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The number of cliques in graphs covered by long cycles
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Abstract

Let G be a 2-connected n-vertex graph and Ns(G) be the total number of s-cliques in G. Let k ≥ 4

and s ≥ 2 be integers. In this paper, we show that if G has an edge e which is not on any cycle of length

at least k, then Ns(G) ≤ r
(

k−1

s

)

+
(

t+2

s

)

, where n− 2 = r(k− 3)+ t and 0 ≤ t ≤ k− 4. This result settles

a conjecture of Ma and Yuan and provides a clique version of a theorem of Fan, Wang and Lv. As a

direct corollary, if Ns(G) > r
(

k−1

s

)

+
(

t+2

s

)

, every edge of G is covered by a cycle of length at least k.

Keywords: clique, long cycle, the Erdős-Gallai theorem

1 Introduction

All graphs considered in this paper are simple. Let G be a graph and and Ns(G) be the total number of

s-cliques in G (a complete subgraph with s vertices). Particularly, N2(G) is the number of edges of G, which

is often denoted by e(G). The well-known Erdős-Gallai theorem [1] states that if a graph with n vertices has

no cycle of length at least k where n ≥ k ≥ 3, then e(G) ≤ (k−1)(n−1)/2, which was originally conjectured

by Turán (cf. [6]). The Erdős-Gallai theorem was improved by Kopylov [9] for 2-connected graphs.

Before presenting Kopylov’s result, we need some extra notations. Let Hn,k,a be an n-vertex graph whose

vertex set can be partitioned into three sets A, B and C such that |A| = a, |B| = n−(k−a) and |C| = k−2a,

where integers n, k and a satisfy n ≥ k ≥ 4 and k/2 > a ≥ 1, and whose edge set consists of all edges between

A and B, and all edges in A ∪ C. Note that Hn,k,a is 2-connected if a ≥ 2 and has no cycle longer than

k − 1. For s ≥ 2, define

fs(n, k, a) =

(

k − a

s

)

+ (n− k + a)

(

a

s− 1

)

.

Then Ns(Hn,k,a) = fs(n, k, a) and, particularly, e(Hn,k,a) = N2(Hn,k,a) = f2(n, k, a). The following is

Kopylov’s result for 2-connected graphs.

Theorem 1.1 (Kopylov, [9]). Let G be a 2-connected graph on n vertices, and let n ≥ k ≥ 5 and t = ⌊k−1

2
⌋.

If G has no cycle of length at least k, then

e(G) ≤ max{f2(n, k, 2), f2(n, k, t)},

and the equality holds only if G = Hn,k,2 or G = Hn,k,t.
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It is worth mentioning that Fan, Lv and Wang [4] proved a result slightly stronger than the above theorem

for n ≥ k ≥ 2n/3. Together with a result of a result of Woodall [13], it provided an alternative proof of

Theorem 1.1. Recently, a clique version of Theorem 1.1 has been proven by Luo [10] as follows.

Theorem 1.2 (Luo, [10]). Let G be a 2-connected n-vertex graph, and let n ≥ k ≥ 5 and t = ⌊k−1

2
⌋. If G

has circumference less than k, then the number of s-cliques of G satisfies

Ns(G) ≤ max{fs(n, k, 2), fs(n, k, t)}.

A stability result of the Theorem 1.2 is obtained Ma and Yuan [11], which also can be viewed as the

clique version of a stability result of Theorem 1.1 given by Füredi, Kostochka and Verstraëte [5].

Another result of Erdős and Gallai in [1] shows that a graph without a path of length at least k has

e(G) ≤ n(k−2)/2. The result of Erdős and Gallai for paths was strengthened by Fan for 2-connected graphs

(Theorem 5 in [2]), which states that the longest path between any pair of vertices in a 2-connected graph

with more than (k + 2)(n− 2)/2 edges has length at least k. Fan’s result is sharp when n− 2 is divisible by

k− 2, which was further sharpened by Wang and Lv [12] for all possible values n ≥ 3. The sharpness of the

results of Fan [2], Wang and Lv [12] can be shown by the following constructions.

