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Decomposing random permutations into

order-isomorphic subpermutations
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Abstract

Two permutations σ and π are ℓ-similar if they can be decomposed into
subpermutations σ(1), . . . , σ(ℓ) and π(1), . . . , π(ℓ) such that σ(i) is order-
isomorphic to π(i) for all i ∈ [ℓ]. Recently, Dudek, Grytczuk and Ruciński
posed the problem of determining the minimum ℓ for which two permu-
tations chosen independently and uniformly at random are ℓ-similar. We
show that two such permutations are O

(

n1/3 log11/6(n)
)

-similar with high
probability, which is tight up to a polylogarithmic factor. Our result also
generalises to simultaneous decompositions of multiple permutations.

1 Introduction

Given a sequence a = a1, . . . , an of n distinct real numbers, one can uniquely as-
sociate a permutation σ ∈ Sn (which we write as a sequence σ(1), σ(2), . . . , σ(n)
with elements in [n]) to a by replacing the ith smallest element of a with i. We
call this σ the pattern of a. Two sequences a = a1, . . . , an and b = b1, . . . , bn of
distinct real numbers are order-isomorphic if they have the same pattern, and
in this case we write a ∼ b.

In this paper, we are concerned with the problem of decomposing two random
permutations into order-isomorphic subpermutations and, in particular, how
many parts are necessary. Formally, we say two permutations σ and π are ℓ-
similar if the sequences σ(1), . . . , σ(n) and π(1), . . . , π(n) can be partitioned
into subsequences σ(1), . . . , σ(ℓ) and π(1), . . . , π(ℓ) such that σ(i) ∼ π(i) for each
i ∈ [ℓ], and we write U(σ, π) for the smallest ℓ for which σ and π are ℓ-similar.
For example, if we take the permutations σ and π to be 1, 4, 3, 5, 2 and 2, 5, 3, 1, 4
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respectively, then σ and π are 2-similar. Indeed, we may decompose σ into
σ(1) = 1, 3, 2 and σ(2) = 4, 5 and decompose π into π(1) = 2, 5, 3 and π(2) = 1, 4.
It is easy to check that σ(1) ∼ π(1) and σ(2) ∼ π(2), and so σ and π are 2-
similar. Since σ and π do not have the same pattern, they are not 1-similar,
and U(σ, π) = 2.

Similar decomposition problems have been studied in other contexts. For
example, Ulam posed the problem of determining the minimum ℓ(n) such that
any two graphs G and H on n vertices can be decomposed into ℓ edge-disjoint
subgraphs G1, . . . , Gℓ and H1, . . . , Hℓ such that Gi ∼ Hi for all i ∈ [ℓ]. This
led to a series of papers which culminated in the result that all graphs on n
vertices with the same number of edges may be simultaneously decomposed
into 3n/4 + O(1) parts [6, 4, 5].

Unfortunately, such a result cannot possibly hold for permutations; in the
worst case two permutations might only be n-similar. Indeed, the identity
permutation 1, . . . , n and the reverse permutation n, . . . , 1 contain no non-trivial
order-isomorphic subpermutations, and so cannot be (n− 1)-similar. However,
it is far from obvious what happens on average.

Problem 1.1 (Dudek, Grytczuk and Ruciński [9]). Let σ and π be two permu-

tations of length n chosen independently and uniformly at random. What is the

expected value of U(σ, π)?

A simple O(
√
n) upper bound can be proved by decomposing the permu-

tations into increasing subpermutations as follows. The length of a longest
increasing sequence in a uniformly random permutation is asymptotically 2

√
n

(see [17]), and this is well-concentrated [2, 11]. In particular, if L is the length of
a longest increasing subpermutation in a uniformly random permutation, then

P

(

|L− E[L]| ≥ n
1
3

)

≤ exp(−nβ)

for some β > 0. Hence, rather crudely, we have L ≤ 3
√
n with very high

probability. By Dilworth’s Theorem, this implies that a uniformly random per-
mutation can be decomposed into at most 3

√
n decreasing subpermutations with

very high probability. It follows easily that, with very high probability, a pair
of uniformly random permutations σ and π can be decomposed into ℓ ≤ 6

√
n

decreasing subsequences σ(1), . . . , σ(ℓ) and π(1), . . . , π(ℓ) such that σ(i) and π(i)

have the same length for all i ∈ [ℓ].
Our main result improves the preceding simple bound to the following.

Theorem 1.2. Let σ and π be two permutations of length n chosen indepen-

dently and uniformly at random. Then σ and π are O
(

n1/3 log11/6(n)
)

-similar

with probability at least 1 − o(n−1).

