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Abstract. We target time-dependent partial differential equations (PDEs) with

heterogeneous coefficients in space and time. To tackle these problems, we construct
reduced basis/ multiscale ansatz functions defined in space that can be combined

with time stepping schemes within model order reduction or multiscale methods.
To that end, we propose to perform several simulations of the PDE for few time

steps in parallel starting at different, randomly drawn start points, prescribing ran-

dom initial conditions; applying a singular value decomposition to a subset of the
so obtained snapshots yields the reduced basis/ multiscale ansatz functions. This

facilitates constructing the reduced basis/ multiscale ansatz functions in an embar-

rassingly parallel manner. In detail, we suggest using a data-dependent probability
distribution based on the data functions of the PDE to select the start points.

Each local in time simulation of the PDE with random initial conditions approx-

imates a local approximation space in one time point that is optimal in the sense
of Kolmogorov. The derivation of these optimal local approximation spaces which

are spanned by the left singular vectors of a compact transfer operator that maps

arbitrary initial conditions to the solution of the PDE in a later point of time, is
one other main contribution of this paper. By solving the PDE locally in time with

random initial conditions, we construct local ansatz spaces in time that converge
provably at a quasi-optimal rate and allow for local error control. Numerical exper-

iments demonstrate that the proposed method can outperform existing methods

like the proper orthogonal decomposition even in a sequential setting and is well
capable of approximating advection-dominated problems.

1. Introduction

Applications that require repeated simulations for different parameters or a real-
time simulation response of complex systems of partial differential equations (PDEs)
or dynamical systems are ubiquitous. Moreover, heterogeneous problems that exhibit
multiscale features or include rough data functions are particularly challenging. A
direct numerical simulation using standard techniques such as the finite element (FE)
method can be prohibitively expensive for such tasks. Well-known strategies to tackle
these (heterogeneous) problems comprise multiscale methods which are based on local
ansatz functions that incorporate the local behavior of the (numerical) solution of the
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PDE and model order reduction methods that exploit a carefully chosen set of problem-
adapted basis functions to reduce the high-dimensional problem.

In this paper, we consider heterogeneous time-dependent PDEs and propose reduced
basis/ multiscale ansatz functions defined in space that can be combined with time step-
ping schemes within model order reduction or multiscale methods. We provide one of
the first contributions that facilitates constructing the reduced basis/ multiscale ansatz
functions in an embarrassingly parallel manner in time. As a major new contribution
in this paper, we select important points in time and only perform local simulations of
the PDE on the corresponding local time intervals instead of decomposing the global
time interval into consecutive subintervals [10, 31]. As the numerical experiments show,
this can result in a reduced total number of computed time steps, whereas the existing
approaches [10, 31] require (local) computations everywhere in the entire time interval.
To choose relevant points in time, we employ data-dependent sampling strategies from
randomized numerical linear algebra (NLA) [16, 12] in a completely new context since
they are usually used to construct low-rank matrix decompositions (cf., e.g., [34]). As
another key contribution we derive for the first time local approximation spaces in time
that are optimal in the sense of Kolmogorov. Moreover, we provide for the first time a
rigorous local a priori error analysis in time as one major new contribution.

A well-established tool for compressing and reducing time trajectories is the proper
orthogonal decomposition (POD) [3, 27, 56], which is based on a singular value decom-
position (SVD) of the functions evaluated in the time grid points and allows for error
control. However, in order to perform a POD on simulation data, the (global) solution
trajectory of the considered problem has to be computed sequentially prior to reducing.

In contrast, the approach we propose in this paper enables, as one major contribu-
tion, to construct reduced basis/ multiscale ansatz functions in parallel in time. To
facilitate a time-parallel procedure, we propose to perform several simulations of the
PDE for only few time steps in parallel. To this end, we start the simulations at
different start time points that are randomly drawn from a data-dependent sampling
distribution and prescribe random initial conditions. Subsequently, we apply an SVD
to a subset of the computed snapshots to obtain the reduced basis/ multiscale ansatz
functions. The proposed method is thus well-suited to be used on modern computer
architectures allowing for many parallel computations and on each single compute unit
a simulation for only few time steps has to be performed. Moreover, as another ma-
jor contribution, the approach is especially tailored to time-dependent problems with
heterogeneous time-dependent data functions. To draw start time points for the tem-
porally local PDE simulations, we employ uniform, squared norm [20], or leverage score
[17] sampling, which are standard sampling techniques from randomized NLA [12, 16].
In particular, both squared norm and leverage score sampling take into account the
time-dependent data functions of the PDE and are commonly used in a variety of ap-
plications [12], for instance, to construct CUR1 or similar matrix decompositions by
approximating the matrix via its columns or rows. As one major contribution of this
paper, we employ these methods in a completely new context for the purpose of time
point selection.

1A CUR decomposition of a matrix A consists of three matrices C, U, and R, where C (R) contains

columns (rows) of A and U is constructed such that the product CUR approximates A. As the matrices
C and R are constructed from actual elements of A, the decomposition is usually more interpretable

with respect to the original data compared to, e.g., a truncated SVD (cf., e.g., [34]).
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To this end, the time-dependent data functions are discretized and represented by
a matrix, where each column of the matrix corresponds to one time point. Moreover,
other randomized subset selection technique, as proposed, for instance, in [1, 14, 13, 15],
may also be used to choose time points.

The key observation, motivating a localized construction in time, is that for certain
time-dependent problems the solution exhibits a very rapid, exponential decay of energy
in time. To detect the functions that still persist at a point of time and are thus relevant
for approximation, we introduce as a key new contribution a compact transfer operator
in time that maps arbitrary initial conditions to the solution of the PDE in a later
point of time. Spanning the local space by the leading left singular vectors of the
transfer operator results in an approximation space that is optimal in the sense of
Kolmogorov [26] and hence minimizes the approximation error among all spaces of
the same dimension. While there are many methods that exploit localization in space
[2, 22, 36, 35, 40, 41, 42, 57, 18, 24, 25, 33], we provide with this paper one of the
first contributions that exploit localization in time [10, 31]. Whereas existing methods
[10, 31] decompose the entire time interval into consecutive local subintervals, we select
relevant time points in a data-dependent manner and only perform local computations
on the corresponding local time intervals. Moreover, we provide for the first time an a
priori error bound for the local approximation error in time.

As a direct calculation of the leading left singular vectors of the transfer operator
can become computationally expensive, we employ random sampling as proposed in [6]
for elliptic PDEs to efficiently approximate the optimal local spaces and facilitate an
embarrassingly parallel construction of the reduced ansatz functions even for a single
point of time. To this end, we solve the PDE locally in time with random initial con-
ditions. We show that the resulting local space yields an approximation that converges
at a quasi-optimal rate, allowing for local error control. While we only provide a local
a priori error bound in this paper, we conjecture that it might be possible to also derive
a global error bound.

Preliminary numerical experiments can be found in one of the authors bachelor thesis
[59], where the proposed algorithm has been tested for problems with time-dependent
source terms by uniformly sampling time points.

Optimal spatially local approximation spaces have been introduced for elliptic [2, 32,
57] and parabolic [49] problems, and random sampling has been employed to efficiently
approximate the optimal local spaces in the elliptic setting in [6, 8]. Further spatially
localizable multiscale methods for parabolic problems have been proposed in [10, 35,
40, 41, 42]. In [31] a space-time multiscale method for the linear heat equation is
introduced, where for each coarse space-time node a corrector function that is localized
in both space and time is computed to capture (local) fine-scale features. While in [31] a
global a posteriori error bound is proved assuming that certain localization parameters
are large enough to guarantee sufficiently small localization errors, but no rigorous a
priori error analysis is performed, we provide in this paper for the first time a local a
priori error bound in time. Moreover, we refer to [5] for an overview of methods to
construct local reduced spaces.

In system and control theory balanced truncation is a well-known method to reduce
the complexity of input-output systems [38, 45]. Balanced truncation for systems in-
cluding time-dependent data functions has been introduced in [54, 62] and its error
analysis has been first studied in [28, 47]. Nevertheless, solving matrix differential
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equations or matrix inequalities is required which is prohibitively expensive for high
dimensional problems. In [7] the authors propose an iterative procedure that is com-
putationally more appealing as it is based on operations which exploit sparsity of the
model. However, the required computations are global in time and have to be carried
out in a sequential manner, leading to a complexity that depends on the global time dis-
cretization. In contrast, the approach we propose here requires only local computations
in time that are in addition parallelizable.

In [61] it is shown that for linear time-invariant systems the concepts of Kolmogorov
n-widths and Hankel singular values are directly connected and that the right singular
vectors of the Hankel operator restricted to the unit ball span the optimal reduced input
space in the sense of Kolmogorov and can be linked to active subspaces. We suggest
that the leading right singular vectors of the transfer operator introduced here span
the optimal reduced input space and can thus be used to regularize inverse problems
and data assimilation procedures.

Furthermore, dynamic mode decomposition [50, 60] fits an operator that maps the
solution from one time point to the next to simulation data. The fitted operator is
thus similar to the transfer operator we introduce in this paper. However, similar
to the POD and in contrast to the approach we propose here, access to the (global)
solution trajectory is required to compress the entire dynamics. Recently, probabilistic
numerical methods that yield a probability distribution over the (unknown) solution
of an ordinary or partial differential equation have been proposed, for instance, in
[51, 52, 11, 39]. Moreover, randomized subset selection techniques are used in [46] for
the purpose of hyperreduction. In comparison, in this paper data-dependent probability
distributions and randomized subset selection techniques are exploited to select both
start time points and initial conditions for the temporally local PDE simulations.

The remainder of this paper is organized as follows. In section 2 we introduce the
general time-dependent model problem together with an exemplary test case and its
numerical approximation. Subsequently, we first sketch the key new contributions of
this paper along with some motivation in section 3 and then develop the main contri-
butions in sections 4 and 5. We propose optimal local spaces in time in section 4 and
address their approximation via random sampling in section 5. Moreover, in section 5
we propose a randomized algorithm to construct one reduced space for the global ap-
proximation by solving several local problems in time in parallel. We discuss both its
basic properties and the choice of the probability distribution used for drawing time
points. Finally, we present numerical experiments in section 6 to demonstrate the
approximation properties of the proposed algorithm and draw conclusions in section 7.

2. Problem setting

We consider a time-dependent linear PDE, say, an advec-tion-diffusion-reaction prob-
lem, that may include heterogeneous time-dependent coefficients. To that end, let
D ⊆ Rn denote a bounded Lipschitz domain of dimension n ∈ {1, 2, 3} and let
I = (0, T ) ⊂ R be a time interval with 0 < T <∞. We assume that on I×D a Bochner
space V and a reflexive Bochner space W with dual space W∗ are given that will serve
as ansatz and test space, respectively. Furthermore, we denote by ∂t + A : V → W∗ a
linear, continuous, surjective, and inf-sup stable operator. Let F ∈ W∗ be a bounded
linear functional. We assume that F accounts for both source terms and boundary
data. Moreover, we denote the initial values by u0 ∈ L2(D). Here, we assume that for
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any function u ∈ V we have that u(t, ·) ∈ L2(D) for every point in time t ∈ I. Then,
we consider the following variational problem: Find u ∈ V such that u(0, ·) = u0 in
L2(D) and

∂tu+ Au = F in W∗.(2.1)

The Banach-Nečas-Babuška theorem (e.g. [19, Theorem 2.6]) and the assumptions
above guarantee the existence of a unique solution of (2.1).

