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BOUNDARY TRACING FOR LAPLACE'S EQUATION WITH
CONFORMAL MAPPING\ast 

CONWAY LI\dagger , NEVILLE FOWKES\ddagger , AND MICCAL MATTHEWS\ddagger 

Abstract. The conformal mapping technique has long been used to obtain exact solutions to
Laplace's equation in two-dimensional domains with awkward geometries. However, a major limi-
tation of the technique is that it is only directly compatible with Dirichlet and zero-flux Neumann
boundary conditions. It would be useful to have a means of adapting the technique to handle more
general boundary conditions, for example, Robin or nonlinear flux conditions. Boundary tracing is an
unconventional method for tackling boundary value problems with generic flux boundary conditions,
where one takes a known solution to the field equation and seeks new boundaries satisfying the pre-
scribed boundary condition. In this paper, we adapt boundary tracing for compatibility with confor-
mal mapping to produce a new prescription for studying Laplace's equation coupled with general flux
boundary conditions. We illustrate the procedure via two simple examples involving heat transfer.
In both cases, we demonstrate how to construct infinite families of nontrivial domains in which the
solution to the chosen flux boundary value problem is exactly equal to a selected harmonic function.
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1. Introduction. Conformal mapping techniques have enabled mathematicians
to obtain exact solutions to Laplace's equation in a vast array of two-dimensional
(2D) geometries. This procedure works because harmonicity is preserved under a con-
formal transformation. The Riemann mapping theorem guarantees that any simply-
connected 2D domain can be mapped onto any other simply-connected 2D domain
(via the unit disc) so that the method powerfully handles the most awkward of ge-
ometries. There exists a large catalogue of such transformations, which map between
complicated domains of practical interest and simple domains (the unit disc, the half
plane, etc.) [6]. Of particular note is the Schwarz--Christoffel transformation, which
is useful for handling polygonal geometry.

Now a boundary value problem consists of not only a field equation but also
boundary conditions. Unlike Laplace's equation, these boundary conditions may not
be formally preserved under a conformal transformation (thus restricting the appli-
cability of the method). Indeed, whilst the potential is mapped across pointwise,
displacements will in general be distorted so that the potential gradient is not pre-
served (unless it vanishes). The implication is that only Dirichlet conditions and
zero-flux Neumann boundary conditions are automatically compatible with conformal
transformation.
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In many practical problems Laplace's equation is coupled with a flux boundary
condition that is not preserved under a conformal transformation; examples include
steady conduction--convection problems (which have a Robin condition), conduction--
radiation (where boundary flux is proportional to the fourth power of temperature) [9],
and corrosion modeling [5, 8]. What we would like to have is a simple means of
adapting conformal mapping that is compatible with generic flux boundary conditions.

Taking a step back, the perennial approach to solving boundary value problems
has been to fix the domain shape and then seek a solution that simultaneously satisfies
the field equation and the boundary conditions. An alternative strategy for flux
boundary conditions is the method of boundary tracing, where one chooses a known
solution to the field equation and seeks boundary curves that are consistent with the
boundary conditions. These curves are then used to construct new domains that also
admit the chosen known solution. In this way, a vast array of nontrivial domains
and results of practical interest may be obtained. In the present paper, we unify the
methods of conformal mapping and boundary tracing, producing a new approach for
investigating boundary value problems involving Laplace's equation and general flux
boundary conditions.

In section 2, we first present the boundary tracing technique in the general con-
text, and in particular we determine the ordinary differential equation needed for
boundary tracing in the real plane. We then focus on the special case where the field
equation is Laplace's equation and derive an equivalent ordinary differential equation
for boundary tracing in the complex plane; this lends itself to a unification with the
method of conformal mapping. In section 3 we illustrate the application of the proce-
dure by examining two very simple steady-state heat conduction problems involving
awkward geometry and flux boundary conditions. Finally we conclude in section 4
with an assessment of the usefulness of coupling the approaches of boundary tracing
and conformal mapping.

2. Boundary tracing. The method of boundary tracing was first recognized as
a formal technique by Anderson [1] and was then explored in a series of articles which
presented examples of its use for classical partial differential equations, both linear
and nonlinear [2, 3, 4]. Most notably new, exact, and practically useful results were
obtained for the Laplace--Young equation coupled with a contact condition, which
is an important yet difficult problem in the field of capillarity. The boundary trac-
ing procedure is elementary and can be applied without extensive knowledge of the
underlying theoretical framework developed by Anderson, Bassom, and Fowkes [3].
We begin with a summary description of boundary tracing in the general context
(section 2.1) before tying it together with conformal mapping in the special case
where the field equation is Laplace's equation (section 2.2).

