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Abstract. We consider stochastic optimization under distributional uncertainty, where the unknown distribu-
tional parameter is estimated from streaming data that arrive sequentially over time. Moreover, data may depend on
the decision of the time when they are generated. For both decision-independent and decision-dependent uncertain-
ties, we propose an approach to jointly estimate the distributional parameter via Bayesian posterior distribution and
update the decision by applying stochastic gradient descent on the Bayesian average of the objective function. Our
approach converges asymptotically over time and achieves the convergence rates of classical SGD in the decision-
independent case. We demonstrate the empirical performance of our approach on both synthetic test problems and a
classical newsvendor problem.
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1. Introduction. Stochastic optimization is a mathematical framework that models de-
cision making under uncertainty. It usually assumes that the decision maker has full knowl-
edge about the underlying uncertainty through a known probability distribution and mini-
mizes (or maximizes) a functional of the cost (or reward) function [55]. However, the prob-
ability distribution of the randomness in the system is rarely known in practice and is often
estimated from historic data. The impact of the estimation accuracy and the subsequent dis-
tributional uncertainty have been widely studied in the literature. For example, [9] and [51]
conduct perturbation analysis of the stochastic optimization problems and quantify the sen-
sitivity of the optimal value (and/or solution) to the probability distribution. One popular
approach to addressing this distributional uncertainty in stochastic optimization is distribu-
tionally robust optimization (DRO) (e.g. [14, 7, 61]). The DRO framework assumes that the
underlying unknown probability distribution lies in an ambiguity set of probability distribu-
tions and then optimizes the problem with respect to the worst case in the ambiguity set. It has
been successfully applied to a broad range of problems in statistics, optimization, and con-
trol, such as stochastic programming (e.g. [4, 37]), Markov Decision Processes (MDPs) (e.g.
[67, 68]), stochastic control (e.g. [58, 69]), and ranking and selection (e.g. [27, 66, 65, 25]).
To construct an appropriate ambiguity set that contains the true distribution with a probabilis-
tic guarantee and ensures tractability of the optimization problem, various DRO methods have
been developed, such as methods based on moment constraints (e.g., [14]), φ -divergence (e.g.
[5]), and Wasserstein distance (e.g., [24]). In contrast to DRO, [72, 64] proposed a Bayesian
risk optimization (BRO) framework, with the motivation to use the Bayesian posterior distri-
bution (which encodes the likelihoods of all possibilities) to replace the ambiguity set (which
treats every possibility inside the set with equal probability), and further take a risk functional
with respect to the posterior distribution to allow more flexible risk attitude.

Nearly all the aforementioned works that focus on stochastic optimization in static setting
assume that the input data are given as one fixed batch. However, in many applications, data
are often collected over time, and the decision maker often needs to make decisions in an
online fashion given all the available data. For example, an inventory manager observes
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the customer demand in a daily or weekly basis, and adjusts his/her decision accordingly; a
robot that searches for an unknown source receives signals from the source over time, and
makes its move accordingly (e.g. [43]). Such streaming data have only been considered
recently in stochastic simulation optimization, e.g., [63], [71], [62], [57]. While these recent
works consider the streaming input data, their assumption is that the data are generated from
an exogenous (decision-independent) distribution and hence are independent and identically
distributed (i.i.d.). This assumption restricts their application to many real-world problems
where the input data are endogenous (decision-dependent). For example, in live streaming
e-commerce, there is usually a rolling banner that counts how many products are left, and
customers are more likely to purchase the product that has only a few left since it is more
popular. As another example, in the supermarket, tall stacks of a product impact its visibility,
which leads more customers to purchase the product [30, 3].

Motivated by these real-world problems where data arrive sequentially and could even
depend on the decision, in this work we consider stochastic optimization problems where the
underlying distribution is unknown but data from the distribution arrive in batches over time.
We assume a parameterized distributional model, and thus the distribution family is known
but the true distributional parameter is unknown. It is also interesting to consider a non-
parametric setting with a prior of Dirichlet process (see [59] for a non-parametric simulation
optimization problem setting), though the associated analysis could be much more compli-
cated. At each time stage, our procedure consists of two steps: 1) use the current batch of
data to update the Bayesian posterior distribution of the distributional parameter, and 2) take
the Bayesian average of the objective function and apply stochastic gradient descent (SGD)
on this reformulated objective function. Our proposed approach can be viewed as an online
extension of the BRO framework in [64]: BRO considers a fixed batch of data and only need
to solve the fixed BRO formulation; in contrast, we consider the setting where batches of data
come in sequentially, and therefore, we update the stage-wise BRO problem every time with
the new incoming data; moreover, due to the limited time in each stage, we can only apply
a few SGD iterations to solve each stage-wise BRO problem. As a result, the convergence
analyses of BRO and our paper are quite different and the results have distinct implications:
the convergence of BRO shows that if the fixed batch of data has an infinite size, the BRO
formulation recovers the true problem and BRO solutions are indeed the true optimal solu-
tions; our convergence analysis shows that even though our algorithm applies SGD iterations
to a sequence of estimated (Bayesian-average) problems, but the algorithm still converges to
the true (local) optimal solution. Another related work [56] considers the same problem of
fixed data batch as [72, 64] and uses Bayesian average to estimate the true problem, but it
also takes a robust approach with respect to the uncertainty associated with the parametric
distributional model.

We consider both cases of exogenous and endogenous input data. In the former case,
data follow a fixed distribution that only involves the distributional parameter. In the lat-
ter case, the data follow a time-varying distribution depending not only on the distributional
parameter but also on the decision at the current time. It is worth noting that due to the cor-
relation and non-stationarity of the decision-dependent data across time stages, the Bayesian
estimation with such data is different from the classical Bayesian updating with i.i.d. data,
which poses a great challenge to showing the consistency of the Bayesian posterior distribu-
tion. We consider the same problem as [57], but differ in two key aspects: first, we take a
Bayesian approach to estimate the distributional parameter, whereas they estimate by maxi-
mum likelihood estimator (MLE) and solve the problem with the plug-in MLE; second, they
only consider exogenous (decision-independent) uncertainty. Also note that compared to our
preliminary conference version [44], this paper is a substantial extension in both theoreti-
cal analysis and numerical experiments. For the decision-independent uncertainty, we further



BAYESIAN STOCHASTIC GRADIENT DESCENT 3

show the convergence rate of the proposed algorithm. Apart from a synthetic test problem, we
also evaluate the performance of the proposed algorithm in a classical newsvendor problem.

Our considered problem is related to online learning (e.g. [10, 53]). Online learning
is often formulated as a repeated game: at each round, the learner makes a prediction and
receives the true solution (or a cost function), with the goal to minimize the cumulative cost
over time. Classical algorithms in online learning such as Follow the Leader (FTL) and its
variants, such as Follow the perturbed Leader (FTPL) and Follow the Regularized Leader
(FTRL), incorporate the learning process, which takes the information from previous rounds
to improve prediction, into the algorithms in order to choose the next action that leads to
the lowest cumulative cost. In contrast to the goal of minimizing the cumulative cost, our
considered problem aims to find an optimal solution of a stationary objective function in the
decision-independent case and a non-stationary objective function in the decision-dependent
case, where the non-stationarity is only caused by the decision-dependent uncertainty. Since
the online data in our problem is restricted to the randomness in the system that is generated
from the (unknown) underlying distribution, it is natural to update our belief of the (unknown)
distribution in a Bayesian way. In addition to the distinctive goal in our problem, it is worth
noting the key differences between our approach and two closely-related algorithms in online
learning. The first one is the online gradient descent algorithm (see [73, 34, 16]), for which
the cost function can vary completely arbitrarily over time, and hence is unlike our SGD
algorithm that makes use of the structure of the Bayesian average of the objective function
over time. The second one is the Thompson sampling algorithm (see [1, 11]), which also
assumes a parameterized model and updates the posterior distribution on the parameter in a
Bayesian way. However, Thompson sampling makes the decision based on only one sample
from the posterior distribution in each round; whereas our algorithms takes the entire posterior
distribution into account and solves the Bayesian average of the original (unknown) objective
function. Later in the numerical experiments, we show that the Bayesian average provides a
better estimate of the original objective function compared to a point estimate.

As a final note, the endogenous uncertainty has been considered in many fields, includ-
ing dynamic programming (e.g. [60]), robust optimization (e.g. [48, 40]), and stochastic
optimization (e.g. [31, 17, 22, 35, 49, 45, 70]), with many applications in inventory control
(e.g. [6, 41]), healthcare (e.g. [32]), and so on. However, almost none of the aforementioned
work involving decision-dependent uncertainty take into consideration the additional input
data. Only until recently, [38] and [46] study the performative prediction problem, which is
essentially a stochastic optimization problem with streaming decision-dependent data; how-
ever, the goal is to find the so-called performatively stable point (or equilibrium point), which
is in general different from the true optimal solution. Along the same line, [15] also considers
static stochastic optimization under decision-dependent uncertainty, and proposes a proximal
gradient method and its variants that converge to the performatively stable point under rela-
tively strong assumptions (strong convexity, Lipschitz continuity, etc.). Asymptotic normality
and optimality of the stochastic approximation algorithm are further studied in a follow-up
work [13]. Most recently, [36] and [47] redesign the gradient algorithms in [38] by intro-
ducing a gradient correction term, and show the convergence to the true optimal solution. In
particular, [36] also considers a parameterized model where the distributional parameter (as a
function of the decision variable) can be estimated from streaming input data, and uses finite
difference to estimate the gradient of the objective function. An important assumption in their
approach is that the estimated distributional parameter has a constant error bound. Different
from their approach, we learn the distributional parameter with a Bayesian approach, and
show the Bayesian consistency of the posterior distribution that finally leads to the conver-
gence of the SGD algorithm to a stationary point of the original objective function (optimal
solution if the problem is convex).
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We summarize the contribution of this paper as follows. First, we propose a Bayesian
stochastic gradient descent approach to stochastic optimization problem with unknown un-
derlying distribution and with streaming input data that could depend on the decision. This
new approach is among the very few works [64, 56, 33] in the literature that take a Bayesian
perspective on approaching distributional uncertainty in stochastic optimization. Second,
we show the convergence of our approach in the decision-independent case and decision-
dependent case respectively. Under decision-independent uncertainty, our approach achieves
the convergence rates of classical non-convex SGD. Third, we show the consistency of the
Bayesian posterior distribution with endogenous non-i.i.d. data under mild conditions; this
result is applicable to a wide range of problems involving Bayesian estimation beyond the
scope of this paper. Our non-asymptotic analysis of the Bayesian estimate with i.i.d. data is
also new and could be potentially useful for analyzing other Bayesian algorithms.

