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Abstract

Point sets matching problems can be handled by optimal transport. The mechanism behind it is
that optimal transport recovers the point-to-point correspondence associated with the least curl de-
formation. Optimal transport is a special form of linear programming with dense constraints. Linear
programming can be handled by interior point methods, provided that the involved ill-conditioned
Hessians can be computed accurately. During the decade, matrix balancing has been employed to
compute optimal transport under entropy regularization approaches. The solution quality relies on
two factors: the accuracy of matrix balancing and the boundedness of the dual vector. High accurate
matrix balancing is achieved by the application of Newton methods on a sequence of matrices along
a central path. In this work, we apply sparse support constraints to matrix-balancing based interior
point methods, in which the sparse set fulfilling total support is iteratively updated to truncate the
domain of the transport plan. Total support condition is one crucial condition, which guarantees the
existence of matrix balancing as well as the boundedness of the dual vector.

Keywords: Optimal transport, interior point methods, matrix balancing, negative entropy, point-set
matching problems

1 Introduction

Registration aims to match two or more sets of image data altered by geometric transforms, taken at dif-
ferent times, or from different sensors. Point set representing image data is commonly employed to reduce
the computational load in computer vision. The associated point-set matching problem(registration) is
to establish a consistent point-to-point correspondence between two point sets and to estimate the spa-
tial alignment transformation. The quality of correspondence plays a crucial role in estimating followup
transformations in registration. The iterative closest point (ICP) algorithm is one classic and popular
approach in feature-based image registration problems, because of its simplicity [BM92]. For correspon-
dence correctness, the ICP algorithm requires sufficient overlap between the point sets. Its vulnerability
in performance also includes the proneness to outliers. To alleviates these difficulties, researchers de-
scribe the correspondence by a permutation matrix, which minimizes some “distance” of the point-sets,
typically consisting of one regularization term for transformations and one assignment term for corre-
spondence. For instance, Chui and Rangarjan proposed a robust point matching method(RPM), which
estimates non-rigid transformation and correspondence simultaneously, where the point-to-point corre-
spondence is enforced by Sinkhorn matrix balancing [CR00]. This can be viewed as one early application
of optimal transport in registration. Comprehensive surveys of traditional registration methods can be
found in [MV98] and [ZF03].

Two unlabeled point sets can be regarded as two histograms, whose distance can be fast evaluated
by various information divergences, e.g., Hellinger distances, Kullback-Leibler divergences and Jensen
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Shannon divergences. From a perspective of correspondence retrieval, a natural choice is Wasserstein
distance (also known as the earth mover’s distance [RTG00b]). Wasserstein distance quantifies the
minimal cost of moving the probability mass from one distribution to the other distribution. In the
1780’s, Monge described a problem of transporting a pile of soil with the least amount of work. In
the 1940’s, Kantorovich [Kan42] employed a dual variation principle to convert the original nonlinear
problem into a linear programming problem and to study the optimal solutions. A survey of theoretical
works on this problem can be found in [Eva97] [Vil03] or [Vil08]. Nowadays, optimal transport has been
applied in various tasks, including image retrieval, image registration, image morphing, shape matching
and maching learning, see [WPR85], [Kai98], [RTG00a], [ZYHT07], [RDG09], [PC19], [SS15], [MSKL09],
[CLC13], [KPT+17], [CA14].

In the application of point-set registration, we can incorporate optimal transport in feature based
methods to estimate the transforms and the correspondence in the existence of outliers, for instance,
Hellinger distances based point set matching model (HD) [Che11a]. The HD model can be regarded as
an approximation of optimal transport, when the kernel scale tends to infinity. With a finite kernel scale,
the measure preserving constraint is relaxed to tolerate the existence of outliers. The effectiveness of this
application generally depends on the hypothesis of geometric transforms. A fundamental question is,
for which class of transformations the underlying point correspondence can be reconstructed correctly?
Impressively, when the transformation can be expressed as the gradient of some convex function, the
underlying correspondence can be recovered correctly by solving the L2 optimal transport problem. The
set of transformations includes scalings, translations, positive definite affine transforms and other curl-
free maps. This property makes optimal transport models suitable and robust in certain applications.
For instance, [CLC13] applies the optimal mass transport model to match lung vessel branch points,
which are extracted from two computed tomography(CT) lung images acquired during breath-holds.
Although the physical deformation field is rather large and complex, the correspondence reconstruction
is surprisingly almost perfect, which verifies the superiority of the optimal transport model.

Despite of the theoretical advantage, optimal transport is limited by its heavy computational require-
ment in practical applications. Briefly, as one member of linear programming, optimal transport can be
solved by various algorithms in linear programming. Standard algorithms include the simplex method
and the interior point method [Rob12] [LY16] [Gon12]. Nowadays the primal-dual interior method is an
efficient interior point method in solving linear programming, when the problem size is moderate [Wri97].
Thanks to second-order convergence in each sub-problem, an interior point method can quickly gener-
ate accurate solutions from proper matrix-free algorithms. For instance, in the community of machine
learning, Wasserstein barycenter is one average of multiple discrete probability measures in terms of
Wasserstein distance [YLST21, GWXY19], where accurate solutions can be computed by interior point
methods [GWXY19]. In considering the flexibility of handling transformation and correspondence simul-
taneously, we focus on the negative entropy function as a regularizer to handle optimal transport in the
registration problem. This regularization elegantly converts optimal transport to one matrix balancing
task. Actually, matrix balancing algorithms are known as an effective tool to produce one approxima-
tion of the optimal transport plan [Cut13] [BCC+15] [KR17] [Sch19]. The major numerical tool is the
Sinkhorn balancing algorithm [Sin64] [KS67]. To improve the convergence speed of Sinkhorn algorithm,
the ε-scaling heuristic and the kernel truncation are introduced to reduce the number of iterations and
the number of variables to reduce the computational load [Sch19].

1.1 Contributions

This paper is concerned with the application of this matrix balancing based interior point methods in
solving point-set matching problems. The main question is whether we can develop a proper central path
for discrete optimal transport approximations with small regularization parameters? The contribution
can be summarized as follows. First, we investigate the application of Newton methods in matrix
balancing based interior point methods for optimal transport. Although Sinkhorn balancing algorithm
is popular and widely used in balancing matrices, it is generally difficult to produce an accurate result
quickly for our application. In this paper, we propose Sinkhorn-Newton Negative entropy interior point
methods(SNNE) in 2.4, where Newton directions is computed by matrix-free conjugate gradient methods.
One underlying challenging is that as the central path heads toward an optimal permutation solution,
the rank of the associated Schur complement matrices reduces to n, where n is the point cardinality
in each point-set. During the rank-reduction process, it is numerically challenging to maintain the
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accuracy of Newton iterates. To overcome this, we adopt the techniques proposed in the stabilized scaling
algorithm [Sch19], including computations in the Log-domain and the translation of scaling vectors. See
section 3.4.

Second, we revisit a few matrix balancing algorithms, including the Knight-Ruiz(KR) fixed point
method [KR12]. Our matrix-balancing experiments confirm the excellent performance of KR algorithm,
although its global convergence is unclear. To reveal the connection between KR and other Newton
methods, we introduce one convex function for matrix balancing task and propose a novel modified
Newton method, called LB algorithm. The KR algorithm is the modified Newton method with step size
1. Theorem 3 indicates that when LB is applied to a matrix with total support, the step size will be 1,
as the iterates get close to an optimal solution.

Third, as in the kernel truncation method [Sch19], sparse support sets can be imposed to reduce the
memory requirement in the application of the interior point methods to large-scale problems. However,
the truncated kernel matrix does not always have total support, which is crucial to guarantee the quality
of matrix balancing computation and the boundedness of the scaling vectors. In Prop. 2.3, we propose
one simple method to construct one sparse support set with total support, and propose SNNE-sparse in
Alg. 2.5, which are cable of handling large-scale matching problems. To evaluate sparse support matrix
balancing methods, Theorem 2 gives one error bound estimate, which relates the boundedness of the
dual vector to the duality measure estimate. According to Remark 3.8, the boundedness of the dual
vector can be ensured, if the truncated matrix satisfies the total support condition.

This paper is organized as follows. In section 2, we describe the application of optimal transport
in point-set registration. Discrete optimal transport can be solved by matrix balancing based interior
point methods, including SNNE and SNNE-sparse. In section 3, we describe a few matrix balancing
schemes, including Sinkhorn-Knopp balancing, Knight-Ruiz scheme and other Newton methods. Matrix
balancing can be achieved through minimizing a convex function. In section 4, we present a few numerical
simulations, which demonstrate the effectiveness of the proposed algorithms SNNE and SNNE-sparse.

1.2 Notations

In this paper, let 〈x, y〉 denote the inner product between x, y in Rn. For a vector x ∈ Rn and a scalar
ε ∈ R, let y = (x > ε) denote a zero-one vector, i.e., for i = 1, . . . , n, set yi = 1 if xi > ε, and set
yi = 0 otherwise. For simplicity of notation, the functions exp and log are extended to vector spaces
Rn by componentwise application to all components: (exp(x))i = exp(xi), (log x)i = log xi, i = 1, . . . , n.
Likewise, let x−1 be the vector whose entries are x−1

i . Let the operator � denote entrywise multiplication,
e.g., x� y ∈ Rn and (x� y)i = xiyi. Let 1n = [1, 1, . . . , 1]> ∈ Rn be the vector whose entries are all one.
Let [x; y] denote the stacked vector [x>, y>]> for any two vectors x, y. The norm ‖ · ‖ represents the 2-

norm. Let T be the reshape operator x ∈ Rn
2 → Rn×n, T(x) ∈ Rn×n, T(x)i,j = xin+j for i, j ∈ {1, . . . , n}.

In addition, for the sake of simplicity, xi,j stands for T(x)i,j if no confusion occurs. Let Πn denote the
set of doubly stochastic matrices, i.e., row stochastic and column stochastic T(x)1n = 1n = T(x)>1n for
each T(x) ∈ Πn. Finally, A† stands for the pseudo inverse of a matrix A.

2 Optimal transport

2.1 Matching point-sets under deformations

We first review the deformation characterization of optimal transport applied on the point-set matching
problems in the previous work [CLC13]. The primary focus of the point set matching is the reconstruction
of the correspondence between two unlabeled point-sets {zi}ni=1 ⊂ Ω and {yi}ni=1 ⊂ T (Ω), where T is
some injective and orientation-preserving deformation on a bounded open connected subset Ω of R3. The
correspondence can be described by a permutation τ such that yi = T (zτ(i)) and some optimal condition
hold for τ . One natural criterion is the minimization problem:

min
τ

n∑
i=1

‖yi − zτ(i)‖2. (1)
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This is a discrete combinatorial optimization problem, because n! possibilities must be evaluated. This
difficulty can be alleviated, if we consider the relaxed continuous problem,

min
Xi,j

n∑
i=1

‖yi − zj‖2Xi,j , (2)

subject to the unit mass constraints
∑n
i=1Xi,j = 1 =

∑n
j=1Xi,j and Xi,j ≥ 0. The problem is known

as the L2 Monge-Kantorovich mass transport problem. The relaxed problem described by Eq. (2) is a
convex (in fact, linear) minimization problem, which has an optimal permutation matrix (the existence
of this is guaranteed by Birkhoff’s theorem) and can be solved by interior point methods [BV04] or
primal-dual algorithms [Kai98] (see chapter 4 in [BDM09]).

In the context of (1), the permutation τ corresponding to the permutation X is optimal, if and
only if {(zτ(i), yi)}ni=1 is cyclically monotone. Consider a transform T : Rd → Rd between two point

sets {zi}ni=1, {yi}ni=1 in Rd with yi = T (zi). When a (unknown) transform between these point sets is
the gradient of some convex function, then the correspondence can be recovered correctly by solving mass
transport problems. The set of transforms includes scalings, translations, and other curl-free maps. Point
correspondence can be reconstructed correctly from optimizing transport objectives, if the transform
T between point-sets is the gradient of some convex function. In general, for a point-set with finite
cardinality n sampled from Ω ⊂ R3, when the curl of the transform is sufficiently small, then the
underlying correspondence coincides with a minimizer {Xi,j}ni,j=1 of Eq. (2). Empirical studies show the
outstanding performance of optimal transport in recovering the point-to-point correspondence under a
small curl deformation [CLC13].