This immediately provides the following bound on E[U(σ, π)].

Corollary 1.3. Let σ and π be two independent uniformly random permutations

of length n. Then

E[U(σ, π)] = O
(

n1/3 log11/6(n)
)

.
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The bound in Theorem 1.2 (and Corollary 1.3) is tight up to the log11/6(n)
factor. Before seeing this, we make a brief detour to survey some closely related
work on twinned subpermutations of a single permutation, from which our sim-
ple lower bound emerges. Formally, twins T = (T1, T2) of length ℓ in σ ∈ Sn are
a pair of disjoint subsequences T1 = σi1 , . . . , σiℓ and T2 = σj1 , . . . , σjℓ such that
T1 ∼ T2. The problem of finding long twins was introduced by Gawron [12],
who showed that the longest twins guaranteed in a permutation of length n is at
most O(n2/3) and conjectured that this should be tight (up to the constant). As
observed in [12], the Erdős-Szekeres theorem provides a lower bound of Ω(n1/2).
This lower bound was improved to Ω(n3/5) by Bukh and Rudenko [3].

The proof of Gawron’s upper bound comes from applying the first moment
method to a uniformly random permutation, and there has since been work
on finding a matching lower bound for random permutations. A lower bound
of Ω

(

n2/3/ log1/3(n)
)

was shown by Dudek, Grytczuk and Ruciński [9], and

this was improved to the sharp bound of Ω(n2/3) by Bukh and Rudenko [3].
There has also been further work of Dudek, Grytczuk and Ruciński in the
same vein concerning k-twins [7], which are a collection of k pairwise disjoint
order-isomorphic subpermutations of a single permutation, and other notions of
twins with additional restrictions imposed or with a weaker similarity condition
(see [10, 8]).

Returning to Problem 1.1, if one chooses a permutation σ of length 2n uni-
formly at random, then the patterns of the first and the second half of σ are
independent, uniformly random permutations of length n. Order-isomorphic
subpermutations of length ℓ between the first and second of half of σ give rise
to twins of length ℓ in σ. Hence, from Gawron’s result that the longest twin in
a permutation of length 2n is of length O(n2/3) with high probability [12], it
follows that the longest order-isomorphic subpermutations of two uniformly ran-
dom permutations of length n are also of length O(n2/3) with high probability.
This means that Ω(n1/3) pieces are needed with high probability.

The definition of similarity easily generalises to multiple permutations. We
say that a collection of k permutations σ1, . . . , σk are ℓ-similar if each permu-

tation σj can be split into ℓ subpermutations σ
(1)
j , . . . , σ

(ℓ)
j such that σ

(i)
j ∼ σ

(i)
j′

for all choices of i ∈ [ℓ], and j, j′ ∈ [k]. This naturally leads to the problem
of determining, for each k, the minimum ℓ(n) such that a set of k permuta-
tions of length n chosen independently and uniformly at random are ℓ-similar.
There is again a simple upper bound of O(

√
n) which comes from decomposing

the permutations into increasing subpermutations. Using the result of Dudek,
Grytczuk and Ruciński [7] which states that the longest k-twins in a random
permutation of length n have length at most O(nk/(2k−1)) with high probabil-
ity, we can deduce a lower bound of Ω(n(k−1)/(2k−1)) in the same manner as the
k = 2 case.

Our proof of Theorem 1.2 extends to give a bound in the setting of multiple
permutations, and it is again tight up to a polylogarithmic factor.

Theorem 1.4. For any fixed integer k ≥ 2, let σ1, . . . , σk be permutations of

length n chosen independently and uniformly at random. Then σ1, . . . , σk are

3



O
(

n
k−1
2k−1 log

3(k−1)
2 + 1

2k−1 (n)
)

-similar with probability at least 1 − o(n−1).

We give proofs in the next section, and discuss some further questions in the
final section.

2 Proof of the main theorems

We begin with an outline of the proof of Theorem 1.2; the minor modifications
required to prove Theorem 1.4 are given at the end of this section.

In the following, the idea of constructing an auxiliary bipartite multigraph
has previously been used by Dudek, Grytczuk and Ruciński [9] and later by
Bukh and Rudenko [3] to study twins in a single random permutation. The use
of a Poisson process to sample random permutations also appears in [3].

It is convenient to work with random permutations generated from n uni-
formly distributed points in the unit square [0, 1]2. With the n points ordered by
their x-coordinate, the permutation can be read off as the relative ordering of the
y-coordinates. This representation was used by Bukh and Rudenko [3]. Given
sets of n “red” points and n “blue” points which define a pair of random permu-
tations, we choose a matching between the red points and the blue points and
only consider decompositions into subpermutations where the matched points
are corresponding entries in the decomposition.

