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Abstract. We give new convergence results of Anderson acceleration for the composite max fixed point problem.
We prove that Anderson(1) and EDIIS(1) are q-linear convergent with a smaller q-factor than existing q-factors.
Moreover, we propose a smoothing approximation of the composite max function in the contractive fixed point
problem. We show that the smoothing approximation is a contraction mapping with the same fixed point as the
composite max fixed point problem. Our results rigorously confirm that the nonsmoothness does not affect the
convergence rate of Anderson acceleration method when we use the proposed smoothing approximation for the
composite max fixed point problem. Numerical results for constrained minimax problems, complementarity problems
and nonsmooth differential equations are presented to show the efficiency and good performance of the proposed
Anderson acceleration method with smoothing approximation.
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1. Introduction. In this paper, we focus on the convergence analysis of Anderson(m) and
EDIIS(m) for the following composite max fixed point problem

(1.1) u = G(u) := H(PΩ(Q(u))),

where H : Rl → Rn and Q : Rn → Rl are Lipschitz continuously differentiable functions, Ω is
a box subset of Rl, and PΩ is the projection on Ω. Problem (1.1) arises from many applications
in engineering and finance including minimax problems, complementarity problems, nonsmooth
integral equations and nonsmooth differential equations.

Anderson acceleration was originally introduced in the context of integral equations by Ander-
son in 1965 [2]. It is a class of methods for solving the fixed point problem u = G(u), where G is
a continuous function from D ⊆ Rn to D, and uses a history of search directions to improve the
convergence rate of the fixed point method

(1.2) uk+1 = G(uk).

Anderson acceleration method has been widely used in electronic structure computation [2, 6, 11,
22, 24, 25], chemistry and physics [1, 23], and specific optimization problems [13, 25]. In particular,
Anderson acceleration is designed to solve the fixed point problem when computing the Jacobian
of G is impossible or too costly. Anderson acceleration is also known as the Pilay mixing [20],
DIIS (direct inversion on iterative subspace) [14, 15, 23], nonlinear GMRES method [4, 16, 26],
and interface quasi-Newton [10, 12]. A formal description of Anderson acceleration is presented in
Algorithm 1.1 and often called Anderson(m).

Anderson(m) maintains a history of function values of G(·) at uk−mk+j , j = 0, . . . ,mk, where
mk is an algorithmic parameter that indicates the depth of the accelerated Anderson iterations.
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Algorithm 1.1 Anderson(m)

Choose u0 ∈ D and a positive integer m. Set u1 = G(u0) and F0 = G(u0)− u0.
for k = 1, 2, ... do

set Fk = G(uk)− uk;
choose mk = min{m, k};
solve

(1.3) min
∥∥∥∑mk

j=0
αjFk−mk+j

∥∥∥ s.t.
∑mk

j=0
αj = 1

to find a solution {αkj : j = 0, . . . ,mk}, and set

(1.4) uk+1 =
∑mk

j=0
αkjG(uk−mk+j).

end for

Using these function values, Anderson(m) defines a new iterate by a linear combination of the last
mk + 1 iterates, where the coefficients of the linear combination are computed at each iteration by
the convex optimization problem in (1.3). When m = 0, Anderson acceleration is the fixed point
method in (1.2), which is also known as the Picard method. In practice, each mk may be different
to maintain the acceptable conditioning of (Fk−mk+j)

mk
j=0 [25] and can be dynamically updated to

improve the performance [18]. The optimization problem (1.3) in Anderson(m) does not specify the
norm in its general form and using different norms will not affect the convergence [24]. Throughout
this paper, we consider problem (1.3) in the sense of Euclidean norm. Notice that the description
of Anderson(m) in Algorithm 1.1 is convenient for analysis, but the readers may refer to [24, 25]
and references therein for its efficient implementation.

The EDIIS(m) [14] differs from Anderson(m) by adding nonnegativity constraints in (1.3), that
is, replacing (1.3) by the following minimization problem

min

∥∥∥∥∥∥
mk∑
j=0

αjFk−mk+j

∥∥∥∥∥∥ s.t.

mk∑
j=0

αj = 1, αj ≥ 0, j = 0, . . . ,mk.

Suppose G : D → D is a contraction mapping with factor c ∈ (0, 1) in the Euclidean norm ‖ · ‖
on a closed set D ⊂ Rn, that is,

‖G(u)−G(v)‖ ≤ c‖u− v‖, ∀u, v ∈ D.

By the contraction mapping theorem [17], G has a unique fixed point u∗ ∈ D, which is the unique
solution of the system of nonlinear equations

F (u) := G(u)− u = 0.

Without loss of generality, we assume that there is B(δ, u∗) := {u ∈ Rn : ‖u− u∗‖ ≤ δ} ⊂ D with
δ > 0. For a contraction mapping G, it is known that the fixed-point method in (1.2) has q-linear
convergence rate, that is ‖uk+1 − u∗‖ ≤ c‖uk − u∗‖ holds in B(δ, u∗). However, the theoretical
convergence analysis of Anderson(m) had not been proved for a long time after it being brought
forward and widely used. The first mathematical convergence result for Anderson(m) was given by
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Toth and Kelley in 2015 [24]. Under the assumption that G is Lipschitz continuously differentiable
in D, Toth and Kelley [24] showed the r-linear convergence of Anderson(m) with r-factor ĉ ∈ (c, 1)
as follows,

‖F (uk)‖ ≤ ĉk‖F (u0)‖ and ‖uk − u∗‖ ≤
(

1 + c

1− c

)
ĉk‖u0 − u∗‖.

Without the differentiability of G, Chen and Kelley [6] showed the r-linear convergence of EDIIS(m)
with r-factor ĉ = c1/(m+1) as follows,

‖uk − u∗‖ ≤ ĉk‖u0 − u∗‖.

Moreover, Bian, Chen and Kelley [3] showed the q-linear convergence of Anderson(1) and EDIIS(1)
with q-factor (3c− c2)/(1− c) for general nonsmooth fixed point problems in a Hilbert space, and
r-linear convergence of Anderson(m) and EDIIS(m) with r-factor ĉ ∈ (c, 1) for a class of integral
equations in which the operator can be written as the sum of a smooth term and a nonsmooth
term having a sufficiently small Lipschitz constant. Zhang et al [27] proposed a globally convergent
variant of Anderson acceleration for nonsmooth fixed point problems, but did not provide a rate of
convergence. The first mathematical view to show the superiority of local convergence of Anderson
method for the discretizations of the steady Navier-Stokes equations was proved by Pollock, Rebholz
and Xiao in [19]. And the similar idea was extended to a more general fixed-point iterations by
Evans, Pollock, Rebholz, and Xiao [9]. Most recently, Pollock and Rebholz [18] showed a novel
one-step bound of Anderson method with a more general acceleration iteration, which not only
sharpens the convergence results for contractive mapping in [9], but also explains some mechanism
of Anderson acceleration for noncontractive cases. Overall, Anderson acceleration can significantly
improve the computational performance of the fixed point method in practice. We refer the readers
to [9, 11, 18, 25] and references therein for detailed discussions on its research history and practical
applications.

Throughout this paper, we suppose Ω is defined by

(1.5) Ω = {w ∈ Rl |w ≤ w ≤ w}

with w ∈ {{−∞} ∪ R}l, w ∈ {{∞} ∪ R}l and w < w. Then, PΩ can be expressed by the following
composite max form

(1.6) PΩ(w) = argminv∈Ω‖v − w‖2 = max{w − w, 0}+ w −max{w − w, 0},

where “max” means componentwise. The formulation of PΩ in (1.6) will play a key role in the
analysis of this paper. Here we declare that (−∞) − a = −∞ and a − (∞) = −∞ for any a ∈ R.
When Ω = Rl+ := {w ∈ Rl |w ≥ 0}, the expression of PΩ in (1.6) is reduced to

PΩ(w) = max{−w, 0}+ w.

In particular, if wi = −∞ and wi = ∞ for all i ∈ {1, . . . , l}, then G = H(Q(u)) is Lipschitz
continuously differentiable on D, which is the case considered in [24]. Thus, we focus on the case
that there is at least an i ∈ {1, . . . , l} such that −∞ < wi or wi < ∞, which means that G is
nonsmooth on D in general.

The contributions of this paper are new convergence results of Anderson acceleration method
for composite max fixed point problem (1.1). In section 2, we prove that Anderson(1) and EDIIS(1)

are q-linear convergent for problem (1.1) with q-factor ĉ ∈ ( 2c−c2
1−c , 1), which can be strictly smaller
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than the existing q-factor (3c − c2)/(1 − c) proved in [3, 24]. In section 3, we give the contrac-
tion consistent properties between G and its smoothing approximations. Then, we propose a new
smoothing approximation G(·, µ) of G. We show that there is µ̄ > 0, such that G(·, µ) is continuously
differentiable, contractive on D, and u∗ = G(u∗, µ) = G(u∗), for any fixed µ ∈ (0, µ̄]. To improve
the ability and performance of Anderson acceleration method for solving problem (1.1), we propose
a smoothing Anderson acceleration (s-Anderson(m)) in Algorithm 3.1 with the proposed smooth-
ing function of G and updating scheme for smoothing parameters. We prove that s-Anderson(m)
for (1.1) owns the same r-linear convergence rate as Anderson(m) for continuously differentiable
problems. In section 4, we use numerical examples from constrained minimax problems, pricing
American options and nonsmooth Dirichlet problem to illustrate our theoretical results. Prelim-
inary numerical results show that s-Anderson(m) can efficiently solve the nonsmooth fixed point
problem (1.1) and outperform Anderson(m) in most cases.