2.2 Discrete optimal transport

To solve (2), introduce a vector c ∈ Rn
2

and its associated (reshaped) matrix T(c) with T(c)i,j = ‖yi−zj‖2.

We can express (2) as the primal problem (transportation): searching for the optimal solution x ∈ Rn
2

in
min

T(x)∈Πn

〈c, x〉, (3)

where Πn is the set
{T(x) : Mx := [T(x)1n; T(x)>1n] = 12n, x ≥ 0}. (4)

The matrix X = T(x) represents a coupling matrix X = [Xi,j ≥ 0 : i, j = 1, . . . n], whose entry Xi,j

describes the amount of mass flowing from bin i toward bin j. The problem in (3) is also known as the
assignment problem with assignment matrix T(c). For each feasible solution x, at most n entries can
reach the value 1, i.e., T(x) is a permutation matrix. By Birkhorff theorem, the extreme points of the
set of doubly stochastic matrices are the permutation matrices.

The action of the adjoint operator M> on a vector ν = [ν(1); ν(2)] ∈ R2n is given by

M>ν = T−1(ν(1)1>n + 1nν
(2)>). (5)

Its dual problem to (3) is the maximization problem with respect to a dual variable ν ∈ R2n,

max
ν
{1>2nν : M>ν ≤ c}. (6)

The optimal condition of the primal and dual problem is characterized by the Karush-Kuhn-Tucker(KKT)
conditions, i.e., the nonnegativeness of a slack vector in (6),

s := c−M>ν ≥ 0 (7)

holds and T(s)i,j > 0 occurs only for those indices (i, j) with Xi,j = 0. The slackness condition actually
implies zero duality gap,

〈c, x〉 − 〈ν, 12n〉 = 〈c, x〉 − 〈M>ν, x〉 = 〈s, x〉 = 0. (8)
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2.3 Interior point methods

Here we quickly illustrate the application of interior point methods to (3). More details can be found
in textbooks [BV04] and [LY16]. We start with log-barrier functions for a basic conceptual introduction
of interior point methods, which motivates the negative entropy barrier functions in our interior point
methods.

To reach one optimal solution of (3), path-following methods [FM68] solve the associated logarithmic
barrier function with larger and larger values of t ∈ {tj : 0 < t0 < t1 < t2 < . . .},

min
T(x)∈Πn

{c>x− t−1〈1n2 , log x〉}. (9)

For each t = tj > 0, let x = x(t) be the critical point of the Lagrangian function,

min
x
{f(x, ν) := c>x− t−1〈1n2 , log x〉 − ν>(Mx− 12n)}. (10)

We compute the central point x(tj) starting from the previously computed central point x(tj−1). The
following proposition shows the KKT condition of (9). The proof can be given by the direct calculus.

Proposition 2.1. Consider (9) with t > 0. Introducing a multiplier vector ν for the constraint Mx =
12n, we have the Lagrangian function

c>x− t−1〈1n2 , log x〉 − ν>(Mx− 12n). (11)

The optimal condition of x is

c� x− t−11n2 = diag(x)M>ν, i.e., tx = (c−M>ν)−1, (12)

where thanks to the constraint Mx = 12n, ν is a root of the nonlinear equation,

M(c−M>ν)−1 − t12n = 0, subject to M>ν < c. (13)

The condition in (12) states that c�x− t−11n2 lies in the range of diag(x)M for the optimal interior
point x > 0 in Πn. Taking the product (12) with x yields the duality gap t−1n2 associated with finite t,
i.e.,

c>x− 1>2nν = t−1n2 ≥ 0, (14)

which provides a measure of closeness to optimality. The optimal solution of (3) can be obtained from
a limit of x(t) as t→∞.

2.3.1 Matrix-free conjugate gradient methods for central path

We illustrate the matrix-free computation of x(t). The argument is standard, for instance, see [LY16].
We start with one initial point x(t0) in Πn. To approximate the critical point x(t) in (10), we generate a
minimizing sequence {(xk, νk) : k = 1, 2, 3, . . .} of (10) with step size α > 0,

xk+1 = xk + αdk ∈ T−1(Πn), νk+1 = νk + αyk, (15)

where zk := (dk, yk) satisfies the linearization of (10)

∇f(xk + dk, νk + yk) ≈ ∇f(xk, νk) + 〈∇f2(xk, νk), zk〉 = 0. (16)

Introduce the residual vector,
rk = −(c− (xkt)

−1 −M>νk). (17)

Together with Mxk = 12n, (16) gives

∇2f(xk, νk)zk =

(
t−1diag(xk)−2, −M>

−M, 0

)(
dk
yk

)
= −∇f(xk, νk) =

(
rk
0

)
. (18)
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The first part of (18) implies

t−1dk = diag(x2
k)(M>yk + rk). (19)

Together with the second part of (18), we have the normal equation for yk,

Mdiag(x2
k)(M>yk + rk) = 0, i.e., yk = −(Mdiag(x2

k)M>)†(Mdiag(x2
k)rk). (20)

The well-poshness of (20) is given in the appendix. We can employ Krylov subspace methods, e.g.,
matrix-free conjugate gradient methods to solve yk from (20) and then compute dk from (19).

In solving (18), we shall avoid forming those big matrices M and diag(x−2
k ). We demonstrate the

matrix-vector product in the conjugate gradient method in solving yk. With yk := [y(1); y(2)] and

M̃k := Mdiag(x2)M> =

(
diag(T(x2

k)1n), T(x2
k)

T(x2
k)>, diag(T(x2

k)>1n)

)
, (21)

we implement the matrix-vector product in the conjugate gradient method,

M̃kyk =

(
y(1) � (T(x2

k)1n) + T(x2
k)y(2)

y(2) � (T(x2
k)>1n) + T(x2

k)>y(1)

)
. (22)

To further enhance the convergence speed, we can adopt some preconditioners for the conjugate gradient
method, e.g., modified Cholesky preconditioners [FO08].

Remark 2.2 (Rank reduction). Note that the matrix M̃k := Mdiag(x2
k)M> can be regarded as the Schur

complement of the first block in the Hessian matrix in (18), after ignoring the scaling factor t. (This
matrix also appears in the Hessian computation in (67) and (84) for matrix balancing algorithms. ) Each
x(t) is computed based on the Newton direction dk, whose calculation is essentially the application of a
projection Pk. The calculation could be inaccurate, if the involved Schur complement Mdiag(x2

k)M> ∈
R2n×2n has serious rank deficiency due to the limitation of finite precision. Since the null space of M>

has dimension 1, the rank of Mdiag(x2
k)M> is 2n − 1 for xk with all entries away from 0 (See the

appendix). When the optimal solution T(x) of (3) is a permutation matrix, Mdiag(x2)M>, which is
the sum of n rank one matrices, has rank only n. Hence, as x(t) tends to x, many entries in (x(t))2

(though nonzero) will be rounded to zero in the matrix-vector-product calculation. The inaccuracy is
always inevitable for t sufficiently large. To reduce numerical errors caused by the singularity, the matrix
M̃k should be replaced with a regularized matrix

M̃k + εI2n×2n for some positive small ε. (23)

In addition, to ensure the feasibility of xk, we can apply matrix balancing to project xk on Πn. Another
manner to alleviate the rank deficiency is that we can employ some early termination condition stated in
Prop. A.2 to produce an optimal solution fulfilling the KKT condition, if it is applicable.

The aforementioned log-barrier interior point method only serves for the purpose of illustrating the
overall algorithmic framework, and motivating the negative-entropy based interior point methods. Com-
putational experiments show that primal-dual methods can perform much better than this pure primal
barrier methods on practical problems. For instance, Mehrotra predictor-corrector method [Meh92] is
one popular primal-dual method, whose iterates follow a path with duality measure tending to 0 to reach
one point fulfilling the KKT condition in the space of x, ν and s [Wri97].

2.4 Optimal transport by matrix balancing

Recently, optimal transport has been approximated by an entropic regularized optimal transport prob-
lem [Cut13] [CPSV18]. Using the negative entropy function x log x−x, we obtain a regularized problem
with t > 0,

min
Mx=12n

{
Ft(x) := 〈c, x〉+ t−1〈1n2 , x� log x− x〉

}
. (24)

The strict convexity of x� log x implies the uniqueness of the minimizer in Rn
2

+ . The first-order optimal
condition suggests that the optimal solution can be computed by matrix scaling algorithms. Introducing
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a multiplier vector ν for the constraint, we have the problem

min
x

{
〈c, x〉+ t−1〈1n2 , x� log x− x〉 − 〈ν,Mx− 12n〉

}
. (25)

The gradient computation gives the optimal condition of x,

c+ t−1 log x−M>ν = 0, i.e., x = exp(−t(c−M>ν)). (26)

The multiplier vector ν := [ν(1); ν(2)] in (25) can be determined in matrix balancing of exp(−tT(c)).

Indeed, since T(M>ν) = ν(1)1>n + 1nν(2)>, then (26) yields that T(x) ∈ Πn is obtained under proper
scaling matrices,

T(x) = T(exp(−t(c−M>ν))) = diag(exp(tν(1))) exp(−tT(c))diag(exp(tν(2))) ∈ Πn. (27)

Various Newton methods can be employed to perform matrix balancing in (27). The details of matrix
balancing algorithms will be presented in next section.

Under large t, the solution in (24) can provide a better approximation to the original optimal trans-
port in (3). However, problems with large t are generally very ill-conditioned and hard to solve. To
alleviate the ill-condition issue, with η > 1, we solve ν in a sequence of subproblems associated with
t = t(0), t(1), . . . , tmax. This method is known as ε-scaling heuristic [Sch19] with 1/t replaced with ε→ 0.

To emphasize the usage of Newton methods, we call the interior point method in solving (24) with
t→∞ as the Sinkhorn-Newton-negative-entropy method(SNNE).

• Initialize t = t0 and ν = νini. Repeat the following two steps until t = tmax.

• Employ Newton based matrix balancing algorithms to update ν, i.e., exp(−tT(c−Mν)) is doubly
stochastic.

• If t < tmax, update t→ tη.

The convergence of SNNE consists of two parts: the duality gap and the slackness condition. The
convergence of duality gap requires the boundedness of ν, which is related to the total support condition.
We postpone the discussion to Theorem 2. Here, we give a few words on the convergence of s � x → 0
as t → ∞. With s = c −M>ν, the optimal condition in (26) can be expressed as s = −t−1 log x ≥ 0.
Fixing γ′ ∈ (0, 1) and γ′′ ∈ (1,∞), we can compute an approximate solution x with

γ′t−1(−x� log x) ≤ s� x ≤ γ′′t−1(−x� log x) (28)

As t→∞, we reach the KKT condition in (7),

0 ≤ x� s = −t−1x� log x ≤ (et)−1 → 0. (29)

As t gets sufficiently large, a solution satisfying the slackness condition can be reached with the aid of
early termination in Prop. A.2. Empirically, the convergence for large t does require fast convergence
and high accuracy of matrix balancing algorithms.

2.4.1 Interior point methods with total support constraints

Although an optimal solution x could be sparse, interior point methods require memory storage O(n2)
for x, which could be prohibited in large-scale point-sets. As column generation solves large linear
programming, we shall use dual variables to reduce the memory storage by imposing (and dynamically
updating) the sparse support constraint on x. For instance, in [Sch19] sparse support sets are
introduced to form approximate problems with truncated sparse kernels to reduce the memory storage
requirement. Actually, introducing these constraints to remove those inactive components can also
improve the quality of solutions x(t).