The rest of the paper is organized as follows. We first propose Bayesian-SGD algorithms
for stochastic optimization with decision-independent and decision-dependent streaming in-
put data in section 2. We then analyze the convergence properties of the proposed algorithms
for both cases in section 3. We verify the theoretical results and demonstrate the performance
of our algorithms in the numerical experiments in section 4. Finally, we conclude the paper
in section 5.

2. Bayesian SGD algorithms for stochastic optimization with streaming input data.
We consider the following stochastic optimization problems with decision-independent un-
certainty and decision-dependent uncertainty, receptively:

min
x∈X

H(x) := E f (·;θ c)[h(x,ξ )] (decision-independent uncertainty)(2.1)

min
x∈X

H(x) := E f (·;x,θ c)[h(x,ξ )] (decision-dependent uncertainty)(2.2)

where x ∈ X ⊂ Rd is the decision vector, ξ ∈ Ξ ⊂ Rm is a random vector, h : Rd ×Rm → R
is a deterministic function. The expectation is taken with respect to (w.r.t.) the distribution
of ξ , which is denoted as f (·;θ c) in the decision-independent case, and as f (·;x,θ c) in the
decision-dependent case. The density function f (·;x,θ c) takes a general form, where the
parameter θ c does not depend on x. For example, f (ξ ;x,θ c) = θ cxexp(−θ cxξ ) is the den-
sity function of the exponential distribution with rate θ cx. More assumptions on the density
function will be discussed in section 3. We assume the distribution of ξ belongs to a param-
eterized family of distributions with parameter set Θ ⊂ Rl , and let θ c be the true parameter
value of the distribution.

In practice, the true distribution f (·;θ c), or in other words the true distributional parame-
ter θ c, is rarely known exactly and usually estimated from data. We consider an online setting
where data arrive sequentially in time and decisions are updated at each time stage. It is natu-
ral to take a Bayesian approach for sequential estimation of the unknown parameter, since it is
computationally convenient and the estimate is guaranteed with strong consistency with i.i.d.
data (however, Bayesian consistency with non-i.i.d. data are much more complicated, which
we will discuss later in section 3). With the Bayesian estimate of the distributional parameter,
we apply iterations of the SGD algorithm on the estimated problem to update the decision,
because the light computational effort of SGD makes it appealing for the online setting. On a
high level, at each time stage t, after observing a new batch of data we carry out the following
two steps:

• Update the Bayesian posterior distribution of the parameter with the new data.
• Use SGD on the Bayesian average of problem (2.1) or (2.2) to update the decision.



BAYESIAN STOCHASTIC GRADIENT DESCENT 5

We now discuss the details of these two steps in the following. Let’s first focus on
the decision-independent case. Suppose at each time stage t we observe a batch of data
yt = {yt, j, j = 1, . . . ,D}, where {yt, j} are i.i.d. according to f (·;θ c) and D is the batch size.
By viewing the unknown distributional parameter as a random vector θ and assuming a prior
distribution π0 on θ , the posterior distribution of θ is updated by the Bayes rule as follows:

πt(θ) =
πt−1(θ) f (yt ;θ)∫
πt−1(θ) f (yt ;θ)dθ

=
πt−1(θ)∏

D
j=1 f (yt, j;θ)∫

πt−1(θ)∏
D
j=1 f (yt, j;θ)dθ

.(2.3)

The objective function (2.1) can be viewed as a function of θ , so we define the following
function

H(x,θ) := E f (·;θ)[h(x,ξ )].

To estimate the true objective function (2.1), we consider the Bayesian average of the objec-
tive function:

min
x∈X

Eπt [H(x,θ)] ,(2.4)

where the expectation is taken w.r.t. the posterior distribution πt defined in (2.3). Then we
apply SGD on (2.4) for K iterations within each time stage, where K is a user choice or
limited by the time length of the current stage before the next batch of data come in. The
key element in SGD is the stochastic gradient estimator, and an unbiased gradient estimator
of the objective function in (2.4) can be computed by the infinitesimal perturbation analysis
(IPA, refer to [26]) as:

∇xh(x,ξ ), ξ ∼ f (·;θ) and θ ∼ πt .(2.5)

Now let’s focus on the decision-dependent case. With slight abuse of notations, we use
the same notations as in the decision-independent case unless defined otherwise. Unlike
the decision-independent case where the data batches are i.i.d. over time from the fixed
distribution f (·;θ c), in the decision-dependent case data batches {yt}t are correlated and
differently distributed across time stages, since yt depends on the decision xt which is in turn
updated from previous data over time. Regardless of the non-stationarity of the data batches,
we still use Bayesian posterior distribution to estimate θ :

πt(θ) =
πt−1(θ) f (yt ;xt ,θ)∫

πt−1(θ) f (yt ;xt ,θ)dθ
=

πt−1(θ)∏
D
j=1 f (yt, j;xt ,θ)∫

πt−1(θ)∏
D
j=1 f (yt, j;xt ,θ)dθ

.(2.6)

Due to the nonstationarity of data batches, the consistency of the posterior distribution
is a question here; we will characterize the conditions needed for strong consistency of πt in
section 3. The Bayesian average of the objective function is

Eπt [H(x,θ)] = Eπt

[
E f (·;x,θ) [h(x,ξ )]

]
.(2.7)

An unbiased gradient estimator of the objective function (2.7) is

∇xh(x,ξ )+h(x,ξ )
∇x f̂t (ξ ;x)

f̂t (ξ ;x)
, ξ ∼ f (·;θ) and θ ∼ πt ,(2.8)

where f̂t(·;x) := Eπt [ f (·;x,θ)], ∇x f̂t(·;x) := ∇xEπt [ f (·;x,θ)]. The derivation of the gradient
estimators (2.5) and (2.8) will be shown in section 3. Informally, (2.8) is obtained by taking
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derivative of h(x,ξ ) f (ξ ;x,θ) w.r.t. x. In the algorithms we assume that the posterior distri-
bution πt and the expectation in f̂t(·;x) and ∇x f̂t(·;x) can be exactly computed, which is often
the case when we choose a conjugate prior distribution for Bayesian updating. For general
posterior distributions, we can use general Markov Chain Monte Carlo (MCMC) methods,
such as the Langevin algorithm ([23, 20]), to sample from the posterior and use these sam-
ples to approximate the expectation. It is worth noting that the first term in (2.8) is the same
as the stochastic gradient estimator (2.5) in the decision-independent case, and the second
term is unique here and caused by the dependence of the distribution on the decision x.

The algorithms, named as Bayesian Stochastic Gradient Descent (Bayesian-SGD), for
stochastic optimization with decision-independent uncertainty and decision-dependent un-
certainty are shown in Algorithm 2.1 and Algorithm 2.2, respectively. Please note that to
accelerate algorithm convergence, variants of SGD methods could be used instead of the
plain SGD iterations in these algorithms.

Algorithm 2.1 Bayesian-SGD (decision-independent uncertainty)
input: data batch size D, number of SGD iterations K, step size sequence {at, j, t =
1,2, . . . ; j = 0, . . . ,K −1}, time horizon T .
initialization: choose an initial decision x1 and prior distribution π0(θ).
for t = 1 : T do

-A batch of data yt,1, · · · ,yt,D
i.i.d∼ f (·;θ c) arrives;

-Posterior Update: compute πt(θ) according to (2.3).
-Decision Update:

• set xt,0 := xt ;
• for j = 0, · · · ,K − 1, draw sample θt, j ∼ πt(θ) and ξt, j ∼ f (·;θt, j), and carry

out SGD iteration:

xt, j+1 := ProjX
{

xt, j −at, j∇xh(xt, j,ξt, j)
}
,(2.9)

where ProjX is a projection operator that projects the iterate to the set X .
• set the updated decision as xt+1 := xt,K ;

end for
return xT+1

3. Convergence analysis. In this section, we show asymptotic convergence of Algo-
rithm 2.1 and Algorithm 2.2. Towards this end, we first need to show the consistency of the
Bayesian posterior distribution and then show the convergence of SGD when applied to the
non-stationary Bayesian average stochastic optimization problems (2.4) and (2.5). In addi-
tion, we show the convergence rate in the decision-independent case.

3.1. Convergence analysis for the decision-independent case. Let’s first consider the
decision-independent case. The probability space is constructed as follows. Define the
Bayesian prior π0 on (Θ,BΘ), where BΘ is the Borel σ -algebra on Θ. Let Y ⊂ Rm denote
the data (observation) space. The data y takes value in Y equipped with a Borel σ -algebra
BY and a probability measure {Pθ c}, such that Pθ c(y ∈ A) =

∫
A f (y;θ c)dy,∀A ∈ B(Y ).

For the sequence y1,y2, · · · ,yn
i.i.d∼ f (·;θ c), the probability measure is denoted by Pn

θ c . As
for the infinite sequence {y1,y2, . . .}, the probability measure P∞

θ c can be constructed by Kol-
mogorov’s extension theorem (cf. Theorem A.3.1 in [21]). In the following, w.p.1 (or almost
surely) means that the considered property holds with probability one w.r.t. the probability
measure P∞

θ c . Finally, let Ft := σ {(yτ) ,τ ≤ t} be the σ -filtration generated by the data.
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Algorithm 2.2 Bayesian-SGD (decision-dependent uncertainty)
input: data batch size D, number of SGD iterations K, step size sequence {at, j, t =
1,2, . . . ; j = 0, . . . ,K −1}, time horizon T .
initialization: choose an initial decision x1 and prior distribution π0(θ).
for t = 1 : T do

-A batch of data yt,1, · · · ,yt,D
i.i.d∼ f (·;xt ,θ

c) arrives;
-Posterior Update: compute πt(θ) according to (2.6).
-Decision Update:

• set xt,0 := xt ;
• for j = 0, · · · ,K − 1, draw sample θt, j ∼ πt(θ) and ξt, j ∼ f (·;xt, j,θt, j), and

carry out SGD iteration:

xt, j+1 := ProjX

{
xt, j −at, j

(
∇xh(xt, j,ξt, j)+h(xt, j,ξt, j)

∇x f̂t (ξt, j;xt, j)

f̂t (ξt, j;xt, j)

)}
,(2.10)

where ProjX is a projection operator that projects the iterate to the set X .
• set the updated decision as xt+1 := xt,K ;

end for
return xT+1

We have the convergence of the posterior distribution {πt} that is updated according to (2.3)
under the following assumptions.

