

(1∅) .
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(f(a)f(b))f(c) f(a)(f(b)f(c))

f(ab)f(c) f(a)f(bc)

f((ab)c) f(a(bc))

Figure 4. The 2-dimensional multiplihedron J3 and the corresponding max-
slope arborescences for ∆2 ×∆1

Let W be the reflection group of type Bd, which acts on Rd by signed permutations. Since
ΓGI
Cd

(1∅) is invariant under permutations, ΓGI
Cd

is invariant with respect to W . Thus, for a given
objective function c, we may assume that 0 < c1 < · · · < cd and it follows from Corollary 3.1
that

(ΓGI
Cd

)c = (ΠGI
P,c)

c = (1, 2, . . . , 2d−1) .

This shows that ΓGI
Cd

is the type-B permutahedron with respect to the point (1, 2, . . . , 2d−1),
which has d!2d vertices.

Example 4.6 (Neighbotopes of cross-polytopes). The d-dimensional cross-polytope is the
non-simple polytope C∗d = conv{±ei : i = 1, . . . , d}. For v = sei with s ∈ {−1,+1}

ΓGI
C∗d

(v) = conv({±ej : j 6= i} ∪ {sei}) ,

which is a pyramid over C∗d−1. The cross-polytope is also invariant under the group W of signed
permutations. Hence, we may again assume that 0 < c1 < · · · < cd and the corresponding
arborescence B = BηC∗d (c) satisfies B(v) = ed if v 6= −ed and B(−ed) = ed−1. It follows that ΓGI

C∗d
is the type-B permutahedron for the point (2d− 1)ed + ed−1 and has 4d(d− 1) vertices.

5. The Combinatorics of Pivot rule polytopes and Neighbotopes

We investigate the basic combinatorial questions on polyhedra for our constructions and the
relation to fiber polytopes and sweep polytopes.

5.1. Faces of pivot rule polytopes. Before we discuss general faces of pivot rule polytopes,
we look at vertices and their numbers.

We recall that a d-dimensional polytope P is simple if every vertex is incident to d edges. For a
simple d-polytope P ⊂ Rd and generic objective function c, denote by hi the number of vertices
with in-degree i. Since P is simple, hi is independent of c and h(P ) = (h0, . . . , hd) is the h-vector
of P ; cf. [9, Ch. 6].

Proposition 5.1 ([5, Prop. 3.1]). For a simple d-polytope P and a generic objective function,
the total number of arborescences is given in terms of the entries of the h-vector by

1h12h2 · · · dhd .
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We now show that this upper bound cannot be attained for coherent arborescences, independent
of the normalization.

Theorem 5.2. Let P ⊂ Rd be a simple d-polytope with n > d + 1 ≥ 4 vertices and h-vector
h(P ) = (h0, . . . , hd). For fixed objective function c and arbitrary normalization η, the number of
coherent arborescences is strictly less than

1h12h2 · · · dhd − 2(n−m− 2) ,

where m is the number of facets of P .

Proof. We need to bound the number of vertices of Πη
P,c. Recall from (7) that Πη

P,c is a Minkowski
sum of polytopes Πη

P,c(v) for v 6= vopt. Since P is simple, the polytopes Πη
P,c(v) are all simplices

of various dimensions. Using the interpretation of the h-vector given above, we see that the
number of (k − 1)-simplices is precisely hk. In particular, we have h0 = 1 and h1 = m − d
vertices with in-degree 1, where m is the number of facets. Since P is not a simplex, we have
n ≥ (d+ 1)(d− 2) +m(d− 1) by the Lower Bound Theorem (cf. [42]). Thus Πη

P,c is a Minkowski
sum of N := n − (m − d + 1) ≥ (d + 2)(d − 2) + 1 + m(d − 2) ≥ d + 2 simplices of positive
dimension. Let v1, . . . , vN be the corresponding vertices and set Πi := Πη

P,c(vi).

We slightly extend the argument from [32, Sect. 6]: For u ∈ V (Πi), let NΠi(u) be set of linear
functions w such that {u} = Πw

i . This is a non-empty open polyhedral cone. For ui ∈ V (Πi), we
have that

∑
i ui corresponds to a vertex of Πη

P,c if and only if
⋂
iNΠi(ui) 6= ∅. Fix ui ∈ V (Πi)

for i = d+ 2, . . . , N and assume that for all choices of uj ∈ V (Πj) for j = 1, . . . , d+ 1,
∑N

i=1 ui
corresponds to a vertex. For 1 ≤ j ≤ d+ 1, define Cj to be the collection of open convex sets

NΠj (u) ∩NΠd+2
(ud+2) ∩ · · · ∩ NΠN

(uN )

for u ∈ V (Πj). The sets in Cj are pairwise disjoint. Since C1 ∩ · · · ∩ Cd+1 6= ∅ for all choices
Cj ∈ Cj , j = 1, . . . , d + 1, Lovász’ colorful Helly Theorem (cf. [8]) implies that

⋂
C∈Cj C 6= ∅

for some j, which yields a contradiction. There are at least 2(N − (d + 1)) choices of vertices
ud+2, . . . , uN , which finishes the proof. �

A precise but more involved bound can be obtained from the Minkowski Upper Bound Theo-
rem [1]. If P is a d-dimensional simplex, then h(P ) = (1, . . . , 1). Neither Theorem 5.2 nor the
Minkowski Upper Bound Theorem rules out the possibility, that P has 1h12h2 · · · dhd = d! many
coherent arborescences.

Question 5.3. For every d ≥ 1, is there a normalization η such that all arborescences of (∆d, c)
are coherent?

In the rest of the section we discuss the facial structure of the pivot polytope Πη
P,c for the LP (P, c)

and a normalization η. For this we assume that P is a simple polytope. A c-multi-arborescence
is a map A : V (P ) → 2V (P ) \ {∅} that satisfies A(vopt) = {vopt} and A(v) ⊆ NbP,c(v) for all
v 6= vopt. We will abuse notation and identify one-element subsets of V (P ) with the elements
themselves. Hence we can view c-arborescences as c-multi-arborescences with |A(v)| = 1 for all
v ∈ V (P ). If w ∈ Rd is a non-generic weight, then the maximum in (1) may not be uniquely
attained for all v and gives rise to coherent c-multi-arborescence that we will also denote by
AηP,c(w).

Given two multi-arborescences A,A′, we say that A refines A′, written A � A′, if A(v) ⊆ A′(v)
for all v ∈ V (P ). This is a partial order on the collection of multi-arborescences of (P, c). The
proof of Theorem 1.4 yields the facial structure of pivot polytopes.

Theorem 5.4. Let P ⊂ Rd be a simple polytope, c a generic objective function, and η a nor-
malization. For two weights w,w′ we have

A(w) � A(w′) ⇐⇒ (Πη
P,c)

w ⊆ (Πη
P,c)

w′ .

Thus, the poset of coherent arborescences is isomorphic to the face lattice of Πη
P,c.
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Two arborescences A,A′ differ by an edge rerouting if there is a unique vertex v ∈ V (P ) with
A(v) 6= A′(v). As a consequence, we get a necessary condition for the adjacency of two coherent
arborescences.

