STABILIZATION OF HIGHLY NONLINEAR HYBRID STOCHASTIC
DIFFERENTIAL DELAY EQUATIONS WITH LEVY NOISE BY
DELAY FEEDBACK CONTROL*
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Abstract. This paper focuses on a class of highly nonlinear stochastic differential delay equations
(SDDES) driven by Lévy noise and Markovian chain, where the drift and diffusion coefficients satisfy
more general polynomial growth condition (than the classical linear growth condition). Under the
local Lipschitz condition, the existence-and-unique theorem of the solution to the highly nonlinear
SDDE is established. The key aim is to investigate the stabilization problem by delay feedback
controls. The key features include that the time delay in the given system is of time-varying and
may not be differentiable while the time lag in the feedback control can also be of time-varying as
long as it has a sufficiently small upper bound.

Key words. Highly non-linearity, Stochastic differential delay equation, Markov chain, Lévy
noise, Exponential stability

AMS subject classifications. 60J60, 60J27, 93D15

1. Introduction. Nonlinear stochastic differential delay equations (SDDEs)
have been widely used to model many systems in aerospace, nuclear industry, artificial
intelligence, modern military systems, financial systems and other fields. Stability and
stabilization of SDDEs have been two of the most important research topics. There
has already existed huge literature in the field of stability and stabilization of SDDEs.
The classical and frequently imposed condition in the study of the stabilization by
feedback control is that the diffusion and drift coefficients of the underlying SDDEs
need to satisfy the linear growth condition (see, e.g., [3, 9, 10, 16, 17, 26, 28]). But
this condition is too restrictive for many nonlinear SDDE systems in applications.

To meet the need of applications, several authors (see, e.g., [5, 7, 14, 21]) developed
the stabilization theory for highly nonlinear SDDEs driven by Brownian motions and
Markov chains, where the diffusion and drift coefficients only need to satisfy the
polynomial growth condition. Their theory is hence applicable to many more practical
SDDE systems. Nevertheless, their theory is only applicable to SDDE systems where
the time delay is either constant and differentiable with its derivative being bounded
by a positive number less than 1. This condition has been imposed only because of
the mathematical technique used—the technique of time change but might not be a
natural feature of SDDE systems in the real world. For example, piece-wise constant
delays or sawtooth delays occur frequently in sampled-data controls or network-based
controls (see, e.g., [1]) but they are not differentiable. It was in this spirit that a much
weaker condition was recently established in [5] to replace the differentiability of the
time delay. As demonstrated, their new results are applicable to a much wider class
of SDDE systems in applications.
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2 HAILING DONG, JUAN TANG, AND XUERONG MAO

Although Brownian motions have been widely used to model the system un-
certainties which are affected by many independent factors with no-one playing a
dominated role, while Markov chains to model the abrupt changes of system param-
eters or structures (see, e.g., [5, 7, 14, 16, 17, 18, 21, 23, 26]), they cannot model
the random jumps of the system states. This can be seen clearly by the continuity
of the solutions of SDDEs driven by Brownian motions and Markov chains. On the
other hands, the states of many practical systems are indeed subject to random jumps
due to unpredictable events, e.g., earthquake, storm, flood, bankrupt, war, pandemic.
Lévy processes have been used to model such random jumps, as these processes have
significant tail and peak pulse characteristics (see, e.g., [4, 13, 24, 25, 27, 29]). Natu-
rally, stability of such-type SDDEs have also been studied. For example, Yin et al. in
[25] were concerned with the stability of a class of switching jump-diffusion processes.
Yuan et al. in [27] investigated sufficient conditions for stability of delay jump diffu-
sion processes. Zhu in [29] focused on the pth moment and almost sure stability of a
class of stochastic differential equations with Lévy noise.

It is noted that the aforementioned references [25, 27, 29] with Lévy noise all
consider the stability of SDDEs satisfying the linear growth condition. From the
perspective of practical applications, it is very necessary to study the stability and
stabilization of highly nonlinear Markov-modulated SDDEs with Lévy noise. The
main aim of this paper is to explore how a feedback control with time-varying delay
can stabilize a given unstable highly nonlinear Markov-modulated SDDE with Lévy
noise. The key contributions of this paper are as follows:

e This is the first paper on the stabilization by feedback controls for a class of
SDDESs driven by the Lévy processes, in addition to Brownian motions and
Markov chains, where the coefficients are highly nonlinear (i.e., do not satisfy
the linear growth conditions).

e Notably, the time-varying delays in the given SDDE as well as in the feedback
control need only to meet a much weaker condition than those imposed in
most of the existing papers. For example, they are no-longer required to be
differentiable. Different methods from those used, for example, in the proof
of [5, Lemma 2.2], are developed to cope with the cadlag property of the
underlying solution as well as the general time-varying delays.

e This paper does not only establish a general existence-and-unique theorem
on the global solution of the nonlinear SDDE driven by Lévy noise, but also
obtains the finiteness and boundedness of the moments of the solution. These
are not only generalisations of [5, Theorem 2.4 and 2.6], but will also form a
foundation for further research in this area.

The paper is organized as follows. In Section 2, we propose model, notations and
assumptions. In Section 3, we give the conditions that the control function needs to
meet. In Section 4, we show the sufficient conditions for exponential stability and
almost surely exponential stability. In Section 5, we provide an example to show the
effectiveness of the theoretical results. Conclusions are presented in the last section.

2. Model, notations and assumptions. Throughout this paper, unless oth-
erwise specified, we use the following notations. AT is the transpose of a vector or
matrix A. |z| denotes its Euclidean norm, where x € R? is a vector. For a matrix
A, |A] = /trace(AT A) denotes its trace norm. If A is a symmetric real-valued ma-
trix (A = AT), denote by A iy (4) and Amax(A) its smallest and largest eigenvalue,
respectively. For A > 0, denote by D([—A, 0]; R?) the family of cadlag functions (i.e.
one that is right-continuous with left limits) ¢ from [-\,0] — R? with the norm
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STABILIZATION OF HIGHLY NONLINEAR SYSTEMS 3

l[oll = sup_y<,<o l¢(u)]. Denote by D% ([—A,0];R?) the family of all bounded, Fo-
measurable, D([—\, 0]; R%)-valued random variables. Denote by C%!(R? x S x R, ;R)
the family of all real-valued functions V' (z,i,t) on R% x S x R, which are contin-
uously twice differentiable in 2 and once in ¢. For such a C%!-function V, we set
V, = %—‘t/, = (g—;/l, e ,g—;:) and V,, = (%)dxd. For two real numbers a and b,
a Vb= max{a,b} and a A b = min{a,b}. I4 is the indicator function of A, where A
is a subset of €; that is, I4(w) =1 for w € A and I4(w) =0 for w ¢ A.

Let B(t) = (Bi(t), -+, Bm(t))T be an m-dimensional Brownian motion defined
on the probability space (92, F,P) with its filtration {F;};>¢ satisfying the usual
conditions (i.e., it is increasing and right continuous while Fy contains all P-null
sets). For fixed w € Q, N(¢,)(w) is a Poisson random measure defined on Ry x Rf,
where R = R™ — {0}, and its compensated Poisson random measure is denoted by

N(dt,dz) = N(dt,dz) — 9(dz)dt, where 9 is a Lévy measure satisfying

(2.1) /R (1A |2]2)9(dz) < oo.

n
0

Usually, the pair (B, N) is called a Lévy noise. It is easy to show from (2.1) that
I({z € R} : |z| > b}) < oo for any b > 0 but we may not have J({z € R} : |z] <
b}) < 0o. That is, the Lévy measure might not be finite.