Assumption 3.1 ([56], Assumption 3.1). (i) The set Θ is convex and compact with non-
empty interior. (ii) lnπ0(θ) is bounded on Θ. (iii) f (ξ |θ) > 0 for all ξ ∈ Ξ and θ ∈ Θ. (iv)
f (ξ |θ) is continuous in θ ∈ Θ. (v) ln f (ξ |θ),θ ∈ Θ is dominated by an integrable (w.r.t.
ξ ∼ f (·;θ c)) function. (vi) The data batches are i.i.d. over time from the fixed distribution
f (·;θ c).

We refer the readers to [56] for detailed explanations of the above assumptions. The next
lemma shows the Bayesian consistency under Assumption 3.1, which implies the distribu-
tional uncertainty diminishes as t → ∞.

DEFINITION 3.2 (Weak convergence). A sequence of distributions Pn ⇒ P, if and only
if
∫

gdPn →
∫

gdP as n → ∞ for all g bounded and continuous.

LEMMA 3.3 ([56], Lemma 3.2). Under Assumption 3.1, πt(θ) ⇒ δθ c(θ) w.p.1, where
δθ c is the Dirac delta function concentrated on the true parameter θ c.

We then study the asymptotic behavior of Algorithm 2.1 by the ordinary differential
equation (ODE) method (please refer to [39] for a detailed exposition on the ODE method for
stochastic approximation). The main idea is that SGD can be viewed as a noisy discretization
of an ODE. Under certain conditions, the noise in SGD averages out asymptotically, such that
the SGD iterates converge to the solution trajectory of the ODE. For simplicity, we consider
the case where K = 1 and rewrite the SGD iteration (2.9) as

(3.1) xt+1 = xt −at∇xh(xt ,ξt)+atzt ,

where atzt is the projection term, i.e., the vector of shortest Euclidean length needed to keep
the decision xt+1 from leaving the decision space X . We first show that under certain mild
conditions, the proposed gradient estimator in (3.1) is unbiased.
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Assumption 3.4. h(x,ξ ) is C1-smooth in x for all ξ ∈ Ξ, and the map ξ → ∇xh(x,ξ ) is
Lh-Lipschitz continuous for any x ∈ X .

Assumption 3.4 is a commonly used smooth assumption in the stochastic approxima-
tion literature (cf. [28, 15]). An important consequence is that for any probability measure,
Eh(x,ξ ) is differentiable in x with gradient E∇xh(x,ξ ) (cf. [15]).

LEMMA 3.5. Under Assumption 3.4, ∇xh(x,ξ ) with ξ ∼ f (·;θ) and θ ∼ πt is an unbi-
ased gradient estimator of the objective function in (2.4).

Proof. For every fixed x ∈ X ,

Eπt

[
E f (·;θ)[∇xh(x,ξ )]

]
= Eπt

[
∇xE f (·;θ)[h(x,ξ )]

]
= ∇xEπt

[
E f (·;θ)[h(x,ξ )]

]
,

where the first equality holds because the gradient ∇xh(x,ξ ) is Lipschitz continuous, and the
interchange between expectation and differentiation is justified by dominated convergence
theorem (DCT). Similarly, the second equality above is again justified by DCT. Therefore,
the proposed estimator in (3.1) is unbiased gradient estimator of the objective function in
(2.4).

Assumption 3.6.
• The step size {at} satisfies ∑

∞
t=1 a2

t < ∞, ∑
∞
t=1 at = ∞, limt→∞ at = 0, at > 0,∀t > 0.

• The decision space X ⊂ Rd is compact and convex.

The above assumptions on the step size and the compact and convex decision space are
often used in SGD (cf. [39]). The first assumption essentially requires the step size diminishes
to zero not too slow (∑∞

t=1 a2
t < ∞) nor too fast (∑∞

t=1 at = ∞). For example, we can choose
at =

a
t for some a > 0.

Before proceeding to our main convergence result, we introduce the continuous-time
interpolations of the decision sequence {xt}. Define t1 = 1 and tn = 1+∑

n−1
i=1 ai,n ≥ 2. For

t ≥ 1, let N(t) be the unique n such that tn ≤ t < tn+1. For t < 1, set N(t) = 1. Define the
interpolated continuous process X as X(1) = x1 and X(t) = xN(t) for any t > 1, and the shifted
process as Xn(s) = X(s+ tn). We then show in the following theorem that Algorithm 2.1
converges w.p.1.

THEOREM 3.7. Let Dd [0,∞) be the space of Rd-valued operators which are right con-
tinuous and have left-hand limits for each dimension. Under Assumption 3.1, Assumption 3.4
and Assumption 3.6, there exists a process X∗(·) to which the subsequence of {Xn(·)}n con-
verges w.p.1 in the space Dd [0,∞), where X∗(·) satisfies the following ODE

Ẋ =−∇H(X ,θ c)+ z, z ∈ −C (X), X(1) = x1,(3.2)

where C (X) is the Clarke’s normal cone to X , i.e., for any x ∈ X , C (x) = {c : cT x ≥
cT y,∀y ∈ C }. z is the projection term: it is the vector of shortest Euclidean length needed to
keep the trajectory of the ODE X(·) from leaving the decision space X . The sequence {xt}t
in (3.1) also converges w.p.1 to the limit set of the ODE (3.2).

Proof. Note that

E [∇xh(xt ,ξt) |x1,ys,ξs,s < t]

= Eπt [E f (·;θ) [∇xh(xt ,ξ )]]

= ∇xH(xt ,θ
c)+

(
Eπt [E f (·;θ) [∇xh(xt ,ξ )]]−∇xH(xt ,θ

c)
)

= ∇xH(xt ,θ
c)+

(
Eπt [E f (·;θ) [∇xh(xt ,ξ )]]−Eδθc [E f (·;θ) [∇xh(xt ,ξ )]]

)
.
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Let εt =Eπt [E f (·;θ) [∇xh(xt ,ξ )]]−Eδθc [E f (·;θ) [∇xh(xt ,ξ )]]. By Lemma 3.3, πt(θ)⇒ δθ c(θ)
w.p.1 (P∞

θ c ), and by Theorem 3.1 in [64], εt → 0 as t → ∞ w.p.1 (P∞
θ c ). We can then directly

apply Theorem 5.2.3 in [39] and obtain the result.

Remark 3.8. The SGD iterates specified in (2.9) approach the solution trajectory of the
ODE (3.2) and eventually converges to a limit point of the ODE, which is a point x∗ satisfying
∇H(x∗,θ c) = 0 if the point is in the interior of X . Hence, such a point is a stationary point
of problem (2.1) for the decision-independent case and can be a local optimal solution if it is
stable. On a related note, stochastic gradient Langevin dynamic (SGLD), a popular variant of
SGD, adds properly scaled isotropic Gaussian noise to an unbiased estimate of the gradient at
each iteration, which allows the solution trajectory to escape local minimum and guarantees
asymptotic convergence to a global minimizer for sufficiently regular non-convex objectives
(see [52, 18] and references therein). It is an interesting future direction to apply SGLD to
our considered stochastic optimization problem with streaming input data.

Next, we investigate the convergence rate of Algorithm 2.1 for the unconstrained case,
i.e., without the projection term atzt under the following additional assumptions.

Assumption 3.9.
• The parameter space Θ is finite, i.e., Θ = {θ1, . . . ,θk}. Moreover, θ c ∈ Θ.
• There exists 0 < LH < ∞ such that ||∇xH(x,θ1)−∇xH(x,θ2)||2 ≤ LH ||θ1−θ2||2 for

all θ1,θ2 ∈ Θ and for all x ∈ X .
• Sampling variance is bounded by σ2, i.e., E[||∇xh(x,ξ )−∇xH(x,θ)||22|θ ]≤ σ2, for

all θ ∈ Θ.

Due to technical challenges, in Assumption 3.9 we only consider a finite parameter space,
which is practical in many real-world problems. For example, it can be viewed as a discrete
approximation of a continuous parameter set, and the discretization can be chosen of any pre-
cision. The second assumption essentially requires H(x,θ) is C1-smooth in θ for all x ∈ X
and is a common assumption in stochastic approximation literature (cf. [57]). The bounded
sampling variance is also a common assumption in non-convex SGD convergence analysis
(cf. [54]).

Under Assumption 3.9, we can show the bias term (the difference between Eπt ∇xH(x,θ)
and Eπt ∇xH(x,θ c)) can be upper bounded with high probability, which serves as a key lemma
in showing the convergence rate of the decision-independent algorithm.

LEMMA 3.10. Under Assumption 3.9, there exists a constant C1 > 0 such that for any
δ > 0, with probability at least 1−δ we have

||Eπt ∇xH(x,θ)−Eπt ∇xH(x,θ c)||22 ≤C1
logDt + log 1

δ

Dt
,∀x ∈ X ,∀t > 0.

The proof of Lemma 3.10 can be found in Appendix A. Next, we show the convergence
rate of Algorithm 2.1. To simplify the analysis and also be consistent with the convergence
analysis of smooth non-convex SGD, we consider a variant of SGD where the final output is
randomly chosen as follows: let zT = xt with probability at

∑
T
t=1 at

, t = 1, · · · ,T . The random-

ization scheme helps with the analysis of the expected gradient of the final output under the
true parameter θ c, and has been widely used in the smooth non-convex SGD literature (cf.
[28]). We then have the following theorem giving the convergence rate of the randomized
output algorithm under different step sizes.