2.1. Boundary tracing in the general context. Suppose we have a bound-
ary value problem consisting of some field equation together with a flux boundary
condition of the very general form

(2.1) n \cdot \bfnabla T = F (x, y, T, \| \bfnabla T\| ).

To perform boundary tracing, we choose some known solution T = T (x, y) of the
field equation and seek traced boundaries, which are curves along which the boundary
condition (2.1) is satisfied. Once the traced boundaries have been found, they may
be patched together to construct new domains which also admit the chosen known
solution.
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The determination of the traced boundaries turns out to be straightforward. Us-
ing the parametrization y = y(x), we have

(2.2) n =
 - dy ax + dxay\sqrt{} 

dx2 + dy2
and \bfnabla T = Tx ax + Ty ay,

where ax and ay are the Cartesian basis vectors, and the subscripts on T denote partial
differentiation. (The precise sign of the normal vector is irrelevant here; flipping it
does not affect the traced boundaries and merely swaps the sides that are designated
as interior and exterior.) The boundary condition (2.1) becomes a quadratic in dy/dx,
which solves to give

(2.3)
dy

dx
=

TxTy \pm F
\sqrt{} 
Tx

2 + Ty
2  - F 2

Tx
2  - F 2

.

The right-hand side is a known function of x and y (for T is chosen and F is pre-
scribed); thus boundary tracing simply amounts to solving an ordinary differential
equation. The quantity under the square root sign is of significance, and we refer to
it as the viability function:

(2.4) \Phi = (\bfnabla T )2  - F 2.

Note that real traced boundaries can only exist in the region \Phi \geq 0, which we call the
viable domain; in physical terms this is the region in which the known solution T is
steep enough to satisfy the flux condition (2.1).

2.2. Boundary tracing for Laplace's equation. If the field equation happens
to be Laplace's equation

(2.5) \bfnabla 2T = 0,

then it is possible to combine the methods of boundary tracing and conformal mapping
by first recasting the traced boundaries as solutions to an ordinary differential equation
in the complex variable z = x+iy. In this context, the arc-length parametrization x =
x(s), y = y(s) best describes the traced boundaries. The flux boundary condition (2.1)
becomes

(2.6) Tx
dy

ds
 - Ty

dx

ds
= F,

and using the arc length definition

(2.7)

\biggl( 
dx

ds

\biggr) 2

+

\biggl( 
dy

ds

\biggr) 2

= 1,

we obtain the system of differential equations

dx

ds
=

 - TyF \pm Tx

\surd 
\Phi 

(\bfnabla T )2
,(2.8)

dy

ds
=

+TxF \pm Ty

\surd 
\Phi 

(\bfnabla T )2
(2.9)



1414 CONWAY LI, NEVILLE FOWKES, AND MICCAL MATTHEWS

for the traced boundaries. Combining these we get

(2.10)
dz

ds
=

d(x+ iy)

ds
=

( - Ty + iTx)F \pm (Tx + iTy)
\surd 
\Phi 

(\bfnabla T )2
.

Complex function theory tells us that T is the real part of some analytic function,
i.e.,

(2.11) W (z) = T (x, y) + iV (x, y).

From the Cauchy--Riemann equations, we obtain

 - Ty + iTx = i

\biggl( 
dW

dz

\biggr) \ast 

,(2.12)

Tx + iTy =

\biggl( 
dW

dz

\biggr) \ast 

,(2.13)

and

(2.14) (\bfnabla T )2 =

\bigm| \bigm| \bigm| \bigm| dWdz
\bigm| \bigm| \bigm| \bigm| 2 =

\biggl( 
dW

dz

\biggr) \biggl( 
dW

dz

\biggr) \ast 

,

where asterisks denote complex conjugation. Using these, we may eliminate T (x, y)
in favor of W (z) in (2.10), obtaining the highly terse

(2.15)
dz

ds
=

iF \pm 
\surd 
\Phi 

dW/dz

for traced boundaries in the complex plane.
At this point we are ready to bring in the method of conformal mapping. Suppose

that we have z = z(\zeta ) according to some conformal mapping between virtual \zeta -space
and physical z-space. From the chain rule, we see that the traced boundaries are
simply determined by

(2.16)
d\zeta 

ds
=

iF \pm 
\surd 
\Phi 

dW/d\zeta 

in \zeta -space. This form is strikingly similar to (2.15), and it is remarkable that the
encoding of a traced boundary (which represents a flux boundary condition) in the
complex plane is so compatible with conformal transformation. This completes the
unification of boundary tracing with conformal mapping.