Let {r(t),t > 0} be a right-continuous Markov chain on the probability space
taking values in a finite state space S = {1,2,---, N} with generator I' = (v;;)NxnN
given by

. , YijA + o(A) i # 7,
2.2 P{r(t+A) =jlr(t) =i} = R
(2.2) {r( ) = jlr(t) =i} {1+%iA+O(A) =
where A > 0 and v;; > 0 is the transition rate from ¢ to j if ¢ # j while v;; =
—ZJ—# 7ij- In this paper, we assume that the Markov chain r(-), the Brownian
motion B(-) and the Poisson random measure N(-,-) are independent of each other.
In general, the SDDE with Markov switching, driven by the Lévy noise, has the
form

dy(t) = £ (0wt — 607 ) r(0). D)t + gt )t — 67 )or(6). )ABE)
+ / Byt ),y ((t = 6)7).r(t). 1, 2) N (dt, d)
0<|z|<e

(2.3) + H(y(™),y((t = 6:)7),7(t), ¢, 2)N(dt, dz),

|z|>¢

where y(t7) = limgr, y(s), f: RIXRIx Sx Ry — R4 g : RIXRIx S xRy — RX™
h:RIxRIx SxRy xRS — RYand H : RYxR? x §x Ry x RY — R?, the constant
¢ € (0,00) allows us to specify what we mean by ’large’ and ’small’ jumps in specific
applications, and J; is a time-varying function. Observe that the last integral term in
(2.3) is a compound Poisson process, which can be handled easily by using interlacing
(see, e.g., [2, pp. 112-115]) or by the methods developed in this paper on how to deal
with small jumps. It hence makes sense to begin by omitting the large jumps term
and concentrate on the study of the equation driven by continuous noise interspersed
with small jumps (see, e.g., [2, pp. 302]). We will therefore concentrate on the study
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4 HAILING DONG, JUAN TANG, AND XUERONG MAO

of the simplified SDDE with small jumps in the form
da(t) =f(xt™),x((t — 6;)7),r(t), )dt + g(z(t™), z((t — 6;)7),r(t),t)dB(t)
(2.4) + /< )28 e, DN (dt, d2),

with the initial data

(2.5) {z(t) : =X <t <0} = £ € D% ([-\, 0; RY) and r(0) = io,
where z(t7) = limg 2(s) and the details of positive constant A will be given in

Assumption 2.1. Next we will state an assumption about J§; and a useful lemma.

ASSUMPTION 2.1. [5] The time-varying delay &; is a Borel measurable function
from Ry to [\, A], and has the property that

(2.6) A := limsup
A—0F

sup

(M)
(e 55

)<oo7

where A1 and A are both positive constants with A1 < A\, Mg ={t e Ry : t—6; €
[s,s +A)} and p(-) denotes the Lebesgue measure on Ry.

It is worth noting that many time-varying delay functions in practice satisfy this
assumption. For example, consider that d; is a Lipschitz continuous function with its
Lipscitiz coefficient Ay € (0,1). That is,

(2.7) [0 — 5] < Aot —s), VO< s <t<o0.

For any s > —X, let r = inf{t € M, a}. It is easy to see that r € M, A, namely
s<r—0,<s+A . Ift>r+A/(1—X\y), then

t—0—s>t—6—(r—06)>t—r—10t—6.| > (1=X)(t—7r)>A.

Hence t —d; > s+ A, i.e., t ¢ M, a. In other words, we get Ms A C [r,7+A/(1—A2)),
which implies p(Msa)/A < 1/(1 — A2). As this holds for arbitrary s > —X and
A € (0,1), Assumption 2.1 must hold with A = 1/(1 — X\). This, in particular,
shows that many sawtooth delays (that occur frequently in sampled-data controls or
network-based controls), e.g.,

=" [(0.15+ 0.05(t — 2k)) T2 2041 (£) + (0.25 — 0.05(t — 2k)) [j2ps1. 201y ()]
k=1

satisfy Assumption 2.1.

LEMMA 2.2. Let Assumption 2.1 hold. Let ¢ be a cadlig function from [—\, 00)
to Ry such that it has at most finite number of jumps during any finite time interval.
Then, for any T > 0,

(2.8) / "ot — 6)di < / T ot
0

-

Proof. This lemma is a generalisation of [5, Lemma 2.2], where ¢ was assumed
to be continuous. The proof here is different from that in [5] as we need to deal with
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STABILIZATION OF HIGHLY NONLINEAR SYSTEMS )

the cadlag property. By Assumption 2.1, for any ¢ > 0, there is a positive number A
such that

M, . _
(2.9) qup a5 0 va e 0,A).
s>—a A

Fix any T > 0. We may assume, without loss of any generality, that ¢ has only one
jump at T3 € (=X, T — A1), as the case of multiple jumps can be proved in the same
fashion. Noting that —\ < ¢t — 4§ < T — A\ for ¢ € [0,T], we divide the interval
[-A, T — A1] into three parts [—\,T1), (T1,T — A\1] plus a single value set {T1}. Let
ny and ny be a pair of arbitrarily large integers such that A; := (T} +\)/n; < A and
Ag = (T—X\—Ty)/ng < A. Set tl = —A+ul; foru=0,1,--- ,ny and 12 = Ty +vA,
for v=20,1,--- ,ny. By the definition of the Riemann-Lebesgue integral, we have

T n1—1 no—1
/0 p(t —d;)dt = lim 7;) (Mo, a,)¢(t,) + lim vz:;) 1Mz a,)0(t2)

(2.10) + [o(m) = (1) | (o),

where Mz, = {t € [-\,T — \1] : t — 8 = Ty }. Let Az € (0,0.5A) be arbitrarily small
so that 71 — Az > —\. Then My, C My, _a, 24, and, by (2.9), u(Mr,) < 2(A+¢)As.
As Agj is arbitrary, we must have u(Mr,) = 0. By (2.9), we also have u(Mu a,) <
(A+¢)A; and Mz A,) < (A +¢)As. It then follows from (2.10) that

ny—ro0 Ng—>00

T ni—1 na—1
/ b= 80t < tim 3 (A+e)Arp(th) + lm S (A+e)Agp(t?)
0 u=0 v=0

=(\+e) /T1 o(t)dt + (A +¢) /TAl o(t)dt

-2 T
~ T—X
(2.11) =(A+e) / o(t)dt.
-2
Letting £ — 0 yields the required assertion (2.8). |

Remark 2.3. [5, Lemma 2.2] is not applicable to our SDDE as it requires the
continuity of ¢ while the solution here is cadlag. That is why we need to establish
our new Lemma 2.2. Moreover, the proof of [5, Lemma 2.2] relies entirely on the
continuity of ¢ while our proof here needs to deal with the cadlag property.

We need to impose some assumptions on the coefficients.