THEOREM 3.11. Under Assumption 3.1, Assumption 3.4, Assumption 3.6, and Assump-
tion 3.9, for any δ > 0, we have with probability at least 1−δ , for any T > 0, the following
bound on the expected gradient of the final output under the true parameter θ c
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(i) If the step size satisfies at =
a√
T

, ∀t ≤ T , for some constant a <
√

T
Lh

, then

E[∥∇xH(zT ,θ
c)∥2

2]

≤
[

2(H(x1,θ
c)−minx∈X H(x,θ c))

a
√

T

]
+

[
A1

T
+

A2 logT
T

+
A3 log2 T

T

]
+

Lhaσ2
√

T
,

where A1 =
C1(logD−logδ )

LhD , A2 =
C1(logD−logδ )

LhD + C1
LhD , A3 =

C1
LhD .

(ii) If the step size satisfies at =
a
t , ∀t ≤ T , for some constant a < 1

Lh
, then

E[∥∇xH(zT ,θ
c)∥2

2]

≤
[

2(H(x1,θ
c)−minx∈X H(x,θ c))

a
+

6C1 +π2C1(logD− logδ )

6D
+

π2Lhaσ2

6

]
1

logT
.

(iii) If the step size satisfies at =
a√
t , ∀t ≤ T , for some constant a < 1

Lh
, then

E[∥∇xH(zT ,θ
c)∥2

2]

≤ [
2(H(x1,θ

c)−minx∈X H(x,θ c))

a
√

T
+

3C1(logD− logδ )+4C1

D
√

T
+

Lhaσ2
√

T
]+

Lhaσ2 logT√
T

.

The proof of Theorem 3.11 can be found in Appendix B. Theorem 3.11 shows that for
the constant step size at =

a√
T

, the convergence rate is O( 1√
T
). Note that in case (i), the first

term in the convergence rate depends on the initialization of the solution (difference between
H(x1,θ

c) and minx H(x,θ c)); the last term depends on the Lipschitz constant and sampling
variance. These two terms are consistent with the classical smooth non-convex SGD (cf.
[28]). The second, third, and fourth terms are caused by the difference between Eπt ∇xH(x,θ)
and Eπt ∇xH(x,θ c), which is due to the Bayesian estimation that is unique to the considered
problem. As for the classical decreasing step size at =

a
t , the convergence rate is O(1/ logT ).

For the bigger decreasing step size at =
a√
t , the convergence rate is O(logT/

√
T ).

3.2. Convergence analysis for the decision-dependent case. In this section, we theo-
retically study the convergence behavior of Algorithm 2.2. We follow the approach in [13]
to construct the probability space for the decision-dependent case. Note that the data y takes
value in the space Y equipped with a Borel σ -algebra BY and a probability measure Pθ c(·|x)
such that Pθ c(y ∈ A|x) =

∫
A f (y;x,θ c)dy,∀A ∈ BY . Suppose that there is a probability space

(S ,H ,µ) and a measurable map F : S ×X → Y such that for every set A ∈ BY , the
Pθ c(·|x)-measure of A is equal to the µ-measure of the set {s ∈ S : F(s,x) ∈ A}. Then we
define (Ω,F ,P∞

θ c) as the countable product (S ,H ,µ)∞. In the following, w.p.1 (or almost
surely) means that the considered property holds with probability one w.r.t. the probability
measure P∞

θ c . Let Ft = σ{(xτ ,yτ),τ ≤ t} be the σ -filtration generated by the data and deci-
sion sequences. For simplicity, we assume at each time stage the data batch size D = 1 and
the number of SGD iterations K = 1. We have the convergence of the posterior distribution
{πt} that is updated according to (2.6) under the following assumptions.

Assumption 3.12.
• The parameter space Θ is discrete. Moreover, θ c ∈ Θ.
• The prior distribution π0(θ

c)> 0.

The assumptions above are regularity conditions and easy to be verified in practice. Note
that Algorithm 2.2 works for a general parameter space, but due to technical challenges, we
assume a discrete parameter space for the convergence analysis. Note that for the decision-
dependent case, the correlated and differently distributed data {yt} pose a great challenge
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to analyzing the consistency of the Bayesian posterior distribution πt . To prove the Bayesian
consistency, we first show the following intermediate result. Let DKL(P∥Q) :=

∫
log
(

dP
dQ

)
dP

denote the Kullback-Leibler (K-L) divergence from distribution P to distribution Q.

LEMMA 3.13. Suppose Assumption 3.12 holds. Recall f̂t(·;x) = ∑θ πt(θ) f (·;x,θ). De-
note f ∗(·;x) := f (·;x,θ c), for any x ∈ X . At decision xt+1, the K-L divergence from f ∗ to f̂t
is denoted as dt , i.e., dt := DKL( f ∗(·;xt+1)|| f̂t(·;xt+1)). Then we have

lim
t→∞

dt = 0 and
∞

∑
t=1

dt < ∞, w.p.1(P∞
θ c).

The proof of Lemma 3.13 can be found in Appendix C. Intuitively, Lemma 3.13 implies
that with more observation data even at different decisions, we know more about the true
parameter θ c and are able to provide a more precise estimation of the density f ∗ at the next
decision. Moreover, if we know that each θ is identifiable as rigorously defined in the fol-
lowing assumption, we can further prove the consistency of {πt} regardless of the correlation
and non-stationarity of the observation data.

Assumption 3.14 (Linear Independence). For almost every x in X , for any K ⊆ N
where N is the set of natural numbers, { f (·;x,θi)}i∈K are linearly independent in Y , i.e.,

∑
i∈K

ci f (y;x,θi) = 0, ∀y ∈ Y ⇒ ci = 0 ∀i ∈ K .

Assumption 3.14 intuitively requires that for almost every decision x, the observation dis-
tributions generated from different θ ’s are distinguishable (or identifiable, cf. Definition 5.2
in [42]). For the ease of notation, we denote the density function as f (·;x,θ) := f (·;g(x,θ)),
where g : Rd ×Rl → Rs is a mapping from X ×Θ to the s-dimensional parameter space of
the distribution. A necessary condition for Assumption 3.14 to hold is: g(x,θ1) ̸= g(x,θ2) for
almost every x ∈X and for all θ1 ∈ Θ, θ2 ∈ Θ such that θ1 ̸= θ2. Under this necessary condi-
tion, Assumption 3.14 is satisfied by many distributions families. For example, the Wronskian
Determinant for exponential distributions with different parameters g(x,θ1), · · · ,g(x,θn) is
computed as W (ξ ) = ∏

n
i=1 g(x,θi)exp(−∑

n
i=1 g(x,θi)ξ )∏i ̸= j(g(x,θi) −g(x,θ j)), which is

nonzero for almost every x ∈ X and all ξ ∈ Ξ when θi’s are distinct, which directly im-
plies the linear independence of { f (·;x,θi)}i. For other exponential families, such as normal,
gamma, and Poisson, a general solution to check the Wronskian Determinant may not be
readily available. Instead, one could check whether the components of the sufficient statistics
are linearly independent, i.e., whether the exponential family is minimal (cf. Chapter 1.5 in
[42]).

Assumption 3.15. The decision space X ⊂ Rd is compact and convex.

We then have the following proposition on the consistency of the posterior distribution
{πt}.

PROPOSITION 3.16. Under Assumption 3.12, Assumption 3.14 and Assumption 3.15,
πt ⇒ δθ c w.p.1 (P∞

θ c ).

The proof of Proposition 3.16 can be found in Appendix D. Proposition 3.16 guarantees
that although the observation at each time depends on the current decision, it can provide
enough information to ensure the posterior distribution will eventually concentrate on the
true parameter. In the following, we will show that the consistency of {πt} ensures that the
gradient estimator is accurate enough and thus Algorithm 2.2 converges.
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Remark 3.17. We note that the consistency of posterior distributions for non i.i.d. ob-
servations is previously shown in [29]. However, they give very general convergence result
with assumptions (such as existence of testing function sequence) that are often abstract and
hard to verify in practice. On the other hand, our Bayesian consistency result is built on
assumptions (in particular Assumption 3.14) that are easy to verify and interpret.

We then study the asymptotic behavior of Algorithm 2.2 by the ODE method similar to
the decision-independent case. We can rewrite the SGD iteration (2.10) as

(3.3) xt+1 = xt −at

(
∇xh(xt ,ξt)+h(xt ,ξt)

∇x f̂t (ξt ;xt)

f̂t (ξt ;xt)

)
+atzt ,

where atzt is the projection term. We show that under certain mild conditions, the proposed
gradient estimator (3.3) is unbiased.

Assumption 3.18. The density function f (ξ ;x,θ) is C1-smooth in x for all ξ ∈ Ξ and for
all θ ∈ Θ.

Together with Assumption 3.4, Assumption 3.18 puts mild conditions that justify the
interchange between differentiation and integral for the decision-dependent case.

LEMMA 3.19. Under Assumption 3.4 and Assumption 3.18, we have that ∇xh(xt ,ξ )+

h(xt ,ξ )
∇x f̂t (ξ ;xt )

f̂t (ξ ;xt )
with ξ ∼ f (·;xt ,θ) and θ ∼ πt is an unbiased gradient estimator of the

objective function in (2.7).

The detailed derivation can be found in Appendix E. Note that in performative prediction
literature (e.g. [15]), the gradient estimator is also derived using the chain rule similar to
(2.8). However, due to the difficulty in estimating the second term, most of the literature in
performative prediction focus only on the first term, and show that under the biased gradient
estimator, the solution converges to a so-called performative stable point which is in general
different from the true optimal solution. In contrast, our approach provides a Bayesian way
to estimate the second term under the parametric assumption and aims to converge to the true
optimal solution of problem (2.2).

A final set of assumption on the step size to show the convergence of Algorithm 2.2 is
listed below.

Assumption 3.20. The step size at satisfies ∑
∞
t=1 at = ∞, limt→∞ at = 0,at > 0,∀t > 0.

We then have the following theorem showing the weak convergence of Algorithm 2.2.

