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Robustness of solutions of almost every system of

equations

Sana Jahedi∗, Timothy Sauer†and James A. Yorke‡

Abstract

In mathematical modeling, it is common to have an equation F (p) = c where the
exact form of F is not known. This article shows that there are large classes of F
where almost all F share the same properties. The classes we investigate are vector
spaces F of C1 functions F : R

N → R
M that satisfy the following condition: F

has “almost constant rank” (ACR) if there is a constant integer ρ(F) ≥ 0 such that
rank(DF (p)) = ρ(F) for “almost every” F ∈ F and almost every p ∈ R

N . If the
vector space F is finite-dimensional, then “almost every” is with respect to Lebesgue
measure on F , and otherwise, it means almost every in the sense of prevalence, as
described herein. Most function spaces commonly used for modeling purposes are
ACR. In particular, we show that if all of the functions in F are linear or polynomial
or real analytic, or if F is the set of all functions in a “structured system”, then F is
ACR. For each F and p, the solution set of p ∈ R

N is SolSet(p) := {x : F (x) = F (p)}.
A solution set of F (p) = c is called robust if it persists despite small changes in F and
c. The following two global results are proved for almost every F in an ACR vector
space F : (1) Either the solution set SolSet(p) is robust for almost every p ∈ R

N , or
none of the solution sets are robust. (2) The solution set SolSet(p) is a C∞-manifold
of dimension d = N − ρ(F). In particular, d is the same for almost every F ∈ F .

1 Introduction

The Competitive Exclusion Principle (CEP), long discussed in ecological literature, holds
that two predators that depend solely on the same prey species cannot coexist. More pre-
cisely, the CEP says the two predators whose population density depends purely on the pop-
ulation density of a single prey species cannot coexist unless they benefit precisely equally
from the prey. This scenario is very unlikely in natural circumstances. These dynamics can
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be described by the following system of equations.

ẋ1

x1

= −c1 + f1(x3),

ẋ2

x2

= −c2 + f2(x3), (1)

ẋ3

x3

= −c3 + f3(x1, x2, x3),

where x1 and x2 denote the population densities of the predators, and x3 is the prey. To
search for steady states of the system, set the left sides of the equations to zero, yielding the
system of equations.

f1(x3) = c1,

f2(x3) = c2, (2)

f3(x1, x2, x3) = c3,

illustrated in Fig. 1(a). The first two equations share one unknown, x3. There may be
a solution of these equations with positive x1, x2, x3 for some exceptional c = (c1, c2, c3).
However, it will fail to be robust in the sense that the set of solutions continues to exist under
small perturbations of the equations without disappearing (or, more generally, changing the
dimension of the set of solutions). In fact, for a dense subset of nearby choices of c1, c2, f1, f2,
there will be no solutions.

The system of equations (2) is a “structured system” of equations, in the sense that only
certain variables are allowed to appear in certain equations. In this article, we prove some
general facts about when robust solutions of structured systems can be expected and when
they cannot, as in the above example.

First note that if the system of equations (2) has a solution such as p = (p1, p2, p3), then
F (p) = (c1, c2, c3). Thus we may write the system of equations (2) as F (x) = F (p) and
consider the “solution set” for p,

SolSet(p) := {x : F (x) = F (p)}. (3)

For concreteness, we look at a particular example of system (2).

Example 1.

x2

3 = c1,

x4

3 + 1 = c2, (4)

x2

1 − x2 + x4

3 = c3.

Assume that p is a solution, so c1 = p23, c2 = p43 + 1, and c3 = p21 − p2 + p43. Two facts are
apparent:

(1) Although the system of equations (4) has a solution p, a dense subset of small C∞

perturbations of the equations F will not have a solution. Thus this solution p is not robust.
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We can see this from the first two equations alone, which would imply that c21 + 1 = c2,
which only holds for special choices of c.