2. q-linear convergence of Anderson(1) and EDIIS(1). Formk = 1, the optimal solution
of problem (1.3) owns the closed form (1− αk, αk)T with

(2.1) αk =
FT
k (Fk − Fk−1)

‖Fk − Fk−1‖2

and the iterate can be expressed as

(2.2) uk+1 = (1− αk)G(uk) + αkG(uk−1).

In the remainder of this paper, we need the following assumption.

Assumption 2.1. Functions Q and H in (1.1) satisfy the following conditions.
(i) Q is Lipschitz continuously differentiable on D with Lipschitz constant cQ.

(ii) H is Lipschitz continuously differentiable on an open set DH containing Ω as a subset with
Lipschitz constant cH .

(iii) c := cHcQ < 1.

Note that the Lipschitz continuous differentiability ofQ andH cannot imply the differentiability
of G on D due to the existence of projection operator PΩ in its formulation. Since PΩ is Lipschitz
continuous with Lipschitz constant 1, from

‖H(PΩ(Q(u)))−H(PΩ(Q(v)))‖ ≤cH‖PΩ(Q(u))− PΩ(Q(v))‖
≤cH‖Q(u)−Q(v)‖ ≤ cHcQ‖u− v‖,

we find that G in (1.1) is a contraction mapping on D with factor c = cHcQ under Assumption 2.1.
Then, it gives

(2.3) (1− c)‖u− u∗‖ ≤ ‖F (u)‖ ≤ (1 + c)‖u− u∗‖, ∀u ∈ D.

The following theorem shows that the local q-linear convergence factor of Anderson(1) and

EDIIS(1) can be improved to any ĉ ∈ ( 2c−c2
1−c , 1) for (1.1), which can be strictly smaller than the

factor 3c−c2
1−c given in [3, 24].

Theorem 2.1. Let {uk} be the sequence generated by Anderson(1) for (1.1). Suppose Assump-

tion 2.1 holds and c̄ = 2c−c2
1−c < 1. For any ĉ ∈ (c̄, 1), if u0 is sufficiently close to u∗, then {uk}

converges to u∗ q-linearly with factor ĉ, i.e.

(2.4) ‖F (uk+1)‖ ≤ ĉ‖F (uk)‖, k = 0, 1, . . . .

This manuscript is for review purposes only.
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Proof. Give ε > 0. Reduce δ > 0 if necessary such that δ ≤ ε and B(δ, u∗) ⊆ D. Since
c ≤ c̄ < ĉ, (2.4) is trivially true for k = 0. Then, we prove (2.4) by induction and assume it holds
for 0 ≤ k ≤ K. Let

0 < % ≤ min{1, (wi − wi)/3 : i = 1, 2, . . . , l}.

Here we declare that wi − wi =∞ if wi =∞ or/and wi = −∞.
By (2.1), we have

(2.5) |αk| ≤
‖F (uk)‖

‖F (uk)− F (uk−1)‖
and |1− αk| ≤

‖F (uk−1)‖
‖F (uk)− F (uk−1)‖

, ∀k.

Similar to the analysis in [3, Theorem 1.3] and by the hypothesis in (2.4) for 0 ≤ k ≤ K, we
have that

(2.6) |αk| ≤
ĉ

1− ĉ
and ‖uk − u∗‖ ≤

‖F (uk)‖
1− c

≤ ĉk(1 + c)‖u0 − u∗‖
1− c

.

Then,

‖uK+1 − u∗‖ =‖(1− αK)G(uK) + αKG(uK−1)−G(u∗)‖

≤c|1− αK |‖uK − u∗‖+ c|αK |‖uK−1 − u∗‖ ≤
2c(1 + c)ĉK

(1− c)(1− ĉ)
‖u0 − u∗‖.

Similarly,

‖(1− αK)uK + αKuK−1 − u∗‖ ≤
2(1 + c)ĉK

(1− c)(1− ĉ)
‖u0 − u∗‖.

Thus, there exists δ0 > 0 such that if u0 ∈ B(δ0, u
∗), then

uk ∈ B(δ, u∗), k = 0, . . . ,K + 1 and (1− αK)uK + αKuK−1 ∈ B(δ, u∗).

Now we estimate ‖F (uK+1)‖ by using

(2.7) ‖F (uK+1)‖ = ‖G(uK+1)− uK+1‖ ≤ ‖AK‖+ ‖BK‖,

where

AK = G(uK+1)−G((1− αK)uK + αKuK−1), BK = G((1− αK)uK + αKuK−1)− uK+1.

The estimate of Ak is straightforward as it is in [3, 6, 24], which gives

(2.8) ‖AK‖ ≤ c‖(1− αK)(G(uK)− uK) + αK(G(uK−1)− uK−1)‖ ≤ c‖F (uK)‖.

Now, we estimate ‖BK‖. First, we note that ψ(t) =


max{0, t} if |t| > %

(t+ %)2

4%
if |t| ≤ %

is a smoothing approx-

imation of max{t, 0}. Then, by (1.6),

Φ(w) = Ψ(w − w) + w −Ψ(w − w)

This manuscript is for review purposes only.
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is a smoothing approximation of PΩ(w), where

Ψ(v) = (ψ(v1), . . . , ψ(vl))
T.

By virtue of the value of %, for any i ∈ {1, . . . , l} and wi ∈ R, at most one of |wi − wi| ≤ % and
|wi − wi| ≤ % holds. Then, since |ψ′(t)| ≤ 1, ∀t ∈ R, for any w, w̃ ∈ Rl, we obtain

(2.9) ‖Φ(w)− Φ(w̃)‖ ≤ 2‖w − w̃‖.

Next, recalling the definition of ψ, we have

max{t, 0} − ψ(t) =

{
0 if |t| > %

− (%− |t|)2/4% if |t| ≤ %,

which implies the absolute value and Lipschitz constant of max{t, 0}−ψ(t) on R are upper bounded
by %/4 and 1/2, respectively. Then, for any w, w̃ ∈ Rl, we have

‖PΩ(w)− Φ(w)‖ ≤
√
l%/4,(2.10)

‖PΩ(w)− Φ(w)− (PΩ(w̃)− Φ(w̃))‖ ≤ 1

2
‖w − w̃‖.(2.11)

Denote
GS(u) = H(Φ(Q(u))) and GN (u) = G(u)−GS(u).

Then from the definition of uK+1 in (2.2), we have

(2.12) ‖BK‖ ≤ ‖MK‖+ ‖NK‖,

with
MK = GS((1− αK)uK + αKuK−1)− (1− αK)GS(uK)− αKGS(uK−1)

and
NK = GN ((1− αK)uK + αKuK−1)− (1− αK)GN (uK)− αKGN (uK−1).

Notice that ψ is Lipschitz continuously differentiable on R. By the Lipschitz continuous differ-
entiability of Q and H, GS is Lipschitz continuously differentiable on B(δ, u∗), which inspires us to
estimate Mk exactly by the same way as in [24, Corollary 2.5] to get

(2.13) ‖Mk‖ ≤
γ|αK ||1− αK |‖uK − uK−1‖2

2
≤ γ‖F (uK−1)‖

2(1− c)2
‖F (uK)‖ ≤ γ(1 + c)ε

2(1− c)2
‖F (uK)‖,

where γ is the Lipschitz constant of G′S on B(δ, u∗) and we use ‖F (uK−1)‖ ≤ (1 + c)‖uK−1−u∗‖ ≤
(1 + c)δ ≤ (1 + c)ε in the last inequality.

The final stage of this proof is to evaluate ‖NK‖, which is the main part in this proof.
To do this, the first thing is to evaluate the Lispchitz constant of GN around u∗. For any

u, v ∈ B(δ, u∗), by the Lipschitz continuous differentiability of H and the mean value theorem for a
vector-valued function, we have

‖GN (u)−GN (v)‖ = ‖H(PΩ(Q(u)))−H(Φ(Q(u)))−H(PΩ(Q(v))) +H(Φ(Q(v)))‖

=

∥∥∥∥(∫ 1

0

H ′(ξ̂(t))dt

)
(PΩ(Q(u))− PΩ(Q(v)))−

(∫ 1

0

H ′(ξ̄(t))dt

)
(Φ(Q(u))− Φ(Q(v)))

∥∥∥∥ ,

This manuscript is for review purposes only.
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where ξ̂(t) = tPΩ(Q(v)) + (1− t)PΩ(Q(u)) and ξ̄(t) = tΦ(Q(v)) + (1− t)Φ(Q(u)). Denote

G1
N =

(∫ 1

0

H ′(ξ̂(t))dt

)
(PΩ(Q(u))− PΩ(Q(v)))−

(∫ 1

0

H ′(ξ̄(t))dt

)
(PΩ(Q(u))− PΩ(Q(v))),

G2
N =

(∫ 1

0

H ′(ξ̄(t))dt

)
(PΩ(Q(u))− PΩ(Q(v)))−

(∫ 1

0

H ′(ξ̄(t))dt

)
(Φ(Q(u))− Φ(Q(v)),

then
‖GN (u)−GN (v)‖ ≤ ‖G1

N‖+ ‖G2
N‖.