A useful strategy to simplify viewing patterns of permutations generated in
this way is to discretise the unit square by splitting it up into an M ×M grid of
smaller squares, and consider the squares in which the points fall. Then, given
a subpermutation in which there is at most one point in each row and column,
the pattern of the subpermutation is determined by the squares in which each
point lies and we do not need to know their positions within the squares. If we
wish to use this subpermutation in our decomposition, we need the pattern of
this subpermutation to be the same for the red points as for the matched blue
points. We only consider the simple case where all of the matched points are
offset by the same amount, and so we label each point by the relative position
(measured in grid squares) of its matched point. We will handle each label
using separate subpermutations, making it necessary to avoid having too many
different possible labels. We will achieve this by ensuring matched points are
close together. The following result of Leighton and Shor allows us to control
the maximum distance between matched points.

Theorem 2.1 (Leighton, Shor [14]). Suppose A and B are two independent

sets of n points uniformly distributed in [0, 1]2. Then there is a function α =
α(n) = Ω(

√
logn) and an absolute constant C such that, with probability at least

1 − n−α, there is a perfect matching between A and B for which the maximum

distance between two matched points is at most C log3/4(n)/
√
n.

To complete the proof, we further partition the points corresponding to a
specific label in such a way that each part contains at most one point from
each row and column. This can be reduced to the problem of edge-colouring an

4



auxiliary bipartite multigraph, and it suffices to bound the number of points in a
given region. If we were to naively generate n points uniformly at random, then
the numbers of points in different regions would not be independent, even if the
regions were disjoint. Thus, we generate points using a Poisson process with
mean 2n and randomly delete excess points to obtain n uniformly distributed
points. The number of our n points in a given region is bounded by the number
of points of the Poisson process in that region, and this is independent for
disjoint regions.

We will make use of the following well-known bound on the tail probabilities
of the Poisson distribution.

Lemma 2.2 (Theorem 5.4 in [15]). Let X ∼ Poisson(λ) and x > λ. Then

P(X ≥ x) ≤ (eλ)xe−λ

xx
.

We are now ready to give the formal argument.

Proof of Theorem 1.2. Given n points {(ai, bi) : i ∈ [n]} in the unit square [0, 1]2

such that a1 < a2 < · · · < an, we can define a permutation σ by setting σ(i) = j,
where bi is the jth smallest element of the set {b1, . . . , bn}. If the n points
are chosen uniformly at random in the unit square, this process generates a
uniformly random permutation.

Let R be a 2D Poisson process with rate 2n and let NR denote the number
of points of R in [0, 1]2. Then NR ∼ Poisson(2n) and

P(NR ≤ n) ≤ exp

(

−n2

4n

)

.

Conditional on the number of points in [0, 1]2 being m ≥ n, the m points are
distributed uniformly. After removing m − n points uniformly at random, we
have n uniformly distributed points, which we call the red points, and we can
use this to get a uniformly random permutation σ ∈ Sn. Similarly, we can use
an independent Poisson process B to define a set of n uniformly distributed blue

points and a corresponding permutation π ∈ Sn.
We now match up the n red points with the n blue points using Theorem 2.1.

Let M =
⌈

n2/3 log−1/3(n)
⌉

and split the square [0, 1]2 into an M ×M grid

with evenly spaced rows and columns. Let Si,j denote the square in the ith row
and jth column. That is,

Si,j =

[

j − 1

M
,
j

M

)

×
[

i− 1

M
,
i

M

)

.

Suppose that we have a set of red points such that no two red points are in
the same row or column. Then the pattern of the corresponding subpermutation
is entirely determined by the squares, and we do not need to know the particular
points. If the squares for the matched blue points follow the same pattern, then

5



Figure 1: The square [0, 1]2 split into M ×M boxes. The red and blue points
have been sampled from a Poisson point process with mean 50, and 25 of each
have been selected uniformly at random to form the red and blue permutations
respectively. The selected points have been matched using a minimax matching.

the red points and blue points correspond to order-isomorphic subpermutations
of σ and π.