Exemplary model problem: advection-diffusion-reaction problem. We con-
sider an advection-diffusion-reaction problem as a representative model problem of
(2.1). To this end, we assume that ∂D = ΣD ∪ ΣN with |ΣD| > 0 and denote by
f : I ×D → R source terms, u0 : D × R initial conditions, gD : I × ΣD → R Dirichlet
boundary conditions, gN : I×ΣN → R Neumann boundary conditions, and n the outer
unit normal, respectively. In its weak form the conductivity coefficient is assumed to
satisfy κ ∈ L∞(I×D)n×n with κ0(t, x)|v|2 ≤ v>κ(t, x)v ≤ κ1(t, x)|v|2 for every v ∈ Rn,
0 < κ0 ≤ κ0(t, x) ≤ κ1(t, x) ≤ κ1 <∞ for almost every (t, x) ∈ I ×D, where we do not
consider the case κ0 → 0 such that we can assume that a weak solution with spatial
regularity of H1(D) exists. Furthermore, the advection field and the reaction coefficient
are assumed to satisfy b ∈ L∞(I ×D)n, ∇ · b ∈ L∞(I ×D), and c ∈ L∞(I ×D) with
|b(t, x) · v|2 ≤ b1(t, x)|v|2 for every v ∈ Rn, 0 ≤ b1(t, x) ≤ b1 < ∞ for almost every
(t, x) ∈ I ×D, and |c(t, x)| ≤ c1 <∞ for almost every (t, x) ∈ I ×D, respectively. To
ensure well-posedness, we moreover assume that c(t, x) − 1

2∇ · b(t, x) ≥ 0 for almost
every (t, x) ∈ I ×D. We then seek the solution u : I ×D → R such that

ut(t, x)− div(κ(t, x)∇u(t, x)) + b(t, x) · ∇u(t, x) + c(t, x)u(t, x) = f(t, x)

for every (t, x) ∈ I ×D,
u(t, x) = gD(t, x) for every (t, x) ∈ I × ΣD,

κ(t, x)∇u(t, x) · n(x) = gN (t, x) for every (t, x) ∈ I × ΣN ,
u(0, x) = u0(x) for every x ∈ D.

(2.2)

Discretization. Here, we consider f ∈ L2(I, L2(D)) and gN ∈ L2(I, L2(ΣN )). To
simplify notation, we assume that f also accounts for Dirichlet boundary conditions
gD ∈ L2(I,H1/2(ΣD)). For the numerical approximation of (2.2), we employ the
implicit Euler method. To this end, we assume that the time interval I is partitioned via
NI equidistant time points 0 = t0 < t1 < . . . < tNI−1 = T of distance ∆T = T/(NI−1).
However, the approximation can be done completely analogously for other time stepping
schemes. Moreover, we consider a piecewise linear conforming FE space X of dimension
ND ∈ N with basis functions φi ∈ X, i = 1, . . . , ND. Then, the mass and stiffness
matrices M, Al ∈ RND×ND and the right-hand side vectors Fl ∈ RND are given as

Mij := (φj , φi)L2(D), 1 ≤ i, j ≤ ND,
(Al)ij := (κ(tl)∇φj ,∇φi)L2(D) + (b(tl) · ∇φj , φi)L2(D) + (c(tl)φj , φi)L2(D),

1 ≤ i, j ≤ ND, 1 ≤ l ≤ NI − 1,

(Fl)i := (f(tl), φi)L2(D) + (gN (tl), φi)L2(ΣN ), 1 ≤ i ≤ ND, 1 ≤ l ≤ NI − 1.

(2.3)

To simplify the presentation, we assume here that this discretization is stable, meaning
that the advection should not be too dominant. Given a discrete representation u0 ∈
RND of the initial values u0, we approximate the solution of (2.2) by computing ul ∈
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RND at time point tl for l = 1, . . . , NI − 1 via

(M + ∆TAl) ul = ∆TFl + Mul−1.(2.4)

In the following, we assume that the discretization in space and time is chosen
sufficiently fine such that the discretization error between the exact solution and the
discrete solution of (2.4) is negligibly small compared to the multiscale or model order
reduction error. To reduce the possibly very high-dimensional discrete problem (2.4)
(due to, for instance, fine-scale features in the coefficient functions that need to be well
resolved) we apply multiscale or model order reduction methods.

Reduced approximation. We assume for now that suitable reduced ansatz func-
tions ϕ1, . . . , ϕN ∈ X are given that will be determined below (cf. section 5). The
matrix Ured = [ϕ1 . . .ϕN ] ∈ RND×N contains the corresponding FE coefficient vec-
tors. We then compute a reduced approximation of (2.4) via Galerkin projection of
the FE space onto the space spanned by the reduced basis: For l = 1, . . . , NI − 1 find
ured,l ∈ RN such that

ured,l = (Mred + ∆TAred,l)
−1(∆TFred,l + Mredured,l−1),(2.5)

where Mred = U>redMUred, Ared,l = U>redAlUred, Fred,l = U>redFl, and ured,0 =

M−1
redU>redMu0.

3. Motivation and key new contributions of this paper

To construct reduced ansatz functions ϕ1, . . . , ϕN ∈ X as given above, a well-
established strategy is to perform a POD on (the first part of) the global solution
trajectory. For this purpose, prior to reducing, the global solution in time has to be
computed in a sequential manner (cf. Fig. 1 (top row)). In contrast, we propose in this
paper, as a major new contribution, to generate a reduced basis in an embarrassingly
time-parallel manner which enables to split the computational budget and distribute it
over the entire time interval (cf. Fig. 1 (middle row)). The approach is thus well-suited
to be used on modern computer architectures allowing for many parallel computations.
Moreover, we conjecture that the proposed ideas may in general contribute to reduce
computational costs and exploit parallelization in applications where the computation
of classical full order solutions is extremely expensive, for instance, by combining the
proposed approach with the parareal methodology [30].

To motivate the proposed approximation strategy, we consider the toy model prob-
lem visualized in Fig. 2 and observe that the time-dependent source terms f1 and f2

clearly determine the behavior of the corresponding solution in time. Therefore, we sug-
gest that the time-dependent data functions may help to determine time points that
are relevant for approximation. To this end, we represent the time-dependent data
functions as matrices, where each column corresponds to one time point in the time
grid, see Fig. 2 (top right). To detect and select significant time points, we then employ
column subset selection techniques from randomized NLA [12, 16]. These methods are
generally used to construct low-rank matrix decompositions (cf., e.g., [34]) by approx-
imating (the range of) the matrix from selected columns or rows. The decompositions
are thus more interpretable with respect to the original data compared to an SVD and
error bounds are available (cf., e.g., [16, 34]). As one key contribution, we exploit col-
umn subset selection techniques in a completely new context for the purpose of time
point selection.
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0 T

0 Tt1 t2 t3 t4 t5 t6 t7 t8
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Tt1→t2 Tt3→t4 Tt5→t6 Tt7→t8

randomly chosen time points

Figure 1. Computational budget in time: Sequential for POD (top row) vs. split and distributed
for randomized approach proposed in this paper (middle row). Transfer operators corresponding to

randomly chosen time points (bottom row).
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Figure 2. Data-dependent sampling based on f helps to determine time points for detecting shapes

of the solution. Right-hand side data functions f1 and f2 in time (top left) corresponding to spatially

disjoint sources in one spatial dimension (top middle) and associated right-hand side data matrix (top
right). Solution of heat equation for f1, f2, homogeneous initial and Dirichlet boundary conditions

evaluated at different points in time (bottom).

Subsequently, we generate reduced ansatz functions corresponding to the selected
time points in an embarrassingly parallel manner by solving independent local problems
in time (cf. Fig. 1 (middle row)). To motivate a localized construction of the reduced
ansatz functions in time, we recall the following well-known property that many time-
dependent problems share via the example of the linear heat equation: If F ≡ 0 it is
straightforward to show that ‖u(t, ·)‖L2(D) ≤ e−Ct‖u0‖L2(D) for any t ∈ I, where the
constant C depends only on the shape of D and the heat conductivity coefficient. To
detect the functions that still persist at a selected time point t and are thus relevant for
approximation purposes, we introduce, as a key new contribution, a transfer operator
Ts→t in time that takes arbitrary initial conditions in L2(D) at time s ∈ I with s < t,
solves the PDE locally in (s, t), and evaluates the solution at target time t; see Fig. 1
(bottom row) for an illustration. In this way, the transfer operator captures the decay
behavior of solutions of the PDE in time.

After discretization, say, with the FE method, the transfer operator can be repre-
sented by a matrix. According to the well-known Eckart-Young theorem the range of
this matrix can be optimally approximated by its leading left singular vectors. While
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the discrete transfer operator is trivially compact thanks to its finite rank, in the con-
tinuous setting we need to prove compactness of the transfer operator to facilitate
its singular value decomposition (SVD) via the Hilbert-Schmidt theorem [44, Theo-
rem 8.94]. Then, the space spanned by the leading left singular vectors provides an
optimal approximation in the sense of Kolmogorov, meaning that it minimizes the ap-
proximation error among all linear spaces of the same dimension (see [43, Theorem
2.2 in Chapter 4]). Moreover, in the elliptic setting it has been shown that the opti-
mal local approximation spaces outperform other approaches (based on, for instance,
Legendre-type functions or empirical modes) numerically (see [57]).

To further facilitate an efficient parallel computation, we approximate the optimal
spaces via random sampling [6, 23], i.e. we solve the PDE locally in time with random
initial conditions, which results in a provably nearly optimal local approximation.

4. Optimal local approximation spaces in time

First, we introduce in subsection 4.1, as a key new contribution, a transfer operator
in time for which one can prove compactness and thus obtain local ansatz spaces in time,
which are optimal in the sense of Kolmogorov for the approximation of the solution
of (2.1) in a point of time. Subsequently, we show how to compute an approximation
of the optimal local spaces and discuss its practical realization via Krylov subspace
methods and random sampling in subsection 4.2.

4.1. Constructing optimal local approximation spaces via a transfer opera-
tor. We first observe that for any local subinterval (s, t) ⊆ I of the global time interval
the solution u of (2.1) solves the PDE locally in time with (unknown) initial conditions
given by u(s, ·) ∈ L2(D). Therefore, we consider all local solutions uloc ∈ V|(s,t)×D
with arbitrary initial conditions uloc(s, ·) ∈ L2(D) that satisfy

∂tuloc + Aloc uloc = Floc in (W|(s,t)×D)∗.(4.1)

Here, Aloc and Floc denote the respective local operator and functional associated with
(s, t) × D. All solutions of (4.1) can be split into a function that solves (4.1) for
Floc and homogeneous initial conditions and a function that solves (4.1) for Floc ≡ 0
and arbitrary initial conditions. In the following, we will first address the case where
Floc ≡ 0 and discuss the general case at the end of the subsection.