By (2.9), (2.10), and the definitions of ξ̂(t) and ξ̄(t), for any t ∈ [0, 1], it holds

(2.14) ‖ξ̂(t)− ξ̄(t)‖ ≤ ‖PΩ(Q(v))− Φ(Q(v))‖+ ‖PΩ(Q(u))− Φ(Q(u))‖ ≤
√
l% / 2 .

Due to the convexity of Ω, ξ̂(t) ∈ Ω for all t ∈ [0, 1]. Then, by (2.14), we can suppose ξ̄(t) ∈ DH for

all t ∈ [0, 1] by reducing % if necessary. Moreover, since u, v ∈ B(δ, u∗), ξ̄(t) and ξ̂(t) are bounded
for all t ∈ [0, 1]. Then, using the Lipschitz continuous differentiability of H, there exists θ > 0 such
that it holds ∫ 1

0

∥∥∥H ′(ξ̂(t))−H ′(ξ̄(t))∥∥∥dt ≤ θ max
0≤t≤1

‖ξ̂(t)− ξ̄(t)‖,

combining which with (2.14) gives

‖G1
N‖ ≤

(∫ 1

0

∥∥∥H ′(ξ̂(t))−H ′(ξ̄(t))∥∥∥dt

)
‖PΩ(Q(u))− PΩ(Q(v))‖ ≤

( √
l%θcQ

2

)
‖u− v‖.

Thus, by reducing % if necessary, we obtain

(2.15) ‖G1
N‖ ≤ ε‖u− v‖.

To evaluate G2
N , by (2.11) and ξ̄(t) ∈ DH for all t ∈ [0, 1], we have

(2.16)
‖G2

N‖ ≤
(∫ 1

0

‖H ′(ξ̄(t))‖dt
)
‖PΩ(Q(u))− Φ(Q(u))− (PΩ(Q(v))− Φ(Q(v)))‖

≤1

2
cHcQ‖u− v‖ =

1

2
c‖u− v‖.

Hence, (2.16) together with (2.15) gives that the Lipschitz constant ofGN around u∗ can be bounded
by 1

2c+ ε. Using it to NK , we have

(2.17)
‖NK‖ =‖GN (uK − αK(uK − uK−1))−GN (uK) + αK(GN (uK)−GN (uK−1))‖

≤(
1

2
c+ ε)2|αK |‖uK − uK−1‖.

Then, (2.5) and (2.17) imply

(2.18) ‖NK‖ ≤
c+ 2ε

1− c
‖F (uK)‖.
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We obtain from (2.7), (2.8), (2.12), (2.13) and (2.18) that

‖F (uK+1)‖ ≤ (c̄+ ιε) ‖F (uK)‖

with ι = γ(1+c)
2(1−c)2 + 2

1−c . Due to the arbitrariness of ε ∈ (0, 1), the estimation in (2.4) holds for

k = K + 1 by reducing ε if necessary so that ιε ≤ ĉ− c̄. This completes the proof.

The important technique in the proof of Theorem 2.1 is the decomposition method of F (uk+1),
especially the structure and analysis of Nk, which reduces the Lipschitz constant of the nonosmooth
part of Bk by half.

In EDIIS(1), αk is chosen as the minimizer of the optimization problem

min
1

2
‖(1− α)Fk + αFk−1‖2 , s.t. 0 ≤ α ≤ 1.

This is a convex optimization problem and its solution αk can be expressed by the formulation with
the middle operator as

αk = mid

{
0,
FT
k (Fk − Fk−1)

‖Fk−1 − Fk‖2
, 1

}
1.

Following the proof of Theorem 2.1, it is clear that (2.13) and (2.18) hold for αk = 0 and αk = 1,
which are the points that we only need to check for the EDIIS(1) with respect to Anderson(1).
Thus, we have the following statement.

Corollary 2.2. Suppose that the assumptions of Theorem 2.1 hold. Then the sequence {uk}
generated by EDIIS(1) satisfies (2.4).

Since the results in Theorem 2.1 and Corollary 2.2 are local convergence results of Anderson(1)
and EDIIS(1), the Lipschitz continuous differentiability of Q and H around u∗ and PΩ(Q(u∗)) is
enough to guarantee these statements.

3. Anderson acceleration method with smoothing approximation.

3.1. Smoothing approximation. In this subsection, we introduce some smoothing approx-
imations of the nonsmooth contraction mapping G for finding its fixed point. For a function
ω : Rn × (0, 1] → Rn, ω′(y, µ) always denotes the derivative of ω with respect to y for fixed
µ ∈ (0, 1] in what follows. We define a smoothing function of max{t, 0} at first.

Definition 3.1. [5] We call ψ : R × (0, 1] → R a smoothing function of max{t, 0} in R, if
ψ(·, µ) is continuously differentiable in R for any fixed µ > 0, and the following conditions hold.

(i) There is a κψ > 0 such that for any t ∈ R and µ ∈ (0, 1], |ψ(t, µ)−max{t, 0}| ≤ κψµ.
(ii) For any t ∈ R, it holds {lims→t µ↓0 ψ

′(s, µ)} ⊆ ∂ (max{t, 0}), where ∂ indicates the Clarke
subdifferential [8].

Definition 3.1-(i) implies that lims→t µ↓0 ψ(s, µ) = max{t, 0} and Definition 3.1-(ii) implies the
gradient consistency. Smoothing functions for the max function have been studied in numerical
methods for optimization and differential equations [5]. Four widely used smoothing functions of

1mid(0, a, 1) =

 0, a < 0
a, a ∈ [0, 1]
1, a > 1.
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max{t, 0} are as follows:

(3.1)

ψ1(t, µ) = t+ µ ln(1 + e−
t
µ ), ψ2(t, µ) =

1

2
(t+

√
t2 + 4µ2),

ψ3(t, µ) =


max{0, t} if |t| > µ

(t+ µ)2

4µ
if |t| ≤ µ,

ψ4(t, µ) =

t+
µ

2
e−

t
µ if t > 0

µ

2
e
t
µ if t ≤ 0.

Let ψ be a smoothing function of max{t, 0}. For v ∈ Rl, set

(3.2) Φ(v, µ) = (φ1(v1, µ), φ2(v2, µ), . . . , φl(vl, µ))T ,

where

(3.3) φi(t, µ) = ψ(wi − t, µ) + t− ψ(t− wi, µ), i = 1, 2, . . . , l.

It is clear that Φ(·, µ) is continuously differentiable on Rl for any fixed µ ∈ (0, 1], and by (1.6), we
have

(3.4) lim
s→t µ↓0

φi(s, µ) = P[wi,wi]
(t) and |φi(t, µ)− P[wi,wi]

(t)| ≤ 2κψµ, ∀t ∈ R, µ ∈ (0, 1].

Then, since wi < wi for all i = 1, 2, . . . , l, we obtain

(3.5)



lim
s→t,µ↓0

φ′i(s, µ) = {0} if t < wi or t > wi

lim
s→t,µ↓0

φ′i(s, µ) = {1} if wi < t < wi{
lim

s→t,µ↓0
φ′i(s, µ)

}
⊆ [0, 1] if t = wi or t = wi.

Proposition 3.2. Let ψ be a smoothing function of max{t, 0} with parameter κψ in Definition

3.1-(i). Suppose Assumption 2.1 holds and Ω + B(2κψ
√
l,0) ⊆ DH , then the function

(3.6) G(u, µ) = H(Φ(Q(u), µ))

owns the following properties.
(i) G(·, µ) is continuously differentiable on D for any fixed µ ∈ (0, 1].
(ii) There is a κG > 0 such that for any u ∈ D and µ ∈ (0, 1], ‖G(u, µ)−G(u)‖ ≤ κGµ.
(iii) For any u ∈ D, lim supz→u,µ↓0 ‖G′(z, µ)‖ ≤ c.
(iv) For any cS ∈ (c, 1), there exists µ̂ ∈ (0, 1] such that for any fixed µ ∈ (0, µ̂], ‖G′(u, µ)‖ ≤ cS,

∀u ∈ D, which implies that G(·, µ) is a contraction mapping on D with factor cS, i.e.

(3.7) ‖G(u, µ)− G(v, µ)‖ ≤ cS‖u− v‖, for all u, v ∈ D, µ ∈ (0, µ̂].

(v) Let uµ be a fixed point of G(·, µ), then ‖uµ − u∗‖ ≤
(
κG
1−c

)
µ, which further implies

limµ→0 uµ = u∗.
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Proof. From (3.4), we can claim that

(3.8) ‖Φ(Q(u), µ)− PΩ(Q(u))‖ ≤ 2κψ
√
lµ.

Since Ω + B(2κψ
√
l,0) ⊆ DH , by the continuous differentiability of Q, H and Φ(·, µ), (i) and (ii)

hold with κG = 2cHκψ
√
l.

Note that

(3.9) G′(z, µ) = H ′(w)w=Φ(Q(z),µ)Φ
′(v, µ)v=Q(z)Q

′(z).

Recalling (3.5) and the definition of Φ in (3.2), we get

(3.10) ‖Φ′(v, µ)v=Q(z)‖ = ‖diag(φ′i(vi, µ)vi=Qi(z))‖ ≤ 1.