Corollary 5.5. If the vertices of Πη
P,c corresponding to two coherent arborescences A,A′ are

adjacent, then A,A′ differ by an edge rerouting.

Note that the definition of Πη
P,c given in (5) involves all arborescences. If A is a non-coherent

arborescence, the geometry of Πη
P,c gives us to the finest coherent coarsening of A.

Proposition 5.6. Let A be a c-arborescence of (P, c) and let F ⊆ Πη
P,c be the unique face

containing ψη(A) in its relative interior. Then the c-multi-arborescence A′ associated to F is the
finest coherent coarsening of A.

Proof. Let w be a weight such that F = (Πη
P,c)

w. For every v 6= vopt, let Fv = (Πη
P,c(v))w. Then

F =
∑

v Fv and, in particular A(v)−v
η(A(v)−v) ∈ Fv for all v 6= vopt. The multi-arborescence associated

to F is given by
A′(v) =

{
u ∈ NP (c, v) : A(v)−v

η(A(v)−v) ∈ Fv
}

and hence is a coarsening of A. If A′′ is another coherent multi-arborescence coarsening A with
corresponding face G, then ψη(A) ∈ G and hence ψη(A) ∈ G∩F . But since ψη(A) is contained
in the relative interior of F , it follows that F ∩G = F , which shows that A′ is the finest coherent
coarsening of A. �

Let us close by remarking that the poset of all c-arborescences on (P, c) can also be realized as
the face poset of a convex polytope.

Proposition 5.7. Let P a simple polytope with h-vector h(P ) = (h0, . . . , hd). For a generic
linear function c, the poset of all c-multiarborescences is isomorphic to the face poset of the
polytope

∆h1
0 ×∆h2

1 × · · · ×∆hd
d .

Proof. Recall the face structure of a product of simplices
∏n
i=1 ∆di for di ∈ N is given by a choice

of subset Si from each [di]. Then two collections of subsets {Si} and {Ti} correspond to faces
that contain one another precisely when Si ⊆ Ti for all i ∈ [n].

Let vopt be the unique maximizer of c over P . A c-multi-arborescence is given by the choice of
a non-empty subset Sv of c-improving neighbors for every vertex v 6= vopt. This choice is made
independently, so any possible collection of subsets corresponds to some c-multi-arborescence.
The collection of all multi-arborescences then corresponds to all choices of sets of outgoing
neighbors.

For a generic orientation on a simple polytope, the h-vector counts the number of vertices with
a given out-degree. Hence, the set of all possible choices of subsets of outgoing edges is given by

∆h1
0 ×∆h2

1 × · · · ×∆hd
d . �

The space of all monotone paths yields a similar cell-complex called the Baues poset of cellular
strings. In general, that complex is not polytopal. Proposition 5.7 shows that the analogous
poset for arborescences is instead always the face lattice of product of simplices. Furthermore,
the choice of simplices is independent of c so long as c is generic, since the h-vector is invariant.

More generally, pivot polytopes and their lattices of coherent multi-arborescences behave in
analogy to fiber polytopes and their lattices of coherent subdivisions. This analogy is particularly
strong in the case of monotone path polytopes and secondary polytopes. To start, given a
multi-arborescence or subdivision, evaluating whether it is coherent in its respective context
corresponds to solving a linear feasibility problem. For adjacency in the monotone path polytope
or secondary polytope, adjacent vertices must satisfy that their corresponding coherent monotone
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paths or coherent triangulations differ by a flip. However, differing by a flip is not sufficient
to guarantee adjacency. The edge reroutings thus play the role of flips for pivot polytopes.
Furthermore, given any monotone path or triangulation, we can assign it a canonical point
the unique face containing the point in its relative interior corresponds to the finest coherent
coarsening of the monotone path or triangulation respectively. This is precisely the statement of
Proposition 5.6 for pivot rule polytopes.

5.2. Faces of neighbotopes. As in the previous section we start by understanding the vertices
of neighbotopes. We can again use the description as a Minkowski sum to derive an upper bound
on the number of coherent arborescences.

Proposition 5.8. Let P be a simple d-polytope with n vertices, then the number of coherent
arborescences of P is at most dn(1− 1

dd+1 ).

Proof. If P is simple, then ΓηP (v) is a (d − 1)-simplex for all v ∈ V (P ). The same argument as
in the proof of Theorem 1.5 applies and shows that of the dn possible vertices of the Minkowski
sum at least dn−(d+1) fail to be vertices. �

Note that this bound is in general far from being tight: If P is a d-simplex, then ΓηP (v) = −v+P
for all vertices v and ΓηP is homothetic to P ; see also Proposition 6.7. Of course, the Minkowski
sum decomposition is also valid for non-simple polytopes and a more involved upper bound
maybe derived in the same manner.

We now consider the face lattice of neighbotopes. A multi-arborescence of a polytope P is a
map B : V (P )→ 2V (P ) that satisfies

(a) for all v we have B(v) ⊆ NbP (v) ∪ {v};
(b) there is a unique face FB ⊆ P with {v : v ∈ B(v)} = V (FB) and
(c) B(v) = NbP (v) ∪ {v} for all v ∈ V (FB);
(d) for all v ∈ V there is k ≥ 1 with Bk(v) = V (FB).

Proposition 5.9. Let P be a polytope and η a normalization. Every face of the neighbotope ΓηP
can be identified with a unique multi-arborescence.

Proof. Let F = (ΓηP )c be a face of the neighbotope ΓηP . It follows from the proof of Theorem 1.5
and (10) that F =

∑
v Fv, where Fv = ΓηP (v)c. We define a multi-arborescence B by u ∈ B(v)

if and only if u−v
η(u−v) ∈ Fv for all v ∈ V (P ). Unless v ∈ FB := P c, there is always an improving

neighbor u ∈ B(v) and v 6∈ B(v). Otherwise, B(v) = NbP (v) ∪ {v}. This shows that B satisfies
all defining properties of a multi-arborescence. Since F can be recovered from B, it also shows
that every face corresponds to a unique multi-arborescence. �

This injection furthermore encodes a partial order. Namely, we say that B � B′ for two multi-
arborescences B and B′, when B(v) ⊆ B′(v) for all v ∈ V . This partial order corresponds to
the partial order of the face lattice. Namely, for faces F1, F2 of ΓηP with corresponding multi-
arborescences B1 and B2, we have that F1 is a face of F2 if and only if B1 � B2.

6. Monotone path polytopes and sweep polytopes

Now we make connections to two famous constructions in geometric combinatorics.

6.1. Max-slope pivot rule polytopes and monotone path polytopes. The shadow-vertex
rule is a well-known and well analyzed pivot rule that in its usual form does not belong to the
class of memory-less rules. We show that the max-slope rule is a natural generalization that
has the benefit of being a NW-rule. We also show that it is intimately related to the theory of
(coherent) cellular strings on polytopes of Billera–Kapranov–Sturmfels [12].
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For the setup, let P ⊂ Rd be a d-polytope and c a generic objective function. Let r be a vertex
of P together with a weight w ∈ Rd such that r = Pw. We seek to find the optimal vertex
vopt = P c. Define a linear projection π : Rd → R2 by π(x) := (ctx,wtx). By construction π(r)
and π(vopt) are vertices of the projection π(P ). There is a unique path from π(r) to π(vopt) that
is increasing with respect to c. Since c and w where assumed to be generic, the pre-image of that
path is a c-increasing vertex-edge path on P from r to vopt. This is called a shadow-vertex
path from r to vopt.