To find such sets of points, we will look for matchings in which all edges have
the same label in an auxiliary edge-labelled bipartite multigraph G constructed
as follows. Let G have vertex set {i1, . . . , iM} ∪ {j1, . . . , jM}. Given a red
point r in row rrow and column rcol matched with a blue point b in row brow
and column bcol, add an edge from row irrow to column jrcol in the graph and
label it (brow − rrow, bcol − rcol), i.e. label it with the relative position of b
from r. Note that a matching in G represents red points in different rows and
columns, so a matching in which all edges have the same label, as explained
above, corresponds to order-isomorphic subpermutations of σ and π. It will
therefore suffice to decompose the edges of G into such matchings. Equivalently,
we wish to separately properly edge-colour the edges with each label. Note that
as each matched edge has length at most C log3/4(n)/

√
n, there are at most

(

2M
C log3/4(n)√

n
+ 2

)2

= O

(

M2 log3/2(n)

n

)

(2.1)

possible labels. We will handle each label separately.
It is well-known that a bipartite multigraph can be edge-coloured using ∆

colours where ∆ is the maximum degree of the graph. In fact, this can be done
efficiently (see e.g. Section 20.9 in [16]). We bound the degree in two steps: first
we bound the number of distinct edges labelled (c1, c2) that a vertex sees, then
we bound the maximum number of repetitions of an edge.

There is an edge from row i to column j with label (c1, c2) if and only if there

6



0 0

1 1

2 2

3 3

4 4

5 5

Figure 2: A sample minimax matching along with the bipartite graph for the
label (0, 0). The 5 edges can be coloured using 2 colours, and so the subpermu-
tations of length 5 can be decomposed into 2 parts.

is a red point in the square Si,j matched to a blue point in the square Si+c1,j+c2 .
In particular, this means that there must be a point from the Poisson process
R in Si,j and from the process B in the square Si+c1,j+c2 . This happens with
probability

(

1 − exp

(

− 2n

M2

))2

≤ 4n2

M4
.

As the number of points of a Poisson process in a particular square is in-
dependent of the numbers in the other squares, the number of distinct edges
labelled (c1, c2) that are incident with a given vertex in G, is dominated by a
binomial random variable with M trials and success probability 4n2/M4. Let
X ∼ Bin

(

M, 4n2/M4
)

. Then

E[X ] = 4n2/M3 ≤ 4n2

(

n2/3 log−1/3(n)
)3 = 4 logn.

We also have

4n2/M3 ≥ 4n2

(

n2/3 log−1/3(n) + 1
)3 ≥ 3 logn

for n ≥ 64. Hence, using a well-known Chernoff bound (Theorem 4.4 in [15]),

P(X ≥ 12 logn) ≤ P
(

X ≥ 12n2/M3
)

≤ exp
(

−4n2/M3
)

≤ exp(−3 logn)

= n−3.
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There are 2M vertices in G and there are O
(

M2 log6/4(n)/n
)

labels (see
(2.1)), so the probability that any vertex is incident with at least 12 logn distinct
edges of the same label is at most

n−3 · 2M ·O
(

M2 log3/2(n)

n

)

= O

(

log1/2(n)

n2

)

= o(n−1).

We now look to bound the number of times a particular edge appears in the
graph. For there to be 8 edges from row i to column j, the square Si,j must
contain at least 8 points of the Poisson process R. The number of such points
in any given square is a Poisson random variable with mean

2n/M2 ≤ 2 log2/3(n)

n1/3
.

Hence, using the bound from Lemma 2.2, the probability that there are at least
8 points in Si,j is at most

(2e)8 log16/3(n)

88n8/3
exp

(

−2 log2/3(n)

n1/3

)

≤ log16/3(n)

n8/3
.

Taking the union bound over all M2 squares, the probability that any square
contains 8 points is at most O

(

log14/3(n)/n4/3
)

= o(n−1).
Consider the subgraph of G formed by the edges with label (c1, c2). With

high probability, every edge is repeated at most 7 times and every vertex sees
at most 12 logn distinct edges. Hence, the maximum degree is bounded by
84 logn, and so we can cover the edges with 84 logn matchings. We can do this
separately for every distinct label and cover all edges in at most

O

(

M2 log6/4(n)

n

)

· 84 logn = O
(

n1/3 log11/6(n)
)

matchings, each consisting of edges with the same label as required.