Then, the continuous differentiability of H and Q combining with the estimations in (3.8), (3.9)
and (3.10) gives that

lim sup
z→u,µ↓0

‖G′(z, µ)‖ ≤ ‖H ′(w)w=PΩ(Q(u))‖‖Q′(u)‖ ≤ cHcQ = c,

which guarantees items (iii) and (iv).
Since uµ and u∗ are the fixed points of G(·, µ) and G on D, respectively, by (ii), we have

‖uµ − u∗‖ = ‖G(uµ, µ)−G(u∗)‖ ≤ ‖G(uµ, µ)−G(uµ)‖+ ‖G(uµ)−G(u∗)‖ ≤ κGµ+ c‖uµ − u∗‖,

which gives the results in (v) by simple deduction. We complete the proof.

If G satisfies Assumption 2.1, Proposition 3.2-(iv) says that its smoothing approximations in
(3.6) also own the contractive property when µ is sufficiently small. Inspired by the proof of
Proposition 3.2, if uk is an approximate fixed point of G(u, µk) with accuracy tolerance εk, i.e.
‖G(uk, µk) − uk‖ ≤ εk, then we also have limk→∞ uk = u∗, if limk→∞ µk = 0 and limk→∞ εk = 0.
Moreover, the error estimation in Proposition 3.2-(v) holds always no matter G(·, µ) is contractive
or not. Proposition 3.2-(v) also gives an upper bound of the error on the fixed point of G and its
smoothing approximation, which is defined by the parameter κG coming from the structure of the
smoothing approximation function and the contraction factor of G.

Remark 3.1. Following the proof of Proposition 3.2, condition Ω +B(2κψ
√
l,0) ⊆ DH is only

used to guarantee Φ(Q(u), µ) ∈ DH for all u ∈ D and µ ∈ (0, 1]. So, the statements (i) and (ii) in
Proposition 3.2 hold for any µ ∈ (0, µ̃] with parameter µ̃ ∈ (0, 1] satisfying Ω+B(2κψ

√
lµ̃,0) ⊆ DH .

3.2. A modified Anderson(m) algorithm. In this subsection, we will propose an Ander-
son acceleration algorithm for the nonsmooth fixed point problem (1.1) based on the smoothing
approximation method. At first, we study the new smoothing function of max{t, 0} as follows,
which has more desirable properties for solving (1.1):

(3.11) ψ(t, µ) =



0 if t ≤ 0

t2

2µ
if 0 < t ≤ µ

1

4
(t− µ)2 + t− 1

2
µ if µ < t ≤ µ+

√
µ

− 1

4
(t− µ− 2

√
µ)2 + t if µ+

√
µ < t ≤ µ+ 2

√
µ

t if t > µ+ 2
√
µ.
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Fig. 3.1: Smoothing functions of max{t, 0}: (a) ψ(t, µ) in (3.11) with different values of µ; (b)
max{t, 0}, ψ(t, µ) in (3.11) and the four smoothing functions ψi(t, µ) in (3.1) with µ = 0.3.

Fig. 3.1(a) shows the smoothing function ψ(·, µ) in (3.11) with different values of µ, while Fig.
3.1(b) shows the relationships of max{t, 0} and its smoothing functions defined in (3.1) and (3.11).
Since ψ in (3.11) is a smoothing function of max{t, 0} with Definition 3.1, the results in Proposition
3.2 also holds for G(u, µ) defined in (3.6) with ψ in (3.11). In what follows, we will present some
more desirable properties of ψ in (3.11).

Proposition 3.3. Function ψ(t, µ) in (3.11) is continuously differentiable with respect to t for
any fixed µ ∈ (0, 1] and satisfies the following properties.

(i) |ψ(t, µ)−max{t, 0}| ≤ 1
2µ, for any t ∈ R and µ ∈ (0, 1].

(ii) ψ(t, µ) = max{t, 0} if t ≤ 0 or t ≥ µ+ 2
√
µ.

(iii) For any µ ∈ (0, 1], ψ′(t, µ) = 0 if t ≤ 0, 0 ≤ ψ′(t, µ) ≤ 1 + 1
2

√
µ if 0 < t < µ + 2

√
µ, and

ψ′(t, µ) = 1 if t ≥ µ+ 2
√
µ.

Proof. By the definition of ψ in (3.11), we obtain

|ψ(t, µ)−max{t, 0}| =



0 if t ≤ 0

|t2/2µ− t| ≤ µ/2 if 0 < t ≤ µ
|(t− µ)2/4− µ/2| ≤ µ/2 if µ < t ≤ µ+

√
µ

(t− µ− 2
√
µ)2/4 ≤ µ/4 if µ+

√
µ < t ≤ µ+ 2

√
µ

0 if t > µ+ 2
√
µ,

which implies the statements in (i) and (ii).
By straightforward calculation, we can verify that ψ(t, µ) is continuously differentiable with

respect to t for any fixed µ ∈ (0, 1] and the estimation in (iii) holds.

By Proposition 3.3-(ii), it holds that for any fixed t ∈ R, there exists µ̄ > 0 such that ψ(t, µ) =
max{t, 0}, ∀µ ∈ (0, µ̄], which is the main advantage of ψ in (3.11) compared with the other four
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smoothing functions of max{t, 0} in (3.1). Following the proof of Proposition 3.3, we can further
obtain the following properties of φi in (3.3) with ψ in (3.11).

Proposition 3.4. For any fixed µ ∈ (0, 1], functions φi(·, µ) in (3.3) with ψ in (3.11), i =
1, 2, . . . , l, are continuously differentiable and satisfy the following properties:

(i) |φi(t, µ)− P[wi,wi]
(t)| ≤ 1

2µ, for any t ∈ R;
(ii) φi(t, µ) = P[wi,wi]

(t) if t ≤ wi − µ− 2
√
µ or wi ≤ t ≤ wi or t ≥ wi + µ+ 2

√
µ;

(iii) |φ′i(t, µ)| ≤ 1, for any t ∈ R.

Proof. By Proposition 3.3-(ii), we have

ψ(wi − t, µ) = max{wi − t, 0} if t ≥ wi or t ≤ wi − µ− 2
√
µ,

ψ(t− wi, µ) = max{t− wi, 0} if t ≤ wi or t ≥ wi + µ+ 2
√
µ.

Then, for any µ ∈ (0, 1] and t ∈ R, at most one of ψ(wi− t, µ) = max{wi− t, 0} and ψ(t−wi, µ) =
max{t − wi, 0} holds. Then, the results (i) and (ii) in Proposition 3.3 imply items (i) and (ii) in
this proposition.

In what follows, we consider the estimation in item (iii). From (3.11), we have

(3.12)

|φ′i(t, µ)| =|ψ′(wi − t, µ) + 1− ψ′(t− wi, µ)|

=



0 if t ≤ wi − µ− 2
√
µ

|wi − t− µ− 2
√
µ|/2 ≤ √µ/2 if wi − µ− 2

√
µ ≤ t < wi − µ−

√
µ

|t+ µ− wi|/2 ≤
√
µ/2 if wi − µ−

√
µ < t < wi − µ

|t− wi + µ|/µ ≤ 1 if wi − µ ≤ t < wi

1 if wi ≤ t < wi

|µ+ wi − t|/µ ≤ 1 if wi ≤ t < wi + µ

|t− wi − µ|/2 ≤
√
µ/2 if wi + µ ≤ t < wi + µ+

√
µ

|t− wi − µ− 2
√
µ|/2 ≤ √µ/2 if wi + µ+

√
µ ≤ t < wi + µ+ 2

√
µ

0 if t ≥ wi + µ+ 2
√
µ.

Thus, (iii) holds.

In what follows, we will use the smoothing function of max{t, 0} in (3.11) to construct a
smoothing approximation of PΩ(v) on Rl, which is also with the formulation in (3.2). Then, we can
give a smoothing approximation of G in (1.1) by the formulation of (3.6) with (3.11).

Set $1 = min{3, wi − Qi(u∗) : i ∈ {i : Qi(u
∗) < wi}}, $2 = min{3, Qi(u∗) − wi : i ∈ {i :

Qi(u
∗) > wi}}, and by Assumption 2.1-(ii), denote η ∈ (0, 1] the parameter such that

(3.13) Ω + B(
√
lη/2,0) ⊆ DH .

Then, we define parameter µ̄ by

(3.14) µ̄ = min{η, ($1/3)2, ($2/3)2}.

Theorem 3.5. Suppose Assumption 2.1 holds. Besides the properties in Proposition 3.2, func-
tion G(u, µ) in (3.6) with ψ defined in (3.11) owns the following properties.

(i) For any fixed µ ∈ (0, η], G(·, µ) is a contractive mapping on D with contraction factor no
larger than c in Assumption 2.1.

This manuscript is for review purposes only.



13

(ii) ‖G(u, µ)−G(u)‖ ≤ κµ for all u ∈ D and µ ∈ (0, η] with κ = cH
√
l/2;

(iii) G(u∗, µ) = G(u∗) = u∗, ∀µ ∈ (0, µ̄], where µ̄ is defined by (3.14).

Proof. By Proposition 3.4-(i), it holds

(3.15) ‖Φ(Q(u), µ)− PΩ(Q(u))‖ ≤
√
lµ/2.