THEOREM 3.21. Let Dd [0,∞) be the space of Rd-valued operators which are right con-
tinuous and have left-hand limits for each dimension. Under Assumption 3.4, Assump-
tion 3.12, Assumption 3.14, Assumption 3.15, Assumption 3.18 and Assumption 3.20, for
each subsequence of {Xn(·)}n, there exists a further subsequence {Xnk(·)}nk and a process
X∗(·) such that Xnk(·)⇒ X∗(·) in the weak sense as t → ∞ in the space Dd [0,∞), where X∗(·)
satisfies the following ODE:

Ẋ =−∇H(X ,θ c)+ z, z ∈ −C (X), X(1) = x1,(3.4)

where C (X) is the Clarke’s normal cone to X , i.e., for any x ∈ X , C (x) = {c : cT x ≥
cT y,∀y ∈ C }. z is the projection term: it is the vector of shortest Euclidean length needed to
keep the trajectory of the ODE X(·) from leaving the decision space X . Let LX be the set of
limit points of (3.4) in X . Then there exist µn → 0 and Tn → ∞ such that

lim
n

P

{
sup
t≤Tn

Dist(Xn(t),LX )≥ µn

}
= 0,
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where Dist(x,E ) = infy∈E ∥x− y∥2 for any set E and point x ∈ X . The sequence {xt}t in
(3.3) also converges weakly to the limit set of the ODE (3.4).

Remark 3.22. Theorem 3.21 shows the weak convergence of Algorithm 2.2. The SGD
iterates specified in (2.10) approaches the solution trajectory of the ODE (3.4) and eventually
converges to a limit point of the ODE, which is a point x∗ satisfying ∇H(x∗,θ c) = 0 if the
point is in the interior of X . Hence, such a point is a stationary point of problem (2.2) for
the decision-dependent case and can be a local optimal solution if it is stable. The weak
convergence result implies that once the trajectory enters the domain of attraction of a local
optimal solution, the chance of escaping from it goes to 0 in the limit.

Now we prove Theorem 3.21 below.

Proof. Recall that at time t +1, Algorithm 2.2 takes the following update

xt+1 = xt −at

(
∇xh(xt ,ξt)+h(xt ,ξt)

∇x f̂t (ξt ;xt)

f̂t (ξt ;xt)

)
+atzt .

From the derivation of unbiased gradient estimator in Appendix E, we have

Eπt

[
E f (·;xt ,θ) [∇xh(xt ,ξ )]

]
= E f̂t (·;xt )

[∇xh(xt ,ξ )]

= E f ∗(·;xt )∇xh(xt ,ξ )+
(
E f̂t (·;xt )

[∇xh(xt ,ξ )]−E f ∗(·;xt )[∇xh(xt ,ξ )]
)

= E f ∗(·;xt )[∇xh(xt ,ξ )]+βt,1,

where f ∗(·;x) = f (·;x,θ c) for x ∈ X , βt,1 = E f̂t (·;xt )
[∇xh(xt ,ξ )]−E f ∗(·;xt )[∇xh(xt ,ξ )]. Sim-

ilarly, we have

Eπt

[
E f (·;xt ,θ)

[
h(xt ,ξ )

∇x f̂t (ξ ;xt)

f̂t (ξ ;xt)

]]
=
∫

Ξ

h(xt ,ξ )∇x f̂t (ξ ;xt)dξt

=
∫

Ξ

h(xt ,ξt)∇x f ∗(ξ ;xt)dξ +

(∫
Ξ

h(xt ,ξ )∇x f̂t (ξ ;xt)dξ −
∫

Ξ

h(xt ,ξ )∇x f ∗(ξ ;xt)dξ

)
=
∫

Ξ

h(xt ,ξ )∇x f ∗(ξ ;xt)dξ +βt,2,

where βt,2 =
∫

Ξ
h(xt ,ξ )∇x f̂t (ξ ;xt)dξ −

∫
Ξ

h(xt ,ξ )∇x f ∗(ξ ;xt)dξ . Note that∫
Ξ

h(xt ,ξ )∇x f ∗(ξ ;xt)dξ +E f ∗(·;xt )[∇xh(xt ,ξ )] = ∇xH(x,θ c),

and we can rewrite the update as

xt+1 = xt −at∇xH(xt ,θ
c)−atβt,1 −atβt,2 −atδMt +atzt ,

where

δMt = ∇xh(xt ,ξt)+h(xt ,ξt)
∇x f̂t (ξt ;xt)

f̂t (ξt ;xt)
−E f̂t (·;xt )

[
∇xh(xt ,ξ )+h(xt ,ξ )

∇x f̂ (ξ ;xt)

f̂ (ξ ;xt)

]
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is a martingale difference sequence. Suppose that we can show limt→∞ βt,1 = 0 w.p.1 (P∞
θ c)

and limt→∞ βt,2 = 0 w.p.1 (P∞
θ c), then the rest of the update is exactly the discretization of

ODE (3.4). Then Theorem 3.21 is proved by a straightforward application of Theorem 7.2.1
in [39]. We conclude the proof with the following two lemmas showing that the two bias
terms βt,1 and βt,2 vanish in the limit.

LEMMA 3.23. Under Assumption 3.4, Assumption 3.12, Assumption 3.18 and Assump-
tion 3.20, we have limt→∞ βt,1 = 0 w.p.1 (P∞

θ c).

LEMMA 3.24. Under Assumption 3.4, Assumption 3.12, Assumption 3.14 and Assump-
tion 3.18, we have limt→∞ βt,2 = 0 w.p.1 (P∞

θ c).

See Appendix F and Appendix G for the detailed proofs of the above two lemmas.

Finally, we summarize main similarities and differences between decision-independent
and decision-dependent cases below. Both cases require a compact and convex decision space
X and smoothness of the objective function h(x,ξ ) in x. For the decision-dependent case,
we also require the density function f (ξ ;x,θ) to be smooth in x, since the gradient estimator
of the objective function in (2.7) involves the gradient of f (ξ ;x,θ); and moreover, we assume
linear independence between densities in order to show the consistency of the posterior distri-
bution with non i.i.d. decision-dependent data. For the decision-independent case, we further
impose some stronger conditions in order to show stronger results, including the finiteness of
the parameter space Θ to show the convergence rate, and stricter stepsize assumption to show
the strong convergence of the solution sequence to the limit set of the ODE.

4. Numerical experiments.

4.1. Synthetic test problems. We first demonstrate the performance of Algorithm 2.1
and Algorithm 2.2 on two synthetic test problems in a univariate setting and in a multivariate
setting, respectively. Our method is abbreviated as Bayesian-SGD.

4.1.1. Decision-independent uncertainty. We first carry out numerical experiments
on a simple quadratic problem in a univariate setting: h(x,ξ ) = (x − 5)2 + 0.5ξ x, where
ξ ∼ N (θ c,σ2). The parameter values are as follows: σ = 4, θ c = 9, D = 1, K = 1,
Θ = {1,2, · · · ,20}, at =

2
t+5 . It is easy to check H(x,θ c) = x2 − 5.5x + 25, and the true

optimal decision is taken at x∗ = 2.75. At each time t, the gradient estimator in Algorithm 2.1
is ∇xh(xt ,ξt) = 2xt − 10+ 0.5ξ . In Algorithm 2.1, we use the uniform distribution on Θ as
the prior distribution and set the initial solution x1 = 0.

As a benchmark, we assume the true parameter θ c is known and use the plain SGD
algorithm on the true problem (2.1). Obviously, with the knowledge of the true parameter
value this algorithm should provide a lower bound on the objective value that can be achieved.
We also compare with the MLE method (cf. [57]), which uses the maximum likelihood
estimator θ̂t at each time stage to replace the unknown θ c in the objective function (2.1) and
then solves the corresponding optimization problem by SGD. For fair comparison, we use
the same number of SGD iterations at each time stage for all three algorithms. We run all
three algorithms (Algorithm 2.1, benchmark, MLE) for 100 times on the problem. The mean
and standard deviation of the solution error |xt − x∗| over time are shown in Figure 1. The
observations from Figure 1 can be summarized as follows.

• With decreasing step size, the solution sequence in Algorithm 2.1 converges to the
true optimal solution.

• The benchmark algorithm (without parameter uncertainty) performs better than the
proposed algorithm and the MLE algorithm, but in the long run (e.g. t > 1000 to be
shown in multivariate setting) the three algorithms behave similarly.
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• In the initial time stages our algorithm performs slightly better than the MLE algo-
rithm. This is due to the better estimation of the objective function by the Bayesian
average in our algorithm than the point estimate in the MLE algorithm, when the
data are limited.

FIG. 1. Mean and standard deviation of |xt − x∗| of 100 runs of Algorithm 2.1 (Bayesian-SGD), MLE, and
benchmark algorithm in an univariate example.

We then carry out numerical experiments on a quadratic problem in a multivariate setting:
h(x,ξ ) = (x1−1)2+(x2−2)2+ξ (x1+x2), where ξ follows an exponential distribution with
mean θ c. The parameter values are as follows: θ c = 4, D = 1, K = 1, Θ = {1,2, · · · ,20},
at =

2
t+5 . It is easy to check H(x,θ c) = (x1 + 1)2 + x2

2 + 4, and the true optimal decision is
taken at x∗ = (−1,0). At each time t, the gradient estimator in Algorithm 2.1 is ∇xh(xt ,ξt) =
(2x1 − 2+ ξ ,2x2 − 4+ ξ ). We use the uniform distribution on Θ as the prior distribution
and set the initial solution x1 = (5,5). We again run all three algorithms (Algorithm 2.1,
benchmark, MLE) for 100 times on the problem. The mean and standard deviation of the
solution error ||xt − x∗||2 over time are shown in Figure 2, from which we can draw the same
conclusion as the univariate setting.

FIG. 2. Mean and standard deviation of ||xt − x∗||2 of 100 runs of Algorithm 2.1 (Bayesian-SGD), MLE, and
benchmark algorithm in a multivariate example.

4.1.2. Decision-dependent uncertainty. We carry out numerical experiments on a sim-
ple quadratic problem in a univariate setting: h(x,ξ ) = (x−5)2 +0.5ξ x, where ξ ∼ N (x+
θ c,σ2). The parameters are as follows: σ = 4, θ c = 4, D = 1, K = 1, Θ = {1,2, · · · ,30},
at =

2
t+5 . It is easy to check H(x,θ) = (x− 5)2 + 0.5(x+ θ c)x = 1.5x2 − 8x+ 25 and the
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true optimal decision is x∗ = 8
3 . The gradient estimator in Algorithm 2.2 at each time t is

∇xh(xt ,ξt)+ h(xt ,ξt)
∇x f̂t (ξt ;xt )

f̂t (ξt ;xt )
, which can be computed as (2xt − 10+ 0.5ξ )+ ((xt − 5)2 +

0.5ξtxt)
∑θ πt (θ)·∇x f (ξt ;xt ,θt )

∑θ πt (θ)· f (ξt ;xt ,θt )
, where f (ξ ;x,θ) = 1√

2πσ
exp
(
− (ξ−(x+θ))2

2σ2

)
.