Let Xn,k to be an n-vertex graph defined as follows. Assuming n− 2 = r(k− 3)+ t where 0 ≤ t ≤ k− 4,

the graph Xn,k consists of three disjoint parts A, B and C such that A is an edge uv, and B is a union of r

vertex disjoint (k − 3)-cliques, and C is a t-clique, and all edges between A and B ∪ C. For s ≥ 2, define

gs(n, k) =



















r

(

k − 1

s

)

+

(

t+ 2

s

)

if s ≥ 3;

r

(

k − 3

2

)

+

(

t

2

)

+ 2(n− 2) + 1 if s = 2.

Then gs(n, k) = Ns(Xn,k), and e(Xn,k) = N2(Xn,k) = g2(n, k) ≤ r
(

k−1

2

)

+
(

t+2

2

)

. These graphs Xn,k have no

cycle containing the edge uv longer than k− 1. Note that, if k > n, then Xn,k is a clique and gs(n, k) =
(

n
s

)

.

Theorem 1.3 (Fan [2], Wang and Lv [12] ). Let G be a 2-connected n-vertex graph with n ≥ 3. If G has

an edge uv such that G has no cycle of length at least k ≥ 4 containing uv. Then

e(G) ≤ g2(n, k).

In [11], Ma and Yuan made the following conjecture, which can be treated as a clique version of The-

orem 1.3. As indicated in [11], the conjecture (if it is true) is a key tool to prove a more general stability

result of of Theorem 1.2.

Conjecture 1.4 (Ma and Yuan, [11]). Let G be a 2-connected n-vertex graph with n ≥ 3 and let uv be an

edge in G. Let k ≥ 4 and s ≥ 2 be integers, and let n− 2 = r(k − 3) + t for some 0 ≤ t ≤ k − 4. If

Ns(G) > r

(

k − 1

s

)

+

(

t+ 2

s

)

,

then there is a cycle on at least k vertices containing the edge uv.

Note that, the bound of the above conjecture is not the best possible for the case s = 2 because of

Theorem 1.3 and g2(n, k) < r
(

k−1

2

)

+
(

t+2

2

)

for n ≥ k. The following is our main result, which completely

settles Conjecture 1.4.

Theorem 1.5. Let G be a 2-connected n-vertex graph with n ≥ 3. If G has an edge uv such that G has no

cycle containing uv of length at least k ≥ 4, then the number of s-cliques of G with s ≥ 2 satisfies

Ns(G) ≤ gs(n, k).
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The bound in Theorem 1.5 is sharp due to these graphs Xn,k constructed above. A direct corollary of

Theorem 1.5 shows that if the clique number of a graph G is large enough, every edge of G belongs to a long

cycle.

Corollary 1.6. Let G be a 2-connected n-vertex graph with n ≥ 3. If Ns(G) > gs(n, k) where k ≥ 4 and

s ≥ 2, then every edge of G is covered by a cycle of length at least k.

2 Preliminaries

Let Xn,k be an n-vertex graph defined in the previous section, and let Qn,k be the n-vertex graph with n ≥ 2

obtained from Xn+1,k+1 by contracting the edge uv of A into a single vertex w. Then for graphs Qn,k, it

holds that n− 1 = r(k − 2) + t and 0 ≤ t ≤ k − 3. For s ≥ 2, define

ψs(n, k) = r

(

k − 1

s

)

+

(

t+ 1

s

)

.

Then ψs(n, k) = Ns(Qn,k). Note that, if k > n, then Qn,k is a clique and ψs(n, k) =
(

n
s

)

. Let fs(n, k, a) the

function defined in the previous section. By comparing the graphs Hn,k,2, Hn,k,⌊ k−1

2
⌋ and the graph Qn,k, it

not hard to derive the following proposition.

Proposition 2.1. For integers n ≥ k ≥ 5 and s ≥ 2, the functions fs(n, k, a) and ψs(n, k) satisfy

max{fs(n, k, 2), fs(n, k, ⌊
k − 1

2
⌋)} ≤ ψs(n, k).

The following result slightly strengthens Luo’s clique version of the Erdős-Gallai theorem (Corollary 1.5

in [10]), which serves as an important step toward the proof of our main result—Theorem 1.5. Note that,

the bound in this result is sharp because of the graphs Qn,k constructed above.

Theorem 2.2. Let G be a connected n-vertex graph with n ≥ 2. If G has no cycle of length at least k ≥ 4,

then the number of s-cliques with s ≥ 2 of G satisfies

Ns(G) ≤ ψs(n, k).