Then, Φ(Q(u), µ) ∈ DH for all u ∈ D and µ ∈ (0, η] can be guaranteed by the condition Ω +
B(
√
lη/2,0) ⊆ DH .
(i) Using the Lipschitz property of H and Q again, for any u, v ∈ D and µ ∈ (0, η], we obtain

‖G(u, µ)− G(v, µ)‖ ≤cH‖Φ(Q(u), µ)− Φ(Q(v), µ)‖
≤cH‖Q(u)−Q(v)‖ ≤ cHcQ‖u− v‖ = c‖u− v‖,

where the second inequality follows from Proposition 3.4-(iii). Thus, for any µ ∈ (0, η], G(u, µ) is a
contractive mapping on D with factor no larger than c.

(ii) By the Lipschitz property of H on DH and Φ(Q(u), µ) ∈ DH for all u ∈ D and µ ∈ (0, η],
it holds

‖G(u, µ)−G(u)‖ =‖H(Φ(Q(u), µ))−H(max{Q(u), 0})‖
≤cH‖Φ(Q(u), µ)−max{Q(u), 0}‖ ≤ κµ,

where the last inequality follows from (3.15) with κ =
√
lcH/2.

(iii) Denote I1 = {i : Qi(u
∗) < wi}, I2 = {i : wi ≤ Qi(u

∗) ≤ wi} and I3 = {i : Qi(u
∗) > wi}.

First, we can easily find that

φi(Qi(u
∗), µ) = Qi(u

∗) = P[wi,wi]
(Qi(u

∗)), ∀i ∈ I2.

Next, for i ∈ I1, by the definition of $1 and µ̄ ≤ ($1/3)2 ≤ 1, we have

Qi(u
∗) ≤ wi −$1 = wi − 3

√
µ̄ ≤ wi − µ− 2

√
µ, ∀i ∈ I1, 0 < µ ≤ µ̄,

by Proposition 3.4-(ii), which implies

(3.16) φi(Qi(u
∗), µ) = P[wi,wi]

(Qi(u
∗)), ∀i ∈ I1, 0 < µ ≤ µ̄.

Similarly, for i ∈ I3, we obtain

Qi(u
∗) ≥ wi + µ+ 2

√
µ, ∀i ∈ I3, 0 < µ ≤ µ̄,

which gives (3.16) for i ∈ I3. Thus, for any µ ∈ (0, µ̄], we have Φ(Q(u∗), µ) = PΩ(Q(u∗)) and thus
G(u∗, µ) = G(u∗) = u∗. We complete the proof.

Inspired by Theorem 3.5-(iii), when µ ≤ µ̄ with µ̄ defined in (3.14), u∗ is also the fixed point
of G(u, µ), and from Theorem 3.5-(i), we further have

(3.17) (1− c)‖u− u∗‖ ≤ ‖F(u, µ)‖ ≤ (1 + c)‖u− u∗‖, ∀u ∈ D, µ ∈ (0, µ̄],

where F(u, µ) = G(u, µ)− u.

Remark 3.2. Proposition 3.4-(ii) shows that G(u, µ) = G(u), for any µ ∈ (0, 1] and u ∈ D
satisfying Q(u) ∈ Ω. Thus, if u∗ is the fixed point of G(·, µ) for a given µ ∈ (0, 1] and Q(u∗) ∈ Ω,
then we can justify that u∗ is also the fixed point of G.
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Algorithm 3.1 s-Anderson(m)

Choose u0 ∈ D and a positive integer m.
Set parameters σ1, σ2 ∈ (0, 1), γ > 0 and a sufficiently small positive parameter ε < γ‖F (u0)‖2.
Let F0 = G(u0)− u0, µ0 = γ‖F0‖2, F0 = G(u0, µ0)− u0 and u1 = G(u0, µ0).
for k = 1, 2, ... do

set Fk = G(uk)− uk,
if ‖Fk‖ ≤ σ1‖Fk−1‖, then let

µk = µk−1,

otherwise, let
µk = max{ε, σ2µk−1};

set Fk = G(uk, µk)− uk;
choose mk = min{m, k};
solve

(3.18) min

∥∥∥∥∥∥
mk∑
j=0

αjFk−mk+j

∥∥∥∥∥∥ s.t.

mk∑
j=0

αj = 1

to find a solution {αkj : j = 0, . . . ,mk}, and set

(3.19) uk+1 =

mk∑
j=0

αkjG(uk−mk+j , µk−mk+j);

end for

By Theorem 3.5, when we use (3.6) with (3.11) as the smoothing approximation of G, G(·, µ)
is contractive and uµ = u∗ for µ ∈ (0, µ̄], where uµ is the fixed point of G(·, µ). Then, we can apply
Anderson(m) or EDIIS(m) to find a fixed point of G by using G(·, µ) in the algorithms. If u0 is
sufficiently close to u∗, then µ0 := γ‖F (u0)‖2 < µ̄. In such case, we can let µk := µ0 for all k.
However, u∗ is unknown, and the value of µ̄ in (3.14) is often difficult to be evaluated in practice.
Thus, we use an updating scheme on µk in Algorithm 3.1 to improve the ability and performance
of the Anderson acceleration methods for nonsmooth fixed point problems. In s-Anderson(m), we
replace G(u) in Anderson(m) by G(u, µ) and update µ step by step. The strategy for updating µk
in Algorithm 3.1 is based on the reduction of the norms of the residual function at uk and uk−1. If
‖Fk‖ ≤ σ1‖Fk−1‖, then it means that using µk−1 can reduce the norm of the residual function at uk
sufficiently. Hence we let µk = µk−1 for the next iteration. Otherwise, we set µk = max{ε, σ2µk−1}.

Same as the condition on the coefficients {αkj : j = 1, . . . ,mk} used in [6, 24], we need the
following assumption on them in (3.18).

Assumption 3.1. There exists an Mα ≥ 1 such that
∑mk
j=0 |αkj | ≤Mα holds for all k ≥ 1.

Before proving the local r-linear convergence of s-Anderson(m), we need predefine some neces-
sary parameters used in the forthcoming proof and give some preliminary analysis.

• a: Combining (3.9), (3.10) with the Lipschitz property of Q′(u), diag(φ′(Qi(u), µ)) and
H ′(Φ(Q(u), µ)) onD, there exists a constant a > 0 such that G′(u, µ) is Lipschitz continuous
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on B(δ, u∗) with constant a. This means,

(3.20) G(u, µ) = G(u∗, µ) + G′(u∗, µ)(u− u∗) + ∆u, ∀u ∈ B(δ, u∗), µ ∈ [ε, η],

where ‖∆u‖ ≤ 1
2a‖u− u

∗‖2.
• δ1: Since G(u, µ) is Lipschitz continuous, from Theorem 2.2 in [6], there exists δ1 ∈ (0, δ]

such that if ‖u0 − u∗‖ ≤ δ1, we have the r-linear convergence of Anderson(m) on solving
F(u, µ̂) := G(u, µ̂)− u = 0 with any µ̂ ∈ [ε, µ̄], that is

(3.21) lim sup
k→∞

(
‖F(uk, µ̂)‖
‖F(u0, µ̂)‖

)1/k

≤ c,

where c is a contraction factor of G(u, µ̂) on D by Theorem 3.5-(i).
• δ0: Let

(3.22) δ0 := min{δ1,
√
µ̄

√
γ(1 + c)

,

√
η

√
γ(1 + c)

,
(1− c)δ1
Mα(1 + c)

,
1− c
$
},

where µ̄ is defined in (3.14) and $ =
a(M2

α+Mα)(1+c)+2Mα

√
lcHγ(1+c)2(1−c)

2(1−c)2 .

Lemma 3.6. If ‖u0 − u∗‖ ≤ δ0, then for the sequences {µk}, {uk} and {Fk} generated by
s-Anderson(m) in Algorithm 3.1, it holds that

µk ≤ µ̄, Ω + B(
√
lµk/2,0) ⊆ DH , uk ∈ B(δ1, u

∗) and ‖Fk‖ ≤ ‖F0‖.(3.23)

Proof. Since

γ‖F (u0)‖2 ≤ γ(1 + c)2‖u0 − u∗‖2 ≤ min{µ̄, η},

then µk ≤ min{µ̄, η} by the updating method of µk in s-Anderson(m) for k ≥ 0. From (3.13), we
find that the first two relations in (3.23) hold.

Then, by Theorem 3.5-(i) and (iii), we have

(3.24) G(u∗, µk) = G(u∗) = u∗ and ‖G(u, µk)− G(v, µk)‖ ≤ c‖u− v‖, ∀k ≥ 0, u, v ∈ B(δ1, u
∗).

We next prove the last two statements of (3.23) by induction, where we see that they are true for
k = 0 and we suppose both of them hold for 0 ≤ k ≤ K.