Let supp(x) be the index set of all the positive entries in x. We say that the index set Σ is one support
of X = T(x), if Σ consists of all indices of nonzero entries in X, i.e., Xi,j = 0 holds for all (i, j) /∈ Σ. We
say that X is a solution to optimal transport with respect to the support constraint Σ, if Σ is a support
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of X = T(x) and x is one optimal solution to

min
Mx=12n

{
Ft(x,Σ) := 〈c, x〉+ t−1〈1n2 , x� log x− x〉

}
, supp(T(x)) ⊂ Σ}. (30)

To reach one optimal transport approximation, we shall generate a sequence of supports

{Σ1, . . . ,Σξ, . . .}, (31)

and apply matrix balancing algorithms to get an approximate solution Xξ ∈ Πn with respect to the
support Σξ for each ξ ∈ {1, 2, . . .}. By updating x and Σ alternately, we can reach a good approximation
of the optimal solution for Ft(x) in (24). if the selection rule of Σξ+1 is given by (35) to fulfill two
conditions: the total support condition (see Definition 1) and the inclusion of the index set

Σ′′ := {(i, j) : si,j := ci,j − (ν(1)(i) + ν(2)(j)) ≤ ε} ⊂ Σξ+1. (32)

Here, ε is some positive parameter to ensure the sparsity of the support.

2.4.2 Total support condition

Definition 1. Let X be an n × n matrix and σ be a permutation of {1, 2, . . . , n}. Then the sequence
{X1,σ(1), X2,σ(2), . . . , Xn,σ(n)} is a diagonal of X (corresponding to σ). Then a nonnegative square matrix
X is said to have support if X contains one positive diagonal. Also, X has total support if X 6= 0 and if
every positive entry of X lies on a positive diagonal [KS67]. Let 1Σ denote the indicator matrix, whose
(i, j)-entry is 1 for each (i, j) ∈ Σ. We say that an index set Σ satisfies total support condition, if the
associated indicator matrix 1Σ has total support.

When 1Σ has no support, then 1Σ can not be scaled to a doubly stochastic matrix. Actually, by
Birkhorff theorem, any doubly stochastic matrix is convex combination of permutation matrices. Since
the support of one nonnegative matrix remains invariant under the product of positive diagonal matrices,
having total support is one necessary condition for matrix balancing. Indeed, Theorem 1 states that
total support is the crucial condition to ensure the existence of a doubly stochastic matrix from a sparse
nonnegative matrix X.

Theorem 1. [KS67] Let X be a nonnegative squared matrix. A necessary and sufficient condition that
B = diag(y)Xdiag(z) is double stochastic for two positive vectors y, z is that X has total support.

To illustrate the importance of total support, consider the following example. Let X =

 1 0 0
2 3 0
0 0 4

.

Since the entry 2 is not contained in a positive diagonal, X cannot be scaled to a doubly stochastic matrix.

However, when X =

 1 .05 0
2 3 0
0 0 4

, the entry 2 is contained in the positive diagonal [0.05, 2, 4] and

thus the matrix X can be balanced. On the other hand, let X =

(
1 ε
1 1

)
with ε > 0. Even though X

can be scaled to a doubly stochastic matrix,

diag([1, t])

(
1 ε
1 1

)
diag((1 + t)−1[1, t−1]) =

1

1 + t

(
1 εt−1

t 1

)
with t = ε1/2, (33)

the relative magnitude of entries of the scaling vectors tend to ∞ as ε→ 0.
We illustrate the construction of a set with total support. Let Σ′′ denote the index set,

Σ′′ := {(i, j) : ci,j − (ν(1)(i) + ν(2)(j)) ≤ ε}. (34)

In general, the set Σ′′ does not automatically meet the total support condition. Here is one simple
construction of a total support set Σ containing the prescribed index set Σ′′.
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Proposition 2.3. Let Σ′′ be some prescribed index set. Let σ be a permutation of {1, 2, . . . , n} and let
Σ′ := {(i, σ(i)) : i = 1, . . . , n}. Then the union set

Σ := Σ′ ∪ Σ′′ ∪ Σ′′′, Σ′′′ := {(σ−1(j), σ(i)) : (i, j) ∈ Σ′′} (35)

has total support.

Proof. For each (i, j) ∈ Σ′′, we shall point out one diagonal in Σ. Since σ is a permutation, then

{(k, σ(k)) : k = 1, 2, 3, . . . , n} is one diagonal. Express the diagonal sequence as {(i, σ(i)), (σ−1(j), j), Σ̂},
i.e., Σ̂ is the set consisting the remaining n−2 indices. Note that Σ̂ does not consist of any entries in row-i,
row-σ−1(j), column-j and column-σ(i). Then {(i, j), (σ−1(j), σ(i)), Σ̂} is a diagonal for this (i, j).

Remark 2.4 (The choice of σ). The set Σ′′′ can be regarded as one “reflection” of Σ′′ with respect to
the diagonal Σ′. For simplicity, one can consider the fixed choice: let σ to be the identity and Σ in (35)
is the index set corresponding to the positive entries of I + 1Σ′′ + 1>Σ′′ . Empirically, we suggest that the
permutation σ should be chosen dynamically, so that the corresponding entries {Xi,σ(i) : i = 1, . . . , n}
are large entries in X, away from zero.

2.4.3 Index set Σ′′

The inclusion of Σ′′ is to provide one tight approximation to Ft(x) in (24). Substitute the optimal vector
x in (26) to (25). The Lagrange dual of (24) is given by

max
ν

{
Gt(ν) := −t−1〈exp(tν(1)), exp(−tT(c)) exp(tν(2))〉+ 〈ν, 12n〉

}
. (36)

Introduce a sparse support set Σ as the support of x and solve x from the problem

min
Mx=12n,x≥0

{
Ft(x,Σ) := 〈c, x〉+ t−1〈1Σ, x� log x− x〉

}
. (37)

Introduce a multiplier vector ν for the constraint and form the Lagrangian function,

〈c, x〉+ t−1〈1Σ, x� log x− x〉 − 〈ν,Mx− 12n〉. (38)

The optimal solution is given by

x = T−1(1Σ)� exp(−t(c−M>ν)), i.e., T(x) = diag(ν(1))(1Σ � exp(−tT(c)))diag(ν(2)), (39)

where ν is chosen to ensure T(x) ∈ Πn. Using (39), we have the Lagrange dual of (37),

max
ν

{
Gt(ν,Σ) := −t−1〈1Σ, exp(−tT(c−M>ν))〉+ 〈ν, 12n〉

}
. (40)

Let Π0 denote the whole index set {(i, j) : 1 ≤ i, j ≤ n} and let Σc denote the complement set of Σ.
According to duality,

max
ν

Gt(x,Π0) = min
x∈Πn

Ft(x) = min
x∈Πn

Ft(x,Π0) ≤ min
x∈Πn

Ft(x,Σ) = max
ν

Gt(ν,Σ). (41)

Hence, maxν Gt(ν,Σ) is one upper estimate for minx Ft(x) and the gap can be estimated by

max
ν

Gt(x,Σ)−max
ν

Gt(x,Π0) ≤ max
ν

(Gt(x,Σ)−Gt(x,Π0)) ≤ max
ν
{t−1〈1Σc , exp(−tT(c−M>ν))〉}. (42)

For a tight estimate to minx∈Π0 Ft(x), the support set Σ should be chosen to include the index set
{(i, j) : (c−M>ν)i,j < ε} for some constant ε > 0.

In summary, we have the following SNNE-sparse algorithm. As pointed in Theorem 1, the support
set must satisfy total support condition to ensure the existence of scaling vectors ν(1) and ν(2) for matrix
balancing.

Algorithm 2.5 (SNNE with sparse support). Input: parameters ε > 0, ξmax > 0, tmax > 0, η > 1 and
the assignment matrix c. Initialize t = t0 and ν. Generate one initial support set Σ1 fulfilling the total
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support condition. Repeat the following steps for t = t0, t1, . . . , tmax, so that νξ gives a solution for x in
(39).

• For ξ = 1, 2, 3, . . . , ξmax, iterate the following two steps to get approximation solutions for ν,Σ.

1. Employ Newton method based matrix balancing algorithms in section 3.2 to update ν, i.e.,

1Σ � exp(−tT(c−Mν)) (43)

is doubly stochastic.

2. Let νξ = [ν(1); ν(2)] and construct Σ′′ by (34). Let Σξ+1 be the total support set in (35).

• If t < tmax, update t→ tη.

Remark 2.6 (Convergence). We give a few comments on the convergence of SNNE-sparse. Suppose we
fix the cardinality |Σξ| for each ξ. The sequence of (xξ,Σξ) is actually constructed to minimize Ft(x,Σ)
alternately, where xξ is given by (39). Since the function Ft(x,Σ) is bounded below, the sequence will
eventually stop at some ξ. Indeed, the optimality of xξ is ensured if T(xξ) in (39) is balanced by some
νξ. From (37), the optimality of Σξ is ensured, if Σξ contains the index set associated with the smallest
entries of x log x− x, equivalently, the smallest entries of c−M>ν. (Thanks to the monotonic decrease
of x log x − x for x ∈ [0, 1], Σξ actually contains the index set associated with the largest entries of x.)
Here, we ignore the total support requirement on each Σξ.

2.4.4 Error estimate of SNNE-sparse

Error estimates of SNNE-sparse can be examined by duality measure 〈c, x〉 − 〈ν, 12n〉. The following
result indicates how the duality measure under t → ∞ can be improved by the accuracy of matrix
balancing on T(x) and the boundedness assumption on ν.

Theorem 2. Consider an approximate optimal solution x of (30), constructed from matrix balancing

x = T−1(1Σ)� exp(−t(c−M>ν)) (44)

for some dual vector ν. Let N be the null space of diag(T−1(1Σ))M> and let P be the projection with
kernel N . Suppose that ‖Pν‖2 ≤ δ holds for some positive constant δ > 0 and T(x) is nearly doubly
stochastic, i.e., ‖Mx− 12n‖2 ≤ εMB for some εMB > 0. Then we have error estimates,

|〈c, x〉 − 〈12n, ν〉| ≤ εδ + (et)−1|Σ|, (45)

where |Σ| is the cardinality of the index set Σ.

Proof. Since Σ has total support, then 1Σ can be balanced by some scaling vectors ζ(1), ζ(2) ∈ Rn, i.e.,

1Σ � (ζ(1)ζ(2)>) is doubly stochastic, MT−1(1Σ � (ζ(1)ζ(2)>)) = 12n. Hence,

M(T−1(1Σ)� x)− 12n = M(T−1(1Σ)� (x− T−1(ζ(1)ζ(2)>))) (46)

lies in the range of Mdiag(T−1(1Σ)), and also lies in the range of P , which implies P (Mx − 12n) =
Mx− 12n from the definition of P . Computation shows

|c>x− ν>12n| = |c>x− ν>Mx+ ν>(Mx− 12n)| (47)

≤ |(c−M>ν)>x|+ ‖Pν‖2‖Mx− 12n‖2 (48)

= −t−1〈T−1(1Σ), x� log x〉+ ‖Pν‖2‖Mx− 12n‖2 (49)

≤ (et)−1|Σ|+ δε, (50)

where the last inequality is derived from x log x ≥ −e−1.
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This result is consistent with empirical studies, where solving a negative entropy regularized optimal
transport could be a challenging problem, if the norm of the associated dual vector is large. Later,
we shall prove that the required norm bound can be obtained under the total support condition. See
Prop. 3.7 and Remark 3.8.

Remark 2.7 (Parameters in SNNE-sparse). It could be not easy to choose a proper parameter ε > 0 to
meet the desired sparsity. One practicable manner is to select a parameter k > 0 and let Σ consist of
those (i, j) corresponding to (at most) k smallest entries (c −M>ν)i,j for each row and each column.
In this manner, Σξ consists of at most (2k + 1)n entries. In section 4.2, we shall present numerical
experiments under a proper value k to demonstrate the effectiveness.