ASSUMPTION 2.4. Both coefficients f and g are locally Lipschitz continuous, and
there exist positive constants p, q, a1, ag, ag with p A q > 2 such that

. -1 .
(212) 2" fla,y.i )+ T lg(e,y,i O < an(fof? + [yl?) — aslel? + aslyl?,
for all (z,y,i,t) € R x RY x § x R,..
ASSUMPTION 2.5. For any positive real number R, there exists a constant xr such

that

(2.13) / \h(z,y,i,t,2) = h(Z, 7,1, 1, 2)|[0(dz) < xr(le — 2|+ |y — 7])
0<|z|<e

This manuscript is for review purposes only.
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6 HAILING DONG, JUAN TANG, AND XUERONG MAO

for allz, z, y, § € R® with |z| Vv |Z|V|y| V|g] < R and (i,t) € S x Ry. There are also
constants L > 0 and o > 1 such that for all (z,y,i,t,2) € RT x RY x § x Ry x R?
and 0 < |z| < ¢,

(2.14) \h(, y,i,t, 2)| < LIz[*(Jz] + [y])-

Remark 2.6. It is quite standard to derive from [p, (1 A |2[*)9(dz) < oo that
0

Jo<iz1<e [2I79(dz) < oo for v > 2.

Condition (2.14) forces that h(0,0,4,t,z) = 0, which is naturally required for the
stability purpose in this paper. The following two lemmas show the existence and
uniqueness of the global solution and the finiteness of the moments.

LEMMA 2.7. Under Assumptions 2.1, 2./ and 2.5, the SDDE (2. ) with the initial
data (2.5) has a unique global solution z(t) on [—\,00) and the solution has the
properties that for all t > 0

(2.15) Elz(t)]? < o0

and
¢

(2.16) IE/ |2(s)[PT92ds < oo.
0

Proof. To make the proof more understandable, we divide the whole proof into
three steps.

Step 1. We claim that we can find two positive numbers 5, and S5 such that
(2.17)

- [|£B + h(xaya iat’z)|q - |x|q - q|l’|q72l’Th(£L',y,’L.7t, Z)}ﬁ(dz) < 51|m|q + 52‘y|q
0<|z|<e

To show this, we construct a function F(s) = |z + sh¢(z)|? for s > 0, where we use
hi(2) := h(z,y,1,t, z) to simplify notation. By using the mean value theorem, there
exists a constant &; € (0,1) such that

F(1) = F(0) = |z 4 by (2)[7 — |2[*
(2.18) = qlz + Ehe(2)| 772 (@ + E1he(2)) T he(2).

Then construct a function G(v) = glz + v&1he(2)|972(z + v&1he (2)) T hy(2) for v > 0.
Similarly, it can be shown that there exists a constant & € (0,1) such that

G(1) — G(0) = qlz + & he(2)|7 2 (x + E1he(2)) T he(2) — gl P22 he(2)
(2.19) < §1{Q(q — 1|z + §1§2ht(z)‘q_2|ht(z)|2}'
These imply

2+ h(z,y,it )| = [l = qlel" 22T h(e,y.i,t,2)
< &ig(g — V(|| + [h(z, y, 1,8, 2)) 2 |h(z, y, 6,8, 2) |
2200 <22%19(q — 1) (lal2Ih(z.p, 8 ) + (@ y.i,t2)]7)

This manuscript is for review purposes only.
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STABILIZATION OF HIGHLY NONLINEAR SYSTEMS 7

Using (2.14) and the Young inequality, we can get
2|72z, g, 8, 2) [ < 20222 (| + || [y)?)

2(q—1 2
(2.21) < 2L7|z|* ((qq)|z|‘1 + q|y|q)

and

|z, y,i,t, 2)|T < L92[" (o] + [y])?
(2.22) < 2L 2] (| + [y]?).

Substituting (2.20)-(2.22) into the left-hand-side terms of (2.17) and using Remark
2.6, we obtain (2.17) as claimed.

Step 2. Fix T > 0 arbitrarily. Since almost every sample path of r(-) is a right-
continuous step function with a finite number of simple jumps on [0,7], there is a
sequence {s, },>0 of stopping times such that for almost every w € 2 there is a finite
1=0w)for0=¢ < <--<¢gy=Tandg, =T if v > 7, and r(-) is a random
constant on every interval [¢,, <y, +1), namely 7(t) = r(s,) on ¢, < t < g, for all
u > 0. For each integer k > 1 and (x,y,i,t,2) € R? x R x § x R, x RY, define the
truncation functions

. Ak Nk .
fk(x7y,z7t>=f<‘””' £l t)

=l 7yl

gk (z,y,1,t) and hy(x,y,1,t, z) similarly, where we set ((|z| Ak)/|z|)x = 0 when z = 0.
When t € [¢y, Sut1), by the similar method (see, e.g., [20, Theorem 3.3]), we can see
that the equation

dry(t) =fr(xrp(t™), 2 ((t = 6:)7 ), 7(Su), t)dt + gr (@ (t™), ze((t — 0)™ ), 7(cu), t)dB(t)
+/ (e (), 2 (8 = 80) "), r(su), £, 2) N (dt, dz),
0<|z|<e

has a unique solution whenever r(s,) and zx(t) on t € [¢, — A, ¢, are known. By
induction, we therefore see that there is a unique solution z(t) to the equation

dag(t) =fu(@r(t ™), ze((t — 60)7), 7(8), )dt + ge(wr(t™), 2k ((t — 6¢) "), r(t),£)dB(t)

(2.23) +/0<| - hk(mk(t*),xk((t—5t)*),r(t),t,z)ﬁ(dt,dz),

ont € [0,T] with initial data zx(t) = £(¢) on t € [—A,0]. Now we introduce a notation:
if w(t), t > —\ is a predictable process such that @(t) = £(t) on —A <t < 0, define
the stopping time

pi(@) = int{t € [0, : [wo(t)| V [e(t — )| > K},

and set inf ) = co in this paper. Following the method in the proof of [15, Theorem
2.2, pp. 95-97], we obtain that

pre(xr) < pre(Trs1)
and

(2.24) 2k (t) = 241 (t) whenever 0 <t < pg(xg).

This manuscript is for review purposes only.
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8 HAILING DONG, JUAN TANG, AND XUERONG MAO

Set e, = pr(zr) and en, = limg_ oo €x. Define a local process z(t), t € [\, e00) as
follows: z(t) = &(t) on t € [-A,0] and if e, < e,

x(t) = xg(t), t € lex—1,€k), k> 1,
where eg = 0. If e_1 = ey, set z(ex) = z(ex—1). It follows from (2.24) that
x(t) = zx(t) whenever 0 < t < e.