As we want to approximate the evaluation of the global solution at time point t, we
consider the space Ht of all solutions of (4.1) evaluated at time t:

Ht := {w(t, ·) ∈ L2(D) | w ∈ V|(s,t)×D solves (4.1), w(s, ·) ∈ L2(D), Floc ≡ 0 }.(4.2)

We equip the space Ht with the L2(D)-inner product and -norm.
As one major contribution of this paper, we next introduce a transfer operator in

time that can be proven to be compact and thus facilitates to derive optimal local
ansatz spaces for the approximation of the solution space at time t via its SVD (see
Fig. 3 for an illustration).

Definition 4.1. For s < t, s, t ∈ I, the
transfer operator Ts→t : L2(D)→ Ht is given by

(4.3) Ts→t w(s, ·) = w(t, ·)
for w ∈ V|(s,t)×D that solves (4.1) for Floc ≡ 0.

s t

Ts→t

Figure 3. Transfer operator Ts→t.
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Assumption 1. We assume that the transfer operator Ts→t introduced in (4.3) is
compact for arbitrary 0 ≤ s < t ≤ T .

Remark 4.2. In Appendix A we exemplarily prove compactness of the transfer operator
for an advection-diffusion-reaction problem as introduced in section 2.

Compactness of the transfer operator guarantees the existence of its SVD via the
Hilbert-Schmidt theorem [44, Theorem 8.94]. Similar to [2, 49, 57] it can then be
shown that the leading left singular vectors of Ts→t span an optimal approximation
space in the local solution space Ht. Here, we use the concept of optimality in the
sense of Kolmogorov [26]: A subspace Hn

t ⊂ Ht of dimension at most n for which
holds dn(Ts→t(L

2(D));Ht) = ‖Ts→t − PHn
t
Ts→t‖ is called an optimal subspace for

dn(Ts→t(L
2(D));Ht), where the Kolmogorov n-width dn(Ts→t(L

2(D));Ht) is defined
as dn(Ts→t(L

2(D));Ht) := infHn
t ⊂Ht; dim(Hn

t )=n ‖Ts→t−PHn
t
Ts→t‖ and PHn

t
denotes the

orthogonal projection onto Hn
t .

Theorem 4.3 (Optimal local approximation spaces in time). Let σ
(i)
s→t ∈ R+ and

ϕ
(i)
s→t ∈ Ht, i = 1, . . . ,∞, denote the singular values and left singular vectors of the

transfer operator Ts→t defined in (4.3). Then the optimal approximation space for
dn(Ts→t(L

2(D));Ht) is given by

Hn
t := span{ϕ(1)

s→t, . . . , ϕ
(n)
s→t}(4.4)

and the Kolmogorov n-width satisfies

dn(Ts→t(L
2(D));Ht)

= sup
ψ∈L2(D)

inf
ζ∈Hn

t

‖Ts→tψ − ζ‖L2(D)

‖ψ‖L2(D)
= ‖Ts→t −PHn

t
Ts→t‖ = σ

(n+1)
s→t .

Proof. The assertion directly follows from the Hilbert-Schmidt theorem [44, Theorem
8.94] and [43, Theorem 2.2 in Chapter 4]. �

Remark 4.4 (Discussion of Theorem 4.3). While a compact transfer operator has
already been used to construct optimal spatially local approximation spaces for elliptic
[2, 32, 57] and parabolic [49] problems, the key new contribution in this paper is the
introduction of a compact transfer operator in time that enables to generate an optimal
ansatz space for the approximation of the solution space at a point of time. Moreover,
we provide, to the best of our knowledge for the first time, a priori error analysis for
the local approximation error in time (cf. also Proposition 5.1). We conjecture that it
is also possible to derive a global error bound by using ideas as employed in [4].

To address non-homogeneous data Floc, we define ufs→t ∈ V|(s,t)×D as the solution
of (4.1) with homogeneous initial conditions at time s. Finally, the optimal local
approximation space at time t is given by

H
n,data
t := span{ϕ(1)

s→t, . . . , ϕ
(n)
s→t, u

f
s→t(t, ·)}.(4.5)

4.2. Approximation of the optimal local approximation spaces in time. In
this subsection we describe how to compute an approximation of the optimal local

space H
n,data
t in (4.5) for the example of the advection-diffusion-reaction problem (cf.

section 2). In the following, we use the notation introduced in section 2 (see e.g. (2.3)).
Assuming that s = ti and t = tj for 0 ≤ i < j ≤ NI − 1 and given a discrete version
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uloc,i ∈ RND of the arbitrary local initial values uloc(s, ·), we compute a local solution
uloc,l ∈ RND at time point tl for l = i+ 1, . . . , j via (cf. (2.4) and (4.1))

uloc,l = (M + ∆TAl)
−1(∆TFl + Muloc,l−1).(4.6)

As the discrete transfer operator Tti→tj acts on the space of local solutions with Fl = 0

(i ≤ l ≤ j), the matrix version Tti→tj ∈ RND×ND of Tti→tj is given by (cf. (4.3))

Tti→tj ξ = [(M+∆TAj)
−1M] [(M+∆TAj−1)−1M] . . . [(M+∆TAi+1)−1M] ξ.(4.7)

Finally, we compute the n leading left singular vectors ϕ
(1)
ti→tj , . . . ,ϕ

(n)
ti→tj ∈ RND of

Tti→tj to approximate the optimal local space Hn
tj (cf. (4.4)) and define

Hn
tj := span{ϕ(1)

ti→tj , . . . , ϕ
(n)
ti→tj},(4.8)

where ϕ
(k)
ti→tj is the FE function corresponding to the coefficient vector ϕ

(k)
ti→tj for

1 ≤ k ≤ n. Consequently, we have that ‖Tti→tj −PHn
tj
Tti→tj‖ = σ

(n+1)
ti→tj (Eckart-Young

theorem e.g. in [21]), where σ
(n+1)
ti→tj is the n + 1-st singular value of Tti→tj (listed in

non-increasing order of magnitude) and PHn
tj

denotes the orthogonal projection onto

Hn
tj (cf. Theorem 4.3). We use the same notation for continuous and discrete singular

values and vectors expecting that the respective meaning is clear from the context.
To address non-homogeneous data Fl (l = i+ 1, . . . , j), we compute the solution of

(4.6) for homogeneous initial conditions uF
loc,i ≡ 0, add the resulting solution uF

loc,j at

time tj to the FE basis, and define Hn,data
tj as the span of the FE functions associated

with the coefficient vectors ϕ
(1)
ti→tj , . . . ,ϕ

(n)
ti→tj ,u

F
loc,j .

Remark 4.5 (Comparison of computational approaches to approximate the optimal
local spaces). In practice, the left singular vectors of Tti→tj can be computed via the

eigenvectors of T>ti→tjTti→tj . A direct computation of the optimal local space would
therefore require to compute the evaluation of local solutions at time tj for all ND
basis functions that span the local solution space at time ti, thus evaluate the transfer
operator ND times, and solve a dense generalized eigenproblem of dimension ND×ND.
As this becomes infeasible for large ND, one would in general use Krylov subspace or
randomized methods for the approximation of the optimal local spaces [6, 23, 37].

In Krylov subspace methods, the application of the transfer operator (4.7) would
be implicitly passed to the eigenvalue solver. To calculate the m leading eigenvectors
of T>ti→tjTti→tj using, for instance, the implicitly restarted Arnoldi method (IRAM)

from [29], O(m) evaluations of Tti→tj and T>ti→tj are required in every iteration. While
Krylov subspace methods can lead to more accurate approximations especially for slowly
decaying singular values, randomized methods have the main advantage that they are
inherently stable and amenable to parallelization [23, 64].

To approximate the space spanned by the m leading left singular vectors of the trans-
fer operator via random sampling as described in subsection 5.1 in more detail, m+ s
evaluations of the transfer operator are required. As randomized methods can outper-
form Krylov subspace methods even in the sequential setting (see, e.g., [6]), they are
thus an appealing choice for the approximation of the optimal local spaces. For a more
in-depth comparison of Krylov subspace and randomized methods, we refer, for instance,
to [23, section 6].
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Remark 4.6 (Computational complexity). The computational complexity of the local
basis construction is clearly dominated by the evaluation of Tti→tj or T>ti→tj and thus
the numerical solution of the local PDE, where we employ a sparse direct solver. For
a standard FE discretization in two or three dimensions the factorizations of (M +

∆TAi+1), . . . , (M + ∆TAj) ∈ RND×ND can be computed in O((j − i)N3/2
D ) or O((j −

i)N2
D) work [21]. After factorizing, the computational complexity for each local solution

trajectory of the PDE is O((j − i)ND log(ND)) or O((j − i)N4/3
D ) [21].

5. Generating reduced ansatz functions in parallel in time

In this section we derive a randomized algorithm that provides an approximation
to the discrete solution of problem (2.1) by exploiting techniques from randomized
NLA [6, 17, 20, 12, 16, 23] (see also motivation in section 3). For this purpose, we
first sketch in subsection 5.1 how a nearly optimal ansatz space for the approximation
of the discrete solution in a single point of time can be generated in an efficient and
parallel manner via random sampling. Subsequently, we present in subsection 5.2 a
randomized algorithm that constructs a reduced basis by performing several simulations
of the PDE for only few time steps in parallel. The local simulations start at different
time points that are randomly drawn from a data-dependent probability distribution
whose choice is discussed in subsection 5.3; random initial conditions are prescribed.
The proposed algorithm thus enables to split and distribute the available computational
budget over the entire time interval, facilitates an embarrassingly parallel computation,
and is therefore well-suited to be used on modern computer architectures.

5.1. Approximating the range of one transfer operator via random sampling.
To motivate the random sampling strategy (cf. [23]), suppose that we want to approxi-
mate the range of a large matrix of rank m. By multiplying the matrix with m random
vectors we draw m random samples from the range of the matrix at high probability.
As these m samples are likely linearly independent thanks to the randomness, they span
the range of the matrix with high probability. In cases where the rank of the matrix is
unknown and to compensate for the fact that any of the drawn random vectors might lie
in the null space of the matrix, we draw a small number s of additional random vectors
to ensure that the resulting m+s samples most likely span the targeted m-dimensional
subspace.

To construct a suitable approximation of the discrete optimal local ansatz space
Hm
tj (4.8), we thus prescribe n = m+ s random initial conditions at the local starting

time point ti < tj , where the coefficient vectors of the corresponding FE functions are
mutually independent normal random vectors r1, . . . , rn ∼ N(0, (A>i Ai)

−1). Recall
that Ai denotes the stiffness matrix corresponding to time point ti (2.3). Moreover,
the oversampling parameter s is typically not greater than 2 or 3 (cf. [23, 6]).