3 Matrix balancing

Let A denote a positive matrix in Rn×n. Matrix balancing [Sin64] aims to find a pair of positive scaling
vectors {ζ(1), ζ(2)}, so that the matrix balancing projection

A′ := diag(ζ(1))Adiag(ζ(2))

is doubly stochastic, i.e.,

A′1n = diag(ζ(1))Aζ(2) = diag(ζ(1))Adiag(ζ(2))1n = 1n, (51)

A′
>1n = diag(ζ(2))A>ζ(1) = (diag(ζ(1))Adiag(ζ(2)))>1n = 1n. (52)

The existence of {ζ(1), ζ(2)} is proved in [Sin64], [KS67] for any positive matrix and any nonnegative
matrix with total support, respectively. Matrix scaling methods and its various applications in scientific
computing, statistics and engineering can be found in the extensive survey [Ide16] and the references
therein. In general, the prescribed row sums and column sums do not have to be restricted to 1n.
See [KLRS08] and [AZLOW17]. In the section, we shall list a few matrix scaling algorithms and their
variants.

3.1 Sinkhorn-Knopp balancing(SK) and Knight-Ruiz(KR) method

For the conditions in (51,52), the Sinkhorn-Knopp balancing(SK) (also known as the RAS or bipropor-
tional problem [Bac70]) is one well-known method to carry out matrix balancing on A, consisting of

iterates {(ζ(1)
k , ζ

(2)
k ) : k = 1, 2, 3, . . .},

ζ
(2)
k+1 = (A>ζ

(1)
k )−1, ζ

(1)
k+1 = (Aζ

(2)
k )−1. (53)

We can express (53) in a symmetric manner [Kni08]. Form one symmetric matrix Ã from A,

Ã :=

(
A1,1 A1,2

A2,1 A2,2

)
=

(
0 A
A> 0

)
. (54)

Let ζk := [ζ
(1)
k ; ζ

(2)
k ] be a sequence of the scaling vectors. When

ζ
(2)
1 = (A>ζ

(1)
1 )−1, (55)

the SK algorithm in (54) can be expressed in a compact form,

ζk+1 = (Ãζk)−1,

whose limit ζ = limk→∞ ζk is actually a root of

g(ζ) := ζ � (Ãζ)− 12n = 0. (56)

Remark 3.1 ((ρ(1), ρ(2))-balancing). In this paper, we focus on the application of point-set matching
problems and thus consider the matrix balancing with (1n,1n)-balancing, i.e., the row sum and the column
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sum both 1. In literatures, e.g., section 3 in [Ide16], SK algorithms can be applied to reach a matrix with
row sum ρ(1) and column sum ρ(2), where (ρ(1), ρ(2)) is not necessarily restricted to (1n,1n).

To solve the roots of g(ζ) = 0, Knight and Ruiz [KR12] proposed one Newton method,

ζk+1 = ζk − (diag(ζk)Ã+ diag(Ãζk))†(ζk � (Ãζk)− 12n) (57)

= ζk �
{

12n − (Bk + diag(Bk12n))
†

(Bk12n − 12n)
}

(58)

to alleviate slow convergence of SK, where Bk := diag(ζk)Ãdiag(ζk) is used. Compared with the SK
algorithm, the Newton approach exhibits fast convergence. However, as mentioned in [KR12], the global
convergence property of (57) is theoretically unclear.

3.2 Negative entropy(NE) based matrix balancing

We describe one algorithm proposed in [CMTV17, BCLW17], which implements Newton’s method for
matrix balancing in (27) or in (39). To simplify the notation, consider

A = exp(−tT(c))� 1Σ ∈ Rn×n, with t = 1 (59)

where Σ is the support set used in SNNE-sparse. Introduce the symmetric 2n× 2n-matrix Ã as in (54).

Write the scaling vector exp(ν) of Ã with ν := [ν(1); ν(2)] and ν(1) ∈ Rn and ν(2) ∈ Rn. Matrix balancing
on A can be solved by the convex optimization (i.e., the problem in (36)),

min
ν∈R2n

{
f(ν) =

1

2
〈exp(ν), Ã exp(ν)〉 − 〈12n, ν〉

}
. (60)

Indeed, reformulate (60) as follows:

f(ν) = 〈exp(ν(1)), (exp(−T(c))� 1Σ) exp(ν(2))〉 − 〈1n, ν(1)〉 − 〈1n, ν(2)〉. (61)

For simplicity, let B(ν) denote the scaled matrix of A,

B(ν) := exp(−T(c−M>ν))�1Σ = diag(exp(ν(1)))(Adiag(exp(ν(2))), where T(M>ν) = ν(1)1>n+1nν
(2)>.
(62)

We can express f as
f(ν) = 〈1n,B(ν)1n〉 − 〈12n, ν〉. (63)

First, a scaling vector ν with ∇f(ν) = 0 yields the double stochastic matrix B(ν). Indeed,

∇f(ν) = M(exp(−(T(c−M>ν)))� 1Σ)1n − 12n =

(
exp(ν(1))� (A exp(ν(2)))

exp(ν(2))� (A> exp(ν(1)))

)
− 12n(64)

=

(
B(ν)− In

(B(ν)− In)>

)
1n. (65)

Second, the Hessian computation verifies the convexity of f . Computation shows

∇2f(ν) =

(
diag((exp(−T(c−M>ν))� 1Σ)1n) exp(−T(c−M>ν))� 1Σ

(exp(−T(c−M>ν))� 1Σ)> diag((exp(−T(c−M>ν)� 1Σ))>1n)

)
(66)

=

(
diag(B(ν)1n) B(ν)

B(ν)> diag(B(ν)>1n)

)
. (67)

The following Newton’s method, called Negative entropy method(NE), employs step size given by back-
tracking line search to compute a minimizer of the problem in (60), i.e.,

νk+1 = νk − α(∇2f(νk))†∇f(νk). (68)
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Convergence arguments are standard. See section 9.5.3 [BV04]. The following shows the consistency
analysis.

Proposition 3.2. Suppose the matrix A in (59) is nonnegative and has support. Then the system

∇2f(νk)w = −∇f(νk) (69)

is consistent for some vector w ∈ R2n. In addition, for nonzero ∇f(νk), let u = −(∇2f(νk))†∇f(νk).
Then we have the squared Newton decrement

〈u,∇2f(νk)u〉 = 〈∇f(νk), (∇2f(νk))†∇f(νk)〉 > 0. (70)

Proof. For each vector w = [w(1);w(2)] ∈ R2n with w(1) ∈ Rn, w(2) ∈ Rn, the Hessian∇2f(ν) is symmetric
diagonally dominant [CMTV17,AZLOW17], thus the convexity of f is verified from

〈w,∇2f(ν)w〉 =

n∑
i=1

n∑
j=1

Ai,je
ν
(1)
i eν

(2)
j (w

(1)
i + w

(2)
j )2 ≥ 0, (71)

For each vector w in the null space of ∇2f , from (71), w satisfies 〈w,∇2f(ν)w〉 = 0, which implies

w
(1)
i + w

(2)
j = 0 for all Ai,j > 0. (72)

Since A has support, then {Ai,σ(i) : i = 1, 2, . . . , n} are all positive for some permutation σ. Since

Ai,σ(i) > 0, then any vector w in the null space of ∇2f satisfies w
(1)
i = −w(2)

σ(i) and has the form

w := [w(1);w(2)] = [w1, w2, . . . , wn,−wσ−1(1), . . . ,−wσ−1(n)]
>. (73)

Clearly, 〈w(1),1n〉 + 〈w(2),1n〉 = 0 holds. Thus, we have the orthogonality between −∇f(νk) and the
null space of ∇2f(ν). Indeed,

〈w,∇f(νk)〉 = w(1)>(B(νk)− In)1n + w(2)>(B(νk)− In)>1n (74)

=

n∑
i=1

n∑
j=1

(w
(1)
i + w

(2)
j )Ai,je

ν
(1)
i eν

(2)
j = 0, (75)

where we used (72). Hence, −∇f(νk) lies in the range of ∇2f , which verifies that the system in (69)
is consistent. Finally, we obtain (70) according to the positive semi-definite property in (71) and the
following observation. Since ∇f(νk) is orthogonal to the null space of ∇2f(νk), then ∇f(νk) is orthogonal
to the null space of (∇2f(νk))†.

Since ∇2f(νk)(νk+1− νk) = −∇f(νk) is consistent, the Newton iterations in (68) can be employed to
find ν with ∇f(ν) = 0, e.g., the conjugate gradient method [BCLW17]. Note that the squared Newton
decrement in (70) can be interpreted as the directional derivative of f in the direction of u,

− 〈u,∇2f(νk)u〉 = 〈∇f(νk), u〉 =
d

dα
f(νk + αu)|α=0. (76)

Thanks to (70), when ∇f(νk) 6= 0, the step size α > 0 can be chosen properly to decrease the objective
f .

Remark 3.3. Consider the application in SNNE, i.e., the balancing in (27). Note that the Hessian ∇2f

is exactly the Schur complement matrix M̃ described in (21). When T(x) = exp(−tT(c −M>ν)) heads
to an optimal permutation with t→∞, the Hessian matrix will easily undergo a rank-reduction process.
Hence, using a regularized Hessian matrix as in (23) is suggested in empirical algorithms for (68).
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3.3 Logarithmic barrier functions(LB) based matrix balancing

We provide another Newton method, called Logarithmic barrier (LB) based matrix balancing, to compute
scaling vectors of matrix balancing. The LB iterations will be stated in (84). The introduction can shed

light on convergence of Knight-Ruiz algorithm. Consider a nonnegative matrix A. Define Ã as in (54).
Consider the minimization of g,

min
ζ>0
{g(ζ) =

1

2
ζ>Ãζ − 1>2n log ζ}. (77)

The objective function in (77) is identical to the function in (60), except for ν replaced with log ζ.
In [MO68], the function g is employed to show the existence of matrix-scaling on a fully indecomposable
matrix. In [KK92], authors proposed one path-following Newton algorithm, minimizing a sequence of

sub-problems to scale a symmetric positive semi-definite matrix Ã, so that convergence requirement of
Newton iterates can be met in each sub-problem. Here, we propose a modified Newton method for the
computation of matrix balancing for one positive matrix A.

Compute the gradient and the Hessian of g,

∇g = Ãζ − ζ−1, ∇2g(ζ) = Ã+ diag(ζ−2), (78)

respectively. First, from (78), the Sinkhorn-Knopp balancing is the coordinate descent iteration of g(ζ)
with ζ = [ζ(1); ζ(2)],

ζ
(1)
k+1 ← argmin

ζ(1)
g([ζ(1); ζ

(2)
k ]), ζ

(2)
k+1 ← argmin

ζ(2)
g([ζ

(1)
k+1; ζ(2)]). (79)

Thus, SK balancing decreases the objective g in (77). Second, suppose a minimizer ζ is an interior point

in R2n
+ . Clearly, ζ is a root to (56), i.e., Ãζ = ζ−1. Write ζ = exp(ν) component-wise with some vector

ν. From (71), g(exp(ν)) = f(ν) is convex in ν and a local minimizer of g is actually the global minimizer
of g. Let us employ one damped Newton iteration to reach the global minimizer, where step size αk is
selected to minimize g(ζk − αk(∇2g(ζk))−1∇g(ζk)) in (77), for k = 1, 2, 3, . . .,

ζk+1 = ζk − αk(∇2g(ζk))−1∇g(ζk) = ζk − αk(Ã+ diag(ζ−2
k ))−1(Ãζk − ζ−1

k ) (80)

= ζk − αkdiag(ζk)
(

diag(ζk)(Ã+ diag(ζ−2
k ))diag(ζk)

)−1 (
ζk � (Ãζk − ζ−1

k )
)

(81)

= ζk − αkζk � (I2n +Bk)
−1

(Bk12n − 12n), (82)

with
Bk := diag(ζk)Ãdiag(ζk). (83)

Since the matrix I2n +Bk in (82) is not necessarily positive definite, the iteration in (82) is not globally
convergent. Instead, consider a modified Newton iteration (called LB matrix balancing scheme )

ζk+1 = ζk � {12n − αk(Ck +Bk)†(Bk − I2n)12n}, (84)

where I2n in (82) is replaced with the positive diagonal matrix,

Ck = diag(12n � (Bk12n)). (85)

Remark 3.4 (Safeguard parameter ε+). We implement (84) as follows. For each k, compute Bk and
Ck from (83, 85), and uk := −ζk � (Ck +Bk)†(Bk − I2n)12n. Use conjugate gradient to solve

yk := (Ck +Bk)†(Bk − I2n)12n (86)

from the consistent system,
(Ck +Bk)yk = (Bk − I2n)12n. (87)

The step size αk is chosen to ensure the decrease of g and ζk+1 = ζk � (1 − αkyk) > 0. For ζk+1 > 0,
we introduce a safeguard parameter ε+ ∈ (0, 1) and α is chosen within (0, y−1

max(1 − ε+)], where ymax is
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the largest positive entry of yk. Indeed, ζk+1 = ζk + αuk = ζk � (1− αyk) ≥ ζkε+ > 0.