Owning to (3.24), we have

‖uK+1 − u∗‖ =

∥∥∥∥∥∥
mK∑
j=0

αKj G(uK−mK+j , µK−mK+j)−
mK∑
j=0

αKj G(u∗, µK−mK+j)

∥∥∥∥∥∥
≤Mαcmax

j
‖uK−mK+j − u∗‖ ≤

Mαc

1− c
max
j
‖FK−mK+j‖

≤Mαc

1− c
‖F0‖ ≤

Mαc(1 + c)

1− c
‖u0 − u∗‖,

which gives uK+1 ∈ B(δ1, u
∗) by the condition of δ0. Then, the third result in (3.23) holds for

k = K + 1.
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Similarly,
∑mK
j=0 α

K
j uK−mK+j ∈ B(δ1, u

∗) ⊆ D. Formulas (3.19) and (3.24) imply

‖FK+1‖ = ‖G(uK+1, µK+1)− uK+1‖

≤ c‖uK+1 −
mK∑
j=0

αKj uK−mK+j‖+ ‖G(

mK∑
j=0

αKj uK−mK+j , µK+1)−
mK∑
j=0

αKj G(uK−mK+j , µK−mK+j)‖

≤ c‖FK‖+AK +BK ,(3.25)

where

AK =

∥∥∥∥∥∥G(

mK∑
j=0

αKj uK−mK+j , µK+1)−
mK∑
j=0

αKj G(uK−mK+j , µK+1)

∥∥∥∥∥∥ ,

BK =

∥∥∥∥∥∥
mK∑
j=0

αKj G(uK−mK+j , µK+1)−
mK∑
j=0

αKj G(uK−mK+j , µK−mK+j)

∥∥∥∥∥∥ .
Then, by (3.20), we estimate ‖AK‖ by the same way as in [6, 24] to get

(3.26)

‖AK‖ =

∥∥∥∥∥∥∆∑mK
j=0 α

K
j uK−mK+j

−
mK∑
j=0

αKj ∆uK−mK+j

∥∥∥∥∥∥
≤a(M2

α +Mα)

2
max
j
‖uK−mK+j − u∗‖2

≤a(M2
α +Mα)

2(1− c)2
max
j
‖FK−mK+j‖2

≤a(M2
α +Mα)(1 + c)‖u0 − u∗‖

2(1− c)2
‖F0‖.

To evaluate ‖BK‖, by Theorem 3.5-(ii), (2.3), (3.17) and (3.24), we have
(3.27)

‖BK‖ ≤Mακ(µK−mK + µK+1) ≤ 2Mακµ0 = 2Mακγ‖F (u0)‖2 ≤ 2Mακγ(1 + c)2‖u0 − u∗‖
1− c

‖F0‖.

Together (3.25), (3.26), (3.27) with the assumption of (3.23) for k = K, gives

‖FK+1‖ ≤ (c+$‖u0 − u∗‖)‖F0‖.

Then the fourth relation in (3.23) holds for k = K + 1 by δ0 satisfying c+$δ0 ≤ 1. We complete
the proof for (3.23).

Theorem 3.7. Suppose Assumption 2.1 and Assumption 3.1 hold. If u0 is sufficiently close to
u∗, then the sequence {uk} generated by s-Anderson(m) in Algorithm 3.1 converges to the solution
of (1.1) with the r-linear convergence rates of

(3.28) lim sup
k→∞

(
‖uk − u∗‖
‖u0 − u∗‖

)1/k

≤ c and lim sup
k→∞

(
‖F (uk)‖
‖F (u0)‖

)1/k

≤ c.
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Proof. Let ‖u0 − u∗‖ ≤ δ0 with δ0 in (3.22). Then, µ0 ≤ µ̄. By the updating method of µk,
there exist K and µ̂ ∈ [ε, µ̄] such that µk = µ̂, for all k ≥ K.

By Lemma 3.6, as ‖u0 − u∗‖ ≤ δ0, we have ‖uK − u∗‖ ≤ δ1. Then, by (3.21), we have

lim sup
k→∞

(
‖F(uk, µk)‖
‖F(uK , µK)‖

)1/(k−K)

≤ c,

which implies

(3.29) lim sup
k→∞

(
‖F(uk, µk)‖
‖F(u0, µ0)‖

)1/k

≤ c.

From (3.17), we obtain
‖F(uk, µk)‖
‖F(u0, µ0)‖

≥
(

1− c
1 + c

)
‖uk − u∗‖
‖u0 − u∗‖

,

which combines with (3.29) and lim supk→∞

(
1−c
1+c

)1/k

= 1 gives the first estimation in (3.28). In

light of (2.3) and the first relation in (3.28), we further obtain the second result in (3.28).

From the updating method of {µk} in s-Anderson(m), it is a case that limk→∞ µk > ε, which
means that there exists K such that ‖Fk‖ ≤ σ1‖Fk−1‖, ∀k ≥ K. Combining this with Theorem
3.7, we note that if limk→∞ µk > ε, then s-Anderson(m) not only owns the r-linear convergence
in (3.29), but also has the q-linear convergence on residual ‖F (uk)‖ with factor σ1. Moreover,
following the statements in Theorem 3.7, even if we have no knowledge on µ̄ and η, the local
convergence properties of s-Anderson(m) in Theorem 3.7 are always valid with any σ1, σ2 ∈ (0, 1)
by setting ε sufficiently small. In particular, if µ0 is sufficiently small such that µk is unchanged
in s-Anderson(m), then s-Anderson(m) is just Anderson(m) on G(u, µ0). A simple consideration is
that the results in Theorem 3.7 also hold if we let µk := ε with ε being sufficiently small. Similar
results in Theorem 3.7 also hold for the EDIIS(m) with the same smoothing approach.

Remark 3.3. According to Rademacher’s theorem, a locally Lipschitz continuous function G
is differentiable almost everywhere. If ψ is a smoothing function of max{t, 0}, Proposition 3.2 says
that the contraction factor of G(·, µ) on D can be sufficiently close to the contraction factor of G
as µ is sufficiently small. Theorem 3.5 gives an upper bound of the contraction factor of G(·, µ) on
D with ψ defined in (3.11). By the structure of ψ in (3.11), if G is not continuously differentiable
at u∗, which means that there is i ∈ {1, . . . , l} such that Qi(u

∗) = wi or wi, then the contraction
factor of G(·, µ) with (3.11) can be strictly smaller than the contraction factor of G around u∗ as µ
is smaller than a threshold.

For example, if G(u) = (max{u1/2, 0}, 1−u2/4)T, the exact contraction factor of G around its
fixed point u∗ = (0, 4/5)T is 1/2. Let G(u, µ) = (ψ(u1/2, µ), 1− u2/4)T with the definition of ψ in
(3.11). For any given µ ∈ [ε, 1], we note that

‖G′(u, µ)‖ ≤ max{|u1|/(2µ), 1/4}, ∀u ∈ B(δ, u∗)

with δ ≤ ε/2, which implies that the contraction factor of G(·, µ) is no larger than 1/4 when µ ∈ [ε, 1].
These results combining the analysis in Theorem 3.7 show that as u0 is sufficiently close to u∗, s-
Anderson(m) is r-linearly convergent to the fixed point of G with factor no larger than 1/4, which
is strictly smaller than the contraction factor of G around u∗. And the contraction factor of G(u, µ)
on B(δ, u∗) is decreasing as µ is increasing in [ε, 1].
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4. Numerical applications and examples. In this section, we illustrate our new conver-
gence results of Anderson acceleration for nonsmooth fixed point problem (1.1) by three appli-
cations. All the numerical experiments are performed in MATLAB 2016a on a Lenovo PC547
(3.00GHz, 2.00GB of RAM). When m ≥ 2, proceeding as in [11, 25], we write the problem in (1.3)
by the following equivalent form

(4.1) θk ∈ arg min
θ∈Rmk

∥∥∥∥Fk −∑mk−1

j=0
θj(Fk−mk+j+1 − Fk−mk+j)

∥∥∥∥
and then

uk+1 = G(uk)−
∑mk−1

j=0
θkj (G(uk−mk+j+1)−G(uk−mk+j))),

in terms of the original iterations αkj in (1.3), where αk0 = θk0 , αkj = θkj −θkj−1 for 1 ≤ j ≤ mk−1 and

αkmk = 1− θkmk−1. To solve (4.1), we consult the method based on the pseudoinverse introduced in
[11], and it has been shown that the deteriorating condition of the least-squares matrix does not
necessarily interfere with convergence [24]. This method is also used to find the αkj in s-Anderson(m)

in Algorithm 3.1. For s-Anderson(m), we always set ε = 10−10, γ = 1/n and σ1 = σ2 = 0.6 for
comparison. And we stop Anderson(m) in Algorithm 1.1 and s-Anderson(m) in Algorithm 3.1 when

(4.2)
‖F (uk)‖
‖F (u0)‖

≤ 10−14 or k ≥ 7000.

It should be noticed that the stopped criterion for s-Anderson(m) also uses the value of
‖F (uk)‖/‖F (u0)‖ not the residual on smoothing approximation F(u, µ). From these numerical
results in Examples 4.1-4.3, we have the following observations.

(i) Both Anderson(m) and s-Anderson(m) can be used to solve the considered problems, in
which the contraction mappings G are nonsmooth at the fixed points. Though the the-
oretical results of them are built up for local convergence, it is satisfactory that all the
numerical experiments in this section are convergent with random initial points.

(ii) For both Anderson(m) and s-Anderson(m), as presented in the experiments, the best choice
of m is problem dependent.

(iii) s-Anderson(m) performs better than Anderson(m) for most cases, and the local convergence
of ‖F (uk)‖/‖F (u0)‖ by s-Anderson(m) is also faster. Since the mapping G(u, µ) used in
s-Anderson(m) only has small difference with G(u) in Anderson(m), the generated uk in
the former iterations cannot bring obvious differences on ‖Fk‖/‖F0‖ when ‖Fk‖ is relatively
large. However, after certain iterations, ‖Fk‖ is reduced significantly and the advantages
of s-Anderson(m) appears clearly. So it is reasonable that s-Anderson(m) outperforms
Anderson(m) when the accuracy is high.