Then, the matrix version of the transfer operator Tti→tj (4.7) is applied to the
random vectors, meaning we solve the PDE locally on the time interval (ti, tj) with
initial conditions given by r1, . . . , rn and evaluate the solutions at the local end time tj .
We highlight that the computation of the n local solutions is embarrassingly parallel.
The space Hn

tj ,rand is then spanned by the n resulting local solutions evaluated at time
tj .
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The following probabilistic a priori error bound shows that the space Hn
tj ,rand yields

an approximation that converges at a nearly optimal rate which is only slightly worse

than the rate σ
(m+1)
ti→tj achieved by the optimal space Hm

tj (cf. subsection 4.2).

Proposition 5.1. (Probabilistic a priori error bound, [6, Proposition 3.2] based on
[23, Theorem 10.6]). Let λM

min and λM
max denote the smallest and largest eigenvalue of

M (cf. (2.3)). Moreover, we denote by σAi
min and σAi

max the smallest and largest singular
value of Ai. Then, for n ≥ 4 it holds that

E(‖Tti→tj − PHn
tj,rand

Tti→tj‖)

≤ σAi
max λ

M
max

σAi
min λ

M
min

min
m+s=n
m≥2,s≥2

[(
1 +

(
m

s− 1

)1/2)
σ

(m+1)
ti→tj +

e
√
n

s

(∑
l>m

(σ
(l)
ti→tj )2

)1/2 ]
.

(5.1)

Proof. By applying the Courant minimax principle the result follows directly from [6,
Proposition 3.2], which is based on [23, Theorem 10.6]. �

As we can hope that the transfer operator has fast decaying singular values, the
square root of the sum of squared singular values in the last term of (5.1) behaves

often roughly as σ
(m+1)
ti→tj . Hence, the error bound in (5.1) decays for increasing n if

the singular values decay faster than n−1/2. This is a valid assumption as the singular
values often decay exponentially as can be seen in the numerical experiments (see, for
instance, Fig. 8). For further details we refer to [6] where methods from randomized
linear algebra [23] have been used to approximate the optimal local approximation
spaces in the elliptic setting.

5.2. Randomized reduced basis generation algorithm. Algorithm 1 summarizes
the embarrassingly parallel randomized basis generation. To provide a good approxima-
tion of the discrete solution of problem (2.1), we propose to randomly choose nrand ∈ N
time points in {t0, . . . , tNI−1} according to the probability distribution p that may be
based on the time-dependent data functions of the PDE (see subsection 5.3 for details
on the choice of p). Recall that the time interval I is discretized via NI ∈ N time points
0 = t0 ≤ ... ≤ tNI−1 = T . To construct suitable ansatz functions in the chosen time
points, we then apply the corresponding transfer operators to random initial conditions
(cf. subsection 5.1) as illustrated in Fig. 4.

In detail, for each starting time point ti, we draw in line 8 a Gaussian random vector
rand u0 ∼ N(0, (A>i Ai)

−1), where Ai is the stiffness matrix introduced in (2.3). In
line 9, we then compute the local solution of the PDE with initial condition rand u0

for the respective local time interval employing the time stepping scheme t steps that
is suitably chosen by the user.

Subsequently, we add the resulting local solution trajectories evaluated at the last
nt − k + 1 (k ≤ nt) time points to the snapshot matrix S in line 10. By choosing the
parameter k smaller than nt, we sample from the ranges of multiple transfer opera-
tors simultaneously (see Fig. 4 for an illustration), which often results in an improved
approximation accuracy as the numerical experiments in section 6 show. For some
guidance on the choice of k and nt we refer to subsection 6.4. Moreover, we highlight
that the computations in lines 7 to 11 are embarrassingly parallel.
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Algorithm 1: Reduced basis generation via random sampling and SVD

1 Function RandomizedReducedBasisGeneration(nrand,nt,k,p,tol):
Input : number of randomly chosen time points nrand, number of time

steps for local PDE simulations nt, starting time step for
collecting snapshots k (≤ nt), (data-dependent) probability
distribution p, time stepping scheme t steps, tolerance tol

Output: reduced basis Ured chosen according to tolerance tol

2 rand ints← draw nrand integers in {0, . . . , NI − 1} according to p

3 if rand ints[i] ≤ nt then
4 remove entry rand ints[i] from rand ints

5 endpoints← timegrid[rand ints], startpoints← timegrid[rand ints− nt]

// initialize snapshot matrix

6 S← ∅
7 for i = 1, . . . ,#startpoints do

// draw random initial condition

8 rand u0 ← Gaussian(size = ND)

// solve locally and store solution at time steps k to nt

9 snapshots← t steps(startpoints[i],endpoints[i],nt,rand u0)[:, k :nt]

10 S← [S, snapshots]

// add representation of u0 for first nt time steps

11 snapshots u0 ← t steps(0, timegrid[nt],nt,u0)

12 S← [S, snapshots u0]

// compute SVD of collected snapshots and cut using tol

13 Ured, , ← svd(S, tol)

0 t1 t2 t3 t4 t5 t6

Tt1→t2rand u0 Tt3→t4rand u0 Tt5→t6rand u0

0 k nt
randomly chosen time points

Figure 4. Evaluation of multiple transfer operators at randomly chosen points in time for random
initial conditions. Sketch of parameters k and nt in Algorithm 1.

As the local PDEs are solved for nt(� NI) time steps, we discard any chosen time
point smaller than or equal to tnt in line 4 and add the evolution of the initial conditions
u0 for the first nt time steps to the snapshot matrix in line 12.

Finally, we compress all collected snapshots via an SVD in line 13 to construct the
reduced approximation space.

Remark 5.2 (Choice of nrand). In Algorithm 1 the user determines the number of
random initial conditions nrand a priori, for instance, based on the knowledge that
the employed computer architecture provides nrand parallel compute units. While we
compress the snapshot matrix via an SVD, which is advantageous in cases where no
error estimator is available or is very costly to evaluate, we conjecture that it might
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also be possible to develop an adaptive randomized algorithm that adaptively augments
the reduced basis relying on a probabilistic a posteriori error estimator.

Remark 5.3 (Number of random initial conditions per time point). In lines 8-9 of
Algorithm 1 we propose to draw one random initial condition and thus compute one
local basis function per chosen time point. In light of the probabilistic a priori error
bound (5.1), we conjecture that for transfer operators with fast decaying singular values
this is sufficient in order to obtain a good approximation accuracy and we also observe
this in the numerical experiments at least for the considered test cases.

However, for transfer operators with more slowly decaying singular values, we suggest
to draw multiple random initial conditions per chosen time point to enhance the quality
of the approximation. In that case, the computation in line 9 has to be split into
(multiply) solving for random initial conditions and homogeneous right-hand side and
(once) solving for homogeneous initial conditions and right-hand side.

Remark 5.4 (Computational complexity of Algorithm 1). Assuming that we em-
ploy the discretization introduced in section 2 and subsection 4.2, the complexity for
computing the nrand + 1 solution trajectories in lines 9 and 11 of Algorithm 1 is

O((nrand + 1)nt (N
3/2
D + ND log(ND))) in two or O((nrand + 1)nt (N2

D + N
4/3
D )) in

three spatial dimensions (cf. Remark 4.6). We highlight that the computations in lines
9 and 11 are embarrassingly parallel as the local solution trajectories can be computed
completely independently from each other. Algorithm 1 is thus well-suited to be used
on modern computer architectures allowing for many parallel computations.

Moreover, the computational complexity for compressing the collected snapshots via
an SVD in line 13 is O(((nt−k+1)nrand +nt)N

2
D). Alternatively, we can approximate

the SVD of S via a randomized SVD [23]. For details on the computational complexity
of assembling the probability distribution p we refer to subsection 5.3.

5.3. Choice of probability distribution. In this subsection we discuss how to choose
the probability distribution p that is used in Algorithm 1 for sampling points in time. As
the behavior of the solution in time is influenced by the (time-dependent) data functions
of the PDE, we guide the time point selection by the behavior of the data functions
in time. To this end, we represent the time-dependent data functions as matrices,
where each column corresponds to one time point and employ column subset selection
techniques from randomized NLA [12, 16]. In detail, we focus on the following standard
sampling strategies: uniform, squared norm, and leverage score sampling. While these
methods are often used to construct low-rank matrix decompositions (cf., e.g., [34]),
we exploit them, as a key new contribution, for the purpose of time point selection.

In the following, we assume that the matrix B ∈ RND×NI represents the time-
dependent data encoded in A or F (for instance, a coefficient function or source terms
and boundary data that vary in time). In case of a time-dependent coefficient function,
one option is to choose the entries of B equal to the value of the function in the
respective space-time nodes. For a time-dependent F, one could set the columns of B
equal to the right-hand side vectors Fl for 0 ≤ l ≤ NI − 1 (cf. (2.3)).

Next, we present the probability distributions (see, e.g., [12, 16] for an overview).
Uniform sampling. In the case of uniform sampling, we sample a point of time

ti with probability pi = 1/NI for i = 0, . . . , NI − 1, where NI denotes the number of
time points determined by the partition 0 = t0 ≤ ... ≤ tNI−1 = T of the time interval
I. The computational costs for constructing the probability distribution are zero.
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Squared norm sampling. If we employ squared norm sampling [20], we select a
point of time ti ∈ {t0, . . . , tNI−1} with probability pi = ‖B[:, i]‖22/‖B‖2F , where ‖ · ‖2F
denotes the Frobenius norm and B[:, i] is the i-th column of B. The computation of
the probabilities pi can be carried out in parallel and its complexity scales linearly in
the number of non-zero entries of B, e.g. for a dense matrix B the computational
complexity is O(NIND).

Leverage score sampling. The leverage score sampling approach [17] captures the
statistical leverage of the columns of B on its best rank-r approximation and preferably
chooses columns which have a large influence on the best rank-r fit of B [34]. To this
end, one computes the leading r right singular vectors v1, . . . ,vr of B and selects a
column i of B (a time point ti ∈ {t0, . . . , tNI−1}) with probability pi = 1/r

∑r
j=1 vj [i]

2,

where vj [i] is the i-th entry of vj . The complexity for computing the SVD of B is
O(rNIND). Alternatively, we can approximate the SVD of B via a randomized SVD
[23].

5.3.1. Discussion and comparison of probability distributions. In the following, we dis-
cuss and compare the probability distributions introduced in subsection 5.3 with respect
to their capability of detecting relevant time points of (heterogeneous) time-dependent
data functions and computational costs. For a more general comparison, we refer to
[16].

As no data-dependent information is incorporated, the uniform sampling approach
might not detect relevant problem-specific features in time unless a large number of
time points is drawn and can thus lead to poor results. For instance, a data matrix B
with only one non-zero column would require to draw O(NI) columns (time points) in
order to detect the non-zero data at the single point in time with high probability. In
contrast to uniform sampling, there exist error bounds for both the squared norm and
the leverage score sampling approach (cf. Appendix B).