In the following, we shall discuss the wellposeness of LB and show the step size of LB tending to 1
near an optimal solution.

3.3.1 Well-definedness of LB in (84)

The following proposition shows the well-definedness of (Ck + Bk)†(Bk − I2n)12n in (84). Also, we
calculate the directional derivative of g in the direction of

uk := −ζk � (Ck +Bk)†(Bk − I2n)12n (88)

with ‖uk‖ > 0, which sheds some light on the convergence of this Newton method,

d

dα
g(ζk + αuk)|α=0 = 〈∇g(ζk), uk〉 (89)

= −〈(Bk − I2n)12n, (Ck +Bk)†(Bk − I2n)12n〉 < 0. (90)

In the following, we shall verify the calculation in (90). We introduce H(ζ) in (94) to investigate the
null space of Bk + Ck. Note that H(ζk) = Ck +Bk.

Proposition 3.5. Consider one matrix A ∈ Rn×n, which is nonnegative and has support. Let Ã be
given in (54) and B = diag(ζ)Ãdiag(ζ). Let C = diag(B12n). Then C + B is symmetric and positive
semi-definite and the system

(C +B)y = (B − I2n)12n (91)

is consistent. In addition, introduce the null space of C +B,

N := {w = [w(1);w(2)] : w
(1)
i + w

(2)
j = 0, ∀(i, j) with Ai,j > 0}. (92)

For any positive vector ζ ∈ R2n and for any null vector w ∈ N , the function g takes a constant value,
as ζ → ζ � exp(w), i.e.,

g(ζ � exp(w)) = g(ζ). (93)

Introduce
H(ζ) = diag(ζ � (Ãζ)) + diag(ζ)Ãdiag(ζ). (94)

Then N is the null space of H(ζ) for any positive vector ζ.

Proof. By Gershgorin circle theorem, the symmetric matrix C +B � 0 is diagonally dominant and thus
is a positive semi-definite matrix. Actually, for each vector w = [w(1);w(2)] ∈ R2n,

〈w, (C +B)w〉 =

n∑
i=1

n∑
j=1

Ai,jζ
(1)
i ζ

(2)
j (w

(1)
i + w

(2)
j )2 ≥ 0. (95)

Hence, each null vector w of C +B satisfies

w
(1)
i + w

(2)
j = 0 for all Ai,j > 0, (96)

which justifies (92). Since A has support, then for some permutation σ, we have Ai,σ(i) > 0 for i =
1, . . . , n. Hence, (96) implies

n∑
i=1

w
(1)
i +

n∑
j=1

w
(2)
j =

n∑
i=1

w
(1)
i +

n∑
i=1

w
(2)
σ(i) = 0. (97)

Next, we show that (B − I2n)12n lies in the range of (C +B). Indeed, for each null vector w, using (96)
and (97), we have (B − I2n)12n is orthogonal to the null space of (C +B)> = C +B, i.e.,

〈w, (B − I2n)12n〉 =

n∑
i=1

n∑
j=1

(w
(1)
i + w

(2)
j )ζ

(1)
i ζ

(2)
j Ai,j − (

n∑
i=1

w
(1)
i +

n∑
j=1

w
(2)
j ) = 0. (98)
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The above orthogonality arguments also implies (90). Again from (96) and (97), we have

g(ζ � exp(w)) =

n∑
i=1

n∑
j=1

Ai,jζ
(1)
i ζ

(2)
j exp(w

(1)
i + w

(2)
j )− 〈12n, log ζ〉 − 〈12n, w〉 (99)

=

n∑
i=1

n∑
j=1

Ai,jζ
(1)
i ζ

(2)
j − 〈12n, log ζ〉 = g(ζ). (100)

Finally, observe that 〈w,H(ζ)w〉 =
∑n
i=1

∑n
j=1Ai,jζ

(1)
i ζ

(2)
j (w

(1)
i +w

(2)
j )2 = 0 if and only if w ∈ N . Thus,

N is the null space of H(ζ) for any positive vector ζ.

3.3.2 Relation between KR and LB

First, we make one observation.

Remark 3.6 (KR method is a special case with αk = 1). Note that the LB method in (84) with αk = 1
coincides with the algorithm proposed by Knight and Ruiz in (57). As k increases, the objective values
g(ζk) decrease monotonically. As Bk tends to be a doubly stochastic matrix, we have Ck = diag(Bk12n)→
I2n and the LB method reduces to Newton’s method in (57), i.e., KR method.

In the following, we demonstrate that the step size αk of LB is 1 for sufficiently large k. To proceed,
we start with some boundedness related to the sequence {ζk : g(ζk) ≤ c0, k = 1, 2, . . .} under total
support assumption on A. For notation simplicity, we drop the subscript k.

Proposition 3.7. Suppose A ∈ Rn×n has total support. Let Σ := {(i, j) : Ai,j > 0}. Let δ be a positive
lower bound for {Ai,j : (i, j) ∈ Σ}. Fix some c0 ∈ R. Let ζ = [ζ(1), ζ(2)] be a positive vector in the

c0-sublevel set of g, i.e., g(ζ) ≤ c0. Then {ζ(1)
i ζ

(2)
j : (i, j) ∈ Σ} are bounded below by

exp(−c0 + (n− 1)(1 + log δ)) (101)

and bounded above by
max(δ−1(c0 − (n− 1)(1 + log δ)), 1). (102)

In particular, for any ζ with g(ζ) ≤ c0, ‖(ζ(1)ζ(2)>) � 1Σ‖ is bounded above by some constant only
depending on c0 and δ.

Proof. Fix one entry Ai1,j1 > 0. By assumption, A has total support, and thus (i1, j1) lies on some
diagonal {(i, σ(i)) : i ∈ {1, 2, . . . , n}}. Then

n∑
i=1

{Ai,σ(i)ζ
(1)
i ζ

(2)
σ(i) − log(ζ

(1)
i ζ

(2)
σ(i))} ≤ g(ζ) = 〈ζ(1), Aζ(2)〉 − 〈12n, log ζ〉 ≤ c0. (103)

By convexity, the following inequality holds for each a > 0,

min
x≥0

(ax− log x) ≥ 1 + log a. (104)

Applying (104) to the right hand side of (103) for those i 6= i1, we have

n∑
i=1

{Ai,σ(i)ζ
(1)
i ζ

(2)
σ(i) − log(ζ

(1)
i ζ

(2)
σ(i))} ≥ Ai1,j1ζ

(1)
i1
ζ

(2)
j1
− log(ζ

(1)
i1
ζ

(2)
j1

) + (n− 1)(1 + log δ). (105)

Together with (103), dropping the positive term Ai1,j1ζ
(1)
i1
ζ

(2)
j1

in (105), we have (101). Likewise, for an

upper bound, when ζ
(1)
i1
ζ

(2)
j1
≥ 1, we can drop − log(ζ

(1)
i1
ζ

(2)
j1

) in (105), which yields the upper bound in
(102).
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Remark 3.8. Let 1Σ := (A > 0). When A has total support, then ζk = [ζ
(1)
k , ζ

(2)
k ] from (84) generates a

bounded matrix (ζ
(1)
k ζ

(2)
k

>
)�1Σ ∈ Rn×n. Express the k-th iterate ζk as ζk = exp(νk) with νk = [ν

(1)
k ; ν

(2)
k ].

Introduce a linear transform B,

B(νk) := 1Σ � log(ζ
(1)
k ζ

(2)
k

>
) = 1Σ � T(M>νk) = T((T−1(1Σ))�M>νk). (106)

From Prop. 3.7, the null space of B is the null space N in (92), i.e.,

N = {w : T−1(1Σ)�M>w = 0} = {w : A� (w(1)1>n + 1nw
(2)>) = 0}. (107)

Let P : R2n → R2n be the orthogonal projection with kernel N . Let m be the smallest singular value of

B. Then ‖Bνk‖ ≥ m‖Pνk‖. Hence, the boundedness (ζ
(1)
k ζ

(2)
k

>
)� 1Σ actually indicates the boundedness

of {‖Pνk‖ : k = 1, 2, 3, . . .}, when {νk} and {ζk} are chosen to minimize f(ν) or g(ζ), respective. This
justifies the norm assumption required in Theorem 2.

The following theorem states that LB iterates are exactly KR iterations, when k is sufficiently large.
Since the proof is lengthy, we place it in the appendix.

Theorem 3. Suppose that A ∈ Rn×n has total support. For k sufficiently large, the step size αk in the
LB iteration is 1.

3.4 Stability issues in practical algorithms

When we balance a sequence of matrices with t increasing, the norm of these scaling vectors will increase
synchronously. Without careful numerical treatment, large numerical errors can easily occur in KR,
NE and LB algorithms. Two techniques proposed in the Stabilized Scaling algorithms [Sch19] will be
employed in our simulation studies of KR, NE and LB algorithms.

In the application of optimal transport, we are interested in balancing a sequence of matrices

A = exp(−tT(c)) (108)

for a sequence of t-sequence, i.e., diag(ζ(1))Adiag(ζ(2)) is doubly stochastic under some scaling vectors
ζ(1), ζ(2). The first technique is that to avoid the numerical inaccuracy caused by the large entries in
scaling vectors, we should execute matrix balancing algorithms in the Log-Domain. For instance, in
the LB method, we shall avoid computing/storing ζ(1), ζ(2) in matrix balancing algorithms. Instead, by
expressing ζ(1), ζ(2) as ζ(1) = exp(tν(1)) and ζ(2) = exp(tν(2)) for some ν = [ν(1), ν(2)], we should conduct
matrix balancing in terms of ν(1) and ν(2). Hence, the LB iteration in (84) should be rewritten as

νk+1 = νk + t−1 log(12n − αk(Ck +Bk)†(Bk − I2n)12n), (109)

and Ck +Bk can be expressed as

Ck +Bk =

(
diag(1Σ � exp(−tT(c−M>νk)))1n 1Σ � exp(−tT(c−M>νk))

(1Σ � exp(−tT(c−M>νk)))> diag((1Σ � exp(−tT(c−M>νk)))>1n)

)
. (110)

The second technique is to use µ-translation to reduce numerical errors in matrix balancing computa-
tion. Suppose the scaling vectors {exp(tν(1)), exp(tν(2))} for the squared matrix A = exp(−tT(c)) ∈ Rn,n

is available. Then the squared (shifted) matrix

exp(−t(T(c)−M>µ)) = diag(tµ(1))Adiag(tµ(2)) (111)

can be balanced by translated scaling vectors {exp(t(ν(1) − µ(1))), exp(t(ν(2) − µ(2)))}. How should we
choose {µ(1), µ(2)}? Suppose exp(−tk−1T(c)) can be balanced by scaling vectors {exp(tk−1ν

(1)), exp(tk−1ν
(2))}.