We use the uniform distribution on Θ as the prior distribution and set the initial solution
x1 = 0. We run Algorithm 2.2 and the benchmark algorithm for 100 times on the problem.
Note that the MLE method in [57] is not applicable for the decision-dependent case. The
mean and standard deviation of the solution error |xt − x∗| over time are shown in Figure 3.
We further show the convergence of posterior distribution under different data batch size D in
Figure 4. Note that the benchmark algorithm (without parameter uncertainty) can be viewed
as Algorithm 2.2 with D = ∞. The observations from Figure 3 and Figure 4 are summarized
as follows.

• With decreasing step size, the solution sequence in Algorithm 2.2 converges to the
true optimal solution.

• Figure 4 shows that as we observe more data at each time stage, the Bayesian pos-
terior distribution converges faster to the delta function concentrated on the true
parameter θ c.

• There is no significant difference in the convergence rate of Algorithm 2.2 under
different data batch sizes, even though the posterior distribution converges faster
with larger data batch size. It implies that the Bayesian average of the objective
function (2.7) in this example is a good estimate of the true objective function despite
the inaccuracy of the posterior distribution at the beginning time stages.

FIG. 3. Mean and standard deviation of ||xt − x∗||2 of 100 runs of Algorithm 2.2 (Bayesian-SGD) and the
benchmark algorithm in a univariate example.

We then carry out numerical experiments on a quadratic problem in a multivariate set-
ting: h(x,ξ ) = (x1 − 1)2 +(x2 − 2)2 + ξ , where x = (x1,x2) and ξ follows an exponential
distribution with mean (x1 −x2)

2 +θ c. The parameters are as follows: θ c = 4, D = 1, K = 1,
Θ = {1,2, · · · ,20}, at =

2
t+5 . It is easy to check H(x,θ c) = 2x2

1+2x2
2−2x1x2−2x1−4x2+9,

and the true optimal decision is taken at x∗ = ( 4
3 ,

5
3 ). The gradient estimator in Algorithm 2.2

can be computed as (2x1 − 2,2x2 − 4)+ ((x1 − 1)2 +(x2 − 2)2 + ξ )∑θ πt (θ)·∇x f (ξt ;xt ,θt )
∑θ πt (θ)· f (ξt ;xt ,θt )

. Re-

call that f (ξ ;x,θ) = 1
(x1−x2)2+θ

exp− ξt
(x1−x2)2+θ

. We use the uniform distribution on Θ as
the prior distribution and set the initial solution x1 = (5,5). We run Algorithm 2.2 and the
benchmark algorithm for 100 times on the problem. The mean and standard deviation of the
solution error ||xt − x∗||2 over time are shown in Figure 5, from which we can draw the same
conclusion as the univariate setting.
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FIG. 4. Mean and 95% confidence interval of πt(θ
c) of 100 runs of Algorithm 2.2 (Bayesian-SGD) under

different data batch sizes.

FIG. 5. Mean and standard deviation of ||xt − x∗||2 of 100 runs of Algorithm 2.2 (Bayesian-SGD) and the
benchmark algorithm in a multivariate example.

4.2. Multi-item Newsvendor Problem. We consider a multi-item newsvendor problem
and its variant with decision-dependent uncertainty. In the multi-item newsvendor problem,
there are d = 3 different kinds of newspapers, and a newsboy orders x ∈Rd

≥0 units of newspa-
pers to replenish the inventory at the beginning of a selling season. We assume 0 ≤ xi ≤ Mi,
where Mi is the inventory capacity for newspaper i ∈ [d]. During the selling season, the news-
boy observes customer demands, which are observations of a random vector ξ ∈ (−∞,∞)d

following an unknown joint distribution F . Negative demand implies that some customers
may have bought the newspaper somewhere else and drop it off after reading. The cost of
purchasing newspaper is c per unit, and the selling price is p per unit. At the end of the sell-
ing season the unsold newspaper has a salvage value of s per unit. Note that c, p,s are all 3-
dimensional vectors. Also note that there is no replenishment of newspaper during the selling
season. The cost function is given by h(x,ξ )= cT x− pT min(x,max(0,ξ ))−sT max(0,x−ξ ).
Both min and max are element-wise operators. The newsboy aims to choose the amount x
that minimizes the expected cost, where the expectation is taken w.r.t. the distribution of ξ .

4.2.1. Decision-independent uncertainty. We first consider the multi-item newsven-
dor problem with the decision-independent input uncertainty. We assume ξ follows a mul-
tivariate normal distribution with mean θ c

µ and covariance matrix θ c
Σ
. Note that in this

problem we have 9 unknown parameters, i.e., 3 mean parameters θ c
µ , 3 variance param-

eters and 3 correlation parameters θ c
Σ

:= (θ c
var,θ

c
corr). At each time t, the gradient esti-
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mator in Algorithm 2.1 is ∇xh(x,ξ ) =
{

c− p,x ≤ ξ

c− s,x > ξ
. The parameters are as follows:

θ c
µ = (10,15,20), θ c

var = (3,6,9), θ c
corr = (0.1,0.3,0.5), thus the true covariance matrix is

((3,0.42,1.56),(0.42,6,3.67),(1.56,3.67,9)); parameter space Θµ = {5,10,15,20,25}3,
Θvar = {1,3,6,9,12}3, Θcorr = {0.1,0.2,0.3,0.4,0.5}3; D = 2, K = 1, M = (100,100,100),
c = (2,4,6), p = (4,6,8), s = (1,2,3), at =

2
t+5 . We denote by x∗ the optimal decision under

the true parameters. We use the uniform distribution on Θ as the prior distribution and set
the initial solution x1 = (15,15,15). We run all three algorithms (Algorithm 2.1, benchmark,
MLE) for 100 times on the problem. The mean and standard deviation of the solution error
||xt − x∗||2 over time are shown in Figure 6. We have similar observations as the synthetic
quadratic problem.

FIG. 6. Mean and standard deviation of ||xt − x∗||2 of 100 runs of Algorithm 2.1 (Bayesian-SGD), MLE, and
the benchmark algorithm in the multi-item newsvendor problem with decision-independent data.

4.2.2. Decision-dependent uncertainty. We then consider the multi-item newsvendor
problem with the decision-dependent input uncertainty, where the customer demand depends
on the order amount x of the inventory. We follow the setting in [3], in which high inventory
stimulates demand. We assume the demand ξ follows a multivariate normal distribution with
mean θ c

µ + αxβ and covariance matrix θ c
Σ
, where α > 0,0 < β < 1 are vectors and (·)β

is element-wise operator. Note that the mean function admits diminishing marginal utility,
which says that the marginal increase in the mean demand diminishes as the inventory level
increases. The gradient estimator in Algorithm 2.2 at each time stage t is given by

∇xh(xt ,ξt)+h(xt ,ξt)
∑θ πt(θ) ·∇x f (ξt ;xt ,θt)

∑θ πt(θ) · f (ξt ;xt ,θt)
.

f (ξ ;x,θ) =
exp(− 1

2 (ξ−(θµ+αxβ ))T θ
−1
Σ

(ξ−(θµ+αxβ )))√
(2π)d |θΣ|

, ∇x f (ξ ;x,θ) = f (ξ ;x,θ)θ−1
Σ

(ξ − (θµ +

αxβ ))αβxβ−1. The parameters are as follows: θ c
µ = (10,15,20), θ c

var = (3,6,9), θ c
corr =

(0.1,0.3,0.5), the true covariance matrix is ((3,0.42,1.56),(0.42,6,3.67),(1.56,3.67,9)).
Θµ = {5,10,15,20,25}3, Θvar = {1,3,6,9,12}3, Θcorr = {0.1,0.2,0.3,0.4,0.5}3. D = 2,
K = 1, M = (100,100,100), c = (2,4,6), p = (4,6,8), s = (1,2,3), α = 1,β = 0.5, at =

2
t+5 . We denote by x∗ the optimal decision under the true parameters. We use the uniform
distribution on Θ as the prior distribution and set the initial solution x1 = (15,15,15). We run
Algorithm 2.2 and the benchmark algorithm for 100 times on the problem. The mean and
standard deviation of the solution error ||xt − x∗||2 over time are shown in Figure 7. We have
similar observations as the synthetic quadratic problem.
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FIG. 7. Mean and standard deviation of ||xt − x∗||2 of 100 runs of Algorithm 2.2 (Bayesian-SGD) and the
benchmark algorithm in the multi-item newsvendor problem with decision-dependent data.

As a final note, the good performance of our proposed algorithms on the multi-dimensio-
nal newsvendor problem shows promise of the applicability of our proposed approaches to
large-scale problems. However, it should be noted that most of the computational time is
devoted to the posterior updating, especially for the high-dimensional problem where there is
no conjugate prior. It would be interesting to adapt our algorithms to such a high-dimensional
setup, where we could leverage the recent theoretical results of Bayesian procedures in high-
dimension (cf. [19, 12]).

5. Conclusions. In this paper, we propose a Bayesian-SGD approach to stochastic opti-
mization with streaming input data, and present two algorithms for decision-independent and
decision-dependent uncertainty respectively. We show the asymptotic convergence of both
algorithms, and derive the convergence rate in the decision-independent case based on the
non-asymptotic analysis of the Bayesian estimate. Our consistency result of Bayesian poste-
rior distribution with decision-dependent input data could be of independent interest to Bayes
estimation. Note that our approach can be viewed as an online extension of the BRO frame-
work [72, 64], and it would be interesting to adapt our approach to other risk functionals (such
as Value-at-Risk and Conditional Value-at-Risk) with respect to the unknown distributional
parameter.

Appendix A. Proof of Lemma 3.10.

Proof. Define the Hellinger distance between θ1 and θ2 as

d(θ1,θ2) =

√
1
2

∫
Y
(
√

f (y;θ1)−
√

f (y;θ2))2.