Proof. Let G be a connected n-vertex graph with n ≥ 2. Use induction on n, the number of vertices of G.

The result holds trivially for n ≤ 3. So assume that n ≥ 4 in the following, and the theorem holds for all

connected graphs with the number of vertices smaller than n.

If k = 4, every maximal 2-connected subgraph of G is a triangle because the longest cycle of G has length

at most k− 1 = 3. So each block of G is either a triangle or a single edge. It follows that N3(G) ≤ (n− 1)/2

and equality holds if and only if G is the graph with (n − 1)/2 triangles sharing a common vertex, and

N2(G) ≤ ψ2(n, k). Hence

Ns(G) ≤ ψs(n, k),

and the theorem holds. So, in the following, assume that k ≥ 5.

First, assume that G is 2-connected. If n < k, then

Ns(G) ≤

(

n

s

)

= ψs(n, k)

and hence the theorem holds. If n ≥ k ≥ 5, then it follows from Theorem 1.2 and Proposition 2.1 that

Ns(G) ≤ max{fs(n, k, 2), fs(n, k, ⌊
k − 1

2
⌋)} ≤ ψs(n, k),

3



and the theorem holds.

Hence, we may assume that G has a cut-vertex v. Let H be a connected component of G − v, and let

G1 = G[H ∪ {v}] and G2 = G − H . Then both G1 and G2 are connected and G1 ∩ G2 = {v}. For each

i ∈ [2], let ni = |V (Gi)| ≥ 2, and assume ni − 1 = ri(k − 2) + ti with 0 ≤ ti ≤ k − 3. Then n = n1 + n2 − 1.

Then, for s ≥ 2, the following inequality holds,

(

t1 + 1

s

)

+

(

t2 + 1

s

)

≤



















(

t1 + t2 + 1

s

)

if t1 + t2 ≤ k − 2;

(

k − 1

s

)

+

(

t1 + t2 − k + 3

s

)

if k − 1 ≤ t1 + t2 ≤ 2(k − 3).

(1)

Applying inductive hypothesis to each Gi, we have

Ns(G) = Ns(G1) +Ns(G2) ≤ ψs(n1, k) + ψs(n2, k)

= r1

(

k − 1

s

)

+

(

t1 + 1

s

)

+ r2

(

k − 1

s

)

+

(

t2 + 1

s

)

≤ ψs(n, k),

where the last inequality follows from Inequality (1). This completes the proof.

Another ingredient we need to prove Theorem 1.5 is edge-switching operation, which was introduced by

Fan [3] to study subgraph covering. This operation appears in an earlier paper [8] of Klemans which studied

the probabilities of the number of connected components under this operation.

Let G be a graph and v be a vertex of G. Let N(v) = {u|uv ∈ E(G)} and let N [v] = N(v) ∪ {v}. The

degree of v in G is denoted by dG(v) which is equal to |N(v)|. For a given edge uv, an edge-switching from v

to u is to replace each edge vx by a new edge ux for every x ∈ N(v)\N [u]. The resulting graph is called the

edge-switching graph of G from v to u, denoted by G[v → u]. The following lemma is a trivial observation.

Lemma 2.3. Let G be a 2-connected graph and let uv be an edge of G.

(i) If N(u) ∩N(v) = ∅ and G/uv is not 2-connected, then {u, v} is a vertex cut of G.

(ii) If N(u) ∩ N(v) 6= ∅ and the edge-switching graph G[v → u] is not 2-connected, then {u, v} is a vertex

cut of G.

The following lemma shows that the edge-switching operation does not increase the length of longest

cycles through certain edges.

Lemma 2.4 (Ji and Chen, [7]). Let G be a connected graph and let uv be an edge. For any edge ux, let k

be the length of a longest cycle of G containing ux. Then the length of a longest cycle containing ux in the

edge-switching graph G[v → u] is at most k.

The contraction and the edge-switching operations do not reduce the number of s-cliques except small

values of s as shown in the following lemma.

Lemma 2.5. Let G be a connected graph and let uv be an edge of G.

(i) If N(u) ∩N(v) = ∅ and s ≥ 3, then Ns(G/uv) ≥ Ns(G);

(ii) For s ≥ 2, it holds that Ns(G[v → u]) ≥ Ns(G).