(iv) The superiorities of s-Anderson(m) over Anderson(m) become more and more obvious as
the number of elements in {i : Qi(u

∗) = wi or wi} increases.

4.1. Minimax optimization problem. Constrained minimax optimization problem is often
modeled by

(4.3) min
x∈X

max
y∈Y

f(x, y),

where f : X ×Y → R is a convex-concave function over closed, convex sets X ⊆ Rn1 and Y ⊆ Rn2 .
Such models are widely used in game theory, machine learning and parallel computing. Due to the
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convexity and concavity of f with respect to x and y, respectively, ((x∗)T, (y∗)T)T is a saddle point
of (4.3), if and only if it satisfies

(4.4)

{
x∗ = PX (x∗ − α∇xf(x∗, y∗))

y∗ = PY(y∗ + β∇yf(x∗, y∗))

with α, β > 0. Denote

u =

(
x
y

)
, Λ =

(
αIn1 0

0 βIn2

)
, L(u) := L(x, y) =

(
∇xf(x, y)
−∇yf(x, y)

)
, Ω = X × Y.

Then, (4.4) is expressed by u∗ = PΩ(u∗ − ΛL(u∗)), which is reduced to a fixed point problem of G
with

(4.5) G(u) := PΩ(u− ΛL(u)).

The mapping in (4.5) can be formulated by (1.1) with Q(u) = u− ΛL(u) and H(v) = v.

Assumption 4.1. The mapping L is strongly monotone and Lipschitz continuous, i.e. there
exist positive parameters τL and cL such that for all u, ũ ∈ Ω, it holds

(L(u)− L(ũ))T(u− ũ) ≥ τL‖u− ũ‖2,
‖L(u)− L(ũ)‖ ≤ cL‖u− ũ‖.

For u, ũ ∈ Ω, by the Lipschitz property of PΩ and Assumption 4.1, when α = β, we obtain

‖PΩ(u− αL(u))− PΩ(ũ− αL(ũ))‖2

≤‖u− αL(u)− ũ+ αL(ũ)‖2

=‖u− ũ‖2 + α2‖L(u)− L(ũ)‖2 − 2α(u− ũ)T (L(u)− L(ũ))

≤
(
1 + α2c2L − 2ατL

)
‖u− ũ‖2.

It is easy to verify that 1 + α2c2L − 2ατL ∈ (0, 1), if α ∈
(
0, 2τL/c

2
L

)
. Hence under Assumption 4.1,

if α = β ∈
(
0, 2τL/c

2
L

)
, then G in (4.5) is a contractive mapping with factor c =

√
1 + α2c2L − 2ατL

and the conclusions in Theorem 3.7 hold for G in (4.5), which prompts us to find the fixed point
of G by using s-Anderson(m) with the smoothing approximation of G defined in (3.6). To show
the effectiveness of the corresponding theoretical results and the effect of s-Anderson(m) on solving
problem (4.3), we conduct the numerical experiment on a special case of (4.3), which comes from
the two-payers Nash game problems.

Example 4.1. Consider

(4.6) min
x∈Rn1

+

max
y∈Rn2

+

f(x, y) :=
1

2
xTAx+ xTBy − 1

2
yTCy + aTx− bTy,

where A ∈ Rn1×n1 and C ∈ Rn2×n2 are symmetric positive definite matrices, B ∈ Rn1×n2 , a ∈
Rn1 and b ∈ Rn2 are random matrix and vectors. Denote λmin(A) and λmin(C) the minimal
eigenvalues of A and C, respectively. Let Ω = Rn1+n2

+ and L(u) = Mu + d with u = (xT, yT)T,

M =

(
A B
−BT C

)
and d =

(
a
b

)
, which satisfies Assumption 4.1 with

(4.7) τL = min{λmin(A), λmin(C)} and cL = ‖M‖.
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Based on the above analysis, the solution of (4.6) can be transformed to the fixed point of (4.5),
and when we choose

(4.8) α = β = τL/c
2
L,

G in (4.5) is a contractive mapping with factor c = ‖In1+n2
− αM‖. For given positive integers

n1 = 1000, n2 = 500 and s1 = 0.3, we generate matrices A, C and B as follows:

A1 = 1 + a ∗ rand(n1, 1); U1 = orth(rand(n1, n1)); A = U1′ ∗ diag(A1) ∗ U1;

C1 = 2 + b ∗ rand(n2, 1); U2 = orth(rand(n2, n2)); C = U2′ ∗ diag(C1) ∗ U2;

B = sprand(n1, n2, s1); B = full(B)/norm(B);

Then, we set n = n1 + n2, α and β be defined by (4.8) with the parameters in (4.7). It is clear
that G in (4.5) is nonsmooth at u∗ if there exists i such that (Mu∗ + d)i = 0 and u∗i = 0. So, for
given s2 = 0.5, we generate the fixed point u∗ (sol in the code) with n×s2 elements of 0 and vector
d ∈ Rn such that the corresponding elements of Mu∗ + d are also 0 by the following codes:

index = randperm(n); index1 = index(1 : s2 ∗ n);

sol = 0.1 + 0.9 ∗ rand(n, 1); sol(index1) = 0; M = [A B;−B′ C]; d = −M ∗ sol;

Let u0 = zeros(n, 1). For different values of a and b, which influence the contractive factor of
G in (4.5), the number of iterations of Anderson(m) and s-Anderson(m) to find uk satisfying (4.2)
are shown in Table 4.1, where the values are the mean values of 50 random experiments. From
Table 4.1, we see that though the contractive factors of G are all very close to 1, both Anderson(m)
and s-Anderson(m) work well, and s-Anderson(m) performs better for most cases. Throughout the
whole table, the smallest iterations for all cases are presented by s-Anderson(m) with m = 3 or
m = 5. Fig. 4.1 plots the convergence behaviors of s-Anderson(1) and s-Anderson(3) with some
different values of σ1 = σ2, where the best is located at σ1 = σ2 = 0.6. This is an interesting thing
that we can let the value of ε be sufficiently small to guarantee the efficiency of s-Anderson(m),
and control the values of σ1 and σ2 to improve its convergence behaviours. How to choose better
parameters is an interesting topic for further study.

Parameters Anderson(m)/s-Anderson(m)
a, b c m = 0 m = 1 m = 2 m = 3 m = 5 m = 10
0, 0 0.835 150/148 72/65 60/57 58/48 62/43 78/54
2, 1 0.893 230/218 68/85 71/71 71/65 80/58 80/66
1, 1 0.895 246/236 74/92 76/73 77/65 84/71 94/80
1, 2 0.943 465/446 147/129 113/105 117/102 125/107 159/126
3, 1 0.941 407/379 114/104 105/96 108/93 111/94 122/102
3, 3 0.961 609/565 194/194 136/123 144/123 149/122 174/139

Table 4.1: Numerical results of Anderson(m) and s-Anderson(m) for Example 4.1

4.2. Complementarity problem. Given a continuously differentiable function f : Rn → Rn,
the complementarity problem is to find v such that

v ≥ 0, f(v) ≥ 0, vTf(v) = 0.
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Fig. 4.1: Convergence of ‖Fk‖/‖F0‖ by s-Anderson(1) and s-Anderson(3) with different values of
σ1 = σ2 for Example 4.1

This problem is denoted as CP(f), which is equivalent to v = max{v−f(v), 0}. Let Q(v) = v−f(v).
If ‖I − f ′(v)‖ ≤ c < 1, then G(v) = max{Q(v), 0} is a contraction mapping with factor c.

If f(v) = Mv + q with M ∈ Rn×n and q ∈ Rn, the CP(f) is the linear complementarity
problem, denoted as LCP(q,M). Suppose M = (mij)n×n is strictly diagonally dominate with
positive diagonal elements in the following sense,

n∑
i=1,i6=j

|mij | < mii and

n∑
j=1,j 6=i

|mij | < mii.

Let Λ =diag(mii). Then LCP(q,M) is equivalent to

Λv ≥ 0, MΛ−1Λv + q ≥ 0, (Λv)T(MΛ−1Λv + q) = 0

and can be solved via LCP(q,MΛ−1). Moreover, from

‖I −MΛ−1‖ ≤
√
‖(Λ−M)Λ−1‖1‖(Λ−M)Λ−1‖∞

=

√√√√max
1

mii

n∑
j=1,j 6=i

|mij |

√√√√max
1

mii

n∑
i=1,i6=j

|mij | =: c < 1,

G(u) = max((I −MΛ−1)u − q, 0) is a contraction mapping. Let Q(u) = (I −MΛ−1)u − q. We
define a smoothing approximation of G by (3.6), which is also a contraction mapping with factor c
and satisfies the conditions in Assumption 2.1. Thus, if u∗ is the fixed point of the above defined
G, then v∗ = Λ−1u∗ is the solution of LCP(q,M).

Example 4.2. Pricing American options in a partial differential equation framework with fi-
nite difference methods or finite element methods lead to a linear complementarity problem

(4.9) v − a ≥ 0, Mv − b ≥ 0, (v − a)T(Mv − b) = 0,
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where v is the value of an American option, a is from a given payoff function, b is from an initial
guess of the value and its changing rate, and M is from differential operators [21].