Note that the path is not determined by r but rather by the choice of w. Given r, w, the shadow
path can be found with a variant of the simplex algorithm but it is clear that the procedure
outlined above does not yield pivots for vertices outside the shadow-vertex path. In fact, it
does not even yield a memory-less pivot rule in the sense of Section 1 for the vertices on the
shadow-vertex path as they would require a choice of a weight that might lead to a different
shadow-vertex path.

The vertices on the shadow-path from r to vopt can be characterized locally. Starting from r, a
c-improving neighbor s ∈ NbP,c(r) will be the next vertex on the shadow path if [π(r), π(s)] is
an edge of π(P ). This happens if the slope of the edge in the plane is maximal among all edges
of π(P ) incident to π(r). That is, if wt(s−r)

ct(s−r) > wt(u−r)
ct(u−r) for all u ∈ NbP,c(r) \ s. The max-slope

rule now extends this condition to all vertices: if v 6= vopt, then max-slope chooses the neighbor

u∗ = argmax

{
wt(u− v)

ct(u− v)
: u ∈ NbP,c(v)

}
. (11)

Our discussion above now proves the following.

Proposition 6.1. For (P, c), let w be a generic weight and r = Pw. Let AMS = AMS
P,c (w) be the

max-slope arborescence of (P, c) with respect to w. The path (ri)i≥0 ∈ V (P ) with r0 := r and
ri+1 := AMS(ri) for i ≥ 0 is precisely the shadow-vertex path of (P, c) with respect to w.

Let v−opt = P−c be the minimizer with respect to c. A cellular string on (P, c) is a sequence
of faces F0, F1, . . . , Fk with the property that v−opt = F−c0 , vopt = F ck and F ci−1 = F−ci for all
i = 1, . . . , k. A cellular string can be refined by replacing some of the Fi by cellular strings of
(Fi, c). This yields a partial order on cellular strings, called the Baues poset of (P, c). The
minimal elements are the monotone paths from v−opt to vopt.

Billera–Sturmfels [13] and Billera–Kapranov–Sturmfels [12] developed the theory of coherent
cellular strings on polytopes. A monotone path v−opt = v0, v1, . . . , vk = vopt is called coherent
if there is a w ∈ Rd such that vi is the unique maximizer of w over the slice P ∩ {x : ctx = ctvi}
for all i. For any monotone path W = v0, . . . , vk, define the point

ΦW :=

k∑
i=1

ct(vi − vi−1)

ct(vk − v0)
(vi − vi−1)

and with it the monotone path polytope

Σc(P ) := conv{ΦW : W monotone path of (P, c)} .

The vertices of Σc(P ) are precisely the coherent monotone paths and, stronger even, the face
lattice of Σc(P ) defines the subposet of the Baues poset of coherent cellular strings of (P, c).

We will show next that the max-slope pivot polytope provides a refinement of the monotone
path polytope in the following sense. A polytope Q ⊂ Rd is a weak Minkowski summand
of a polytope P ⊂ Rd if there is λ > 0 and a polytope R ⊂ Rd such that λP = Q + R. This
implies that there is a poset map from the face lattice of P onto the face lattice of Q with
favorable combinatorial and topological properties. Roughly, this means that the combinatorics
of P refines the combinatorics of Q.
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Proposition 6.2. Let P ⊂ Rd be a polytope and c a generic objective function. Then the
monotone path polytope Σc(P ) is a weak Minkowski summand of the max-slope pivot polytope
ΠMS
P,c .

Proof. We use a result of Shephard (cf. [24, Theorem 15.1.2]) that states that Q is a weak
Minkowski sum of P if and only if Qw is a vertex whenever Pw is a vertex.

Let w ∈ Rd be generic and A = AMS
P,c (w) the max-slope arborescence of (P, c) corresponding

to the vertex (ΠMS
P,c )

w. Let r = Pw. We can apply the same argument as before and obtain a
shadow-vertex path from r to v−opt. Combining this path with the shadow-vertex path from r to
vopt yields the max-slope path from v−opt to vopt. Verifying condition (11) along this path then
shows that this max-slope path is precisely the coherent monotone path induced by w, which
shows that Σc(P )w is a vertex. �

Example 6.3 (Monotone path polytopes of simplices). Let P be a d-simplex with vertices
v0, v1, . . . , vd ordered according to a generic objective function c. In [13, p. 545] it is shown that
Σc(P ) is combinatorially isomorphic to a (d − 1)-dimensional cube. Any choice 0 =: i0 < i1 <
· · · < ik−1 < ik := d defines a monotone path vi0 , vi1 , . . . , vik−1

, vik and it is straightforward to
show that every such path is coherent. Continuing Example 4.3, we see that choosing a non-
crossing arborescence for every interval [ij , ij+1] = {ij , ij + 1, . . . , ij+1} yields a non-crossing
arborescence of (P, c) that contains the given monotone path. This shows that the set of refine-
ments of a given monotone path to a non-crossing arborescence has the structure of a product
of associahedra.

Note that we did not require P to be simple in Proposition 6.2. When P is simple, Proposition 6.2
yields a necessary criterion when a multi-arborescence is coherent. LetA be a multi-arborescence.
For every v ∈ V (P ) there is a unique smallest face Fv ⊂ P with v ∪A(v) ⊆ F . We can associate
to A a cellular string as follows: Set u0 := v−opt and F0 := Fu0 . For i ≥ 1, let ui := F ci−1 and
Fi := Fui . We call the c-multi-arborescence A cellular if A(v) ⊆ V (Fi) for all v ∈ V (Fi) \ ui+1

and all i. That is, if A restricts to a c-multi-arborescence of (Fi, c) except for ui+1. Note that
every c-arborescence is cellular.
Corollary 6.4. If A is a coherent multi-arborescence, then A is cellular.

Proof. Let A be a coherent c-multi-arborescence with corresponding face F = (ΠMS
P,c )

w for some
weight w. Consider the linear projection π : Rd → R2 given by π(x) = (ctx,wtx). The polygon
P̄ has the two distinguished vertices v̄−opt = π(v−opt) and v̄opt = π(vopt) that minimize and
maximize the first coordinates, respectively. Let v̄−opt = v̄0v̄1 . . . v̄k = v̄opt be the upper path
with respect to the second coordinate. It is straightforward to verify that Fi = π−1([v̄i, v̄i+1])
yields the cellular string as constructed above. If v ∈ V (Fi) \ ui+1 then v′ = A(v) if and only if
the slope of the segment [v̄, v̄′] is maximal among all segments [v̄, v̄′′] for v̄′′ ∈ NbP,c(v). Clearly
this slope is at most that of [v̄i, v̄i+1] and equal whenever v′ ∈ V (Fi). This shows that A is
cellular. �

Note that there does not seem to be a natural map from general multi-arborescences of (P, c) to
the Baues poset.