So for every k > 1,

(t/\ek)_
2((t A er)™) = zp((t Aer)”) = / Fel@(s™ ), zk((s—62) ), (), 8)ds
(t/\ek)_
4 / g (ek(s™)s 2k ((5—82) ), 7(5), 5)dB(s)
0

(thek)™ )
+/0 /0<z<c hi(xk(s™), 2k ((s — ds)7),7(s), 8, 2)N(ds, dz) + z(0)

(thek)™

(thek)™
:/o f(x(s_),x((s—53)_),r(s),s)ds+/o g(z(s7),z((s — 85)7),r(s), s)dB(s)
(they)™ )
+/0 /o< - h(x(s7),z((s — ds)7),r(s), s,2)N(ds,dz) + z(0)

for any ¢t € [0,T]. It is also easy to see that if e, < T', and then

limsup |z(t)| = limsup |z(e;, )| = limsup |zx (e, )| = oo.
t—eco k—o0 k— o0

Hence {z(t) : =X <t < e} is a maximal local solution on [—A\,T]. By the standard
method (see, e.g., [19, Theorem 3.15, pp. 91-92]), the uniqueness can be proved.
Letting T' — o0, so we see that the hybrid SDDE (2.4) with the initial data (2.5) has
a unique maximal local solution z(t) on [—)\, e ), where e, is the explosion time.
We need to show e,, = 0o a.s. Next, we define the stopping time
Ok = oo Nnf{t € [0, ex0) : |2(t)] > K}

for each integer x > ||£||. Because o, is non-decreasing, it has a limit and we set
0o = lim,_oo 0. S0 it is obvious to see that o < e a.s.

Step 3. Restrict ¢ € [0, 1], so z(t — §;) = &(t — d;) is already known because
—\ <t—4§; <0. By the generalised It formula (see, e.g., [27] or Lemma 2.10 below),
Assumption 2.4 and (2.17), we get

Bla(t A = 16O <E [ ala( )2 o5 +lof(s - 8)7)P)

— asfa(sT) [P + agla((s - 6,) )| ds

(2.25) + E/OM% (Bila(s7)17 + Bala((s — 8)7)17) ds.

This manuscript is for review purposes only.
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STABILIZATION OF HIGHLY NONLINEAR SYSTEMS 9

An easy application of the Young inequality to |z(s7)|? 2?|z((s — d5)7)|* and
as|z(s7)|?72|z((s — d5)7)|P shows that (2.25) can be written as

tAC
Elz(t Aog)l? +0.5qa2E/ lz(s7)[PT92ds
0
tAT
<IEO0)1 + a5+ Ggar+ B [ la(s)l7ds
0

tAO
(2.26) — €(0)[7 + a5 + (2qa1 + B1)E / ()| 9ds,
0

where a5 = fo)‘l [(2qas + Ba2)|x((s —5)7)|9+ qau|z((s — 05)7)|PH92]ds is finite clearly,
and

_ ( 2(g - 2) )f

Q4 = ——-0Q3 —_—— .
p+q—2 az(p+q—2)

Please note the last equality in (2.26) holds because the solution z(t) has, almost
surely, at most finite number of jumps during any finite time interval (see, e.g., [2]).
This property will be used frequently in this paper and we will not explicitly state it
unless it is necessary. The remaining proof is the same as in that of [5, Theorem 2.4]
and is so omitted. O

Remark 2.8. Lemma 2.7 states an existence-and-unique theorem in the case of
Lévy noise which is more general than Theorem 2.4 in [5]. In addition, the discon-
tinuity of the local solutions makes it difficult to splice the local solutions into the
global solution.

LEMMA 2.9. Let Assumptions 2.1, 2./ and 2.5 hold with &1 > ag\, where
_ asglg—2) asqp
2.27 Qp = qog — ———, = ——
( ) 1= 4qaz Dtq—2 2 pt+q—2
Then the solution of the SDDE (2.4) with the initial data (2.5) has the properties that

(2.28) sup Elz(t)]? < o0
0<t<o0
and
1t
(2.29) limsupf/ E|z(s)[P172ds < oo.
t—o0 t 0

Proof. By the It6 formula, Assumption 2.4 and (2.17), it is easy to show
t
e ' Elx(t)|? — [£(0)]7 < E/ e’ [(J\x(s_)\q_2 [ (Ja(s7) [P+l ((s — 65) 7))
0
— aglz(s7)P + asla((s — 65) )] + EllfU(S*)lq} ds
t
(2.30) FE [ e (Blalsl" + Bafol(s — )7 ds,
0
where £; > 0 is the unique root to the equation &; — &1 = A(ag + ;1)e**. By the
Young inequality we get
t
e 'Elx(t)]? — [£(0)]7 < E/ 68”<073|$(87)|q + aulz((s — 65) )|
0

(2.31) —an|z(sT)PH2? 4 aglx((s — 55)7)|p+q72)d5’
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where a3 = &1 +2a3(¢ — 1) + 81 and @4 = 21 + B2. The remaining proof is the same
as in that of [5, Theorem 2.6] and is hence omitted. d

To close the section, we cite the generalised 1t6 formula from [27] as a lemma,
which show how a function V : R? x § x R, — R maps the paired process (z(t), (t))
into a new Itd process V (z(t), r(t),t).

LEMMA 2.10. [27] Let V € C*1(R? x S x Ry ;R). Then V(x(t),r(t),t) is an It6
process of the form

(2.32)
V(x(t),r(t),t) = V(x(0),r(0),0) + /0 LV (x(s7),x((s — 05)7),r(s),s)ds + M (t),

where LV is a mapping from R? x R4 x S x Ry to R defined by

N
LV (,y,i,t) = Vi(w,i,t) + Va(, i, 8) f (2,y,4,8) + > %V (2, . 1)

j=1

b Vbt )0 -V )~ Vale i Dbt 2) o)
0<|z|<e

1
(233) + itrace[gT(xa Y, ia t)vzz (l’, i7 t)g(.T, Y, Z.a t)]a

while

M) = [ Valals ) r(s),)alals) (s = 6))or(s), 5B
—F/O/O<|z|<c [V(x(s_)+h(x(s_),x((s—és)_),r(s),s,z),r(s)’S)

— V(a(s),7(s),5)| N(ds, d2)

where the function b from S X R to R is defined by

b T) = {JO— i Wledy,

otherwise,

and p*(ds,dv) = 9*(ds,di) —ds x m(di) is a martingale measure. Here 9*(ds,d) is a
Poisson measure on Ry x R with intensity ds x m(de), in which m(de) is the Lebesgue
measure on R and A;; is consecutive, left closed, right open intervals of the real line
each have length ~;;. Further details can be found in [19, pp. 46-48].

3. Controlled SDDE. In this section, we aim to design a delay feedback control
u(z((t —1¢)7),7(t),t) for the controlled SDDE

da(t) = f(@(t),2((t = 8)7),r(0),8) + ulw((t = 7)), (), )| at
+ g((t7),2((t = 8)7).7(t). )dB (1)

(
(3.1) +/0< ; h(z(t™), z((t — 6,)7),r(t), t, 2) N (dt, dz)
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to become stable. Here the control function u : R? x § x R, — R? is Borel measurable
and satisfies the following assumption.

ASSUMPTION 3.1. There exists a positive constant 3 such that
for all (z,y,i,t) € R? x RY x S x R,. Moreover, for the stability purpose, we require
that u(0,4,t) = 0.

The following theorem shows that the controlled SDDE (3.1) preserves the prop-
erty of the unique global solution.

THEOREM 3.2. Let the control time lag 7+ be a Borel measurable function from
Ry to [0,7], where T is a positive number. Under Assumptions 2.1, 2.4, 2.5 and 3.1,

the controlled SDDE (3.1) with initial data
(3.3) {a(t) : —=Xo <t <0} = £ € D%, ([~ o, 0; RY) and r(0) = ig

has a unique global solution x(t) on [~Xo,00), and the solution has properties (2.15)
and (2.16), where \g = AV T. Moreover, if we also make &y > qs\ hold, where &
and &y have been given in (2.27), the solution has properties (2.28) and (2.29).