Let u = v − a and q = Ma− b, then (4.9) is the standard form of LCP(q,M). We set

M =


2 + γ1h

2 −1 + 0.5hτ1
−1− 0.5hτ2 2 + γ2h

2 −1 + 0.5hτ2
. . .

. . .
. . .

2 + γn−1h
2 −1 + 0.5hτn−1

−1− 0.5hτn 2 + γnh
2

 .

Here, M is the matrix from the centered difference formulate for

−∂
2V

∂x2
(t, x) + τ(t, x)

∂V

∂x
(t, x) + γ(t, x)V (t, x)

at a fixed time t, where h = 1/(n+ 1) is the mesh size of discretization, and γ(t, x) > 0 and τ(t, x)
are given functions. If |τi| = |τi+1| < 2(n + 1), i = 1, 2, . . . , n − 1, the matrix M is a strictly
diagonal dominate matrix, and thus a P-matrix. Then, the LCP(q,M) has a unique solution u∗ for
any q ∈ Rn, which is also the fixed point of the nonsmooth fixed point problem

(4.10) u = G(u) = max{(I − ηM)u− ηq, 0},

with η = 1
2+γh2 . Here function G in (4.10) is a contraction mapping with the contraction factor

c = 2η and Gi is not differentiable at the solution u∗ for

(4.11) i ∈ N := {i : ((I − ηM)u∗ − ηq)i = 0}.

Throughout this example, we choose u0 = 0.5 ∗ ones(n, 1) and set γ(t, x) ≡ 103, τ(t, x) ≡ −1.
For given n and Θ ∈ (0, 1) (theta), we randomly generate the solution u∗ (sol) and corresponding
q as follows

(4.12) sol = max{rand(n, 1)− theta, 0}; q = −M ∗ sol;

By the setting of this problem, there are around Θ× n components in N defined by (4.11).
First, we compare the performance of Anderson(m) and s-Anderson(m) with different values

of m. Set Θ = 0.4, and n = 200, 300 in (4.12). The convergence of ‖Fk‖/‖F0‖ for Anderson(m)
and s-Anderson(m) with m = 0, 1, 2, 3, 10 are plotted in Fig. 4.2, from which we can see that
s-Anderson(m) is faster than Anderson(m) always and s-Anderson(10) is the best. In [18], the
following dynamically updating of depth mk is introduced and used,

(4.13) mk = median([m1; m̃k;m2]) with m̃k = ceil(− log10 ‖Fk‖),

where m1 and m2 are positive integers to control the lower and upper bounds of m. In particular,
if m1 = m2, then the corresponding algorithms are just Anderson(m) and s-Anderson(m) with
m = m1 = m2. Fig. 4.3 shows the number of iterations of Anderson(m) and s-Anderson(m) to
satisfy the stop criterion in (4.2) using dynamic depth selection (4.13) with m = m1 = m2 and
m1 6= m2, in which the best result is located at m = m1 = m2 = 8 by s-Anderson(m). From Fig. 4.3,
we find that the number of iterations is not monotone decreasing as m is increasing. Whether the
dynamic depth selection approaches can improve the convergence of Anderson acceleration methods
is an interesting topic for further research.
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Fig. 4.2: Convergence of ‖Fk‖/‖F0‖ by Anderson(m) and s-Anderson(m) for Example 4.2 with
n = 200 and n = 300
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Fig. 4.3: Performance of Anderson(m) and s-Anderson(m) using dynamic depth selection (4.13)
with m = m1 = m2 and m1 6= m2 for Example 4.2

Next, we test the performance of Anderson(m) and s-Anderson(m) for different values of Θ,
since its value controls the number of dimensions, on which G is nonsmooth at u∗. Let n = 200. For
Θ = 0.2, 0.4, 0.6 and 0.8, we plot the convergence of ‖Fk‖/‖F0‖ by Anderson(m) and s-Anderson(m)
with m = 1, 10 in Fig. 4.4. The displayed results in Fig. 4.4 show that s-Anderson(m) is faster
than Anderson(m) for all these cases. In particular, as Θ is larger, the superiority on the local
convergence rate of s-Anderson(m) compared with Anderson(m) is more obvious, which corresponds
to the observation (iv) given at the beginning of this section.

4.3. Nonsmooth Dirichlet problem. Consider the Dirichlet problem [7]

(4.14)

{
−∆v + βv = λmax{v − ϕ(x, y), 0}+ ψ(x, y) in Ξ

v = f(x, y) on Ξ̄,
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Fig. 4.4: Performance of Anderson(m) and s-Anderson(m) with m = 1, 10 for Example 4.2 with
four different values of Θ

where Ξ = (0, 1)× (0, 1), Ξ̄ denotes the boundary of Ξ, ϕ,ψ ∈ C(Ξ̄) ∩C1(Ξ), f ∈ C(Ξ̄), β > 0 and
λ ∈ R. Using the five point centered finite difference method for the Dirichlet problem (4.14) with
a mesh size h at grid (xi, yj) gives

(4.15) − vi,j+1 − vi,j−1 + 4vi,j − vi+1,j − vi−1,j + βh2vi,j = λh2 max{vi,j − ϕi,j , 0}+ h2ψi,j .

By transforming (vi,j) to a vector u, (4.15) can be illustrated by the following system

(4.16) (−L+ 4I − U + βh2I)u = λh2 max{u+ p, 0}+ q,

where L and U are lower and upper diagonal matrices with nonnegative elements, h = 1/(
√
n+ 1),

p, q ∈ Rn are the corresponding vectors transformed by ϕi,j and h2ψi,j . Then, (4.16) is equivalent
to the following fixed point problem

(4.17) u = G(u) :=
1

4 + βh2
(L+ U)u+

h2λ

4 + βh2
max{u+ p, 0}+

1

4 + βh2
q.

When β > |λ|, from

‖G(u)−G(v)‖ ≤ 4 + |λ|h2

4 + βh2
‖u− v‖,

the function G in (4.17) is a contraction mapping with factor c := 4+|λ|h2

4+βh2 .

Example 4.3. We consider the nonsmooth fixed point problem (4.17) from the finite difference
discretization of the nonsmooth Dirichlet problem (4.14). Let the solution of problem (4.14) be
v(x, y) = max(− sin(xπ) sin(yπ) + 0.5, 0), and u∗ present the values of v(x, y) at the mesh points
for given mesh size h = 1/(

√
n + 1). We randomly generate p = −0.4 ∗ rand(n, 1) and set q =

(4 + βh2)u∗ − (L + U)u∗ − λh2 max{u∗ + p, 0} with λ = 1 and β = 2. Notice that the contraction
factor of G is very close to 1 at this situation.

When n = 64 × 64, the original function is plotted in Fig. 4.5(a), in which we can see that
it is nonsmooth. Choosing the initial point u0 = 0.5 ∗ rand(n, 1), the convergence performance of
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Fig. 4.5: Solution and convergence performance of s-Anderson(m) for Example 4.3 with n = 64×64

‖Fk‖/‖F0‖ for s-Anderson(m) are plotted in Fig. 4.5(b). For different values of n, the convergence
rates at the stopped point, defined by (‖Fk‖/‖F0‖)1/k, are listed in Table 4.2. This example shows
that s-Anderson(m) can effectively solve this problem with a contraction factor very close to 1, and
s-Anderson(m) is faster as m increases from 0 to 20.

√
n 1− c m = 0 m = 1 m = 2 m = 3 m = 5 m = 10 m = 20

16 8.635e-4 9.793e-01 9.789e-01 9.632e-01 9.519e-01 9.191e-01 8.501e-01 7.750e-01
32 2.294e-4 9.944e-01 9.940e-01 9.897e-01 9.860e-01 9.784e-01 9.480e-01 9.078e-01
64 5.916e-5 9.978e-01 9.978e-01 9.968e-01 9.959e-01 9.946e-01 9.832e-01 9.758e-01
128 1.502e-5 9.991e-01 9.985e-01 9.983e-01 9.976e-01 9.976e-01 9.964e-01 9.930e-01

Table 4.2: Values of (‖Fk‖/‖F0‖)1/k by s-Anderson(m) for Example 4.3

5. Conclusions. Anderson acceleration does not use derivatives in its iterations, but it is
difficult to prove its convergence without continuous differentiability. Most existing convergence
results of Anderson acceleration are established under the assumption that the involved function
is continuously differentiable [6, 9, 19, 24, 25]. For a special class of nonsmooth functions that
is a sum of a smooth term and a nonsmooth term with a small Lipschitz constant, convergence
of Anderson acceleration is proved in a recent paper [3]. In this paper, we give new convergence
results of Anderson acceleration for nonsmooth fixed point problem (1.1), which has a composite
max function in G. Theorem 2.1 shows that Anderson(1) is q-linear convergent with a q-factor

ĉ ∈ ( 2c−c2
1−c , 1), which can be strictly smaller than 3c−c2

1−c given in [3, 24]. Moreover, we construct
a smoothing approximation G(·, µ) for the nonsmooth function G in (3.6), where G(·, µ) is also a
contraction mapping and has the same fixed point as G. Then, we propose an Anderson acceler-
ated algorithm with G(u, µ) and prove its local r-linear convergence with factor c for nonsmooth
fixed point problem (1.1), which is same as the convergence rate of Anderson acceleration for the
continuously differentiable case.
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