When tk−1 is sufficiently large, {exp(tkν
(1)), exp(tkν

(2))} provides a good approximation for scaling vec-
tors of exp(−tkT(c)). Thus, one good empirical choice is µ(1) = ν(1) and µ(2) = ν(2). Once the scaling
vectors {exp(tkξ

(1)), exp(tkξ
(2))} of the shifted matrix

exp(−tkT(c−M>ν)) (112)
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are computed, we know that the original matrix exp(−tkT(c)) in (108) can be balanced by scaling vectors
{exp(tk(ν(1) + ξ(1))), exp(tk(ν(2) + ξ(2)))}. In summary, we have the following algorithm for the problem
in (108).

Algorithm 3.9. Input: a matrix T(c) ∈ Rn×n and a sequence t1, t2, . . . , tmax in R.

• Initialize ν0 = 02n. For k = 1, 2, . . . , kmax, repeat the following two steps:

• Compute a scaling vector exp(tµ) ∈ R2n which balances the matrix exp(−tk(T(c)−M>νk−1)).

• Update νk = νk−1 + µ ∈ R2n.

Output: νkmax
. Here, the vector exp(tmaxνkmax

) balances the matrix exp(−tmaxT(c)).

4 Numerical simulations

We provide three experiments in the section: (i) Comparison of matrix balancing schemes; (ii)Comparison
experiments of matrix balancing in solving discrete optimal transport; (iii) Application of sparse support
algorithms on large data-sets.

4.1 Matrix balancing

4.1.1 Comparison in matrix balancing

We compare four matrix balancing methods, including

• Sinkhorn-Knopp algorithm(SK) in (53);

• three Newton method based algorithms:

– Knight-Ruiz method(KR) in (57);

– Negative entropy method(NE) in (68);

– Logarithmic barrier method(LB) in (84).

We select three matrices, A = exp(−magic(20)/20) of size 20 × 20, A = exp(−magic(50)/20) of size
50 × 50, and A = exp(−magic(200)/50) of size 200 × 200. Here magic(n) produces an n × n matrix
from the integers 1, 2, . . . , n2 with with equal row/column/diagonal sums. See the top row of Fig. 1 for
the pattern visualization of matrices magic(20), magic(50) and magic(200). At the k-th iteration, let

Bk := diag(ζ
(1)
k )Adiag(ζ

(2)
k ) be the matrix corresponding to scaling vectors {ζ(1)

k , ζ
(2)
k } produced from

matrix balancing algorithms. Consider the performance metric to evaluate the matrix balancing error:

Error := ‖Bk1n − 1n‖1 + ‖B>k 1n − 1n‖1. (113)

• First, we start with the same initial vector 1n in the four methods. Results are reported in Figure 2,
where KR empirically gives very fast convergence in the perspective of CPU time. Sinkhorn-Knopp
algorithm, one popular algorithm, typically requires more iterations than Newton methods. How-
ever, thanks to its low complexity in each iteration, SK can produce acceptable results economically.
For instance, as shown in A = exp(−magic(20)/20) and A = exp(−magic(200)/50), SK reaches
a solution with error less than 10−2, much faster than NE and LB. On the other hand, SK has
very poor convergence in handling A = exp(−magic(50)/20). This case with n = 50 is actually a
challenging problem. Optimal scaling vectors ζ(1), ζ(2) have norm both greater than 1012, which
suggest that exp(−magic(50)/20) nearly does not have total support. Under the circumstance, all
Newton methods give relatively slow convergence.

• Second, we further examine the case A = exp(−magic(50)/20) from the framework of nega-
tive entropic barrier functions. Consider a sequence of matrices exp(−t · magic(50)) with t =
1/160, 1/80, 1/40 and 1/20, respectively. The CPU time of these balancing tasks is reported
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Figure 1: ( Left to right subfigures in the top row show matrices magic(20), magic(50) and magic(200),
respectively. Left and right subfigures in the bottom row show magic(1950) and magic(2500), respec-
tively.

exp(−magic(50) · t)

t value
NE LB KR SK
(s) (s) (s) (s)

1/160 0.0032 0.0018 0.0007 0.025
1/80 0.0047 0.0021 0.0008 0.075
1/40 0.0071 0.0039 0.0013 0.140
1/20 0.0074 0.0042 0.0025 0.939

Table 1: Computational time (sec) in balancing exp(−magic(50) · t) under tolerance 10−5.

in Table 1. Matrix balancing task with small t is easier than those tasks with large t. For
t = 1/160, 1/80, 1/40, 1/20, the geometric mean of the norm of the scaling vectors is

‖ζ(1)‖1/2‖ζ(2)‖1/2 = 2.31× 101, 8.05× 102, 1.61× 106, 1.08× 1013, (114)

respectively.1 From Remark 3.8, the norm growth of scaling vectors reflects that the matrices to
be balanced nearly do not have total support. In addition, we examine the scaling vectors

ζ(1) = exp(tν(1)), ζ(2) = exp(tν(2)), (115)

by plotting those entries of dual vectors ν(1) and ν(2) in Fig. 3. Observe the similarity among
these vectors ν(1) and vectors ν(2). Fast convergence of Newton methods relies on the proximity of
the initialization to the attractive basin. Thanks to the similarity, we can speed up these Newton
methods, when the optimal scaling vectors of matrices with previous t are employed as warm
starts. Notice that the CPU time with t = 1/20 is improved significantly, compared with CPU
time reported in Fig. 2.

1As one reference, ‖ζ(1)‖1/2‖ζ(2)‖1/2 is 1.663 and 137.8 for the problems exp(−magic(20)/20) and
exp(−magic(200)/20), respectively.
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Figure 2: Comparison of SK with other Newton based matrix balancings, n = 20(left), n = 50(middle),
and n = 200 (right). The performance metric is (113).
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4.1.2 Comparison in solving optimal transport

We demonstrate the application of matrix balancing algorithms in solving optimal transport along a
central path for t = tk = t0η

k, k = 0, 1, 2, . . . , tmax. We evaluate matrix balancing algorithms in
handling the cases with assignment matrix

• T(c) = magic(2500);

• T(c) = magic(1950);

• T(c) has n2 entries {cj,k = ‖yj − zk‖2 : i, j = 1, . . . , n}, where {yk}nk=1 is one TLC point-set and
and {zk}nk=1 is one translated FRC point-set, n = 254.

Perform matrix balancing of a sequence of matrices for a few positive values t = tk until the relative
duality gap ε is met, i.e,

{exp(−tiT(c)) : t1 < t2 < . . . < tmax}. (116)

Let xopt be an optimal primal vector. For each algorithm, we report the computation time, when
relative duality gap falls within a given tolerance level ε,

〈c, xopt〉−1(〈c, x〉 − 〈ν, 12n〉) ≤ ε. (117)

Table 2-4 report the CPU time and the corresponding tk value for various tolerance level ε. Notice
that when identical sequences of tk are reported, identical sequence of matrices are balanced in these
methods. Consider a fixed matrix balancing tolerance εMB = 10−5

√
n as the stopping criterion. This

criterion ensures that the gradient has small norm, ‖∇f(ν)‖ ≤ εMB , see (65). Experiment results show
that all Newton methods work quite well in the three problems. In particular, KR consistently gives
the fastest convergence among these Newton methods. However, a winner between Newton methods
and SK usually depends on the difficulty of the problem itself. Observe the pattern similarity between
magic(200) and magic(2500) and observe the pattern similarity between magic(50) and magic(1950)
from Fig. 1. For the problem magic(2500), which is relatively easy (compared with magic(1950)), SK is a
fast algorithm, which produces acceptable results, much faster than NE and LB as shown in magic(200).
On the other hand, facing the challenging problem magic(1950), SK fails to produce acceptable results
within 5000 seconds. As a result, we can see the similarity of the dual vectors ν(1), ν(2) in Fig. 3. As in
magic(50) and magic(1950), entries of dual vectors in a point-set matching problem actually vary a lot.
From this viewpoint, it is not so surprising that SK has the worst convergence in solving the point set
matching problem, shown in Table 4.

magic(2500)

ε
NE LB KR SK

time tk time tk time tk time tk
1e− 1 22.35 291.9 43.73 291.9 13.77 291.9 2.99 291.9
1e− 2 32.10 3325 62.21 3325 19.15 3325 4.42 3325
1e− 3 45.96 37876 80.46 37876 24.56 37876 6.15 37876
1e− 4 51.55 287627 94.45 287627 28.73 287627 7.00 287627
1e− 5 116.87 2675044 108.32 4914369 34.00 3276247 8.17 3276247

Table 2: Computational time(sec) in solving optimal transport with T(c) = magic(2500).

4.2 Rigid-motion estimation

One big advantage of SNNE over primal-dual methods is that SNNE updates multiplier vectors solely
along the increase of t, i.e., no need to store/pass x between sub-problems. The memory requirement in
SNNE can be much less than that in primal-dual methods, if the active support set is properly handled
in large-scale problems. The following two experiments demonstrate the effectiveness of SNNE in han-
dling large-scale problems. In the first study, we provide one comparison between SNNE, SNNE-sparse
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magic(1950)

ε
NE LB KR SK

time tk time tk time tk time tk
1e− 1 25.29 437.9 66.42 437.9 15.30 437.9 11197 388.2
1e− 2 34.36 3325 96.84 3325 19.89 3325 11626 4.42× 103

1e− 3 46.63 37877 133.38 37877 25.71 37877 - -
1e− 4 65.09 287627 190.35 287627 41.22 287627 - -
1e− 5 129.21 2184164 2796 1531812 389.12 2184164 - -

Table 3: Computational time(sec) in solving optimal transport with T(c) = magic(1950).

Lung branch points (n = 254)

ε
NE LB KR SK

time tk time tk time tk time tk
1e− 1 0.14 86.5 0.32 86.5 0.11 86.5 4.94 70.6
1e− 2 0.22 4.37× 102 0.40 4.37× 102 0.13 4.37× 102 25.26 509.8
1e− 3 0.39 1.478× 103 0.64 1.478× 103 0.28 1.478× 103 200.46 1.348× 103

1e− 4 1.10 4.988× 103 5.19 4.988× 103 0.66 4.988× 103 851.94 5.247× 103

1e− 5 1.25 2.5251× 104 5.89 2.5251× 104 0.80 2.5251× 104 859.51 2.1621× 104

Table 4: Computational time(sec) in solving optimal transport with c = L2-distance assignment.

with primal-dual methods, which are popularly used in solving linear programming. Here, we consider
two primal-dual methods: Mehrotra predictor-corrector method, which is one widely-used primal-dual
interior point method [Meh92], and one commercial software solver, Gurobi, where the algorithm method
is chosen to be the barrier method. In the first study, we actually solve a number of optimal transport
problems. For the second study, we demonstrate the flexibility of the entropic regularization. We apply
entropic regularization, but take t as the outer loop variable to bypass the multiple optimal transport
problems. The algorithms SNNE-t and SNNE-sparse are developed in this framework to optimize the
computational time.

We present a rigid motion experiment on a three-dimensional teapot point cloud consisting of 41472
points. We subsample 1000/2500/5000 point-sets {y1, . . . , yn} from the teapot point cloud. Select one
orthogonal matrix Q ∈ R3×3, and generate another set of point-sets, {zi = Qyi : i = 1, . . . , n}, as shown
in Figure 4. For simplicity, {yi} is shifted so that

∑n
i=1 yi = 0. Introducing a user-defined parameter

η > 0, we estimate Q ∈ R3×3 and T(x) ∈ Πn from the minimization,

min
Q

min
x

{
F(Q, x) := 〈c(Q), x〉+ η‖Q− I3‖2F

}
, (118)

where the assignment c(Q) is a function of Q with T(c(Q))i,j = ‖yi − Qzj‖2. We can apply optimal
transport for general non-rigid motion problems via introducing regulation terms for splines. For instance,
see [CR00,GTY04,Che11a].

Here is one naive algorithm, consisting of repeating the estimations of Q and x:

• Fix Q. Estimate x with T(x) ∈ Πn, which is one optimal transport.