In [13, Example 5.4] it is shown that the monotone path polytope of the d-cube Cd = [0, 1]d with
respect to c = (1, . . . , 1) is the permutahedron Πd−1 = conv{(σ(1), . . . , σ(d)) : σ permutation}.
In fact for any generic c, Σc(P ) will be combinatorially isomorphic to Πd−1. It is remarkable that
the max-slope pivot polytope of the cube is also combinatorially isomorphic a permutahedron;
cf. Example 4.2. This is not a coincidence. Recall that a polytope P ⊂ Rd is a zonotope if
there are t, z1, . . . , zn ∈ Rd such that

−t+ P = [−z1, z1] + [−z2, z2] + · · ·+ [−zn, zn] .

Moreover, two polytopes P,Q ⊂ Rd are normally equivalent if Q is a weak Minkowski sum-
mand of P and P is a weak Minkowski summand of Q.
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Theorem 6.5. Let P be a polytope and c a generic objective function. If P is a zonotope, then
Σc(P ) and ΠMS

P,c are normally equivalent.

Proof. In light of Proposition 6.2, we only have to show that ΠMS
P,c is a weak Minkowski summand

of Σc(P ). From (7), we see that it suffices to show that ΠMS
P,c (v) is a weak Minkowski summand

of Σc(P ) for all v 6= vopt.

We may assume that P = [−z1, z1] + [−z2, z2] + · · ·+ [−zn, zn] and that ctzi > 0 for all i. Since
P is a linear projection of Cd = [0, 1]d, it follows from Lemma 2.3 and Theorem 4.1 of [13] that
the monotone path polytope Σc(P ) is normally equivalent to the zonotope

Σ̃c(P ) =
∑
i<j

[zi − zj , zj − zi] .

If u, v are adjacent vertices of P , then u− v = ±zj for some j. Thus for v 6= vopt there is J ⊆ [n]
such that

ΠMS
P,c (v) = conv{zj : j ∈ J} .

For a generic w ∈ Rd the vertex Σ̃c(P )w is determined by the permutation σ such that wtzσ(1) >

wtzσ(2) > · · · > wtzσ(n). However, this shows that (ΠMS
P,c (v))w = zσ(k), where k = minσ−1(J).

Hence (ΠMS
P,c (v))w is a vertex whenever Σ̃c(P )w is, which proves the claim. �

Theorem 6.5 gives a new way of computing monotone path polytopes of zonotopes. In partic-
ular, it says that for every coherent monotone path there is a unique extension to a coherent
arborescence.

A polytope P is a belt polytope [16] if P is normally equivalent to a zonotope. Equivalently,
if the normal fan of P is given by a hyperplane arrangement; cf. [42, Ch. 7]. The next result
implies that Theorem 6.5 can actually be extended to belt polytopes.

Theorem 6.6. Let P, P ′ ⊂ Rd be polytopes and c a generic objective function. If P is normally
equivalent to P ′, then ΠMS

P,c = ΠMS
P ′,c.

Proof. Let v ∈ V (P ). If v = Pw, then Pw = v′ is a vertex that is independent of w. This
yields a bijection V (P ) → V (P ′). Moreover, it follows from normal equivalence that if u, v
are adjacent vertices of P , then u′, v′ are adjacent in P ′ and u − v = λ(u′ − v′) for some
λ > 0. Thus u ∈ NbP,c(v) if and only if u′ ∈ NbP ′,c(v

′) and u−v
ct(u−v) = u′−v′

ct(u′−v′) . Now (6) yields
ΠMS
P,c (v) = ΠMS

P ′,c(v
′) and the claim follows from (7). �

6.2. Neighbotopes and Sweep Polytopes. In this section, we relate the neighbotopes with
respect to greatest-improvement pivot rule to another class of well-known polytopes, the sweep
polytopes [30]. Let p1, . . . , pn ∈ Rd be a configuration of points. A permutation σ of [n] is called
a sweep if there is a generic linear function c ∈ Rd such that

ctpσ−1(1) < ctpσ−1(2) < · · · < ctpσ−1(n)

The sweep polytope, introduced by Padrol and Philippe in [30], captures the sweeps of a point
configuration and is defined as

SP(p1, . . . , pn) :=
∑
i<j

[pi − pj , pj − pi]

If p1, . . . , pn are the vertices of a polytope P , then the sweep is related to line shellings of the
dual to P . It was studied in [23] under the name shellotope.

Recall from the introduction that for a polytope P ⊂ Rd and a normalization η, the set of
normalized edge directions is EDη(P ) = { u−v

η(u−v) : uv ∈ E(P )}. If c is a generic objective
function, then EDη(P, c) = { u−v

η(u−v) : uv ∈ E(P ), ctu > ctv} is the set of c-improving edge
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directions. If η ≡ 1, then we also write ED(P ) = EDη(P ). Note that z ∈ ED(P ) if and only if
−z ∈ ED(P ).

Proof of Theorem 1.7. Let v ∈ V (P ) be a vertex. It follows from the definition that the vertices
of Πη

P,c(v) are a subset of EDη(P, c). Hence if we have a total order on EDη(P, c) induced by a
linear function w, then this determines the unique maximizer Πη

P,c(v)w for all v and therefore a
vertex of Πη

P,c. Since w induces a total ordering on EDη(P, c) if and only if SP(EDη(P, c))w is a
vertex, this proves the first claim.

The second claim follows in the same manner. �

Proposition 6.7. Let η be a normalization with η(x) > 0 for x 6= 0. Any polytope P is a weak
Minkowski summand of ΓGI

P . Normal equivalence holds precisely for 2-neighborly polytopes.

Proof. Let c be a generic linear function. It follows from convexity that P c = v if and only if v
has no c-improving neighbor. It follows from (10) that ΓGI

P (v)c = {0}. Since ΓGI
P =

∑
v ΓGI

P (v),
we see that if (ΓGI

P )c is a vertex, then so is P c.

A polytope P is called 2-neighborly if any two vertices are adjacent. If P is 2-neighborly, then
ΓGI
P (v) = −v + P and hence

1
nΓGI

P (v) = b(P ) + P ,

where b(P ) = 1
n

∑
V (P ) is the barycenter of P . Now, assume that P is not two neighborly and

u−v 6∈ ΓGI
P (v). Then there is a linear function c such that ΓGI

P (v)c is a vertex but dimP c > 0. �

The proof actually shows that P is a weak Minkowski summand of ΓηP for any normalization
with η(x) > 0 whenever x 6= 0.

Remark 6.8. It also follows from convexity that P is a Minkowski summand of the edge zonotope
E(P ) and E(P ) is by construction a Minkowski summand of SP(ED(P )). However, it is not
true in general that E(P ) is a weak Minkowski summand of ΓGI

P nor the other way around: If
P = ∆d−1, then E(P ) = Πd−1 is a permutahedron while ΓGI

∆d−1
= d∆d−1 up to translation. If P

is a zonotope, then E(P ) is normally equivalent to P but ΓGI
P can have more vertices than P .