Now suppose that we wish to study a boundary value problem (in z-space) con-
sisting of Laplace's equation in the interior, the flux boundary condition (2.1) on part
of the boundary, and certain nonflux boundary conditions on the remainder of the
boundary. We apply the following prescription:

1. Choose an analytic function W = W (\zeta ) and a conformal mapping z = z(\zeta )
corresponding to some T = T (x, y) that satisfies the nonflux boundary con-
ditions.

2. Write the flux function F and the viability function \Phi in terms of \zeta .
3. Compute traced boundaries in virtual \zeta -space using (2.16).
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4. Map the traced boundaries to physical z-space.
5. Use the traced boundaries to construct new domains which admit the solu-

tion T (x, y) to the boundary value problem.
As in the usual conformal mapping approach, the idea is to make a transformation
that takes complicated geometry in physical z-space to simple geometry in virtual
\zeta -space; only now, we have an elementary formulation that is compatible with flux
boundary conditions.

For the purposes of step 1 of the prescription, we have an abundance of known
analytic functions and conformal mappings to choose from; a good choice will lead
to a good outcome. After the traced boundaries have been determined, it is usually
the case that an infinite number of new domains can then be constructed. However,
given the very nature of boundary tracing, we have limited control over the shape
of the traced boundaries that will result. The real question is therefore ``Are the
results obtained interesting and useful?"" The reader will be better able to judge by
examining the examples below.

3. Examples. The first example is a problem involving mixed boundary con-
ditions (zero value and unit flux). This problem cannot be addressed via the usual
conformal mapping approach because the unit-flux boundary condition is not pre-
served under conformal transformation. Our prescription yields an exact result that
might otherwise be obtained by inspection; it also yields a multitude of new domain
shapes which admit exactly the same solution to the boundary value problem.

The second example demonstrates the application of our prescription to a heat
transfer problem with heat supplied internally along a triangular boundary (repre-
sented by a Dirichlet condition) and lost externally via convection (represented by a
Robin condition). As in the first example, the flux condition defeats the standard
conformal mapping approach.

3.1. Example 1: Isoflux. Suppose we have a boundary value problem consist-
ing of Laplace's equation in the interior, the Dirichlet condition T = 0 along y = \pm x,
and the isoflux condition n \cdot \bfnabla T = 1 along some (as yet unspecified) boundary, as
shown in Figure 1. Physically, this might represent a steady conduction problem for
the temperature T in a region bounded by ice along y = \pm x and by a heat-generating
electrical wire along the remaining (unspecified) boundary.

Choosing the analytic function W (\zeta ) = \zeta together with the transformation

(3.1) z =
\sqrt{} 

\zeta 

T = 0

T = 0

n · ∇T = 1

Fig. 1. A simple isoflux boundary value problem.



1416 CONWAY LI, NEVILLE FOWKES, AND MICCAL MATTHEWS

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-1.0

-0.5

0.0

0.5

1.0

Re 𝜁

Im 𝜁

(a) \zeta -space

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-1.0

-0.5

0.0

0.5

1.0

Re z

Im z

(b) z-space

Fig. 2. Conformal transformation (3.1) applied to lines of constant real part in \zeta -space.

fixes our known solution to Laplace's equation as

(3.2) T = x2  - y2

and takes care of the Dirichlet boundaries y = \pm x (Figure 2). Of course, there
are infinitely many other choices of W (\zeta ) and z(\zeta ) that also satisfy the Dirichlet
boundaries; our choice here is a relatively simple one that allows us to illustrate the
method.

The remaining isoflux boundary we determine using boundary tracing, and since
it will lie in the region y < | x| , we restrict our attention to the half plane Re\{ \zeta \} \geq 0
in \zeta -space.

For the purposes of boundary tracing, the flux function is simply F = 1. Since

(3.3) (\bfnabla T )2 =

\bigm| \bigm| \bigm| \bigm| dWd\zeta d\zeta 

dz

\bigm| \bigm| \bigm| \bigm| 2 =
\bigm| \bigm| \bigm| 1 \cdot 2\sqrt{} \zeta 

\bigm| \bigm| \bigm| 2 = 4| \zeta | ,

we have the viability function

(3.4) \Phi = 4| \zeta |  - 1.