(2) If p is a solution of the system of equations (4), then SolSet(p) is a one-dimensional
C∞-manifold for every p. In fact, the first two equations will imply x3 = ±p3. The last
equation implies x2

1 − x2 = p21 − p2, Therefore

SolSet(p) = {(x1, x
2

1 − p21 + p2, p3)} ∪ {(x1, x
2

1 − p21 + p2,−p3)}.

for all x1 ∈ R, which is a union of one-dimensional curves (parabolas) in R3.

One of the main conclusions of this article is that the properties of Example 1 are quite
general. Fix a structure, that pre-assigns particular variables to particular equations, as in
(2). Then for a dense subset of systems of C∞ functions F : U ⊂ RN → RM with that
structure, the following are true:

1. Either

(a) SolSet(p) is robust for almost every p in the domain U , or

(b) SolSet(p) is robust for no p ∈ U . See Corollary 1.

2. SolSet(p) is a C∞-manifold for almost every p ∈ U . See Theorem 2.

We will actually prove a stronger result, that guarantees the above statements for a “preva-
lent” subset of functions [13, 6, 9]. Prevalent implies dense, and is a generalization of “almost
every” to infinite dimensional function spaces. Furthermore, we show that distinguishing be-
tween cases 1(a) and 1(b) is a simple rank computation.

f1(x3) = c1
f2(x3) = c2

f3(x1, x2, x3) = c3

(a)

31 2

(b) (c)

DF =





0 0 f13
0 0 f23
f31 f32 f33





Figure 1: A fragile structure motivated by Competitive Exclusion Principle. (a) A
structured system of equations describing the positive steady states of system of equations (1).
For example, f1 in the first equation is allowed to depend on x3, but not x1 or x2. This fact is
represented in the two other parts of this figure. (b) The structure matrix DF (x) =

[

∂fi
∂xj

(x)
]

. (c)

The directed graph of the system. An edge from node i to node j in the graph means that variable
i is allowed to appear in equation j. Systems of this form cannot have a robust solution, so any
solution that exists is fragile.

A simple illustration of Case 1(b) is the example F : RN → R, F (x) = x2
1+x2

2+ . . .+x2
N = c.

Then SolSet(p) is an (N − 1)-dimensional sphere for almost all p ∈ R
3. The only exception

is p = 0. Our generalization of this example will be the following: For almost every real
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analytic function F : RN → R and p ∈ R
N , rank(DF (p)) = 1, and SolSet(p) is an (N − 1)-

manifold for almost every F (in the sense of prevalence) and almost every p (in the sense of
Lebesgue measure).

The system of equations (2) of CEP falls into category 1(b). The next example shows an
instance from category 1(a).

Example 2. A robust example. The non-robust solution of (2) can be made robust.
Adding another prey species (node 4) to Fig. 1(c) yields the directed graph in Fig. 2(c), and
the equations

f1(x3, x4) = c1,

f2(x3, x4) = c2, (5)

f3(x1, x2, x3) = c3,

f4(x1, x2) = c4.

Let F2 be the vector space of all C1 functions F = (f1, f2, f3, f4) where the fi are restricted
to the form shown in Fig. 2(a).

We will show that for almost every F ∈ F2 and for almost every x = (x1, . . . , x4) that is a
solution of the system in Fig. 2(a), each sufficiently small perturbation of c1, c2, c3, c4 also has
a solution. Thus, such solutions are allowed to exist in naturally-occurring circumstances.

f1(x3, x4) = c1
f2(x3, x4) = c2

f3(x1, x2, x3) = c3
f4(x1, x2) = c4

(a)

4

31 2

(b) (c)

DF =









0 0 f13 f14
0 0 f23 f24
f31 f32 f33 0
f41 f42 0 0









Figure 2: A robust family of systems. For almost every F of this form, DF (x) is nonsingular,
so the system will have robust solutions. (a) The structured system of equations. (b) The Jacobian
is generically of rank 4. (c) The directed graph of the system.

An even simpler case of Case 1(a) is the real analytic equation cosx = c, where F : R → R is
given by F (x) = cosx. For almost every p in the domain, F ′(p) is nonzero, and the Implicit
Function Theorem implies that the solution set is nonempty for small changes in c.