Proof. (i) Since N(u)∩N(v) = ∅, the graph G has no s-cliques containing uv for s ≥ 3. Hence, every s-clique

of G remains as an s-clique in G/uv. Hence (1) follows.
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(ii) Let S(G) be the set of unlabeled copies of Ks in a graph G. Consider an edge-switching from v to u,

and let G′ = G[v → u]. Denote W = {vx|x ∈ N(v)\N [u]}. Define a map π : S(G) → S(G′) as follows, for

each Q ∈ S(G),

π(Q) =







Q if E(Q) ∩W = ∅,

Q′ otherwise,

where V (Q′) = (V (Q)\{v})∪{u} and E(Q′) = (E(Q)\W )∪{ux | vx ∈W ∩E(Q)}. If vx ∈W ∩E(Q), then

x ∈ N(v)\N [u] and it follows that u /∈ Q. All neighbors of v in Q are neighbors of u in Q′. Hence Q′ is

indeed an s-clique of G′. So π is well-defined. Note that, π(Q1) 6= π(Q2) for two different s-cliques Q1 and

Q2 of G. Therefore π is an injection. So Ns(G[v → u]) ≥ Ns(G) and (ii) holds.

3 Proof of Theorem 1.5

Now, we are ready to prove our main theorem. Note that Theorem 1.5 follows from Theorem 1.3 directly

for the case s = 2. In the following, we only need to prove it for s ≥ 3.

Proof of Theorem 1.5. Suppose to the contrary that G is a counterexample. For an edge e of G, let ce(G)

be the maximum length of cycles containing e. Then G is a 2-connected n-vertex graph withNs(G) > gs(n, k)

but does have an edge e such that ce(G) < k. Let

ℓ(G) = max{dG(v)|v is an end-vertex of some edge e with ce(G) < k}.

Among all the counterexamples, choose G such that: (1) the number of vertices of G is as small as possible,

and (2) subject to (1), ℓ(G) is as large as possible.

Note that the theorem holds trivially for n = 3. If k = 4, then G consists of n− 2 triangles which share

a common edge. Then N3(G) = n − 2 = g3(n, 4) and Ns(G) = 0 for s ≥ 4, a contradiction to that G is a

counterexample. So in the following, assume that n ≥ 4 and k ≥ 5.

Claim 1. The graph G does not have a 2-vertex cut {x, y} such that xy is an edge.

Proof of Claim 1. If not, assume that {x, y} is a vertex cut of G with xy ∈ E(G). Let H1 a connected

component of G−{x, y}. Further, let G1 = G[V (H1)∪ {x, y}] and G2 = G−H1. Then both G1 and G2 are

2-connected. For convenience, let |V (Gi)| = ni ≥ 3, and ni− 2 = ri(k− 3)+ ti and 0 ≤ ti ≤ k− 4 for i ∈ [2].

If Ns(Gi) > gs(ni, k) for some i ∈ [2], without loss of generality assume Ns(G1) > gs(n1, k). Since

G is a counterexample with the smallest number of vertices, the subgraph G1 is smaller and hence not a

counterexample. Therefore, ce(G1) ≥ k for any edge e ∈ E(G1). So ce(G) ≥ ce(G1) ≥ k for each e ∈ E(G1).

For an edge e′ ∈ E(G2) and e
′ 6= xy, it follows from 2-connectivity of G2 that G2 has a cycle C′ containing

both e′ and xy. Let C be a longest cycle of G1 containing xy. Then (C ∪ C′) − {xy} is a cycle of G which

contains e′ and

ce′(G) ≥ |V (C)| + |V (C′)| − 2 > |V (C)| ≥ cxy(G1) ≥ k.

Thus, ce(G) ≥ k for any edge e ∈ E(G), a contradiction to that G has an edge e with ce(G) < k. Hence

Ns(Gi) ≤ gs(ni, k) holds for both i = 1 and i = 2. Therefore,

Ns(G) = Ns(G1) +Ns(G2) ≤ gs(n1, k) + gs(n2, k)

= r1

(

k − 1

s

)

+

(

t1 + 2

s

)

+ r2

(

k − 1

s

)

+

(

t2 + 2

s

)

= (r1 + r2)

(

k − 1

s

)

+

(

t1 + 2

s

)

+

(

t2 + 2

s

)

.