One can easily verify that there exist a constant A such that ∥θ1 − θ2∥ ≤ Ad(θ1,θ2), where
|| · || is the Euclidean norm. Let Bt

k = B(θ c,k/
√

Dt) be a ball centered at θ c with radius
k/
√

Dt under distance d. Since Θ is finite, we can directly apply Proposition 1 in [8]. Then
for t ≤ T,ε,δ ∈ (0,1) with probability at least 1− 6δ

π2t2 with respect to Pt
θ c , we have

πt(Bt
k(t))≥ 1− ε,

where

k(t) = inf

{
j ≥ 1

∣∣∣∑
i≥ j

|Θ|e−i2 ≤ 6δ

π2t2

√
επ0(θ c)

}
.
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Note that ∑i≥ j e−i2 ≤ e
e−1 e− j2 , we can set k(t) to be the solution of next equation.

e
e−1

|Θ|e−k(t)2
=

6δ

π2t2

√
επ0(θ c).

By simple calculation, we have k(t) =
√

log e|Θ|π2t2

6δ (e−1)
√

επ0(θ c)
. Now we are ready to bound the

bias in the gradient estimator.

∥Eπt ∇xH(x,θ)−Eπt ∇xH(x,θ c)∥2
2

=

∥∥∥∥∫ (∇xH(x,θ)−∇xH(x,θ c))πt(θ)dθ

∥∥∥∥2

2

≤
∫

∥(∇xH(x,θ)−∇xH(x,θ c))∥2
2 πt(θ)dθ

≤
∫

L2
H ||θ −θ

c||22πt(θ)dθ

=
∫

Bt
k(t)

L2
H ||θ −θ

c||22πt(θ)dθ +
∫
(Bt

k(t))
c
L2

H ||θ −θ
c||22πt(θ)dθ

≤ A2L2
H

k(t)2

Dt

∫
Bt

k(t)

πt(θ)dθ +L2
H max

θ∈Θ

∥θ −θ
c∥2

2

∫
(Bt

k(t))
c
πt(θ)dθ

≤ A2L2
H

k(t)2

Dt
+L2

H max
θ∈Θ

∥θ −θ
c∥2

2ε.

Recall that D is the data batch size. Take ε = 1
Dt , note that k(t) =

√
log e|Θ|π2t2

√
Dt

6δ (e−1)
√

π0(θ c)
. We

further have

∥Eπt ∇xH(x,θ)−Eπt ∇xH(x,θ c)∥2
2 ≤ A2L2

H
k(t)2

Dt
+L2

H max
θ∈Θ

∥θ −θ
c∥2

2ε

≤ 2A2L2
H max

θ∈Θ

∥θ −θ
c∥2

2

log e|Θ|π2t2√Dt
6δ (e−1)

√
π0(θ c)

Dt

= O(
logDt + log 1

δ

Dt
).

Let Et denote the event that the above inequality holds, and E c
t denote the complement

event. Then we have P(E c
t )≤ 6δ

π2t2 . Therefore,

P(∩∞
t=1Et) = 1−P(

∞⋃
t=1

E c
t )

≥ 1−
∞

∑
t=1

P(E c
t ) (union bound)

≥ 1−
∞

∑
t=1

6δ

π2t2

= 1−δ .

Appendix B. Proof of Theorem 3.11.
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Proof. By the update (3.1), we know that for any t ≤ T ,

xt+1 = xt −at∇xH(xt ,θ
c)−at [Eπt ∇xH(xt ,θ)−∇xH(xt ,θ

c)]

−at [∇xh(xt ,ξt)−Eπt ∇xH(xt ,θ)]

= xt −at∇xH(xt ,θ
c)−atBt −atNt ,

where Bt is the bias and Nt is the noise. By Lemma 3.10, we know E[∥Bt∥2
2]≤C1

logDt+log 1
δ

Dt .

From Assumption 3.9 we have E[∥Nt∥2
2]≤ σ2. By the proof of Lemma 2 in [2], we know that

E[H(xt+1,θ
c)]−H(xt ,θ

c)≤−at

2
∥∇xH(xt ,θ

c)∥2
2 +

at

2
C1

logDt + log 1
δ

Dt
+

a2
t

2
Lhσ

2,

Rearranging the terms in the inequality above, summing over t from 1 to T , and noting that
H(xt ,θ

c)≤ minx∈X H(x,θ c),∀t, we have

T

∑
t=1

atE[∥∇xH(xt ,θ
c)∥2

2]≤ 2(H(x1,θ
c)− min

x∈X
H(x,θ c))+C1

T

∑
t=1

at
logDt + log 1

δ

Dt
+Lhσ

2
T

∑
t=1

a2
t ,

Dividing both sides of the above inequality by ∑
T
t=1 at , and noting that

E[∥∇xH(zT ,θ
c)∥2

2] =
1

∑
T
t=1 at

T

∑
t=1

atE[∥∇xH(xt ,θ
c)∥2

2],

we have

E[∥∇xH(zT ,θ
c)∥2

2]≤
1

∑
T
t=1 at

[
2(H(x1,θ

c)− min
x∈X

H(x,θ c))+C1

T

∑
t=1

at
logDt + log 1

δ

Dt
+Lhσ

2
T

∑
t=1

a2
t .

]

(i) at =
a√
T

, ∀t ≤ T , for some constant a <
√

T
Lh

. Note that ∑
T
t=1

1
t ≤ logT +1 and ∑

T
t=1

log t
t ≤

log(logT +1). Then

E[∥∇xH(zT ,θ
c)∥2

2]

≤ 2(H(x1,θ
c)−minx H(x,θ c))

a
√

T
+

C1(logD− logδ )(logT +1)
LhDT

+
C1 logT (logT +1)

LhDT

=
2(H(x1,θ

c)−minx H(x,θ c))

a
√

T
+

C1(logD− logδ )

LhDT
+

C1(logD− logδ ) logT
LhDT

+
C1 log2 T

LhDT
+

Lhaσ2
√

T

(ii) at =
a
t , ∀t ≤ T , for some constant a < 1

Lh
. Let MT = ∑

T
t=1

1
t . Note that

T

∑
t=1

log t
t2 <

∞

∑
t=1

log t
t2 =

π2

6
(12lnA− γ − ln2π)< 1,

where A ≈ 1.28 is the Glaisher-Kinkelin constant and γ ≈ 0.58 is the Euler-Mascheroni con-
stant. Then we have

E[∥∇xH(zT ,θ
c)∥2

2]

≤ 2(H(x1,θ
c)−minx∈X H(x,θ c))

aMT
+

C1

MT

T

∑
t=1

logDt + log 1
δ

Dt2 +
T

∑
t=1

Lhaσ2

MT t2

≤
[

2(H(x1,θ
c)−minx∈X H(x,θ c))

a
+

6C1 +π2C1(logD− logδ )

6D
+

π2Lhaσ2

6

]
1

logT
.
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(iii) at =
a√
t , ∀t ≤ T , for some constant a < 1

Lh
. Let Qt = ∑

T
t=1

1√
t . Note that ∑

∞
t=1

1
t
√

t =

ζ (1.5)≈ 2.61 < 3, ∑
∞
t=1

log t
t
√

t < 4, ∑
T
t=1

1√
t ≥

√
T , where ζ (·) is the Riemann’s zeta function.

Then we have

E[∥∇xH(zT ,θ
c)∥2

2]

≤ 2(H(x1,θ
c)−minx H(x,θ c))

aQT
+

C1(logD− logδ )

DQT

T

∑
t=1

1
t
√

t
+

C1

DQT

T

∑
t=1

log t
t
√

t
+

Lhaσ2

QT

T

∑
t=1

1
t

≤
[

2(H(x1,θ
c)−minx H(x,θ c))

a
√

T
+

3C1(logD− logδ )+4C1

D
√

T
+

Lhaσ2
√

T

]
+

Lhaσ2 logT√
T

.

Appendix C. Proof of Lemma 3.13.

Proof. Define wt =− logπt(θ
c). One can easily verify that wt ≥ 0. Then we have

E[wt+1] = E [E[wt+1|Ft ,xt+1]]

= E
[
E
[
− log

πt(θ
c) f (yt+1;xt+1,θ

c)

∑θ πt(θ) f (yt+1;xt+1,θ)
|Ft ,xt+1

]]
= E

[
− logπt(θ

c)−E
[

log
f (yt+1;xt+1,θ

c)

∑θ πt(θ) f (yt+1;xt+1,θ)
|Ft ,xt+1

]]
= E[wt ]−E[DKL( f ∗(·;xt+1)|| f̂t(·;xt+1))].

This implies that E[dt ] = E[wt ]−E[wt+1]. For any T > 0, we have

T

∑
t=0

E[dt ] =
T

∑
t=0

E[wt ]−E[wt+1] = w0 −E[wT+1]≤ w0 < ∞.

Then we have ∑
∞
t=0E[dt ]≤ w0. ∀ε > 0, we have

∞

∑
t=0

P(dt ≥ ε)≤ 1
ε

∞

∑
t=0

E[dt ]< ∞.

By Borel-Cantelli Lemma, we know that P(dt ≥ ε, i.o.) = 0, where i.o. stands for infinitely
often. It then implies limt→∞ dt = 0, w.p.1(P∞

θ c). Moreover, since dt ≥ 0, by Tonelli’s Theo-
rem, we have

E

[
∞

∑
t=0

dt

]
=

∞

∑
t=0

E[dt ]≤ w0.

Since ∑
∞
t=0 dt has bounded expectation, it must be finite w.p.1 (P∞

θ c).

Appendix D. Proof of Proposition 3.16.

Proof. Without loss of generality, we assume that θ c = θ1. Recall that f ∗(ξ ;xt+1) =
f ∗(ξ ;xt+1,θ1) and f̂t(ξ ;xt+1) = ∑i πt(θi) f (ξ ;xt+1,θi). Then we have

(D.1) f ∗(ξ ;xt+1)− f̂t(ξ ;xt+1) = (1−πt(θ1)) f (ξ ;xt+1,θ1)−∑
i>1

πt(θi) f (ξ ;xt+1,θi).