As illustrated for two different time-dependent data functions2 in Fig. 5, we can infer
that the squared norm sampling approach might not detect parts of the data that has
values on smaller scales or smaller temporal scales. In contrast, the leverage scores
weight the heterogeneous parts of the data equally with the same expectation. As a
result, the leverage score sampling approach more likely detects all dominant features
of the heterogeneous data and might lead to a better approximation accuracy than the
squared norm approach. Moreover, as can be expected from the definition of leverage
scores, we observe from numerical experiments not included in this paper that leverage
scores are capable of detecting repetitions in the data functions.

Nevertheless, the costs for computing the rank-r leverage scores are r times the
costs of computing the squared norm sampling distribution (for a dense matrix B).
To reduce the computational complexity, one could employ a randomized SVD and
parallelize computations. However, this potentially still leads to costs that are not
negligible compared to the uniform and squared norm sampling approach.

Consequently, uniform (and squared norm) sampling can be advantageous compared
to leverage score sampling if many parallel compute units are available and the data
is, for instance, spread relatively uniform over the whole time interval. In that case,

2To ensure reproducibility, the data functions and discretization parameters for Example 1 are

listed in Appendix C.
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Figure 5. Example 1: Rank-2 leverage score (LS) and squared norm (SN) probability distributions

for two (spatially disjoint) signals with different values (a) or different temporal scales (b). Values of
LS and SN are scaled with a factor of 400 (a) or 15 (LS) and 100 (SN) (b).

drawing a large number of time points will likely yield a good approximation accuracy
without having to compute (or approximate) the SVD of a large matrix.

5.3.2. Sampling from multiple probability distributions. If both A and F encode time-
dependent data due to, for instance, a coefficient function and source terms that vary
in time, one might want to include both data matrices BA and BF in the time point
selection process.

To this end, one option is to attach BA to BF and sample from the probability
distribution computed from [BABF] ∈ RND×2NI . However, if the data encoded in F,
for instance, has values on smaller scales compared to A (due to, e.g., high conductivity
channels), employing the squared norm sampling approach one might sample solely
from the part of the probability distribution that is associated with A and neglect
the information encoded in F (cf. Fig. 5 and the discussion in subsection 5.3.1). As
leverage score sampling is based on the SVD of [BABF], the approach more likely
detects the dominant modes encoded in both A and F. Nevertheless, computing the
SVD of the large matrix [BABF] ∈ RND×2NI is more costly than computing the SVDs
of BA ∈ RND×NI and BF ∈ RND×NI separately. Therefore, we propose to assemble
the probability distributions associated with BA and BF separately and draw from
both distributions simultaneously. Moreover, we note that in certain cases it might be
necessary to also sample from data functions that are constant in time to achieve a good
quality of approximation (e.g. in case of a constant advection field, cf. Experiment 3
in subsection 6.2).

6. Numerical experiments

In this section we demonstrate the excellent approximation properties of the reduced
basis generated via Algorithm 1. In subsections 6.1 and 6.2 we first comprehensively
test how the results depend on various parameters such as the number of chosen time
points nrand, the local oversampling size nt, the number of collected snapshots for the
SVD determined via k, or the probability distribution for drawing points in time. For
this purpose, we consider both the linear heat equation and an advection-diffusion
problem for time-dependent source terms. In particular, we demonstrate that the
proposed method is able to tackle higher values of advection. Subsequently, we show
in subsection 6.3 that the randomized approach is well capable of approximating a
problem with a time-dependent permeability coefficient that is rough with respect to
both space and time using real-world data taken from the SPE10 benchmark problem
[9]. Moreover, we demonstrate in subsections 6.2 and 6.3 how to sample from multiple
probability distributions simultaneously.
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Figure 7. Example 2: Quantiles of relative L2(I,H1(D))-error for nt = 15, k = 13, tol = 10−8,

and 100.000 realizations for varying numbers of nrand (left) or nrand = 10 and 1, 2, or 3 random
initial conditions (i.c.) per time point (right). Here, S indicates that local computations are performed

separately for right-hand side and initial conditions (cf. Remark 5.3).

For the experiments, we employ the discretization introduced in section 2, use Algo-
rithm 1 to generate the randomized reduced basis, and construct the reduced approx-
imation via Galerkin projection as described in section 2. Hence, in what follows the
term error always refers to the error between the solution of (2.4) and its reduced ap-
proximation determined by solving the reduced problem (2.5). Moreover, we prescribe
homogeneous Dirichlet boundary conditions on I ×ΣD in all experiments. The source
code to reproduce all results shown in this section is provided in [48].

6.1. Stove problem. In this subsection, we consider the heat equation ((2.2) with b ≡
c ≡ 0) and investigate the following numerical experiment, which we refer to as Example
2: We choose I = (0, 10), D = (0, 1)2, ΣN = ∅, and discretize the spatial domain D
with a regular quadrilateral mesh with mesh size 1/100 in both directions. For the
implicit Euler method, we use an equidistant time step size of 1/30. Furthermore, we

choose the initial condition u0(x, y) =
∑3
i=1 sin(iπx) sin(iπy), the coefficient κ ≡ 1,

and the source term f(t, x, y) =
∑3
i=1 fi(t)fi(x, y) involving three spatially disjoint

heat sources (stoves) that are turned on and off in time as illustrated in Fig. 6 (left
and middle). Fig. 6 (right) shows the rank-3 leverage score probability distribution
computed from the right-hand side matrix F, whose columns are the right hand-side
vectors Fl for l = 0, . . . , 300 (2.3). Unless stated otherwise, we use the rank-3 leverage
score probability distribution to draw time points in Algorithm 1 for this example.

First, we investigate the influence of the number of drawn time points nrand on the
approximation accuracy of the reduced basis. As the rank of the right-hand side is
three, we choose nrand ≥ 3. In Fig. 7 (left) we observe that for nrand = 3 in 50% of
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Figure 8. Example 2: Singular value decay of transfer operator Tti→ti+15/30 (0 ≤ i ≤ 285) and quan-

tiles of projection error ‖Tti→ti+0.5−PHn
ti+0.5,rand

Tti→ti+0.5‖ over basis size n for 2.000 realizations.

cases the error is of the order of 10−1 and only in 5% of cases the error is below 10−5,
while for nrand = 8 or nrand = 10 in 90% or 97% of cases the error is below 10−5. We
thus infer that only a small amount of oversampling is necessary to detect all three
stoves with high probability. If we choose nrand > 10 we see in Fig. 7 (left) that the
approximation accuracy still slightly improves compared to smaller nrand. Nevertheless,
we recall that also the computational costs increase with increasing nrand. For the
following tests in this subsection we therefore choose nrand = 10 as a good trade-off
between approximation accuracy and computational costs.

Next, we test how the approximation accuracy depends on the number of random
initial conditions per drawn time point. We observe that for S1-S3 99% of the realiza-
tions yield an approximation with a relative L2(I,H1(D))-error below 10−6 and the
approximation accuracy does not improve if we choose more than one random initial
condition. This can be traced back to the very fast, exponential decay of the singular
values of the transfer operator shown in Fig. 8 (cf. Proposition 5.1). If we draw only
one random initial condition per chosen time point and do not separate the local com-
putation for right-hand side and random initial condition, we observe in Fig. 7 (right)
that 97% of the realizations yield an approximation with a relative L2(I,H1(D))-error
below 10−5. As the approximation accuracy is thus very good and the costs for comput-
ing local solutions are only half as much as in the separated approach (S1), we choose
to not separate local computations for right-hand side and random initial condition in
all other tests in this subsection.

We observe in Fig. 8 that while the randomized spaces often provide an approxima-

tion that converges nearly with the optimal rate σ
(n+1)
ti→ti+0.5, in some cases two or three

basis vectors more are needed to guarantee the same approximation accuracy. This is
in line with the predictions by theory (cf. Proposition 5.1).

Moreover, we investigate how the number of collected snapshots determined via the
parameter k influences the approximation accuracy of the reduced basis. In Fig. 9 (left)
we observe that the approximation quality significantly improves if we collect not only
solution snapshots at local end time points (k = 15), but at the (locally) last two or
three time points (k = 14 or k = 13) as, for instance, 75% of realizations have a relative
L2(I,H1(D))-error below 10−5 for k = 15, while for k = 14 or k = 13 already 90% or
97% of realizations have a relative L2(I,H1(D))-error below 10−5. Fig. 10 illustrates
an explanation for this phenomenon. In the particular realization only time points
in the first and last stove are drawn from the probability distribution. However, by
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Figure 9. Example 2: Quantiles of relative L2(I,H1(D))-error for nt = 15, varying numbers of
k, nrand = 10, tol = 10−8, and 100.000 realizations (left). Quantiles of relative L2(I,H1(D))-error

(middle) and reduced dimension (right) for varying numbers of nt, k = nt−2, nrand = 10, tol = 10−8,

and 100.000 realizations.

0 2 4 6 8 10

10

20

t

f1(t)

f2(t)

f3(t)

chosen points

0 2 4 6 8 10
10−10

10−8

10−6

10−4

10−2

tre
la

ti
v
e
L
2
(t

)-
er

ro
r

k = 15

k = 13

Figure 10. Example 2: nrand = 10 randomly chosen points (left) and relative L2(t)-error of corre-

sponding reduced approximation for nt = 15, tol = 10−8 and k = 15 vs. k = 13 (right).

choosing k = 13 we include a solution snapshot that also detects the second stove and
can thus significantly decrease the error in the time interval (3, 7) for this particular
realization compared to k = 15 as shown in Fig. 10 (right). For k = 12 or k = 11
we observe in Fig. 9 (left) only very slight improvements in the approximation quality
compared to k = 13. We therefore choose k = nt−2 in all other tests in this subsection
as a trade-off between approximation quality and size of the snapshot matrix and thus
computational costs for its SVD.

Subsequently, we test how the approximation accuracy depends on the local over-
sampling size nt. For all tested oversampling sizes, and in particular already for a small
oversampling size of nt = 10, we observe in Fig. 9 (middle) that 97% of realizations
have a relative L2(I,H1(D))-error below 10−5 (98% for nt = 20 and nt = 25). Never-
theless, we see in Fig. 9 (right) that for nt = 10 the reduced basis is significantly larger
compared to nt = 15 (20, 25) as, for instance, in 95% of cases the reduced dimension
is larger than or equal to 20 for nt = 10, while for nt = 15, 20, 25 it is smaller than
or equal to 15 in 95% of cases. This can be explained by the fact that for smaller nt

the randomness of the initial conditions has a larger influence compared to larger nt

due to the exponential decay behavior of (local) solutions in time. In Fig. 9 (middle)
we observe that for nt = 20 or nt = 25 the quality of approximation slightly improves
compared to nt = 15, but we recall that also the computational costs increase with
increasing nt. For all other tests in this subsection we therefore choose nt = 15 as
a good trade-off between approximation quality, computational costs, and size of the
reduced basis.
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Figure 11. Example 2: Quantiles of relative L2(I,H1(D))-error for nrand = 10, nt = 15, k =

13, tol = 10−8, 100.000 realizations, and uniform (U), squared norm (SN), or leverage score (LS)
probability distribution.
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Figure 12. Example 2: 5, 50, and 95% quantiles of relative L2(t)-error for nrand = 10, nt = 15, k = 13,

tol = 10−8, 100.000 realizations, and leverage score (LS) or uniform (U) probability distribution vs.

relative L2(t)-error for POD on solution trajectory of first 165 of 300 time steps with tolerance 10−8

(POD).