For the d-cube we have ED(Cd) = {±e1, . . . ,±ed} and SP(ED(Cd)) is the type-B permutahedron
with respect to (1, . . . , d); see [30, Sect. 2.2.2]. In contrast to Theorem 6.5, it is in general not
true that the GI-neighbotope and the sweep polytope of edge directions are normally equivalent.

Example 6.9. Consider the zonotope Z ⊂ R2 for the vectors (±1, 1) and (1
2 , 1). Then ΓGI

Z is a
zonotope with 12 vertices whereas SP(ED(Z)) has 14 vertices.

For the zonotope Z generated by the vectors (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 4), one can check
that ΓGI

Z is not even a belt polytope.

We now show that for a very interesting class of zonotopes related to crystallographic reflection
reflection groups, normal equivalence nevertheless holds. We refer the reader to [14, 26] for more
information about the geometry and combinatorics of root systems.

A finite nonempty set Φ ⊂ Rn \ {0} is a root system if Φ ∩ Rα = {−α, α} for all α ∈ Φ, and
sα(Φ) = Φ where sα(x) = x− 2α

tx
αtαα is the reflection in the hyperplane α⊥. The root system is

irreducible if there is no partition Φ = Φ′ ]Φ′′ into nonempty subsets such that αtβ = 0 for all
α ∈ Φ′, β ∈ Φ′′. The group W ⊂ O(Rn) generated by the reflections sα for α ∈ Φ is finite and
called a reflection group. Define the zonotope associated to Φ

ZΦ :=
1

2

∑
α∈Φ

[−α, α] .
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By construction, ZΦ is W -invariant and has edge directions ED(ZΦ) = Φ. The sweep polytope
is then

SP(ED(ZΦ)) = SP(Φ) =
∑
α,β∈Φ

[α− β, β − α] .

The greatest improvement pivot rule is sensitive to the length of edges and in this generality, the
lengths of roots is not a meaningful invariant. A root system is crystallographic if 2αtβ

αtα ∈ Z
for all α ∈ Φ. Equivalently, if the group W stabilizes the lattice spanned by Φ. In this case W is
called a Weyl group. Crystallographic root systems are completely classified; see [26, Chapter 2]
and Appendix A. In particular, the zonotope ZΦ is unique up to rigid motion and homothety.

Theorem 6.10. Let Φ ⊂ Rn be an irreducible crystallographic root system. Then ΓGI
ZΦ

is normally
equivalent to SP(ED(ZΦ)).

Let c ∈ Rn be generic so that Φ ∩ {x : ctx = 0} = ∅. The positive system Φ+ ⊂ Φ associated
to c is Φ+ := Φ ∩ {x : ctx > 0} and we can rewrite

ZΦ =
∑
α∈Φ+

[−α, α] .

The sweep polytope is clearly W -invariant and can be rewritten as

SP(ED(Φ)) =
∑
α,β∈Φ

[α− β, β − α] = 2
∑

α,β∈Φ+

[α− β, β − α] +
∑

α,β∈Φ+

[−α− β, α+ β] .

Let ∆ ⊆ Φ+ be the unique minimal set of generators of the cone C := cone(Φ+), called the
simple system of Φ+. Let vopt =

∑
α∈Φ+ α be the unique maximizer of ZΦ for the linear

function x 7→ ctx. Then

ΓGI
ZΦ

(vopt) := conv {u− vopt : u ∈ NbZΦ
(vopt) ∪ {vopt}} = conv(−∆ ∪ {0}) .

By construction ZΦ is invariant under W and, in fact, W acts simply transitive on the vertices.
It thus follows that

ΓGI
ZΦ

=
∑
w∈W

conv(−w∆ ∪ {0})

and hence ΓGI
ZΦ

is also W -invariant.

The dual cone C∨ = {w ∈ Rn : wtα ≥ 0 for all α ∈ Φ+} is a fundamental domain for the action
of W on Rn. If we want to show that ΓGI

ZΦ
is normally equivalent to SP(ED(Φ)), then it suffices

to show that for all w ∈ C∨, if SP(ED(Φ))w is not a vertex, then (ΓGI
ZΦ

)w is not a vertex. In fact,
ZΦ is a weak Minkowski summand of both polytopes and ZwΦ is not a vertex whenever w ∈ ∂C∨.
Thus, we may restrict to w ∈ int(C∨). Note that c ∈ int(C∨) and since Φ+ and hence ∆ are
unchanged if we replace c by some other c′ ∈ int(C∨), we may as well assume w = c.

As a first observation, note that [−α− β, α+ β]c = α+ β and hence

SP(ED(Φ))c = 2vopt + 2
∑

α,β∈Φ+

[α− β, β − α]c .

The cone C induces a partial order on Rn by x � y if y − x ∈ C. If Φ is crystallographic, then
every α ∈ Φ+ is a nonnegative integer linear combination of simple roots. Hence α � β for
α, β ∈ Φ+ if and only if β − α =

∑
γ∈∆ cγγ where cγ ∈ Z≥0. The poset (Φ+,�) is called the

(positive) root poset of Φ. Two roots α, β are incomparable if α− β as well as β −α are not
contained in C. This implies that there is some t ∈ Rn such that

SP(ED(Φ))c = t+ 2
∑

α,β∈Φ+

α,β incomparable

[α− β, β − α]c .

We note that if SP(ED(Φ))c is not a vertex, then there is some pair of incomparable roots
α, β ∈ Φ+ with ctα = ctβ.
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On the other hand, we observe that for w ∈W \ {e} and v = wvopt the corresponding vertex of
ZΦ, we have

ΓGI
ZΦ

(v)c = conv(−w∆ ∪ {0})c = conv(−w∆ ∩ Φ+)c.

Indeed, if w 6= e, then v 6= vopt. Thus v has a c-improving edge direction and all the improving
edge directions are precisely Φ+. The longest element of W is the unique w0 ∈ W with
w0Φ+ = −Φ+. In particular ww0∆ = −w∆ and the following result, whose proof we give in
Appendix A, then proves Theorem 6.10.

Theorem 6.11. Let Φ be an irreducible crystallographic root system with positive and simple
systems Φ+ ⊇ ∆ and let W be the corresponding Weyl group. If α, β ∈ Φ+ are incomparable,
then there is w ∈W with w∆ ∩ Φ+ = {α, β}.

7. Greatest-improvement and graphical neighbotopes

Theorem 1.7 insinuates that branchings for the greatest-improvement rule can be obtained in a
greedy-like fashion. Indeed the corresponding arborescence is determined once the edge directions
ED(P ) are sorted according to the cost vector c. The corresponding neighbotopes can be viewed
as solving a certain optimization problem for a fixed polytope P and varying objective function
c. In this section, we make the connection to greedy-like structures more precise.