We remark that this proof gives a simple, efficient algorithm to decompose
two random permutations σ and π into twins. More explicitly, given a permu-
tation σ of length n, generate n red points in [0, 1]2 by first sampling n values
x1, . . . , xn uniformly in [0, 1] to be the x coordinates and then sampling n values
y1, . . . , yn uniformly in [0, 1] to be the y coordinates. By relabelling the values
as necessary, we can assume that x1 < · · · < xn and y1 < · · · < yn. Let the n
red points in [0, 1]2 be (xi, yσ(i)), and similarly choose n blue points in [0, 1]2

for π. We then find a minimax matching between the red and blue points.
This can easily be done in O(n5/2 logn) time by using a binary search over the
maximum allowed edge weight (from the

(

n
2

)

possibilities) and checking if there

is a perfect matching using the allowed edges in O(n5/2) time [13]. Crudely,
there are at most n possible labels, and for each label we need to edge-colour
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a bipartite multigraph with at most n edges. Each colouring can be done in
O(n logn) time [1, 16]. This process therefore decomposes the permutations
into order-isomorphic subpermutations in O(n5/2 logn) time.

The decomposition produced by the above process may not be optimal.
However, the proof of Theorem 1.2 shows that the algorithm uses on aver-
age O

(

n1/3 log11/6(n)
)

subpermutations, which is not far from the simple lower

bound of Ω(n1/3).
The preceding argument can be generalised with very few modifications to

prove Theorem 1.4. By starting with k independent Poisson processes with
rate 2n, we can generate k collections of n uniformly distributed points in [0, 1]2

giving rise to independent uniformly random permutations σ1, . . . , σk ∈ Sn. Let
the n points determining σi be Pi. The points P1 will play the role of the red
points in the proof of Theorem 1.2, while the other sets of points mirror the blue
points. Accordingly, we match up the points P1 and Pi for each i = 2, . . . , k
using minimax matchings. By Theorem 2.1, with probability 1 − o(n−1), no

edge in any of the matchings is longer than C log3/4(n)/
√
n.

Take M =
⌈

n
1
2+

1
2(2k−1) log−

1
2k−1 (n)

⌉

and split the square [0, 1]2 into an M ×
M grid with evenly spaced rows and columns. We construct a similar bipartite
multigraph as in the proof of Theorem 1.2. Namely, suppose we have a ‘red’
point p1 matched to points p2, . . . , pk, where px ∈ Px is in row rx and column
cx for each x ∈ [k]. We then add an edge from row vertex ir1 to column vertex
jc1 in the graph and label it by

(r2 − r1, c2 − c1, r3 − r1, c3 − c1, . . . , rk − r1, ck − c1).

With probability 1 − o(n−1), there are at most

O

(

M2(k−1) log3(k−1)/2(n)

nk−1

)

distinct labels. To bound the degree of the multigraph, it suffices to show that
the probability of a vertex being incident to 3 · 2k logn distinct edges with the
same label is o(n−1), and the probability that an edge has multiplicity at least
4k is also o(n−1). This can be done as in the proof of Theorem 1.2. Hence, with
probability 1 − o(n−1), the permutations are ℓ-similar for

ℓ = O

(

M2(k−1) log3(k−1)/2(n)

nk−1

)

· 3 · 2k(4k − 1) logn

= O
(

n
k−1
2k−1 log

3(k−1)
2 + 1

(2k−1) (n)
)

.

3 Open problems

Theorem 1.2 is tight up to the polylogarithmic factor and it would be interesting
to know whether some polylogarithmic factor is necessary, or if two uniformly
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random permutations are O(n1/3)-similar. Even if a polylogarithmic factor is

necessary, it is likely that the log11/6(n) we have shown can be improved. For
example, we have used a minimax matching which guarantees that the number
of labels is small and assumed that every label is equally bad, but it is likely that
some of the labels have fewer edges and the edges can be covered using fewer
matchings. Indeed, if we replace the minimax matching with a matching that
minimises the transportation distance, the average distance between a red point
and the matched blue point is Θ

(

log1/2(n)/
√
n
)

, saving a factor of log1/4(n).
This suggests that most edges should be spread over fewer labels and that the
polylogarithmic factor may be improved upon.

Problem 3.1. Are two permutations of length n chosen independently and uni-

formly at random O(n1/3)-similar with high probability?

The other main problem pertaining to (general) twins in permutations is
to determine the maximum size of a twin that one is guaranteed to find in a
permutation of length n. The best lower bound, due to Bukh and Rudenko [3], is
currently Ω(n3/5), while the best upper bound is O(n2/3) obtained by applying a
first moment calculation to a random permutation [12]. It would be interesting
to narrow this gap. Resolving whether the upper bound is tight, as conjectured
by Gawron [12], would be of particular interest as this would determine whether
there are permutations for which the maximum twin length is asymptotically
smaller than that of a random permutation.

Problem 3.2 (Gawron [12]). Does every permutation of length n contain a

twin of length Ω(n2/3)?

Acknowledgements We would like to thank the anonymous referees for their
helpful comments.
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