Next, we investigate how the choice of the probability distribution influences the
approximation accuracy for the considered test case. To this end, we employ either
the uniform, squared norm, or leverage score probability distribution as introduced
in subsection 5.3 for drawing time points in Algorithm 1. Both squared norms and
leverage scores are computed from the right-hand side matrix F. In Fig. 11 we ob-
serve that the squared norm and the leverage score probability distribution yield a
comparably good approximation quality and in both cases 97% of realizations have a
relative L2(I,H1(D))-error below 10−5. The uniform sampling approach also achieves
a good approximation quality as, for instance, 95% (90%) of realizations have a rel-
ative L2(I,H1(D))-error below 10−4 (10−5). Therefore, the results shown in Fig. 11
indicate that for data that is spread over almost the whole time interval, aside from
the leverage scores, the uniform or squared norm sampling approach can also lead to
very good approximation results. Especially if the computer architecture allows for
many parallel computations, one can thus save expenses for computing an SVD of a
potentially large data matrix and instead draw a large number of time points from the
uniform (or squared norm) probability distribution as discussed in subsection 5.3.1.

As the POD is a well-established tool for compressing and reducing time trajectories,
we compare in Fig. 12 quantiles of the relative L2(t)-approximation error for both the
uniform and the leverage score sampling approach with the relative L2(t)-error of the
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Figure 13. Example 3a: Singular value decay of transfer operator Tti→ti+0.1 (0 ≤ i ≤ 491) for

different values of advection in x-direction and a constant diffusion of 1.

initial conditions at time point ti

solution at time point ti + 0.1 for a = 0

solution at time point ti + 0.1 for a = 100

Figure 14. Example 3a: Local solutions for different initial conditions and advection a = 0 vs.

a = 100.

approximation via POD on the solution trajectory of the first 165 of 300 time steps.
In this way, we compare the standard POD approach with the randomized approach
based on the same computational budget of (nrand + 1) · nt = (10 + 1) · 15 = 165
time steps. While we also have to compute the SVD of the solution trajectory for the
POD and the SVD of the data matrix for the leverage score sampling approach, we
here focus on equaling the budget based on the time stepping, which likely dominates
the computational costs in complex applications. We observe in Fig. 12 that the POD
approach, in contrast to the randomized approach in at least 95% of cases, is not able
to detect the third stove and thus yields a much larger relative approximation error in
the time interval (6, 9) compared to both the uniform and the leverage score sampling
approach. Moreover, in the randomized approach the local PDE simulations can be
performed in parallel, while for the POD the first 165 time instances of the solution
trajectory have to be computed sequentially.

6.2. Advection-diffusion problem. Here, we consider an advection-diffusion prob-
lem ((2.2) with c ≡ 0) and first investigate the following numerical experiment, which
we refer to as Example 3a: We choose I = (0, 5), D = (0, 1) × (0, 0.3), ΣN = ∅, and
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Figure 15. Example 3b: Solution evaluated at different points in time. The shades in the middle and

right part of the spatial domain at time point t = 0.5 are the vanishing initial conditions.
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Figure 16. Example 3b: Source term f(t, x, y) = f(t)f(x, y) and corresponding rank-1 leverage score
probability distribution (identical to squared norms). Gray equates to 0, green equates to 1 (left).

discretize the spatial domain D with a regular quadrilateral mesh with mesh size 1/300
in both directions. For the implicit Euler method, we use an equidistant time step
size of 1/100. Furthermore, we consider the advection field b = (b1, 0)> for varying
constants b1 ∈ {0, 10, 25, 50, 100} and choose the conductivity coefficient κ ≡ 1. First,
we observe in Fig. 13 a very fast, exponential decay of the singular values of the transfer
operators mapping arbitrary initial conditions at time point ti to the local solution at
time point ti + 0.1. Moreover, we see that the singular values are smaller for higher
values of advection. This can be traced back to the fact that for a higher value of
advection (i.e. b1 = 100) initial conditions at time ti move quickly in x-direction and
the corresponding local solutions at time ti + 0.1 have support only in the right half
of the spatial domain close to the right boundary, see Fig. 14 (bottom). In contrast,
the plots in Fig. 14 (middle) show that in the absence of advection (i.e. b1 = 0) the
local solutions corresponding to different initial conditions differ more from each other
compared to the case b1 = 100 and spread over the whole spatial domain. We can thus
infer for this test case that the range of the transfer operator (i.e. the local solution
space at a point of time) is extremely low-dimensional for higher values of advection
and therefore well amenable to approximation.

Next, we consider an advection-diffusion problem with a solution that is constantly
moving in time as shown in Fig. 15, which we refer to as Example 3b. We choose
I, D, ΣN , and the discretization as in Example 3a. Moreover, we choose the advec-
tion field b = (0.3, 0)>, the conductivity coefficient κ = 0.01, the initial condition

u0(x, y) =
∑3
i=1 sin(iπx) sin(iπy), and the source term f(t, x, y) = f(t)f(x, y) as de-

picted in Fig. 16 (left). For drawing time points in Algorithm 1, we use the rank-1
leverage score probability distribution (see Fig. 16 (right)) computed from the right-
hand side matrix F, whose columns are the right hand-side vectors Fl for l = 0, . . . , 500
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Figure 17. Example 3b: Singular value decay of transfer operators Tti→ti+0.15, 0 ≤ i ≤ 486,

Tti→ti+0.3, 0 ≤ i ≤ 471, and Tti→ti+0.45, 0 ≤ i ≤ 466, (left). Quantiles of relative L2(I,H1(D))-error

for varying numbers of nt, k = nt − 6, nrhs
rand = 10, nadvec

rand = 20, tol = 10−8, and 10.000 realizations

(right). Singular values decay slower due to lower diffusion compared to Example 2, 3a, and 4.

(2.3). We emphasize that the latter distribution is identical to the squared norm prob-
ability distribution for this test case. As the solution is constantly moving in time (cf.
Fig. 15), we additionally sample uniformly from the global time grid to capture the
global advection in time. We denote the number of chosen time points by nrhs

rand and
nadvec

rand , respectively.
First, we observe in Fig. 17 (left) that the singular values of the transfer operator

decay exponentially, but more slowly compared to Example 2, 3a, and 4. This is mainly
due to the lower diffusion compared to Example 2, 3a, and 4, which results in a slower
propagation of (local) solutions in time. However, we see that the singular values
decrease faster with an increasing local oversampling size and also observe in Fig. 17
(right) that the approximation accuracy increases with increasing nt: While for nt = 15
95% of realizations yield an approximation with a relative L2(I,H1(D))-error above
10−2, for nt = 30 or nt = 45 already 99% of realizations have a relative error below
10−3 or 2 · 10−4. For all other tests in this subsection we therefore choose nt = 30 as a
good trade-off between approximation quality and computational costs.

Next, we investigate how the approximation accuracy is influenced by the number
of time points selected from the uniform sampling distribution and how many samples
are required in order to sufficiently capture the advection in the global problem. In
Fig. 18 (left) we see that for nadvec

rand = 0 or nadvec
rand = 5 in 95% of cases the relative

L2(I,H1(D))-error is above 2 · 10−2 or 7 · 10−3, while for nadvec
rand = 20 the relative error

is already below 10−3 in 99% of cases. If we choose nt > 20 we see in Fig. 18 (left)
that the approximation accuracy still slightly improves compared to smaller nadvec

rand . We
therefore choose nadvec

rand = 20 in all other tests in this subsection.
Finally, we test how the approximation accuracy depends on the number of collected

snapshots determined via k. In Fig. 18 (right) we observe that the approximation
quality significantly improves if we collect not only solution snapshots at local end time
points (k = 30), but at the (locally) last three, five, or seven time points (k = 28, 26, 24)
as, for instance, for k = 30 all realizations have a relative L2(I,H1(D))-error above
3 · 10−2, while for k = 28 or k = 24 already 99% of realizations have a relative error
below 4 · 10−3 or 10−3. This can be explained by the fact that by choosing a smaller k
the propagation of the solution can be captured more accurately. For k = 22 or k = 20
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Figure 18. Example 3b: Quantiles of relative L2(I,H1(D))-error for varying numbers of nadvec
rand ,

nt = 30, k = 24, nrhs
rand = 10, tol = 10−8, and 10.000 realizations (left). Quantiles of relative

L2(I,H1(D))-error for nt = 30, varying numbers of k, nrhs
rand = 10, nadvec

rand = 20, tol = 10−8, and

10.000 realizations (right).

we observe in Fig. 18 (right) only very slight improvements in the approximation quality
compared to k = 24. We therefore choose k = nt−6 in all other tests in this subsection.

The computational costs of the randomized approach exceed the costs of the POD
for this particular test case. However, we highlight that the computation of the local
solution trajectories in Algorithm 1 is embarrassingly parallel while for the POD the
global solution trajectory has to be computed in a sequential manner. Depending on
the employed computer architecture the randomized approach can thus still lead to a
significant speed-up compared to the standard POD approach.

6.3. Problem with a time-dependent permeability coefficient. In this subsec-
tion we consider a numerical experiment including the real-world permeability coeffi-
cient κ0 taken from the SPE10 benchmark problem [9], see Fig. 19. We refer to this
experiment as Example 4. In Fig. 19 we observe that the solution trajectory of the prob-
lem is quite complex due to different configurations and combinations of permeability
and inflow into the domain depicted in Fig. 20.