• Fix x. Solve Q from the least squares problem,

min
Q
{F(Q, x) =

n∑
i,j=1

〈(yi −Qzj), xi,j(yi −Qzj)〉+ η〈Q− I,Q− I〉}. (119)

From the SVD property, an optimal matrix is Q = UV >, where U, V are unitary matrices in the
SVD,

UDV > =

n∑
i,j=1

{xi,jyiz>j + ηI}. (120)
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The performance metric is given by
error := 〈c(Q), x〉 ≥ 0. (121)

Note that error = 0 if and only if yi = Qzj holds for all xi,j > 0.
For a fair comparison, we use SNNE, Mehrotra primal-dual method(PD) and Gurobi solver to solve

optimal transport minimizer T(x) after each Q-update. Table 5 reports the computational time of SNNE,
Mehrotra primal-dual method(PD) and Gurobi optimization software. We stop algorithms when error
reaches 10−4. Figure 5 shows the desired small error under PD, Gurobi and SNNE, which indicates
the successful reconstruction of x and Q in the cases n = 2500 and n = 5000. As expected, when n
increases, the computational time increases accordingly. The computational time of PD is approximately
proportional to n3, while the computational time of SNNE or Gurobi is approximately proportional to
n2. Clearly, either Gurobi optimization software or Mehrotra predictor-corrector method can deliver
an optimal solution of optimal transport in (3) very fast, when the cardinality n does not exceed 1000.
However, due to its advantage in low memory requirement, the inferior performance of SNNE becomes
less apparent in the case n = 2500 and n = 5000. See Figure 5.

4.2.1 SNNE-t and SNNE-sparse

In SNNE, after each Q-update, a sequence of matrices are balanced to generate one approximate optimal
transport minimizer for each assignment matrix c(Q). Balancing these matrices along multiple paths
actually makes SNNE very inefficient. To alleviate the difficulty, we introduce the entropic regularization
to (118) to estimate (Q, x) along “one” inexact minimizer path associated with a sequence {t = t1, . . . , t =
tmax},

min
Q

min
Σ

min
x

{
Ft(Q, x,Σ) := 〈c(Q), x〉 − t−1〈T−1(1Σ), log x〉+ η‖Q− I3‖2F

}
. (122)

At each t, we execute the following block coordinate steps to approximate the minimizer (Q, x).

• Fixing Q, use matrix balancing to compute an optimal T(x), i.e., find ν to balance the matrix
exp(−t(c(Q)−M>ν)). Use ν to update Σ.

• Fixing x, we update Q by SVD computation in (120).

The convergence to the exact minimizer (Q, x) requires a sufficient number of these block coordinate
descent steps. (See Prop. 2.7.1 [Ber03].) As t gets sufficiently large, (Q, x) in (122) is expected to
approach one minimizer in (118). We call the new algorithm solving (122) along one t-path as SNNE-t.
Note that the major difference from (118) is that the parameter t in (122) is an outer loop variable.
Results are reported in Table 5. Thanks to bypassing multiple optimal transport problems, SNNE-t
actually consumes much less computation time than previous algorithms.

Next, we implement SNNE-sparse to solve (122), where the support of x is dynamically updated
reduce the memory load of SNNE-t. That is, x and Q are updated alternately with initialization Q = I.
For each Q fixed, we compute x via one approximate multiplier vector νξ subject to the approximate
support set Σξ for ξ in {1, 2, 3, . . . , ξmax}, as in Alg. 2.5. To have a better control on sparsity of Σξ in
SNNE, we select a sparse parameter k = 20 to ensure an upper bound (2k+1)n for the cardinality of Σξ.
The result of SNNE-sparse is reported in Table 5 and Fig. 5. Clearly, the introduction of matrix sparsity
together with the usage of one t-path greatly reduces the computational time of the implementation of
SNNE-sparse. Here, ξmax = 3 is used. The heuristic choice of ξmax has a big influence on the whole
computational time. When ξmax = 2 is used, the computation time can be further reduced. See the
column of SNNE-sparse-2 in Table 5.

Remark 4.1 (Multi-scale similarity). Actually the multiplier vectors corresponding to different cardi-
nality n resemble each other. The dual vector associated with coarser sampling can be used as one warm
start to compute the dual vector associated with finer sampling. For instance, consider the application of
SNNE on the problem with n = 2500 and n = 5000, respectively,

min
T(x)∈Πn

〈c, x〉, with T(c)i,j = ‖yi − zj‖2, i, j = 1, . . . , n .
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Figure 4: Left: the teapot point set(41472 points). Middle: the point set {yi : i = 1, . . . , 5000}. Right:
the point set {zi : i = 1, . . . , 5000}.
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Figure 5: Computational time(sec) vs. error metric in (121) under SNNE methods and Primal-dual
methods.

For the case n = 2500, let Y ′ = {y1, . . . , y2500} and Z ′ = {z1, . . . , z2500}. Let [ν(1)′, ν(2)′] be the multiplier
vector in (25). For the case n = 5000, let Y = {y1, . . . , y5000} and Z = {z1, . . . , z5000}. Let [ν(1), ν(2)]

be the multiplier vector in (25). The color distribution in the top figures showing (ν(1)′, ν(2)′) resembles

the color distribution in the bottom figures showing (ν(1), ν(2)). Indeed, ν(1) ≈ ν(1)′ + 160 and ν(2) ≈
ν(2)′ − 160. (Here the shift is caused by the one-dimension null space of M .) Hence, we can employ

(ν(1)′, ν(2)′) to produce a warm start (ν
(1)
ini, ν

(2)
ini) (satisfying KKT conditions in (7)) to initialize ν (which

initializes Σ) in the problem with n = 5000. That is,

• let ν
(1)
ini be computed as follows: for j = 1, . . . , 5000

ν
(1)
ini(j) = max

k
{‖yj − zk‖2 − ν(2)′(k) : zk ∈ Z ′}. (123)

• Let ν
(2)
ini be computed as follows: for k = 1, . . . , 5000

ν
(2)
ini(k) = max

j
{‖yj − zk‖2 − ν(1)

ini(j) : yj ∈ Y }. (124)

4.2.2 Support sets without total support

The following provides one comparison between the performance under sparse support sets given by
Σ = Σ′ ∪Σ′′ ∩Σ′′′ in (35) and the performance under sparse support sets given by Σ = Σ′′ in (34). The
purpose is to illustrate the advantage of sparse support sets with total support over those without total

24



-2

-1

2

0

1

n=2500 point set Y'

2
0 1

0
-1-2

-2

0

2

4

6

-1

2

n=2500 point set Z'

0

1

1

00

-1 -2 -4

-2

0

2

4

-2

-1

2

0

1

n=5000 point set Y

2
0 1

0
-1-2

155

160

165

170

-1

2

n=5000 point set Z

0

1

1

00

-1 -2

-166

-164

-162

-160

-158

-156

-154

-152

-150

Figure 6: Top: the point sets Y ′, Z ′ with n = 2500, respectively. Bottom: the point sets Y,Z with

n = 5000, respectively. The color on Y, Y ′ illustrates the values ν(1) and ν(1)′. The color on Z,Z ′

illustrates the values ν(2) and ν(2)′.

Table 5: Computational time(sec) based on rigid error reaching 10−4.

n Primal-dual Gurobi-Barrier SNNE SNNE-t SNNE-sparse SNNE-sparse-2
250 3.6 19.1 17.3 1.3 2.2 1.0
500 40.6 77.3 134.3 4.1 6.1 4.4
800 141.3 236.2 380.7 11.8 14.3 11.3
1000 280.0 375.5 605.3 24.3 23.6 16.8
2500 5319 2834 4636 277.0 325.3 106.3
5000 44230 17180 18740 1136 1452 504.0
12500 > 50000 MemoryError > 50000 13959 12001 6502
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Table 6: Matrix balancing error ‖Mx− 12n‖.

ξmax (i) Σ, K = 20 (ii)Σ, K = 80 (iii) Σ′′, K = 20 (iv)Σ′′, K = 80 (v) Π0

2 2.27× 10−5 2.81× 10−6 inf 2.55× 102 1.94× 10−5

4 5.56× 10−6 3.98× 10−6 inf inf 1.55× 10−5

Table 7: Objective values Ft(Q, x). Here “NaN” stands for “Not a number”.

ξmax (i) Σ, K = 20 (ii)Σ, K = 80 (iii) Σ′′, K = 20 (iv)Σ′′, K = 80 (v) Π0

2 5.81× 105 1.57× 106 NaN 1.26× 106 1.02× 107

4 6.35× 105 1.48× 106 NaN NaN 1.02× 107

support. As a reference, we also conduct the simulation with Σ = Π0, i.e., the original complete index
set as the support.

Consider the minimization in (122) with t = 1, n = 2500. Fix Q = I. Use the NE method to compute
ν and update Σ according to the following five rules, including

(i) Sparse support set Σ with K = 20 in (35);

(ii) Sparse support set Σ with K = 80 in (35);

(iii) Sparse support set Σ = Σ′′ with K = 20 in (34);

(iv) Sparse support set Σ = Σ′′ with K = 80 in (34;

(v) The complete set Π0 := {(i, j) : i = 1, . . . , n, j = 1, . . . , n}.

Repeat the above (ν,Σ)-procedure ξmax times to get an approximate minimizer x for (122). Results are
reported in Table 6-8.

Table 6 reports the matrix balancing error of x. For (i),(ii) and (v), the support sets have total support
and we can obtain accurate matrix balancing in these cases. Since t = 1 is used, the approximate solution
x is far from a permutation solution and we are not concerned with accurate objective values. Hence,
it is not surprisingly to see some numerical gap in Table 7, when objective values in (i),(ii) and (v) are
compared. Indeed, as the size of support increases, more positive terms in 〈T−1(1Σ), log x〉 contribute to
the increase of objective values. Lastly, Table 8 reports the norm of the null vector M>ν. In these three
cases, the norm of the corresponding dual vectors are of similar size ∼ 103.

On the other hand, since the set in (iii) or (iv) does not have total support, we can not get accurate
matrix balancing to produce acceptable objective values. High accurate matrix balancing here is a very
challenging task. Due to lack of total support, we also observe the blow-up of the dual vector norm. The
norm is of size ∼ 105. See (iii) and (iv) in Table 8. Under this circumstance, the vector ν with very large
norm can easily ruin the computational accuracy of the exponential functions in x.

Table 8: The Frobenius norm ‖M>ν‖F of dual vectors.

ξmax (i) Σ, K = 20 (ii)Σ, K = 80 (iii) Σ′′, K = 20 (iv)Σ′′, K = 80 (v) Π0

2 3.30× 103 3.42× 103 7.43× 105 7.96× 105 3.98× 103

4 4.72× 103 3.47× 103 7.42× 105 7.63× 105 3.98× 103
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4.3 Conclusion

Optimal transport, which is one assignment problem, can be handled by many methods, including the
dual simplex method and the primal-dual methods. With negative entropy regularization, we can use
matrix balancing algorithms to reach one approximate solution to optimal transport. In the study, we
are concerned with Newton method based matrix balancing algorithms to point-set matching problems,
i.e., SNNE and SNNE-sparse methods. One advantage of SNNE is that the method solely updates
multiplier vectors along the increase of t, i.e., no need to store/pass x between each sub-problem. With
the aid of sparse support, SNNE-sparse can be a relatively convenient tool in solving large-scale point-set
matching problems. To ensure the solution quality from matrix balancing, we employ one simple rule to
update these sparse support sets, in order to meet total support condition. With the aid of total support
assumption, we can establish the convergence of LB and its step size analysis, which sheds light on the
convergence of KR.

4.4 Data availability

The teapot dataset can be retrieved from the matlab 3-D point cloud file, “ pcread(’teapot.ply’)”. The
lung branch points of subject H6012 is available from the corresponding author upon request.
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A Appendix

A.1 Consistency of (20)

For x > 0, the null space of Mdiag(x)2M> has dimension 1.