This theorem can be proved in a similar fashion as Lemmas 2.7 and 2.9 were
proved. As mentioned in the previous section, we consider the situation in this paper
where both f and g satisfy the polynomial growth condition. The following assump-
tion describes this situation.

ASSUMPTION 3.3. There exist constants K > 0, g1 > 1 and ¢; > 1 (i = 2,3,4)
such that
|f(,y,i,0)] < K(l| + [y| + =] + [y[*),

(3.4) .
lg(z, y,4,0)] < K(|lz| + [yl + |z]® + |y[**)

for all (z,y,i,t) € RT x R x § x Ry. In addition, p and q in Assumption 2./ also
need to meet

(3.5) q>{@+qa—1) V(2@ VaeVaVa)),

(3.6) P>2aVaVaesVa)—a+l

This assumption guarantees, for example, E|f(z(t7), z((t — §)7),7(t),t)]* < oo,
and hence the stabilization analysis below can be carried out in L?. To make the
controlled SDDE (3.1) stable, the control function needs to meet more conditions.
Our first key condition is:

CONDITION 3.4. Design the control function u : R? x S x Ry — R? so that we
can find real numbers a;, a;, positive numbers a;, b;, ¢;, ¢; and nonnegative numbers
bi,bi,d;,d; (i € S) such that for all (z,y,i,t) € R x RY x § x R,

T . . 1 o

2|:£L’ [f(x,y,z,t) + ’UJ(LI?,’L,t)] + §|g(:c,y,z,t)| :|

—|—/ [\x + h(z,y,i,t,2)|* — 2> = 22T h(x, y,i,t, z)}ﬂ(dz)
0<|z|<e

(3.7) < a;lz]? + bily|* — cilz P + dily|?,

This manuscript is for review purposes only.
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(38) xT[f(xﬂ yviat) + U(.’E, Z7t)] + %‘9(%1/7%'5”2 < di|x|2 + Bz|y|2 - Ei|x|p + gz|y|p7
and
[ [l bt = ol (g 1) ol 0T b .1, 0(d2)
<|z|<e

(3.9) < aylx|™ T 4 byly|o T,

while both
Ay = —diag(ay, -+ ,an) —T
(3.10) 1 . g( 1 _N) ) i )
and Ay := —diag((q1 + 1)ay + a1, -+, (g1 + Dany + an) — T,
are nonsingular M-matrices; and moreover,

1> ClaC? > X7<37

Galgr —1+2%]
(3.11) 1> o=t

Colar—1+pA]
G > 1

where qq is the same as in Assumption 3.3,

G = maX@ibu (2 = minb;c;,
i €S
(3.12) G = max 0d;, G = max{(q: + 1)b; + b;)6;,

(s = mln( o+ 106, G = maSX( 1+ 1)fds,
in which
(Hla"' 79N)T = A;1(17 ul)T7

3.13 - -
(8.13) 01, ,08)T = AS (1, , )T,

It is useful to point out that all §; and 6; defined by (3.13) are positive as both
A; and Aj are nonsingular M-matrices (see, e.g., [19, Section 2.6]).

Let us explain that there are lots of such control functions available under As-
sumptions 2.4 and 2.5. To make the explanation simpler, we assume o > s
in addition to Assumptions 2.4 and 2.5. For example, design the control function
u(x,i,t) = AzT, where A is a symmetric d x d real-valued negative-definite matrix
such that Amax(A) < —(k + 1)a; — 0.53; with k& > 1, where $; will be determined
later. Then

eTu(z,i,t) < —[(k+ 1)og +0.561]|z]?, ¥ (z,i,t) € R x § x R,

Using Assumption 2.4 while noting that ¢ — 1 > ¢; > 1 and ¢; + 1 > 2, we have

: | . 3
1 0l )4 glot 6 0P < (ko t- 20 ) el oy~ el + sy

and

. . q .
o [f @,y i) + ulw, i, )] + (e, .1

B
(b g 1l + ey — afel? + eyl

This manuscript is for review purposes only.
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By Assumption 2.5, we can show as property (2.17) was proved that there exist two
positive numbers 61 and B35 such that

[ [l it o) = [of? = 207 ho,p.ivt,2)]9(d2) < el +

<|z|<e

and

[ [l it 2 = ol = (o + Dl TRt ) 9(d)
<|z|<e

< Pz F + Byl
In other words, we have already verified (3.7) - (3.9). Consequently, we further have

Al = deiag(al, s ,041) -T
and As := (q1 + Dkdiag(ay, -+ ,a1) =T,

which are nonsingular M-matrices (see, e.g., [19, Section 2.6]). Moreover, when Fk is
sufficiently large, 0; ~ 1/(2ka;) and 6; ~ /((Ch +1kay) for all i € S. Hence, ¢ - (s
defined by (3.12) are

201 + B2
2]60[1

(g1 + Va1 + s

G~ (1 + Dkay

o) ag
,C2=Cs’*‘47k , G , (3=C~ —.
a1 ka1

It then easy to see (3.11) is satisfied, bearing in mind that as > asA. In other words,
for a sufficiently large number k, the control function u(x,4,t) = Az’ meets Condition
3.4 as long as Amax(A4) < —(k+ 1)a; — 0.551. Of course, in application, we need to
make full use of the special forms of the coefficients f, g and h to design the control
function « more wisely.

Let us now explain why we propose Condition 3.4. If there is no time delay in
the controller (i.e., 7z = 0), the controlled SDDE (3.1) becomes

da(t) =| f(2(t7)a((t = 6)7),r(8),8) + ulw(t),r(t), )] at
+g(@(t™),z((t = 6:)7),r(t), t)dB(t)
(3.14) +/<| } h(@(t), 2((t — 6)7), ()., 2) N(dt, d=).

Define a function U : R? x S — R, by
(3.15) Ulz,i) = 0;|x|* + 0;|z| 2+, (2,i) € RY x S,

and then, according to Lemma 2.10, the function LU : R x R x § x Ry — R is given
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by
1
L0 11.0) = 20 [« o o0) + i 0]+ Sl 00

5 . , Lo ,
+ (1 +1)0; [Ix\ql_le[f(fv,y,zyt) +u(w, i, )] + 2| g,y 0,8

N
-1 .- . -
eyl 3|ng(x’y’Z’t)|2} + > % (0512 + 0y )

Jj=1

[ [ttt ) (gl b )]0(d2)
0

<|z|<e

(3.16) +/ 9i{|m+h(1‘,y,i,t,z)|2 - mh@,y,i,t,z)}ﬁ(dz).
0

<|z|<e
By making use of (3.7)-(3.11) and the Young inequality, (3.16) can be estimated by

. -1
CUop.iet) < = Jaf + Gl? = Galel? + Gapl? = (1= S0 s

2G4 1 ( ol — 1)) 1 GoP 1
3.17 4+ gyt - 0 et OF pta-l
(3.17) q1+1|y| Cs PR—1 |z| p+q1_1|y|

Now we propose the second condition to cope with the highly nonlinear nature
of the underlying SDDE.