Let G = (V,E) be an abstract graph that throughout this section we will assume to be simple
and undirected. Let c ∈ RV be node potentials. For an ordered pair of adjacent nodes (u, v)
we call cv − cu the potential difference. A branching on G is a map B : V → V such that
B(v) ∈ NbG(v) ∪ {v} and for every v ∈ V there is a k ≥ 0 with Bk(v) = Bk+1(v). The set
VB = {v : B(v) = v} is the set of sinks of the branching. The potential energy of a branching
is

c(B) :=
∑
v∈V

cB(v) − cv (12)

and the Max Potential Energy Branching is the problem of finding a branching of maximal
potential energy. A scenario that we can imagine is that V is a collection of sites in a mountainous
region where cv gives the elevation. The potential difference cu − cv is related to the energy
(coming from, say, water turbines) that can be generated by setting up a flow from v to u and
the edges E encode the admissible connections. The optimization problem is now to find the
energy-optimal routings from every node to a sink. This is a particular instance of the Maximum
Weight Branching Problem; see [28, Chapter 6.2].

A polyhedral reformulation is apparent. Continuing Example 4.1, let δ̄(B) ∈ RV be the reduced
in-degree sequence of B with δ̄(B)v := |B−1(v)| − 1. Rewriting (12) to

c(B) =
∑
v∈V
|B−1(v)|cv −

∑
v∈V

cv =
∑
v∈V

δ̄(B)vcv

shows that we are optimizing the linear function c over the graphical neighbotope

ΓG = conv{δ̄(B) : B branching of G} .
We call a branching B a greedy branching if

B(v) = argmax{cu − cv : u ∈ NbG(v) ∪ {v}} .
Note that not all branchings are greedy. Indeed for vertices v, v′ with NbG(v) = NbG(v′) the
greedy condition would force B(v) = B(v′).

Theorem 7.1. The vertices of ΓG are in bijection to greedy branchings of G.

Proof. As before, we note that the graphical neighbotope can be written as a Minkowski sum
ΓG =

∑
v ΓG(v) for

ΓG(v) := conv(eu − ev : u ∈ NbG(v) ∪ {v}) ,
which then shows that the vertices are in one-to-one correspondence with greedy branchings. �
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The greatest-improvement neighbotopes can be viewed as graphical neighbotopes with certain
restrictions on node potentials.

Proposition 7.2. Let P ⊂ Rd a polytope with graph G = (V,E). Then the greatest-improvement
neighbotope ΓGI

P is the image of ΓG under the linear projection π : RV → Rd given by π(ev) := v.

So, ΓG(P ) is an extended formulation of ΓGI
P from which an inequality description as well as the

facial structure can be recovered.

Note that greedy branchings need not be arborescences, i.e., there is not necessarily a unique
sink. For suitable node potentials, we obtain arborescences. In particular, Proposition 7.2 shows
that any node weighting of a polytope graph coming from applying a linear objective function
to each vertex will always yield an arborescence.

The structure underlying greedy branchings is that of a polymatroid (for details see [34]). Recall
a set function fG : 2V → Z≥0 is called a polymatroid if

i) f(∅) = 0,
ii) f is non-decreasing: A ⊆ B implies f(A) ≤ f(B), and
iii) f is submodular: f(A ∪B) + f(A ∩B) ≤ f(A) + f(B),

for all A,B ⊆ V . The associated polymatroid polytope is given by

Pf = {x ∈ RV≥0 : x(A) ≤ f(A) for all A ⊆ V } .
where x(A) :=

∑
v∈A xv. The polymatroid base polytope is Bf := Pf ∩ {x : x(V ) = f(V )}.

Polymatroids and polymatroid (base) polytopes generalize matroids and independence polytopes.
They were introduced by Edmonds [19], who also showed that linear functions on Pf can be
maximized by a greedy-type algorithm.

Proposition 7.3. The polytope ΓG is the polymatroid base polytope for the polymatroid

f(S) = |S|+ |NbG(S)| ,
where NbG(S) = {u ∈ V \ S : uv ∈ E for some v ∈ S}. In particular, ΓG = Bf .

Proof. It follows from the description as a Minkowski sum that ΓG is a generalized permutahedron
in the sense of [31]. Thus the submodular function is given by f(S) = max{

∑
u∈S xu : x ∈ ΓG}.

It follows that f(S) is the number of vertices v ∈ V such that S ∩ (NbG(v) ∪ {v}) 6= ∅ and this
is precisely |S|+ |NbG(S)|. �

The greedy algorithm for polymatroids [19, 34] gives us a simple combinatorial algorithm to
construct greedy branchings for given G = (V,E) and generic c ∈ RV :

(1) Let M ← ∅ be the collection of marked vertices.
(2) Let D ← ∅ be the collection of already directed vertices.
(3) If V = M , STOP. Otherwise, choose u ∈ V \M with cu maximal and M ←M ∪ {u}.
(4) if u 6∈ D, then B(u) := u and D ← D ∪ {u}.
(5) for every v ∈ NbG(u) \ (M ∪D) set B(v) := u and D ← D ∪ {v}.
(6) Repeat (3).

The algorithm also shows that if B is a greedy branching, then there is a vertex u with B(v) = u
for all v ∈ NbG(u). This is the key to recovering a greedy branching from its reduced indegree
sequence.

(1) Let M ← ∅ be the collection of marked vertices.
(2) Let D ← ∅ be the collection of already directed vertices.
(3) If V = M , STOP. Otherwise, choose u ∈ V \M with δ̄u = |NbG(u) \ (M ∪D)| and mark

u (M ←M ∪ {u}).
(4) If no u exists in step (3), choose any u ∈ V \D, and M ←M ∪ {u}.
(5) If no u exists in steps (3) and (4), then D = V , and we are done.
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(6) Otherwise, for v ∈ NbG(u) \ (M ∪D), direct v to u D ← D ∪ {v}. If u /∈ D, direct u to
itself (D ← D ∪ {u}). Return to Step (3).

Via the greedy algorithm, the u with highest weight will have all of its neighbors NbG(u) directed
towards it. Furthermore, the vertex of next highest weight will have all its neighbors towards
except those that have already been directed. Hence, so long as there exist vertices that have
not been directed towards another vertex by the algorithm, there will always exist some vertex
satisfying the conditions of step (3). After no vertex satisfying step (3) exists, all remaining
vertices that are not directed must be directed to themselves. That case is accounted for by step
(4), which iterates until D = V .

The graphical neighbotopes are instances of the hypergraphic polytopes of Benedetti et al [10];
see also [3]. A hypergraph is a collection of hyperedges H ⊆ 2V for some finite set V . The
associated hypergraph polytope is

PH =
∑
H∈H

conv{ev : v ∈ H} .

For G, we can associate the hypergraph HG = {NbG(v) : v ∈ V }. It now follows from the proof
of Theorem 7.1 that ΓG = PHG

. The vertices and faces of PH were interpreted in terms of acyclic
orientations of H. They can be translated directly to our greedy branchings.

Example 7.4 (Complete bipartite graphs). Consider the complete bipartite graph Km,n with
color classes A = [m] and B = [n]. Let c be a node potential on Km,n with corresponding greedy
branching B. Let a ∈ A and b ∈ B be the nodes that attain the maximal potential on A and
B, respectively. Let us assume that ca > cb. Then B(v) = a for all v ∈ B, B(u) = u for all
u ∈ A with cu > cb and B(u) = b otherwise. Hence the branching is completely determined by
the nodes a, b and the set S = {u ∈ A : cu > cb}. In particular, every such triple (a, b, S) can
occur. Exchanging the roles of A and B then yields the total number of greedy branchings as

m

n∑
k=1

k

(
n

k

)
+ n

m∑
k=1

k

(
m

k

)
= mn(2m−1 + 2n−1) .