Proposition A.1. Consider a positive vector x ∈ Rn
2

and a matrix M in (4). Then Mdiag(x) has rank
2n− 1 and

null(Mdiag(x)2M>) = null(M>) = span{[1n;−1n]}. (125)

In addition, for each r ∈ Rn
2

and x ∈ T−1(Πn), the system

Mdiag(x2)M>u = Mdiag(x2)r (126)

is consistent.

Proof. Suppose Mdiag(x)2M>u = 0 for some u ∈ R2n. Then

0 = 〈u,Mdiag(x)2M>u〉 = ‖diag(x)M>u‖2 (127)

implies diag(x)M>u = 0, i.e., M>u = 0. Hence, null(Mdiag(x)2M>) ⊆ null(M>). Besides, write
u = [v;w] with some vectors v ∈ Rn and w ∈ Rn. Since M>u = 0 = 1nw> + v1>n = 0, then ui + wj = 0
for all i, j = 1, . . . , n, i.e., ui = u1 = −wj for all i, j. This establishes

null(Mdiag(x)2M>) ⊆ null(M>) ⊆ span{[1n;−1n]}.

On the other hand, consider a vector in the form u = c[1n;−1n] with c ∈ R. Then M>u = c(1n1>n −
1n1>n ) = 0 and u ∈ null(Mdiag(x)2M>). This completes the proof of the first part. Finally, note that
(126) is the associated normal equation to the least squares problem

min
u
‖diag(x)M>u− diag(x)r‖2. (128)

Hence, (126) is consistent.
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A.2 Early termination

The following rounding procedure could quickly provide a KKT candidate point before the degeneracy
of Schur complement matrices occurs. Suppose that one diagonal in T(x(t)) dominates other diagonals
for some t. Then we have early termination of the interior point method, i.e., a permutation matrix
can be identified as one optimal solution from T(x(t)). For simplicity, the following discussion does not
involve support constraints.

Proposition A.2. Let γ′ ∈ (0, 1) and γ′′ ∈ (1,∞). Let ν̂ = [ν̂(1), ν̂(2)]. Let (x̂, ν̂) be one approximate
KKT point to (12) for some t > 0 with the entry wise bounds

γ′t−1 ≤ x̂� ŝ ≤ γ′′t−1, ŝ = c−M>ν̂, (129)

Let X := T(x̂). Suppose that for some permutation J : {1, 2, . . . , n} → {1, 2, . . . , n},

Xi,j ≤
γ′

γ′′
Xi,J (i) for all j 6= J (i), (130)

Let ν := [ν(1); ν(2)] ∈ R2n be given by

ν(1)(i) := ci,J (i) − ν(2)(J (i)), where ν(2) := ν̂(2). (131)

Let X̃ be the permutation,
X̃i,J (i) = 1 and X̃i,j = 0, j 6= J (i) . (132)

Then (x̃, ν) is one KKT point to (7), where x̃ := T−1(X̃).

Proof. The condition in (129) ensures that for all i, j = 1, . . . , n,

εi,j := tXi,j(ci,j − (M>ν̂)i,j) ∈ (γ′, γ′′). (133)

In particular, for j = J (i),

ci,J (i) − ν̂(1)(i)− ν̂(2)(J (i)) ≤ γ′′(tXi,J (i))
−1. (134)

We shall prove that (7) holds under this ν. Let s := c −M>ν. From the definition in (131), it suffices
to show si,j ≥ 0 for all entries with j 6= J (i). From (133) and (131), we have

si,j := ci,j − (M>ν)i,j = ci,j − ν(1)(i)− ν(2)(j) (135)

≥ ci,j − ci,J (i) + ν̂(2)(J (i))− ν̂(2)(j)− ν̂(1)(i) + ν̂(1)(i) (136)

≥ (tXi,j)
−1εi,j − γ′′

Xi,j

Xi,J (i)
(tXi,j)

−1 (137)

≥ (tXi,j)
−1 (εi,j − γ′) ≥ 0, (138)

where we used the assumption in (130) and (134).

A.3 Proof of Theorem 3.

We shall prove Theorem 3. Recall Bk and Ck in (83,85). In addition to uk in (88), introduce a few
notations:

λ2
k := 〈(Bk − I2n)12n, (Ck +Bk)†(Bk − I2n)12n〉, (139)

vk := (Bk − I2n)12n, yk := −(Ck +Bk)†(Bk − I2n)12n. (140)

The LB iteration ζk+1 is given by

ζk+1 = ζk �+αkuk = ζk � (1− αkyk) (141)

for some step size αk within (0, y−1
max(1 − ε+)), where the safeguard parameter ε+ and ymax are defined

in Remark 3.4.
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Before we proceed, we prove one crucial property: positive upper bounds exist for {‖Ck + Bk‖}∞k=1

and {‖(Ck+Bk)†‖}∞k=1. Let ζ∗ be one minimizer of g(ζ) and ζ1 be one starting point of LB. We introduce
a set of matrices,

S = {(ζ(1)ζ(2)>)� 1Σ ∈ Rn×n : g(ζ1) ≥ g(ζ) ≥ g(ζ∗), ζ = [ζ(1); ζ(2)] > 0}. (142)

Then S is compact from Prop. 3.7. Introduce H(ζ) in (94). Note that H(ζk) = Ck + Bk. Let w =
[w(1);w(2)]. We have norm estimates for H(ζ),

‖H(ζ)‖ ≤ max
w
‖w‖−2

 n∑
j=1

n∑
i=1

Ai,jζ
(1)
i ζ

(2)
j (w

(1)
i − w

(2)
j )2

 (143)

≤ max
w
‖w‖−2

 n∑
i=1

n∑
j=1

Ai,jζ
(1)
i ζ

(2)
j (12 + 12)(w

(1)
i

2
+ w

(2)
j

2
)

 (144)

= 2 max{‖(diag(ζ(1))Adiag(ζ(2)))1n‖∞, ‖(diag(ζ(1))Adiag(ζ(2)))>1n‖∞}. (145)

We have the following upper bound,

‖H(ζ)‖ ≤ 2

(
max

(i,j)∈Σ
Ai,j

)
max

(
‖(ζ(1)ζ(2)> � 1Σ)1n‖∞, ‖(ζ(1)ζ(2)> � 1Σ)>1n‖∞

)
. (146)

Thanks to Prop. 3.7, a constant M exists as a upper bound for ‖H(ζ)‖. On the other hand, for each w,
we can express

〈w,H(ζ)w〉 = 〈A� (ζ(1)ζ(2)> � 1Σ), (w(1)1>n − 1nw
(2)>)� (w(1)1>n − 1nw

(2)>)〉 (147)

as one function defined on S. The null space of H(ζ) is N for each ζ > 0 from Prop. 3.5. Consider the
following function to characterize the smallest positive eigenvalue of H(ζ),

Ĥ(ζ) := min
w

{
〈w,H(ζ)w〉
‖w‖2

: w is orthogonal to N
}
> 0. (148)

Since S is compact, then a positive constant m exists as a lower bound for the smallest positive eigenvalue
of H(ζ). Hence, ‖H(ζ)†‖ ≤m−1. In summary, for all k, we have

‖Ck +Bk‖ ≤M, ‖(Ck +Bk)†‖ ≤m−1. (149)

In addition, ‖Bk‖ ≤M1 holds for some constant M1.
The convergence of LB can be established by standard arguments in section 9.5 in [BV04]. Introduce

a function of α,
g̃(α) := g(ζk + αuk). (150)

Let g̃′ and g̃′′ denote the first derivate and the second derivate of g̃, respectively. Calculus shows

∇g(ζ) = Ãζ − ζ−1, ∇2g(ζ) = Ã+ diag(ζ−2). (151)

Proposition A.3 (Damped Newton phase). Let ε+ be the safeguard parameter in Remark 3.4. Then

lim
k→∞

λk = 0, lim
k→∞

‖yk‖ = 0, lim
k→∞

‖vk‖ = 0. (152)

Proof. First, we show that the limit of step size interval in Remark 3.4 is not zero. Indeed, since
ymax ≤ ‖yk‖ ≤ ‖(Ck + Bk)†‖‖(Bk − I2n)12n‖ ≤ m−1(M1 + 1)‖12n‖ for each ζk with g(ζk) ≤ c0, then
y−1

max(1− ε+) stays away from 0 for each iteration. Second, we show

g̃(α)− g̃(0) ≤ (−α+
α2

2
(M1 + ε−2

+ )m−1)λ2
k. (153)
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Indeed, Taylor’s formula indicates that for some scalar α̃ ∈ [0, α],

g̃(α) = g̃(0) + g̃′(0)α+ g̃′′(α̃)
α2

2
(154)

≤ g(ζ) + α∇g(ζ)>uk +
α2

2
‖diag(ζk)(∇2g(ζk + α̃uk))diag(ζk)‖‖yk‖2 (155)

≤ g(ζ) + α(−λ2
k) +

α2

2
(‖Bk‖+ ‖(1 + α̃yk)−2‖∞)‖yk‖2 (156)

≤ g̃(0) + α(−λ2
k) +

α2

2
(M1 + ε−2

+ )m−1λ2
k. (157)

Together, the step size αk in backtracking line search is bounded below by some positive constant. Since
g(ζ) is bounded below, then λ2

k must tend to 0, as k →∞. From (140), we have ‖vk‖2 ≤ λ2
k‖Ck +Bk‖ ≤

Mλ2
k and ‖yk‖2 ≤ ‖(Ck +Bk)†‖λ2

k ≤m−1λ2
k, which completes the proof.

Proposition A.4 (αk = 1 phase). As k is sufficiently large, we have αk = 1.

Proof. Let ε+ > 0 be the safeguard parameter in Remark 3.4. Let L = ε−3
+ . Since uk = −ζk � yk,

|g̃′′(α)− g̃′′(0)| ≤ |u>k (∇2g(ζk + αuk)−∇2g(ζk))uk| (158)

≤ |u>k (diag(ζk + αuk)−2 − diag(ζ−2
k ))uk| =

∣∣∣∣y>k {( 1

1− αyk
)2 − 1}yk

∣∣∣∣ ≤ αL‖yk‖3. (159)

Hence, g̃′′(α) ≤ g̃′′(0) + αL‖yk‖3. By integration, we have g̃′(α) ≤ g̃′(0) + αg̃′′(0) + α2

2 L‖yk‖
3, and

g̃(α)− g̃(0) ≤ αg̃′(0) +
α2

2
g̃′′(0) +

α3

6
L‖yk‖3 (160)

≤ −αλ2
k +

α2

2
(λ2
k + ‖vk‖∞‖yk‖2) +

α3

6
L‖yk‖3 (161)

≤ λ2(−α+
α2

2
(1 + ‖vk‖∞m−1) +

α3

6
Lm−3/2λk) (162)

where we used

g̃′′(0) = 〈uk,∇2g(ζk)uk〉 (163)

= 〈(Ck +Bk)†(Bk − I2n)12n, (I2n +Bk)(Ck +Bk)†(Bk − I2n)12n〉 (164)

= λ2
k + 〈(Ck +Bk)†(Bk − I2n)12n, (I2n − Ck)(Ck +Bk)†(Bk − I2n)12n〉 (165)

≤ λ2
k + ‖Ck − I2n‖‖yk‖2 = λ2

k + ‖Bk12n − 12n‖∞‖yk‖2 = λ2
k + ‖vk‖∞‖yk‖2. (166)

Take α = 1 in (162). Using ‖yk‖2 ≤ λ2
km
−1 and ‖vk‖∞ ≤ ‖vk‖ ≤M1/2λk from (149), we have

g̃(1)− g̃(0) ≤ λ2
k

2

(
−1 + (M1/2m−1 +

α3

3
Lm−3/2)λk

)
(167)

Note that limk→∞ λk = 0 from Prop. A.3. When λk is sufficiently close to 0, αk = 1 is accepted by the
backtracking line search. That is, for k sufficiently large, (167) indicates that

g̃(1)− g̃(0) ≤ β∇g(ζk)>uk = −βλ2
k (168)

holds with backtracking parameter β ∈ (0, 1/2).
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