Note that for any t > 0, (πt(θ1),πt(θ2), · · ·) is infinitely dimensional bounded vector with
all components in the interval [0,1] and sum up to 1 (normalized), we can take a subse-
quence {πtk} such that for each component j, πtk(θ j) converges to a limit which is denoted
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by π∞(θ j), which is also known as weak convergence (of a deterministic sequence). Next, we
will show that π∞(θ) is a normalized vector. For any j ∈N, limtk→∞ πtk(θ j) = π∞(θ j), which
is equivalent to

∀ε j > 0,∃N ∈ N,s.t.∀n ≥ N, |π∞(θ j)−πn(θ j)| ≤ ε.

Therefore, we have

(D.2) − ε j < π∞(θ j)−πn(θ j)< ε j, j = 1,2, · · ·

According to the Bayesian update rule, we know ∑
∞
j=1 πn(θ j) = 1. It then follows that ∀ε > 0,

take ε j =
ε

2 j and sum over (D.2) for all j ∈ N, we get

−(
ε

21 +
ε

22 + · · ·)<
∞

∑
j=1

π∞(θ j)−1 < (
ε

21 +
ε

22 + · · ·),

which indicates ∀ε > 0, |∑∞
j=1 π∞(θ j)− 1| < ε , and it implies that ∑

∞
j=1 π∞(θ j) = 1. So the

limit is also a valid probability simplex. Since every weakly convergent sequence in L1 is
strongly convergent (cf. Chapter 2 in [50]), we can take any convergent subsequence of {πtk}
with limit (p∗1, p∗2, · · ·). Since X is also bounded, from this subsequence, we could take a
further subsequence {πτk} with time stage τ1,τ2, · · · , such that {xτk} converges to some x′.
Then take limit over (D.1) along τ1,τ2, · · · , we have

f ∗(ξ ;xτk)− f̂τk(ξ ;xτk)→ (1− (p∗1)) f (ξ ;x′,θ1)−∑
i>1

p∗i f (ξ ;x′,θi).

Moreover, since K-L divergence dominates total variation distance between two distributions,
we have

∫
Ξ

∣∣ f ∗(ξ ;xt+1)− f̂t(ξ ;xt+1)
∣∣dξ ≤ dt .(D.3)

From (D.3) and Lemma 3.13, we know that
∫

Ξ

∣∣ f ∗(ξ ;xt+1)− f̂t(ξ ;xt+1)
∣∣dξ → 0 w.p.1 (P∞

θ c ).
By DCT, we have

∫
Ξ

∣∣∣∣∣(1− (p∗1)) f (ξ ;x′,θ1)−∑
i>1

p∗i f (ξ ;x′,θi)

∣∣∣∣∣dξ = 0,

which implies:

(1− (p∗1)) f (ξ ;x′,θ1)−∑
i>1

p∗i f (ξ ;x′,θi) = 0,∀ξ .

By linear independence, we know p∗1 = 1, p∗2 = p∗3 = ... = 0. Since every convergent subse-
quence of {(πt(θ1),πt(θ2), · · ·)}t has the same limit, we have πt ⇒ δθ c w.p.1 (P∞

θ c ).
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Appendix E. Derivation of unbiased estimator in decision-dependent case.

∇xEπt [H(x,θ)] = Eπt

[
∇xE f (·;x,θ)[h(x,ξ )]

]
= Eπt

[∫
Ξ

∇xh(x,ξ ) f (ξ ;x,θ)dξ

]
+Eπt

[∫
Ξ

h(x,ξ )∇x f (ξ ;x,θ)dξ

]
= Eπt

[
E f (·;x,θ)[∇xh(x,ξ )]

]
+
∫

Θ

(∫
Ξ

h(x,ξ )∇x f (ξ ;x,θ)dξ

)
πt(θ)dθ

= Eπt

[
E f (·;x,θ)[∇xh(x,ξ )]

]
+
∫

Ξ

h(x,ξ )
(∫

Θ

πt(θ)∇x f (ξ ;x,θ)dθ

)
dξ

= Eπt

[
E f (·;x,θ)[∇xh(x,ξ )]

]
+
∫

Ξ

h(x,ξ )∇x f̂ (ξ ;x)dξ

= Eπt

[
E f (·;x,θ)[∇xh(x,ξ )]

]
+
∫

Ξ

h(x,ξ )
∇x f̂ (·;x)

f̂ (·;x)
f̂ (·;x)dξ

= Eπt

[
E f (·;x,θ)[∇xh(x,ξ )]

]
+E f̂ (·;x)

[
h(x,ξ )

∇x f̂ (·;x)
f̂ (·;x)

]
= Eπt

[
E f (·;x,θ)[∇xh(x,ξ )+h(x,ξ )

∇x f̂ (·;x)
f̂ (·;x)

]

]
.

From Assumption 3.4 and Assumption 3.18, we know that both the objective function h(x,ξ )
and the density function f (ξ ;x,θ) are C1-smooth. The Lipschitz continuous gradient im-
plies both h(x,ξ ) and f (ξ ;x,θ) are integrable functions; ∇xh(x,ξ ) and ∇x f (x,ξ ) are dom-
inated by some integrable functions. Using the chain rule, we have ∇xh(x,ξ ) f (ξ ;x,θ) =
∇xh(x,ξ ) · f (ξ ;x,θ) + h(x,ξ ) · ∇x f (ξ ;x,θ), and thus ∇xh(x,ξ ) f (ξ ;x,θ) is dominated by
some integrable function. The second equality holds as the interchange between expectation
and differentiation is justified by DCT. The first equality is also justified by DCT in a similar
manner. Also note that since h(x,ξ )∇x f (ξ ;x,θ) is dominated by some integrable function, it
is also absolutely integrable, hence the fourth equality is justified by Fubini-Tonelli theorem.

Appendix F. Proof of Lemma 3.23.

Proof. We bound |βt,1| as follows.

|βt,1|= |E f̂t (·;xt )
∇xh(xt ,ξ )−E f ∗(·;xt )∇xh(xt ,ξ )|

≤ max
x,ξ

|∇xh(x,ξ )|
∫

Ξ

∣∣ f ∗(ξ ;xt)− f̂t(ξ ;xt)
∣∣dξ

≤ L′
h

∫
Ξ

| f ∗(ξ ;xt)− f ∗(ξ ;xt+1)|+ | f ∗(ξ ;xt+1)− f̂t(ξ ;xt+1)|+ | f̂t(ξ ;xt)− f̂t(ξ ;xt+1)|dξ .

From Assumption 3.4 we know h(x,ξ ) is continuously differentiable, which implies it has
bounded gradient, such that |∇xh(x,ξ )| ≤ L′

h for some L′
h > 0. From Assumption 3.18, we

know f (ξ ;x,θ) is continuously differentiable, which implies it has bounded gradient, such
that |∇x f (ξ ;x,θ)| ≤ L′

f for some L′
f > 0. Therefore, for every ξ ∈ Ξ,

| f ∗(ξ ;xt)− f ∗(ξ ;xt+1)| ≤ L′
f |xt − xt+1| ≤ L′

f D f at ,(F.1)

| f̂t(ξ ;xt)− f̂t(ξ ;xt+1)| ≤ L′
f D f at ,(F.2)

for some D f > 0. Let q∗t (ξ ) = f ∗(ξ ;xt)− f ∗(ξ ;xt+1). Since limt→∞ at = 0, and by (F.1), we
have limt→∞ |q∗t (ξ )|= 0 for every ξ ∈Ξ. By absolute value theorem, we have limt→∞ q∗t (ξ ) =
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0 for every ξ ∈ Ξ, that is, q∗t converges pointwise to 0. By dominated convergence theorem,
we have

lim
t→∞

∫
Ξ

| f ∗(ξ ;xt)− f ∗(ξ ;xt+1)|= 0.(F.3)

Similarly, let q̂t(ξ ) = f̂t(ξ ;xt)− f̂t(ξ ;xt+1). From Assumption 3.20, we have limt→∞ at = 0,
and by (F.2), we have limt→∞ |q̂t(ξ )| = 0 for every ξ ∈ Ξ. By absolute value theorem, we
have limt→∞ q̂t(ξ ) = 0 for every ξ ∈ Ξ, that is, q̂t converges pointwise to 0. By dominated
convergence theorem, we have

lim
t→∞

∫
Ξ

| f̂t(ξ ;xt)− f̂t(ξ ;xt+1)|= 0.(F.4)

Moreover, since K-L divergence dominates total variation distance between two distributions,
we have ∫

Ξ

| f ∗(ξ ;xt+1)− f̂t(ξ ;xt+1)|dξ ≤ dt .(F.5)

From Lemma 3.13, we have limt→∞ dt = 0 w.p.1 (P∞
θ c ). Combining (F.3), (F.4), and (F.5)

together, we know that limt→∞ |βt,1|= 0 w.p.1 (P∞
θ c).

Appendix G. Proof of Lemma 3.24.

Proof. We bound |βt,2| as follows. From Assumption 3.4 we know h(x,ξ ) is continu-
ously differentiable, which implies it is an integrable function of ξ for every x ∈ X . Thus,∫

Ξ
h(x,ξ )dξ =Uh for some −∞<Uh <∞. From Assumption 3.18 we know f (ξ ;x,θ) is con-

tinuously differentiable, which implies it has bounded gradient, such that |∇x f (ξ ;x,θ)| ≤ L′
f

for some L′
f > 0.

|βt,2|=
∣∣∣∣∫

Ξ

h(xt ,ξ )∇x f̂t (ξ ;xt)dξ −
∫

Ξ

h(xt ,ξ )∇x f ∗(ξ ;xt)dξ

∣∣∣∣
=

∣∣∣∣∫
Ξ

h(xt ,ξ )
(

∇x f̂t (ξ ;xt)−∇x f ∗(ξ ;xt)
)

dξ

∣∣∣∣
=

∣∣∣∣∣
∫

Ξ

h(xt ,ξ )

(
∑

θ∈Θ

(πt(θ)−δθ c(θ))∇x f (ξ ;xt ,θ)

)
dξ

∣∣∣∣∣
≤ |Uh| ·L′

f

∣∣∣∣∣∑
θ∈Θ

πt(θ)−δθ c(θ)

∣∣∣∣∣→ 0,

w.p.1 (P∞
θ c ) as t → ∞, using the consistency of πt(θ) from Proposition 3.16.
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