Example 7.5 (Path graphs). For n ≥ 1, let Pn be the path on nodes V = {1, . . . , n} and edges
E = {{i, i+ 1} : 1 ≤ i < n}.
We may encode a branching B of Pn uniquely as a word W = W1W2 . . .Wn of length n over the
alphabet {L,R, S} where we set Wi = L if B(i) = i − 1, wi = R if B(i) = i + 1 and wi = S if
B(i) = i. Note that the only forbidden subword is RL. This allows us to count all branchings.
The number of branchings of Pn is the number of walks in the following directed graph D1 that
start at node 1 and end at node 2 after n steps:

Using the transfer matrix method [37, Ch. 4.7], one finds that the number of branchings is the
Fibonacci number F (2n).

For the greedy branchings, one further observes that the only additional forbidden subword is
SS. Hence, the number of greedy branchings of Pn is the number of walks in the following
directed graph that start at node 1 and end at node 2 after n steps:

The number of greedy branchings is given by the sequence a(n) with a(0) = 0, a(1) = 1, a(2) = 2
and a(n+ 3) = 2a(n+ 2) + a(n+ 1)− a(n) for n ≥ 0; see also [35].
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Remark 7.6. There is an obvious graphical generalization of general neighbotopes. For a given
graph G = (V,E) let η : E → R>0 be a normalization. We can define the normalized graphical
neighbotope ΓηG as the Minkowski sum of

ΓG(v) := conv( eu−evη(uv) : u ∈ NbG(v) ∪ {v}) ,

for v ∈ V . Branchings can still be found with a greedy-type algorithm that for every node v
makes the optimal choice.

Appendix A. Proof of Theorem 6.11

In this section we give a non-uniform (that is, case-by-case) proof of Theorem 6.11. Let Φ ⊂ Rn
an irreducible crystallographic root system with simple and positive systems ∆ ⊆ Φ+ = Φ∩{x :
ctx > 0}. The simple system consists of linearly independent vectors and r = |∆| is the rank of
the root system. Crystallographic root systems are completely classified: There are four infinite
families An−1, Bn, Cn, Dn for n ≥ 2 as well as sporadic instances G2, F4, E6, E7, E8, where the
subscript gives the rank; see [26, Ch. 2.8–2.10].

For G2, F4, E6, E7, and E8, the number of incomparable pairs is 2, 55, 204, 546, and 1540, re-
spectively. The claim can be checked by a computer: Let ZΦ be the zonotope associated to the
root system. If v ∈ V (ZΦ) is a vertex with improving edge directions ∆v, then NbZΦ,c(v) =
{sα(v) : α ∈ ∆v} and u = sα(v) has improving edge directions ∆u = sα(∆′). This yields a naive,
yet quite fast depth-first search algorithm with starting point v = −vopt and ∆v = ∆. Explicit
coordinates for the simple roots are given in [26, Section 2.10].

In the following we check the four infinite families An−1, Bn, Cn, and Dn.

Type An−1. A realization of the root system of type An−1 is given by Φ = {ei − ej : i, j ∈
[n], i 6= j}. For c ∈ Rn with c1 > c2 > · · · > cn, the positive system and simple system are

Φ+ = {ei − ej : 1 ≤ i < j ≤ n} and ∆ = {e1 − e2, e2 − e3, . . . , en−1 − en} .

For h = 1, . . . , n, let sh(x) = x1 + · · ·+ xh. The cone C = cone(∆) is then given by

C = {x ∈ Rn : s1(x) ≥ 0, s2(x) ≥ 0, . . . , sn−1(x) ≥ 0} .

For i, j ∈ [n], we write [i, j] := {k ∈ [n] : i ≤ k ≤ j}.

Proposition A.1 (Type An−1 incomparable pairs). Let i < j and k < l. Then

(A1) ei − ej and ek − el are incomparable if and only if [i, j] 6⊆ [k, l] and [k, l] 6⊆ [i, j].

There are precisely 2
(
n
4

)
+
(
n
3

)
pairs of incomparable positive roots.

Proof. We may assume i ≤ k. If i = k, then (ek − el) − (ei − ej) = ej − el ∈ C or el − ej ∈ C.
Hence i < k and the first nonzero coordinate of (ek − el) − (ei − ej) is negative. This shows
(ek − el)− (ei − ej) 6∈ C. Now, sh((ei − ej)− (ek − el)) < 0 for some h = 1, . . . , n− 1 and hence
(ei − ej)− (ek − el) 6∈ C if and only if i < j ≤ k < l or i < k < j < l. �

The reflection groupW associated to the An−1 root system acts on Rn by permuting coordinates.
For a permutation τ of [n] we set τ(ei) := eτ(i) for i = 1, . . . , n. In particular, τ∆ = {eτ(1) −
eτ(2), . . . , eτ(n−1) − eτ(n)} is a simple system and every simple system arises this way. Note that
eτ(i) − eτ(i+1) is a positive root if and only if τ(i) < τ(i+ 1), that is, i is an ascent of τ .

Proof of Theorem 6.11 for An−1. Let α = ei − ej and β = ek − el with i < j and k < l be
incomparable positive roots. It suffices to give a permutation τ such that τ∆ ∩ Φ+ = {α, β}:
For i < j < k < l

nn− 1 . . . l + 1 l − 1 . . . k + 1k l k − 1 . . . j + 1 i j j − 1 . . . i+ 1 i− 1 . . . 1 .
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For i < k ≤ j < l

nn− 1 . . . l + 1 l − 1 . . . j + 1 i j j − 1 . . . k + 1k l k − 1 . . . i+ 1 i− 1 . . . 1 �

Type Bn and Cn. A realization of the root system of type Bn is given by the roots ei − ej ,
ei+ej for i, j ∈ [n], i 6= j and ±e1, . . . ,±en. For c ∈ Rn with c1 > c2 > · · · > cn > 0, the positive
system and simple system are

Φ+ = {ei−ej , ei+ej : 1 ≤ i < j ≤ n}∪{e1, . . . , en} and ∆ = {e1−e2, e2−e3, . . . , en−1−en, en} .

The cone C = cone(∆) is given by

C = {x ∈ Rn : s1(x) ≥ 0, s2(x) ≥ 0, . . . , sn−1(x) ≥ 0, sn(x) ≥ 0} .

For i, j ∈ [n], we write (i, j) := {k ∈ [n] : i < k < j}.
The crystallographic root system of type Cn differs from Bn in that the roots ±ei are replaced
by ±2ei. With these modifications, the positive system and simple system are obtained from
type Bn. The associated reflection group is unchanged.