CONDITION 3.5. Find nine positive numbers v; (1 < j <9) and a function W €
C(R%R,) such that

EU(.’B,y,Z,t)+’U1(291|$‘ + (Q1 + 1)§i|$|q1)2+’l}2|f(fﬂ,y,i,t)|2+U3|g($,y7i,t)|2

(3.18) + v4/ (@, i, t, 2)[*9(dz) < —vs|zf* + vely[* — W(z) + v W (y),
0<|z|<e

and

(3.19) v|z[PTU Tt < W () < wvg(1 + [zfPreh),

or all (x,y,i,t,z) € X x S x Ry x Ry, where vs > vgA and vy € (0,1/)).
for all ; RExREx S xR RE, wh A and 0,1/X

Let us now explain why it is always possible to meet this rule under Assumptions
2.4, 2.5 and 3.3, and property (2.17). In fact, by (3.4),

the left-hand-side terms of (3.18)

< LU(2,y,0,t) + 80167 |2]* + 201 (g1 + 1)%607 2> + va(||* + |y[*)
(3:20)  +4v K3 (|2 + [y[? + [>T + [y[*92) + dvs I (|| + [y]? + [2*® + |y[*2).
From (3.6), it is easy to see that p+¢q1 —1 > 2(¢1 V g2 V g3 V ¢4) and hence

w?@ < w? 4Pt v >0, 1<i<A4.

By using these inequalities and (3.17), we can always choose v1, vq, vz and vy suffi-
ciently small such that

the left-hand-side terms of (3.18)
< —vs|zf? — & lafP — Esla|mH — Gl

(321) +slyl® + Elyl” + Ealy| T + EolylPre
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where v5, vg and §; (1 < j < 6) are all positive numbers such that vs > vgA and
o1 > &) for 1 < k < 3. Letting

W(z) = &|zfP + &s)z|2H + &|zPra—! for z € RY

and v7 = maxi<g<s f_gk/f_gk,l, vg = & and vg = & + &3 + &. Therefore, we see that
vy € (0,1/X),

the left-hand-side terms of (3.18) < —ws|z|* + vg|y|? — W(z) + v W (y),

and vg|z|PTH 1 < W () < wvg(1 + |z|PTa—1).

Hence, we have shown that it is always possible to satisfy Condition 3.5. Of
course, in application, we need to make full use of the special forms of the coefficients
f, g and h to choose v; — vg more wisely in order to have a larger bound on 7 as
described in the statements of theorems in the following section.

4. Exponential stabilization. In this section, we will establish several new
theorems on the stabilization by the delay feedback control.

THEOREM 4.1. Let Assumptions 2.1, 2.4, 2.5 and 3.3 hold. Design a control
function u satisfying Assumption 3.1 to meet Condition 3.4 and then find nine positive
constants v; (1 < j <9) and a function W € C(R%:Ry) to meet Condition 5.5. If
the upper bound T of time lag ¢ satisfies

_ (’05 — 1165\)111 V1V V1V3 V1V4 1
4.1 PV AY A A A—,
-y VT I NI T
then the solution of the controlled SDDE (3.1) with initial value (3.3) has the following
property

1
(4.2) lim sup — log(E(t)[*) < 0.

t—o0
That is, the controlled system (3.1) is exponentially stable in mean square.

Proof. We will use the method of Lyapunov functionals (see, e.g., [19]) to prove
the theorem. For this purpose, we define two segments ¥, := {z(t+s) : —2X¢ < s < 0}
and 7 := {r(t+s) : =209 < s < 0} for t > 2)g, so & and 7; will be defined for
0 <t <2Xg. Let z(s) = &(—Np) for s € [-2Xg, —Ao) and 7(s) = r(0) for s € [-2), 0).
Step 1. The Lyapunov functional used in this proof has the form

(4.3) W@aw=vmmmm+%ww

for t > 2)\g, where U has been defined by (3.15) and

(4.4)  P(t) = /i /ti {flfvf +uy- |2+ |9v|2+/0<|Z|<6|hv(z)|219(dz)]dvds.

In this proof, we use f,- = f(z(v™),z((v=08,)7),r(v),v), up- =u(x((v—m7,)7),7(v),v),
Go— = g(x(v_),x((v - (SU)_),T(U),U) and hv* (z) = h(x(v_),x((v - (SU)_),T(U),U,Z)
for v > 0 to simplify notations.

Let ¢ is a sufficiently small positive number which will be determined later. Ap-
plying Lemma 2.10, we get that

t

(45) eEtV(ft,ﬂ,t) = C +/

e’ <5V(ES_ ,Ts,8) + LV (T4—, 7, s))ds + My,
2X0
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520 where %S, = hmst Ev, C = GQEAOV(EQ,\O, 772)\0, 2/\0)7
t
521 M, :/ eV (Ty-,Ts,5)9sdB(5)
2o
t
29 [ Vo + b)) = Vo ) s, )
2X0 YR
t
523 + / / e [V@E 4 Do (2).7005) = V(Eer 7o )| N(ds, d2)
524 2X0 J0<|z|<¢e

525 is a real-valued local martingale (see, e.g., [2, 12]), and

o ~ _ pEr 2 2 2
526 LV (Zs-,7s,8) = — |7 fo- +us— "+ |gs- " + |hs-(2)|79(d?)
U1 0<|z|<c

527 + LU (x(s57),2((s—05)7),7(5), 8)+20,(s) +(q14+1)br () l2(s 7)1 2" (s7)
528 X [u(x((s—75)7),7(8),8) — u(x(s™),r(s), s)]

B> [T
I B e i S SO GO
I s§—T <|z|<c

-
531 By Assumptions 2.4, 2.5, 3.1, 3.3 and Theorem 3.2 as well as Condition 3.4, it is
532  obvious that

533 (4.7) E|LV (Z,-,7s, 8)| < 00, Vs> 2.
534  This enables us to proceed without using the technique of stopping times in the next
535  steps. -
536 Setting 77 = min;cg6;, 12 = max;es0; and n3 = max;cs6;, and taking the
537 expectation on both sides of (4.5), we get

e3? t
538 meS EBlz(t)]? <Oy + ——¢y (1) +/ e ELV (Z4-,Ts, 5)ds

U1 2Xo

t
539 (4.8) + / ge® (7]2E|JI(57)|2 + T]g]E|3:($7)|’11+1>ds7
540 2o

where C7 = 62EAOEV(E2>\O, ?2>\07 2)\0) and

bi(t) = E / ( / / + [Flfu s Pl [P+ / e @) v s

541 Step 2. Let us estimate LV (Z,-,7s, s). Firstly, it follows from Assumption 3.1
542 that
543 (20, (s (a1 1) 8, | (s )| T (s7) [u(@((s—75) ), 7(s), 8) —ul@(s7),7(s), )]

o (49) <02 lo(sT) + (o + D8y (s)|z(s7) ] + 4%@(3—) —a((s — 7))

546 Next we observe from (4.1) that

ot
>
~

(4.10)
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It then follows from (4.6) along with Condition 3.5 and Assumption 3.1 that

LV (T, 7y, 8) < = vsla(s7)1* + vela((s — 05)7)[* = W(a(s7)) +veW (x((s — 85)7))

2 4 =2 2
P (s = ) ) + ol = (5 = ) P
ﬂ2 * — 2 2 2
(111) S A L SR R Ol I
Noting that 7 < 1/12, we have
2 4 =2 3 4 =2 2
@12 E a5 =) )P < L) + le(sn) — (s — ) )P

Finally, taking the expectation on both sides of (4.11), and then combing with (4.12),
we get

ELV (3,-,7,8) < = (v5 = 2= )Ela(s ™) + vsEla((s — 8,)7)* — EW (a(s7))

4 0B (a((5 = 6)7)) + g Bla(s™) = (s = ) )P
(413) S I LR P N O TG )

Step 3. It is obvious to see that

Elz(s7)|2 ™ < Elz(s™) > + Elz(s™)[PTa !
(4.14) < Elo(s™)? + v EW ((s7)).