The ordinary differential equation (2.16) for traced boundaries in the \zeta -plane becomes

(3.5)
d\zeta 

ds
= i\pm 

\sqrt{} 
4| \zeta |  - 1.

This may be integrated numerically to any desired accuracy. Recalling that real traced
boundaries only exist in the viable domain \Phi \geq 0, we only consider | \zeta | \geq 1/4. The
resulting traced boundaries in \zeta -space along with their images in physical z-space are
shown in Figure 3. There are two branches of curves corresponding to the two possible
signs for the square root.
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Fig. 3. Traced boundaries (isoflux) obtained by integrating (3.5) in \zeta -space, then mapping to z-
space.

Fig. 4. Constructed domains (in physical z-space) with zero value along the diagonal boundaries
(dotted) and unit flux along the remaining boundary (solid).

The traced boundaries can be patched together to form isoflux bridges linking
the Dirichlet boundaries (y = \pm x). The patching may be done in an almost arbitrary
manner; the only precaution we must take is to ensure that there is consistent orien-
tation of the outward boundary normal. Given the isoflux condition, this is achieved
by identifying as exterior the side on which T is greater. Thus we may construct an
infinite number of domains (Figure 4) that admit the same exact solution T = x2 - y2

to our boundary value problem.
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Taking another look at Figure 3(b), specifically at the traced boundaries through
(x, y) = (1/2, 0), we see what looks like a vertical line. A local asymptotic analysis
at \zeta = 1/4 shows that we have

(3.6) \zeta (s) =

\Biggl\{ 
(1/4 - s2) + is, s < 0,

(1/4 + 2s2  - 24/7s4 + \cdot \cdot \cdot ) + is, s > 0

for the positive-square-root branch of (3.5), and a reflected version of this for the
negative-square-root branch. Of course \zeta = (1/4 - s2)+is corresponds to z = 1/2+is,
and we indeed have a vertical line x = 1/2 as suspected. Thus, we have a somewhat
surprising result (perhaps obvious to the astute reader): the boundary value problem
with unit flux along x = 1/2, zero value along y = \pm x, and Laplace's equation in the
interior of the resulting triangle admits the exact solution x2  - y2.

While it is certainly interesting that boundary tracing can produce infinite families
of new domains (Figure 4), one might question the usefulness of having a fixed solution
(here T = x2  - y2). However, as noted earlier, we could have made different choices
for W (\zeta ) and z(\zeta ) in keeping with the zero-value requirement along the Dirichlet
boundaries y = \pm x. Any sensible choice would lead to a further infinite family of new
domains, all admitting a different solution T (x, y) to the boundary value problem.

3.2. Example 2: Convection. Consider a simple conduction problem, where
heat is lost to the environment by convection along some external boundary and sup-
plied along an internal triangular boundary held at constant temperature (Figure 5).
Suppose after scaling that these boundary conditions are given by the Robin condition

(3.7) n \cdot \bfnabla T =  - T

A0

and the Dirichlet condition

(3.8) T = B0,

respectively, where A0 = 1.5, B0 = 1.6, and the vertices of the triangular boundary
are the three cubic roots of unity in the complex plane.

We choose the Schwarz--Christoffel transformation z = z(\zeta ) given by

(3.9)
dz

d\zeta 
=

C0

\zeta 2
\bigl( 
1 - \zeta 3

\bigr) 2/3
,

conduction

convection

heat

Fig. 5. Conduction--convection problem with internal heat generation from a triangular bound-
ary held at constant temperature.
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Fig. 6. Schwarz--Christoffel transformation (3.9) applied to a polar grid in \zeta -space (curves of
constant \rho and constant \varphi ). Note the different scales.

which maps the interior of the unit disc in \zeta -space to the exterior of an equilateral
triangle in z-space (Figure 6). Integration yields

(3.10) z(\zeta ) =  - C0

\zeta 
2F1

\bigl( 
 - 2

3 , - 
1
3 ;

2
3 , \zeta 

3
\bigr) 
,

and we choose

(3.11) C0 =
 - 1

2F1

\bigl( 
 - 2

3 , - 
1
3 ;