(2)
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For s ≥ 3, the following inequality holds,

(

t1 + 2

s

)

+

(

t2 + 2

s

)

≤



















(

t1 + t2 + 2

s

)

if t1 + t2 ≤ k − 4;

(

k − 1

s

)

+

(

t1 + t2 − k + 5

s

)

if k − 3 ≤ t1 + t2 ≤ 2(k − 4).

(3)

Note that, n = n1 + n2 − 2 and hence n − 2 = (r1 + r2)(k − 3) + (t1 + t2), which implies r = r1 + r2 and

t = t1 + t2 if t1 + t2 ≤ k − 4, and r = r1 + r2 + 1 and t = t1 + t2 − k + 3 if k − 3 ≤ t1 + t2 ≤ 2(k − 4).

Combining Inequalities (2) and (3), it follows that

Ns(G) ≤ gs(n, k).

This yields a contradiction to that Ns(G) > gs(n, k), which completes the proof of Claim 1.

Choose an edge uv of G such that cuv(G) < k and dG(v) ≤ dG(u) = ℓ(G). Then the vertex u satisfies

the following claim.

Claim 2. The vertex u is adjacent to all vertices of G− u.

Proof of Claim 2. Suppose to the contrary that there exists a vertex w in G such that uw /∈ E(G). Since G

is 2-connected, there is a (u,w)-path P which does not contain v. Choose P = uu1 · · ·ukw to be a shortest

(u,w)-path avoiding v. Then uui /∈ E(G) for i ≥ 2. If N(u)∩N(u1) = ∅, then contract the edge uu1 and let

G′ = G/uu1. By (i) of Lemma 2.3 and Claim 1, the graph G′ is 2-connected. Since uu1 6= uv, it follows that

cuv(G
′) ≤ cuv(G) < k.

Since G′ is smaller than G, the graph G′ is not a counterexample and hence Ns(G
′) ≤ gs(n−1, k). It follows

from (i) of Lemma 2.5 that

Ns(G) ≤ Ns(G
′) ≤ gs(n− 1, k) ≤ gs(n, k),

which contradicts the assumption Ns(G) > gs(n, k).

So assume that N(u)∩N(u1) 6= ∅. Let G′′ = G[u1 → u]. Then dG′′(u) > dG(u) because u2 and w are not

adjacent to u. By (ii) of Lemma 2.3 and Claim 1, the graph G′′ is 2-connected. It follows from Lemma 2.4

that cuv(G
′′) ≤ cuv(G) < k. Further, by (ii) of Lemma 2.5, it holds that

Ns(G
′′) ≥ Ns(G) > gs(n, k).

Then ℓ(G′′) ≥ dG′′(u) > dG(u) = ℓ(G) because uu2 /∈ E(G), which contradicts the maximality of ℓ(G). This

completes the proof of Claim 2.

By Claim 2, u is adjacent to all other vertices of G. Further, we have the following claim.

Claim 3. The graph G− u has no cycle of length at least k − 1.

Proof of Claim 3. Suppose to the contrary that G − u has a cycle C = x1x2 . . . xlx1 with l ≥ k − 1.

If v ∈ V (C), let v = x1 (relabelling xi’s if necessary). Then uvx2 . . . xlu is a cycle of length at least k

containing uv in G because u is adjacent to all other vertices of G, a contradiction to cuv(G) < k. Now

assume v /∈ V (C). Since G is 2-connected, the graph G − u is connected. Hence G − u has a path from v

to C which is internally disjoint from C. Without loss of generality, assume x1 is the end-vertex of P on

C. Then uvPx1x2 . . . xlu is a cycle of G which has length at least k, a contradiction to cuv(G) < k. This

completes the proof of Claim 3.
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By Claim 3 and Theorem 2.2, we have

Ns(G− u) ≤ ψs(n− 1, k − 1) = r

(

k − 2

s

)

+

(

t+ 1

s

)

,

where (n− 1)− 1 = r(k − 3) + t and 0 ≤ t ≤ k − 4. By Claim 2, it follows that

Ns(G) = Ns(G− u) +Ns−1(G− u)

≤ r

(

k − 2

s

)

+

(

t+ 1

s

)

+ r

(

k − 2

s− 1

)

+

(

t+ 1

s− 1

)

= r

(

k − 1

s

)

+

(

t+ 2

s

)

= gs(n, k),

which yields a desired contradiction to Ns(G) > gs(n, k). This completes the proof.

References
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