By Lemma 2.2, we have

(4.15) /2)\ e Elz((s — 65)7)|?ds < Ae*? /4\ e Elz(s™)|ds,
(4.16) /2/\ eSEW (x((s — 05)7))ds < Xe*? /_)\ e EW (z(s™))ds.

Substituting (4.13)-(4.16) into (4.8) we obtain

et 2 Eﬁ2 62 762 ! €s — -\ |2
me Elz(t)]” <Cy + ——¢1(t) — —a(t) + / e Elz(s™) —2((s — 75)7)["ds
U1 V1 24’01 20
¢
— (1 — vp ket — %) / e EW (z(s™))ds
Us 2X0

42 t
(4.17) — <v5 — vphe* — BT EnNg — 5773) / e Ela(s™)|*ds

U1 2X0

for t > 2)\g, where Cy = O + Aes? ffio es* {06E|x(5*)|2 + wIEW(x(s*))} ds, and

)\0 T

o) =2 [ ([ [t uPrlac e [ @]
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Noting that the first integration in (4.17) is the same as f;/\o E|z(s) — z(s — 75)|?ds,
we hence estimate from the SDDE (3.1) that
(4.18)

E|z(s) — (s — 75)|* < 3E /: [?|fv— + Uy |* + [go- |2 +/ | Py (z)|219(dz)} dv.

7 0<|z|<e
Consequently
2 2 ¢
M Ela(t)? <Cs + 2y (t) — L pu(t) - ) / EW (a(s™))ds
1 8vq U8 7 Jaxg
_ 3 4-2 t
(4.19) - (v5 — vghe — T _ Eng — 5773) / e Elz(s™)[*ds.
U1 2Xo

In addition, it is easy to see that ¢1(t) < T¢a(t). As vzA < 1 while using condition
(4.1), we can choose a sufficiently small € € (0,1/(8)\g)) such that

_ 3 42
Vs — Vg — 3 —eny —en3 > 0,
U1

and .

1 —vphe™ — s > 0.

g
Then it follows from (4.19) that
2 02 —et
(4.20) Elz(t)|? < —=e™", Vt > 2\,
m
which is the required assertion (4.2). The proof is hence complete. 0
THEOREM 4.2. Let all the conditions of Theorem j.1 hold and assume G, > ao,

where &y and & have been given in (2.27). Then the solution of the controlled system

(3.1) with the initial data (3.3) has the property

1 _
(4.21) lim sup n log(E|z(t)|?) <0, Vqe[2,q).

t—o0

That is, the controlled system (3.1) is exponentially stable in L.
Proof. From (2.28) in Lemma 2.9, we obtain

(4.22) C3:= sup E|z(t)|? < co.
0<t<o0

Fix any g € (2,¢). For a constant p € (0,1), the Holder inequality shows
Elz(t)|7 = E(|J(t)[*o(t)|72) < (Elz(t)|*)? (Bla(t)| @2/ =) 1=r.
Letting p = (¢ — q)/(q — 2), it is easy to show that
Bla(9)7 < (Bla(H)]?) 1002 (Ela(p)]) /e
(4.23) < ST/ (| (1) 2) (@ D/ (a-2),
From (4.20), we get that
(4.24) Elz(t)|7 < Cyecrt

for all t > 2)\g, where Cy = C’éa_Q)/(q_mCéq_@/(q_?). According to (4.24), the re-
quired assertion (4.21) holds. The proof is complete. d
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THEOREM 4.3. If all the conditions of Theorem 4.2 hold, the solution of the con-
trolled system (3.1) with the initial data (3.3) has the property

1
(4.25) lim sup n log(|z(t)]) <0 a.s.

t—o0

That is, controlled system (3.1) is almost surely exponentially stable.

Proof. Define t, = khg, k = 3,4,---. By using [t0’s isometry, Holder inequality
and Doob martingale inequality (see, e.g., [2, 6, 19]) , we have

E( sup |ac(t)|2>§4E|m(tk)|2

te<t<tpy1

FANE [ (1), 2l = 807)r(0.0) + (= 7)) r0). O
+16E/t o /0< - |h(z(t™),z((t — 8,)7),7(t), ¢, 2)|*9(dz)dt

(4.26) + 16E/ o lg(z(t™),z((t — 6:)7),r(t), t)|?dt.

tr

It follows from Assumptions 2.5, 3.1 and 3.3 that

E( sup  [a(0)) < 4Blx(ti)

te <t<tk+1

tr41 _ _

0B [ (o) ol = 807 P+ el T+l (e = 80 )T+ a((e = 7)) ),
123

where § = 2(q1 V g2 V g3 V q4) and Cj is a positive number. Noting that g € [2,¢) by

Assumption 3.3, we can apply (4.20) and (4.24) to obtain

E( sup |$(t)|2>§066_8pkh°,

tr<t<tp41

where Cg is another positive number. Consequently

oo

o0
P( sup |x(t)| > 670'255’)}”‘0) < ZC@@io.sspkho < 00.

=3 b <t<tpi1 b—3

According to Borel-Cantelli lemma (see, e.g., [19]), it shows that for almost all w € €,

there exists a positive integer kg = ko(w) such that

sup  |z(t)] < e7O2Bepkho B> .
te<t<tkt1

So we have
 0.25epk

k+1

1
7 log(|z(t)]) < ot € [tr,tit], k> ko.

This implies
1
limsup = log(|z(t)]) < —0.25¢p < 0 a.s,

t—o0 t

which is the required assertion (4.25). The proof is hence complete. O
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5. Numerical simulation. In this section, we will discuss an example to illus-
trate our theoretical results.

ExAMPLE 5.1. To simplify the calculation, we consider the scalar highly nonlinear
SDDE with Lévy noise and 2-state Markov switching of the form

dr(t) =f(x(t™), z((t — 6,)7), r(t), t)dt + g(z(t™), z((t — 6,)7),7(t), t)dB(t)
(5.1) +/0< } Bt ), 2((E — 6)7), 7(8),, 2) N(dt, d=)

on t > 0 but we will omit mentioning the initial data. Here the coefficients f, g and
h are defined by

fla,y, 1) =2(1 =322 +¢%),  g(z,y,1) = |2[**+ 0.5y,
f(x,ya 2) = ‘T(]‘ - sz - y2)7 g(xvya 2) = 05‘$|3/2 - 05y7
h(z,y,z,1) = 0.5yz — 0.5z, h(z,y,2,2) = 0.25yz — 0.5x2

for all z,y € R and z € Ry, where Ry = R — {0}, ¢ = 5, B(¢) is a scalar Brownian

motion, r(t) is a Markov chain on the state space S = {1,2} with its generator
I= < }2 _22 ) , and the time delay &; = 0.1|sin(¢)| + 0.1.