In detail, we consider the heat equation ((2.2) with b ≡ c ≡ 0), choose I = (0, 10)
and D = (0, 2.2)× (0, 0.6) with Dirichlet and Neumann boundary as shown in Fig. 20
(left) and discretize the spatial domain D with a regular quadrilateral mesh with mesh
size 1/100 in both directions. For the implicit Euler method, we use an equidistant
time step size of 1/50. We impose Neumann boundary conditions gN (t, x, y) = gN (t)
for (x, y) ∈ (0.4, 1.8) × {0.6} modeling a time-dependent inflow as depicted in Fig. 20
(middle) and gN = 0 elsewhere in I × ΣN . The permeability coefficient κ(t, x, y) =
κ0(x, y) + κ1(t) · κ1(x, y) + κ2(t) · κ2(x, y) is given by a sum of the permeability field
κ0 from [9] shown in Fig. 19 (top, left) and high conductivity channels κ1 and κ2 that
are turned on and off in time as depicted in Fig. 20 (middle). Moreover, the initial
conditions are given by u0(x, y) = 1 for (x, y) ∈ (0.5, 0.7) × (0.3, 0.4) and u0(x, y) = 0
else. As both the permeability κ and the inflow gN vary in time, we sample from two
probability distributions simultaneously to draw time points in Algorithm 1 (cf. the
discussion in subsection 5.3.2). For this purpose, we employ the rank-3 leverage score
probability distribution computed from the matrix, whose columns contain the values
of κ(tl, ·, ·) for all spatial elements at time point tl for l = 0, . . . , 500. In addition, we use
the rank-1 leverage score probability distribution computed from the right hand-side
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Figure 19. Example 4: Permeability field κ0 from [9] and solution evaluated at different points in

time, plotted in logarithmic values to the base of 10.
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Figure 20. Example 4: Dirichlet and Neumann boundary ΣD, ΣN (left), high conductivity chan-

nels κ1(t) · κ1(x, y) + κ2(t) · κ2(x, y), and Neumann boundary data gN (t, x, y) = gN (t) for (x, y) ∈
(0.4, 1.8) × {0.6}, gN (t, x, y) = 0 else (middle). Dark gray equates to 103, light gray to 0. Rank-1 ´
(LS) associated with gN and rank-3 LS corresponding to κ = κ0 + κ1 + κ2 (right).

matrix F, whose columns are the right hand-side vectors Fl for l = 0, . . . , 500 (2.3).
Both distributions are depicted in Fig. 20 (right).

First, we test how the approximation accuracy depends on the local oversampling
size nt. For all tested sizes of nt, and especially for a small oversampling size of nt = 10,
we observe in Fig. 21 (left) that in 88% of cases the relative L2(I,H1(D))-error is below
2 ·10−2 and the algorithm succeeds in detecting all different configurations of the time-
dependent data functions and thus all different shapes of the solution. Nevertheless,
as already observed for Example 2, we see in Fig. 21 (middle) that for nt = 10 the
reduced basis is significantly larger compared to nt = 15 (20, 25) as, for instance, in
95% of cases the reduced dimension is larger than or equal to 59 for nt = 10, while for
nt = 15 (20, 25) it is smaller than or equal to 50 (41, 36) in 95% of cases. The results
thus confirm the findings from subsection 6.1 for this test case and in the following we
choose nt = 15.

Next, we compare the relative L2(t)-approximation error for one realization of Al-
gorithm 1 with the relative L2(t)-error of the approximation via POD on the solu-
tion trajectory of the first 315 of 500 time steps. As already motivated in subsec-
tion 6.1, we focus on equaling the computational budget based on the time stepping
((nrand +1) ·nt = (20+1) ·15 = 315). In Fig. 21 (right) we observe that the POD yields
a much larger error in the time interval (8, 10) compared to the randomized approach
and is not able to detect the high conductivity channel κ2. The randomized approach
thus outperforms the POD for this test case even in the sequential setting.

As we observe that the singular values of the transfer operators do not decay as fast
as in case of Example 2, see Fig. 22 (left) (and cf. Fig. 8 (right) and the discussion in
subsection 6.1), we investigate how the approximation quality depends on the number
of random initial conditions per chosen time point. In Fig. 22 (right) we see that the
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Figure 21. Example 4: Quantiles of relative L2(I,H1(D))-error (left) and reduced dimension (middle)

for varying numbers of nt, k = nt − 2, nrand = 20 (10 + 10), tol = 10−8, and 25.000 realizations.
Relative L2(t)-error for one realization of Algorithm 1 for nt = 15 (random) vs. POD on solution

trajectory of first 315 of 500 time steps with tolerance 10−8 (POD) (right).

5 15 25 35

10−9

10−7

10−5

10−3

n

σ
(n+1)
2→2.3

σ
(n+1)
2.8→3.1

σ
(n+1)
9→9.3

1 S1 S2 S3 S4 S5 S1∗

10−6

10−4

10−2

number of i.c.

re
la

ti
v
e
L
2
(H

1
)-

er
ro

r

1 S1 S2 S3 S4 S5 S1∗

10−3

10−2

number of i.c.

max

97

88

75

60

50

40

25

5

min

Figure 22. Example 4: Singular values of transfer operators (left). Quantiles of relative L2(I,H1(D))-
error for nt = 15, k = 13, nrand = 20 (10 + 10), tol = 10−8, 25.000 realizations, and 1 − 5 random

initial conditions (i.c.) per time point (right). S indicates that local computations are performed

separately for right-hand side and initial conditions, ∗ indicates that nrand = 30 (15 + 15).

accuracy of the approximation improves if we choose two (S2) instead of one (1, S1)
random initial condition per drawn time point. For three or more random initial condi-
tions (S3-S5), the approximation accuracy is at a comparable level with S2. Moreover,
we can alternatively improve the approximation quality for this test case by increasing
the number of drawn time points nrand. If we employ the same computational budget
as for S2, but drawn only one random initial condition for 30 instead of 20 drawn time
points (S1∗), we observe that in 97% of cases the relative L2(I,H1(D))-error is below
2 · 10−2. Using the same computational budget we thus achieve that the algorithm
succeeds to detect all different configurations of the time-dependent data functions in
97% instead of 88% of cases.

6.4. Choice of parameters in Algorithm 1. Based on the experiments above we
give the following guidance on how to choose the parameters nt, k, and nrand: An
appropriate choice for the local oversampling size nt seems to be 10−15, while for nt =
10 the resulting reduced basis is larger compared to nt = 15 and the user can balance
computational costs depending on the respective application. In case of coefficients
implying a slow spreading or propagation of the solution, a larger nt, for instance,
nt = 30, might be more favorable. In addition, we propose k = nt − 2 as a reasonable
choice for diffusion problems, while for advection-dominated problems a smaller k, such
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as k = nt − 6, is more favorable. The choice of drawn time points nrand can be based
on the number of available parallel compute units. Moreover, in certain cases it is
necessary to also sample from data functions that are constant in time (e.g. a constant
advection field) to achieve a good approximation accuracy.

7. Conclusions

To tackle time-dependent problems with heterogeneous time-dependent coefficients,
we have proposed a randomized algorithm that constructs a reduced approximation
space in time by solving several local problems in time in parallel. Based on techniques
from randomized NLA [12, 16, 23] points in time are drawn from a data-driven prob-
ability distribution and the PDE is solved locally in time using these points as end
points with random initial conditions. The approach allows for local error control [6]
and the computation of the local basis functions is embarrassingly parallel.

The numerical experiments demonstrate that the proposed algorithm can outperform
the POD even in the sequential setting for complex problems with heterogeneous time-
dependent data functions and is also well capable of tackling higher values of advection.
Moreover, we have observed that leverage scores are capable of detecting multiscale
features in the data functions.

Appendix A. Compactness of the transfer operator in time for the
advection-diffusion-reaction problem

In this section we prove a Caccioppoli inequality and compactness of the transfer
operator in time (cf. (4.3)) for the advection-diffusion-reaction problem (2.2) intro-
duced in section 2. The Caccioppoli inequality in Proposition A.1 is closely linked to
the exponential decay behavior of solutions of the PDE in time (cf. the discussion
in section 3) and allows to bound the L2(D)-norm of solutions evaluated at a point
of time in terms of their L2(I, L2(D))-norm. The second key ingredient that we use
to prove compactness of the transfer operator in time in Proposition A.2 is the com-
pactness theorem of Aubin-Lions [55, Corollary 5], which states that the embedding{
v ∈ L2(I,H1

0 (D)) | vt ∈ L2(I,H−1(D))
}
↪→ L2(I, L2(D)) is compact. The combina-

tion of a Caccioppoli-type inequality with a suitable compactness theorem is usually
used to show compactness of the transfer operator; see also [2, 32, 49, 57, 58].

We may consider the following weak formulation (for a proof of well-posedness see,
e.g., [63, 53]): Find the solution u ∈ W 1,2,2(I,H1

0 (D), H−1(D)) := {v ∈ L2(I,H1
0 (D)) |

vt ∈ L2(I,H−1(D))} such that u(0) = u0 in L2(D) and∫
I

〈ut(t), ψ(t)〉H1
0 (D)dt+

∫
I

(κ(t)∇u(t),∇ψ(t))L2(D)dt+

∫
I

(b(t) · ∇u(t), ψ(t))L2(D)dt

+

∫
I

(c(t)u(t), ψ(t))L2(D)dt =

∫
I

〈f(t), ψ(t)〉H1
0 (D)dt ∀ψ ∈ L2(I,H1

0 (D)).

The data functions are introduced in section 2. In particular, the source terms
and initial conditions are given by f ∈ L2(I,H−1(D)) and u0 ∈ L2(D). To simplify
notations, we assume homogeneous Dirichlet boundary conditions on I×∂D. However,
the theory analogously applies to non-homogeneous Dirichlet boundary conditions.
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We highlight that the embedding W 1,2,2(I,H1
0 (D), H−1(D)) ↪→ C0(Ī , L2(D)) is not

compact unless additional regularity is assumed. In fact, the space

W 1,∞,r(I,H1
0 (D), H−1(D)) :=

{
v ∈ L∞(I,H1

0 (D)) | vt ∈ Lr(I,H−1(D))
}

embeds compactly in C0(Ī , L2(D)) for r > 1 [55, Corollary 5]. In contrast, we prove
compactness in Appendix A requiring significantly less regularity. First, the compact-
ness theorem of Aubin-Lions [55, Corollary 5] states that the embeddingW 1,2,2(I,H1

0 (D),
H−1(D)) ↪→ L2(I, L2(D)) is compact. Next, the Caccioppoli inequality that we prove
in Proposition A.1 is the key ingredient that facilitates the restriction to a point of
time as the inequality bounds the L2(D)-norm of (local) solutions evaluated at a
point of time in terms of their L2(I, L2(D))-norm. Consequently, we show in Proposi-
tion A.2 that the space of (local) solutions contained in the generalized Sobolev space
W 1,2,2(I,H1

0 (D), H−1(D)) embeds compactly in C0(Ī , L2(D)).
In the following, we denote by t∗ ∈ I the local end time point to simplify notations in

the proofs. We then consider the local time interval (s, t∗) ⊆ I and seek local solutions
uloc ∈ W 1,2,2((s, t∗), H1

0 (D), H−1(D)) with initial conditions uloc(s, ·) ∈ L2(D) such
that for all ψ ∈ L2((s, t∗), H1

0 (D))∫ t∗

s

〈(uloc)t(t), ψ(t)〉H1
0 (D)dt+

∫ t∗

s

(κ(t)∇uloc(t),∇ψ(t))L2(D)dt(A.1)

+

∫ t∗

s

(b(t)·∇uloc(t), ψ(t))L2(D)dt+

∫ t∗

s

(c(t)uloc(t), ψ(t))L2(D)dt =

∫ t∗

s

〈f(t), ψ(t)〉H1
0 (D)dt.