2
3 , 1

\bigr) =  - 0.730499

to ensure that \zeta = 1 is mapped to z = 1. Writing (\rho , \varphi ) for polar coordinates in \zeta -
space (so that \zeta = \rho ei\varphi ), we see that the unit circle | \zeta | = \rho = 1 is mapped to the
desired triangular boundary in z-space. Selecting the analytic function

(3.12) W (\zeta ) = log

\biggl( 
\zeta 

\rho 0

\biggr) 
,

where

(3.13) \rho 0 = exp( - B0) = 0.201897,

we obtain

(3.14) T = Re\{ W\} = log

\biggl( 
| \zeta | 
\rho 0

\biggr) 
= log

\biggl( 
\rho 

\rho 0

\biggr) 
,

a harmonic function that satisfies the Dirichlet condition (3.8) along the triangular
boundary in z-space (Figure 7). Note that the T -contours coincide with the curves of
constant \rho .

The right-hand side of the boundary condition (3.7) is our flux function,

(3.15) F =  - T

A0
=  - 1

A0
log

\biggl( 
| \zeta | 
\rho 0

\biggr) 
,
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Fig. 7. Solution (3.14), mapped to zT -space.
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Fig. 8. Traced boundaries (convection) obtained by integrating (2.16) in \zeta -space, then mapping
to z-space. The region | \zeta | < \rho 0 is unphysical, since T is negative within it.

and from (2.14) we see that

(3.16) (\bfnabla T )2 =

\bigm| \bigm| \bigm| \bigm| dWd\zeta d\zeta 

dz

\bigm| \bigm| \bigm| \bigm| 2 =

\bigm| \bigm| \bigm| \bigm| \bigm| \zeta 

C0(1 - \zeta 3)
2/3

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

.

Having written F and (\bfnabla T )2 (and hence \Phi = (\bfnabla T )2  - F 2) as functions of \zeta , we may
then integrate (2.16) to obtain traced boundaries in \zeta -space (Figure 8(a)). Applying
the transformation (3.10) maps them to physical z-space (Figure 8(b)), where domains
can be constructed by patching boundaries together as before.

Some interesting examples are shown in Figure 9. Since the temperature field
in each constructed domain is the harmonic function (3.14), the power (per unit
length out of the page) supplied along the inner triangular boundary is the same in
all cases. Thus boundary tracing lets us generate different convective configurations
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Fig. 9. Constructed domains with constant temperature along the internal triangular bound-
ary (dotted) and convection along the external boundary (solid).

that all provide the same amount of heat dissipation. Moreover, the configurations in
Figure 9 are not merely perturbed versions of each other, but they exhibit a genuine
structural diversity; we have (roughly) a triangle, a star, and a butterfly. Note that
these domains are doubly connected and that a possible strategy for extending to
multiply-connected domains (corresponding to multiple internal heat sources) is as
follows:

1. Choose a conformal mapping that makes T constant along multiple closed
curves, which will be the multiple internal heat sources.

2. Determine the traced boundaries.
3. Use the traced boundaries to construct a curve (with correct orientation of

the outward normal) that encloses the multiple internal heat sources.

4. Conclusions. The above examples show how boundary tracing can be used to
extend the range of boundary conditions that can be addressed in a Laplace equation
context using conformal mapping. Whilst the flux boundary conditions considered
were relatively simple (namely, a unit-flux condition in Example 1 and a linear Robin
condition in Example 2), nothing in the theory of boundary tracing precludes nonlin-
ear flux conditions, and (2.1) remains the most general flux boundary condition that
can be used.

Although the very nature of the boundary tracing approach means that domain
shape cannot be specified a priori, the strength of the method lies in its simplicity.
Boundaries are determined by straight integration of a first-order ordinary differential
equation, and one obtains two branches of curves that can be patched together to
form an infinite family of new domains (which all admit the same field solution). In
particular, we have seen in the convection example how the resulting domains can be
greatly varied in shape. Given this, one might envisage the use of such an approach
in modeling of diffusive biological processes, where structural features such as folds
and sacs are important.

The standard conformal mapping approach powerfully handles complicated geom-
etry, and we may think of it as providing an abundant supply of known exact solutions
to Laplace's equation. The limiting feature of the method of conformal mapping is
its inability to deal with generic flux boundary conditions. Boundary tracing comple-
ments this, being a method designed for flux boundary conditions that also utilizes
known exact solutions to a field equation. Our prescription unifies the two methods
and allows us to use conformal mapping for a wider variety of boundary conditions
than before.
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