The Lévy measure ¢ satisfies ¥(dz) = ap(dz) = 0.5 x e~2I*Idz, where a = 0.5
denotes the jump rate and ¢(-) is the jump distribution, and its probability density
function satisfies e=2I*l, so (2.1) can be met. In addition, it should be pointed out
that SDDEs driven by Lévy noise have many applications in financial markets (see,
e.g., [8, 22]).

We can verify that Assumption 2.1 holds when A\; = 0.1, A = 0.2 and A\ = 1.1111.
It is also easy to show that Assumption 2.4 holds for p =4, ay = [1 + 0.25(q¢ — 1)?] v
(¢g—1), as = 1.25, ag = 0.5 and for any ¢ > 6. Next Assumption 2.5 can be met with
L =05 and a = 1. According to Lemma 2.7, the SDDE (5.1) has a unique global
solution z(t) which has properties (2.15) and (2.16). In order to make (2.27) hold, it
is sufficient if Az < 1, so we know that the solution z(¢) has properties (2.28) and
(2.29). Assumption 3.3 can be satisfied with ¢; = g2 = 3, g3 = 1.5 and g4 = 1. In the
remaining part of this example, we will fix ¢ = 7.

To stabilize the SDDE (5.1), we use the delay feedback control to form the con-
trolled system

da(t) = f(2(t),2((t = 8)7),r(8),8) + ulw((t = 7)), (), )| at

+9(@(t™),z((t = 0¢)7),r(t),t)dB(1)
(5.2) + /O<Z<Ch(x(t_),x((t —80)7),r(t),t, 2)N(dt, dz),
where
(5.3) u(@,1,t) = —5z;  u(z,2,t) = —da.

It is easy to see that Assumption 3.1 holds for 5 = 5. By Theorem 3.2, the controlled
system (5.2) has the unique solution z(¢) which has properties (2.28) and (2.29). Next,
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654 we will check Condition 3.4. For (z,y,4,t,2) € Rx R x § x Ry x Ry, we have

. . 1 .
65 2[e" [f (2,9, 08) + (e, i,0) + 5lg(@,9,0,0)F]
656 +/ {|x + h(z,y,i,t,2)|* — |z|* = 22T h(x, y,i,t, z)}ﬂ(dz)
0<]z|<c
. _ [ —6.87542% +0.6246y% — 4z’ 4y, =1,
i = —5.656522 + 0.5467y? — 2.7524 + ¢4, i =2,
659
660 2T [f(ey,0,6) +u(w i O] + T lgla,y, i D
3 —2.52% +0.75y% — z* + 0.5y*, i=1,
661 < 2 2 4 4 .
. —2.62522 4 0.75y% — 1.1252* + 0.5y%, i =2,
663 and
664 / [l2 4+ (v, 1, 2)[* — lal* — 4l Pa" Rz, y,i.t, 2)| 9(d2)
0<|z|<e
o 1.4854z% + 0.7378y*, i =1,
aoo = | 0.85472* +0.2169y*, i=2.

667 So (3.7)-(3.9) hold with

668 a1 = —6.8754, by = 0.6246, ¢, = 4, dy =1,

669 as = —5.6565, by = 0.5467, co =2.75, dp =1,

670 a; = —2.5, by =075, & =1, dy =0.5,

671 Gy = —2.625, by =0.75, & =1.125, dy =0.5,

673 a1 = 1.4854, by = 0.7378, Gy = 0.8547, by = 0.2169,
674 and

[ 88754 -2 (105146 -2

o A= ( —2 7.6565 ) Az = ( —2 116453 )

676 which are both M-matrices. According to (3.13), we get

677 61 = 0.1510, 6 =0.1701, 6; =0.1152, 6, = 0.1057.
678  Consequently,

679 (1 =0.0943, ¢ =0.4678, ¢ = 0.1701,
689 2 =04306, 5 =0.4608, (s = 0.2304,

682  which meet (3.11). That is, control function u(x, ) satisfies Condition 3.4. Further-
683 more, it is clear that

684 Ula,i) = 0.1510z2 + 0.1152z*, =1,
' T 0170122 + 0.10572%, i =2.

685 By (3.17), we have

686 LU (z,y,i,t) < —z? +0.0943y% — 1.25252% 4 0.3854y* — 0.3842° 4 0.1536y°.
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687 At the same time, we get
(260;|z] + (g1 4 1)0;]x|7)? < 0.11572% + 0.28772% 4 0.212325,
|f(z,y,i,t)|* < 2? — 4o + y* +9.33332° 4 296,
688 lg(z,y,i,1)]? < 0.52% 4 0.5y + 2z%,
/ |h(z,y,i,t,2)|?0(dz) < 0.124622 + 0.1246y>.
689 0<|z]<e
690 Choosing v; = 0.4, vo = 0.01, v3 = 0.27 and vy = 0.27, we then obtain

691 LU (,y,i,t) + 01(20:]2| + (g1 + 1)03]2|™)? + va| f (2,4, 1)|* + vs|g (2,1, 1)|?
692 + v4/ \h(z,y,i,t, 2)|*0(dz)
0<|z|<c
693 < —0.775122 4 0.2629y* — 0.6374z* + 0.3954y* — 0.20572° + 0.17364°
£94 < —0.77512% 4 0.2629y% — W (z) 4 0.8439W (y),

696 where W (z) = 0.6374x* + 0.20572°%, vs = 0.7751, vg = 0.2629, v; = 0.8439,
697 wg = 0.2057 and vg = 0.8431. By (4.1), we know that the controlled system (5.2)
698 is exponentially stable in L9 for any g € [2,7) with 7 < 0.0043, and it is also almost
699 surely exponentially stable.

700 The computer simulation will be given by using the Euler-Maruyama method
701 (see, e.g., [11]) with step size 1073, and the conditions for numerical simulation are
702 7 = 0.004/(1 + e~ ), initial value z(t) = 1 + sin(¢), t € [-0.2,0] and 7(0) = 1.

Times of Jumps

Fi1c. 1. Markov chain. F1a. 2. Time evolution of the number of jumps.

04
03
0z
o1

Fic. 3. The state trajectory of the solution.
703 Figs 1 and 2 show the sample paths of 2-state Markov switching and time evolution

704  of the number of jumps respectively. Fig 3 shows the state trajectory of the solution
705 of the controlled SDDE (5.2).
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6. Conclusions. In this paper, we have not only showed the existence and
uniqueness of the global solution to the highly nonlinear SDDE with Lévy noise and
Markov switching, but also the finiteness and boundedness of the moments of the
solution. The time delay in the given unstable SDDE is a variable of time which may
not have to be differentiable. Moreover, we have studied the qth moment exponential
stability and almost surely exponential stability by a delay feedback control. A useful
feature is that the time lag in the feedback control can be of time-varying as long as
it has a sufficiently small upper bound. The main techniques used in this paper are
the theory of M-matrices and the method of Lyapunov functionals. An example with
some computer simulations has been presented to illustrate our theory.

Acknowledgment. The authors would like to thank the editors and referees for
their very helpful comments and suggestions.
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