Proposition A.1 (Caccioppoli inequality in time). Let w satisfy (A.1) with f ≡ 0 and
arbitrary initial conditions w(s, ·) ∈ L2(D). Then, we have that

(A.2) ‖w(t∗, ·)‖2L2(D) ≤
2

(t∗ − s)
‖w‖2L2((s,t∗),L2(D)).

Proof. The first paragraph closely follows the proof of Proposition 3.1 in [49]. Since
w satisfies (A.1), we can choose ψ = vϕ for arbitrary v ∈ H1

0 (D) and ϕ ∈ C∞0 ((s, t∗))
as a test function in (A.1). As ϕ ∈ C∞0 ((s, t∗)) is chosen arbitrarily, the fundamental
lemma of calculus of variations yields that 〈wt(t), v〉H1

0 (D)+(κ(t)∇w(t),∇v)L2(D)+(b(t)·
∇w(t), v)L2(D) + (c(t)w(t), v)L2(D) = 0 for all v ∈ H1

0 (D) and almost every t ∈ (s, t∗).

Next, we introduce a cut-off function η ∈ C1((s, t∗)) that satisfies 0 ≤ η ≤ 1, η(s) = 0,
η(t∗) = 1, and |ηt| ≤ 1

(t∗−s) . In the following, we want to use wη2 as a test function. To

enable rearranging the part of the weak formulation that includes the time derivative,
we approximate w by a sequence wn ∈ C∞0 ((s, t∗), H1

0 (D)) such that wn converges
strongly to w in L2((s, t∗), H1

0 (D)). Then, for almost every t ∈ (s, t∗) and each n ∈ N
we have that

〈wt(t), wn(t)η2(t)〉H1
0 (D) + (κ(t)∇w(t),∇wn(t)η2(t))L2(D)

+ (b(t) · ∇w(t), wn(t)η2(t))L2(D) + (c(t)w(t), wn(t)η2(t))L2(D) = 0.

Integrating over the time interval (s, t∗) yields∫ t∗

s

〈wt(t), wn(t)η2(t)〉H1
0 (D)dt+

∫ t∗

s

(κ(t)∇w(t),∇wn(t)η2(t))L2(D)dt

+

∫ t∗

s

(b(t) · ∇w(t), wn(t)η2(t))L2(D)dt+

∫ t∗

s

(c(t)w(t), wn(t)η2(t))L2(D)dt = 0.

(A.3)
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Using integration by parts and η(s) = 0, we rewrite the first term in (A.3) as follows:∫ t∗

s

〈wt(t), wn(t)η2(t)〉H1
0 (D) dt

=−
∫ t∗

s

(w(t), (wn(t))tη
2(t))L2(D) dt−

∫ t∗

s

(w(t), wn(t)2η(t)ηt(t))L2(D) dt

+ (w(t∗), wn(t∗)η2(t∗))L2(D)

=−
∫ t∗

s

(w(t)η(t), (wn(t))tη(t))L2(D) dt− 2

∫ t∗

s

(w(t)η(t), wn(t)ηt(t))L2(D) dt

+ (w(t∗)η(t∗), wn(t∗)η(t∗))L2(D)

=

∫ t∗

s

〈(w(t)η(t))t, wn(t)η(t)〉H1
0 (D) dt−

∫ t∗

s

(w(t)η(t), wn(t)ηt(t))L2(D) dt.

Letting n go to ∞ thus yields∫ t∗

s

〈(w(t)η(t))t, w(t)η(t)〉dt−
∫ t∗

s

(w(t)η(t), w(t)ηt(t))L2(D)dt

+

∫ t∗

s

(κ(t)∇w(t),∇w(t)η2(t))L2(D)dt+

∫ t∗

s

(b(t) · ∇w(t), w(t)η2(t))L2(D)dt

+

∫ t∗

s

(c(t)w(t), w(t)η2(t))L2(D)dt = 0.

(A.4)

Employing the assumption c− 1
2∇ · b ≥ 0 and Gauss’s theorem we then conclude that∫ t∗

s

(b(t) · ∇w(t), w(t)η2(t))L2(D)dt+

∫ t∗

s

(c(t)w(t), w(t)η2(t))L2(D)dt

=
1

2

∫ t∗

s

∫
D

∇ · (b(wη)2) dx dt+

∫ t∗

s

∫
D

(c− 1

2
∇ · b)(wη)2 dx dt

≥ 1

2

∫ t∗

s

∫
∂D

b(wη)2ndx dt = 0.

Finally, we exploit that
∫ t∗
s

(κ(t)∇w(t),∇w(t)η2(t))L2(D)dt ≥ 0, the properties of the

cut-off function η and the identity
∫ t∗
s
〈(w(t)η(t))t, w(t)η(t)〉 dt = 1

2‖w(t∗)η(t∗)‖2L2(D)

to infer that

‖w(t∗, ·)‖2L2(D) ≤
2

(t∗ − s)
‖w‖2L2((s,t∗),L2(D)).

�

Proposition A.2. The transfer operator Ts→t∗ in (4.3) is compact.

Proof. Let (ξn)n∈N be a bounded sequence in L2(D). We denote by (wn)n∈N ⊂
W 1,2,2((s, t∗), H1

0 (D), H−1(D)) the corresponding sequence of solutions of problem
(A.1) with initial conditions wn(s) = ξn in L2(D) and right-hand side f ≡ 0, ob-
taining ‖wn‖L2((s,t∗),H1

0 (D)) ≤ C for a constant 0 < C < ∞. Then, there exists a

subsequence (wnl
)l∈N and a limit function w ∈ L2((s, t∗), H1

0 (D)) such that the sub-
sequence converges weakly to w in L2((s, t∗), H1

0 (D)). Thanks to this weak conver-
gence and the Hahn-Banach theorem we infer that w ∈W 1,2,2((s, t∗), H1

0 (D), H−1(D))
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and that w solves the local PDE (A.1) for f ≡ 0 (cf. proofs of Lemma 3.2 and
Theorem A.1 in [49]) and initial conditions w(s, ·) ∈ L2(D) (due to the embedding
W 1,2,2((s, t∗), H1

0 (D), H−1(D)) ↪→ C0([s, t∗], L2(D))). Here, we moreover employ that
the sequence ((wnl

)t)l∈N converges weakly-∗ to wt in L2((s, t∗), H−1(D)) (cf. proof of
Theorem A.1 in [49]). As there also holds that (wnl

)l∈N ⊆W 1,2,2((s, t∗), H1
0 (D), H−1(D)),

the compactness theorem of Aubin-Lions [55, Corollary 5] yields a subsequence (wnlm
)m∈N

which converges strongly to w in L2((s, t∗), L2(D)). Since the sequence enlm
:= w −

wnlm
thus solves (A.1) with f ≡ 0 and some initial conditions in L2(D), we may invoke

Proposition A.1 to infer that

‖w(t∗, ·)−wnlm
(t∗, ·)‖2L2(D)=‖enlm

(t∗, ·)‖2L2(D)≤
2

(t∗ − s)
‖enlm

‖2L2((s,t∗),L2(D))−→0.

�

Appendix B. Error bounds for squared norm and leverage score
sampling

In this subsection, we state and briefly discuss error bounds for the squared norm
and leverage score sampling approach introduced in subsection 5.3.

The following theorem from [20] gives an additive error bound on the approximation
quality of the squared norm sampling approach.

Theorem B.1. ([20, Theorem 2]). Let C ∈ RND×m be a sample of m columns of B
using the squared norm probability distribution and let C† denote the Moore-Penrose
inverse of C. Then, with probability at least 0.9 it holds that

‖B−CC†B‖2F ≤ ‖B−Br‖2F +
10r

m
‖B‖2F .(B.1)

Here, Br denotes the best rank-r approximation to B.

The subsequent theorem from [17] gives a multiplicative error bound on the approx-
imation quality of the leverage score sampling approach.

Theorem B.2. ([17, Theorem 3]). Let ε ∈ (0, 1] and let C ∈ RND×m be a sample of
m = 3200 r2/ε2 columns of B using the leverage score probability distribution. Then,
with probability at least 0.7 it holds that

‖B−CC†B‖F ≤ (1 + ε)‖B−Br‖F .(B.2)

Here, C† denotes the Moore-Penrose inverse of C and Br denotes the best rank-r
approximation to B.

The observations and discussion in subsection 5.3.1 are in line with the error bounds
stated in Theorems B.1 and B.2: The rank-r best approximation error in (B.1) and

(B.2) is given by ‖B − Br‖F = (
∑R
i=r+1 σ

2
i )1/2 (Eckart-Young theorem e.g. in [21]),

where σ1 ≥ σ2 ≥ . . . denote the singular values of B and R ≤ min{ND, NI} denotes
its rank. Moreover, the Frobenius-norm in the last term of (B.1) is determined by

‖B‖F = (
∑R
i=1 σ

2
i )1/2. Consequently, error bound (B.1) indicates that in the squared

norm sampling approach the number m of selected columns needs to be large in order
to detect structures that correspond to singular values σi for which σi/σj with i ∈
{r + 1, . . . , R} and j ∈ {1, . . . , r} is small. As m appears in the denominator in the

last term of (B.1), it has to be chosen as m ≈ 10r(
∑R
i=1 σ

2
i )/(

∑R
i=r+1 σ

2
i ) to achieve
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an error that is of the order of the best rank-r approximation to B. In contrast, the

bound for the leverage score sampling approach in (B.2) is of the order (
∑R
i=r+1 σ

2
i )1/2

for a number of selected columns that is independent of the size of the singular values
of B.

Appendix C. Data functions and parameters for Example 1

To ensure reproducibility, we list here data functions and discretization parameters
corresponding to Example 1 in subsection 5.3.1. We choose I = (0, 10), D = (0, 1)2,
ΣN = ∅, and discretize the spatial domain D with a regular quadrilateral mesh with
mesh size 1/50 in both directions. For the implicit Euler method, we use an equidistant
time step size of 1/30. Furthermore, the two source terms are given by fi(t, x, y) =∑2
j=1 fi,j(t)fj(x, y) with f1,1(t) = 41(t≥1)1(t≤4), f1,2(t) = 1(t≥6)1(t≤9), f2,1(t) =

1(t≥1)1(t≤7), f2,2(t) = 1(t≥9)1(t≤9.2), f1(x, y) = 1(x≥0.2)1(x≤0.3)1(y≥0.2)1(y≤0.3), and
f2(x, y) = 1(x≥0.7)1(x≤0.8)1(y≥0.7)1(y≤0.8). For computing the probability distribu-
tions, we choose B = F, i.e. the corresponding right-hand side matrix (2.3).

Acknowledgments

The authors thank Dr. Alexander Heinlein for providing us with the data file of the
permeability field κ0 used in Example 4. Moreover, we thank Dr. Christian Himpe for
discussions regarding system and control theory.

References

[1] A. Alaoui and M. W. Mahoney, Fast randomized kernel ridge regression with statistical guar-
antees, Adv. Neural Inf. Process. Syst., 28 (2015).
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