Proposition A.2 (Type Bn and Cn incomparable pairs). Let i < j and k < l. For type Bn

(B1) ek − el, ei − ej are incomparable if and only if [i, j] 6⊆ [k, l] and [k, l] 6⊆ [i, j];
(B2) ek + el, ei + ej are incomparable if and only if [i, j] ⊆ (k, l) or [k, l] ⊆ (i, j);
(B3) ek − el, ei + ej are incomparable if and only if k < i;
(B4) ek − el, ei are incomparable if and only if k < i;
(B5) ek + el, ei are incomparable if and only if i < k.

For type Cn, the cases (B4) and (B5) are replaced by

(C4) ek − el, 2ei are incomparable if and only if k < i;
(C5) ek + el, 2ei are incomparable if and only if k < i < l.

Proof.
(B1): Since sn(es−et) = 0 for all s < t, we have that ek−el, ei−ej are incomparable if and only
if they are incomparable in type An−1. The claim now follows from (A1) of Proposition A.1.
(B2): We may assume i ≤ k. If i = k, then (ek + el)− (ei+ ej) = el− ej or ej − el is in C. Hence
i < k and the first nonzero entry of (ek + el)− (ei + ej) is negative. Now sh(ei + ej − ek− el) < 0
for some h if and only if i < k < l < j.
Note that sn(ek−el−t(er+es)) = −2t < 0 for all r, s ∈ [n] and t > 0 and hence ek−el−t(er+es)
is never contained in C.
(B3): We only need to verify (ei + ej) − (ek − el) 6∈ C. This is the case if the first nonzero
coordinate is negative, which happens if and only if k < i.
(B4) and (C4): Likewise, tei − (ek − el) 6∈ C for t ∈ {1, 2} if and only if k < i.
(B5): sn(ei− (ek + el)) = −1 and hence ei− (ek + el) 6∈ C. (ek + el)− ei 6∈ C if and only if i < k.
(C5): (ek + el)− 2ei 6∈ C if and only if i < l and 2ei − (ek + el) 6∈ C if and only if k < i. �

The reflection group W associated to the Bn root system acts on Rn by signed permutations.
A signed permutation is a pair w = (t, τ), where τ is a permutation of [n] and t ∈ {−1,+1}n.
Then w acts on the standard basis as w(ei) = tieτ(i). We represent w in window notation and
write w = w1 . . . wn ∈ {1, . . . , n, 1, . . . , n}n where wi = τ(i) if ti = −1 and wi = τ(i) otherwise.
For example, t = (1,−1, 1,−1) and τ = (3, 1, 2, 4) is denoted by w = 3123.

Proof of Theorem 6.11 for Bn and Cn. Let α and β be incomparable positive roots. For each
case, we give a suitable signed permutation w such that w∆ ∩ Φ+ = {α, β}.
(B1): Let ei − ej and ek − el be incomparable with i < j and i < k < l.
For i < j < k < l

1 2 . . . i− 1 i+ 1 . . . j − 1 j i j + 1 . . . k − 1 k + 1 . . . l − 1 l k l + 1 . . . n− 1n .
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For i < k ≤ j < l

1 2 . . . i− 1 i+ 1 . . . k − 1 l k k + 1 . . . j − 1 j i j + 1 . . . l − 1 l + 1 . . . n− 1n .

(B2): For ei + ej and ek + el with i < k < l < j

1 2 . . . i− 1 i+ 1 . . . k − 1k l j − 1 j − 2 . . . l + 1 l − 1 . . . k + 1 i j̄ j + 1 . . . n− 1n .

(B3): For ek − el with k < l and ei + ej with k < i < j

1 2 . . . i− 1nn− 1 . . . l + 1k l l − 1 . . . i+ 1 i j .

(B4) and (C4): For ek − el with k < l and ei with k < i

1 2 . . . i− 1nn− 1 . . . l + 1k l l − 1 . . . i+ 1 i .

(B5) and (C5): For ek + el with k < l and ei with i < l

1 2 . . . i− 1k lnn− 1 . . . l + 1 l − 1 . . . i+ 1 i . �

Type Dn. A realization of the root system of type Dn is given by the roots ±(ei − ej) and
±(ei + ej) for 1 ≤ i < j ≤ n. For c ∈ Rn with c1 > c2 > · · · > cn > 0, the positive and simple
system are

Φ+ = {ei−ej , ei+ej : 1 ≤ i < j ≤ n} and ∆ = {e1−e2, e2−e3, . . . , en−1−en, en−1 +en} .
The cone C = cone(∆) is given by

C = {x ∈ Rn : s1(x) ≥ 0, . . . , sn−1(x) ≥ 0, sn(x) ≥ 0, sn−1(x) ≥ xn} .

Proposition A.3 (Type Dn incomparable pairs). Let i < j and k < l.

(D1) ek − el, ei − ej are incomparable if and only if [i, j] 6⊆ [k, l] and [k, l] 6⊆ [i, j];
(D2) ek + el, ei + ej are incomparable if and only if [i, j] ⊆ (k, l) or [k, l] ⊆ (i, j);
(D3) ek − el, ei + ej are incomparable if and only if k < i or j = l = n.

Proof. The cases (D1) and (D2) follow from Proposition A.2. For (D3) we again note that
sn((ek − el) − (ei + ej)) < 0. Now, x := (ei + ej) − (ek − el) 6∈ C if the first nonzero entry is
negative or sn−1(x) < xn. The former happens if and only if k < i. The latter is true if and only
if j = l = n. �

The reflection group W associated to the Dn root system acts on Rn by signed permutations
with an even number of sign changes. Thus, only those signed permutations w = w1 . . . wn ∈
{1, . . . , n, 1, . . . , n}n are permitted with an even number of barred positions.

Proof of Theorem 6.11 for Dn. (D1): Let ei − ej and ek − el with i < j and i < k < l. If n
is even, then the signed permutations (B1) have an even number of signs and should be used.
Otherwise, if n is odd and l < n, then

1 2 . . . j − 1 j i j + 1 . . . l − 1 l k l + 1 . . . n− 1n .

If l = n, then
1 2 . . . j − 1 j i j + 1 . . . n− 1nk .

(D2): For ei + ej and ek + el with 1 ≤ i < k < l < j ≤ n, if j < n, then, depending on the parity

1 2 . . . k − 1k l j − 1 j − 2 . . . k + 1 i j̄ j + 1 . . . n− 1n or

1 2 . . . k − 1k l j − 1 j − 2 . . . k + 1 i j̄ j + 1 . . . n− 1n .

If j = n, then, depending on the parity,

1 2 . . . k − 1k l j − 1 j − 2 . . . k + 1 i j̄ or

1 2 . . . k − 2k l j − 1 j − 2 . . . k + 1 k − 1 i j̄ .
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(D3): For ek − el with k < l and ei + ej with k < i < j < n

1 2 . . . i− 1n− 1 . . . k + 1k l k − 1 . . . i+ 1 ijn or

1 2 . . . i− 1n− 1 . . . k + 1k l k − 1 . . . i+ 1 ijn .

If j = l = n and i = k, then, depending on whether n is odd or not:

1, 2, . . . , n− 1, i,n or 1, 2, . . . , n− 1, i,n .

If j = l = n and i 6= k, then, depending on whether n is odd or not:

1, 2, . . . , n− 1, i,n,k or 1, 2, . . . , n− 1, i,n,k . �
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