In applications, there is often uncertainty in the exact details of the equations. That moti-
vates our focus on vector spaces of systems for each fixed structure, such as the structures in
Figs. 1 and 2. More generally, we will propose a condition on vector spaces F that implies
that, for almost all F ∈ F and p ∈ U , the solution sets (3) have the same properties, such
as almost all being robust, fragile, or having the same dimension. When the vector space is
infinite-dimensional, we will rely on the concept of prevalence to define “almost every”, which
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is stronger than (implies) the notion of dense subset of the vector space of C∞ functions. A
review of facts about prevalence is given in Appendix A.

In the next section we define our terminology. In Section 3 we offer some applications,
in Section 4 we provide proofs of the theorems, and discuss relations with prior work in
Section 5.

2 Function spaces of almost constant rank

Any vector space L of M × N matrices has the property that almost every matrix in the
vector space has the same rank, equal to maxA∈L rank(A), see Prop. 6. We will argue that
this key fact extends to many examples of vector spaces of nonlinear functions.

Definition 1. Let F : U ⊂ RN → RM be a C1 function where U is an open subset of
R

N . We say F has almost constant rank (ACR) if there is an integer ρ ≥ 0 such that
rank(DF (x)) = ρ for almost every x ∈ U . Define:

maxrank(F ) = max
x∈U

rank(DF (x)). (6)

If F is an ACR function such that rank(DF (x)) = ρ for almost every x ∈ U , then
ρ =maxrank(F ), because rank(DF (x)) takes its maximum value on an open set of x.

We note below that real analytic functions have almost constant rank when U is connected.
However, there are C∞ functions that do not have almost constant rank, such as a monotonic
C∞ function F : R → R for which dF

dx
(x) = 0 if and only if x ≤ 0. Then rank(DF (x)) = 1 if

x > 0 and 0 otherwise.

Definition 2. For a vector space F of functions F , define:

maxrank(F) = max
F∈F ,x∈U

rank(DF (x)). (7)

We say the vector space F has almost constant rank (ACR) if for almost every F ∈ F
and almost every x, rank(DF (x)) = maxrank(F).

Definition 3. We call an ACR function F ∈ F a rank-maximizer for the vector space F
if maxrank(F ) = maxrank(F).

Throughout this paper, we deal with vector spaces F of functions that can be finite or infinite
dimensional. By the phrase “almost every F ∈ F”, when F is finite dimensional, we
mean almost every with respect to the Lebesgue measure on the vector space F . If F is
infinite dimensional, we mean almost every in the sense of prevalence. See Appendix A for
a short primer on prevalence.

It is clear that every ACR vector space contains a rank-maximizer. The next theorem states
the converse. See Section 4 for the proof.

Theorem 1 (ACR Vector Space). Let F be a vector space of C1 functions that has a
rank-maximizer. Then F is ACR.

5



Definition 4. Let F : U ⊆ R
N → R

M . We say a point x is robust for F if DF (x) has rank
M , and x is fragile if it is not robust.

This definition is suggested by the Implicit Function Theorem, which says that if rank
DF (x) = M , each solution of F (x) = c persists for small changes in F and c. The following
result is an immediate consequence of the definition.

Corollary 1. Let F : U ⊆ R
N → R

M be an ACR function. Then either

(a) SolSet(p) is robust for almost every p in the domain U , or

(b) SolSet(p) is robust for no p ∈ U .

Many typical function spaces are ACR, including any vector space containing only real ana-
lytic functions. This fact follows from Theorem 1 and Proposition 3, which in turn depends
on a basic fact about real analytic functions for which Mityagin published an elementary
accessible proof in 2015 & 2020.

Proposition 2. [See [8] ]. Let U be an open connected subset of R
N . Let F : U →

R
M be a real analytic function that is not identically zero. Then the set of solutions of

F (x1, . . . , xN ) = 0 has Lebesgue measure zero.

Proposition 3. Let U be an open connected subset of RN . Let F : U → R
M be a real

analytic function. Then rank(DF (x)) is constant for almost every x ∈ U . Hence, F is ACR.

Proof. Let ρ be the maximal rank of DF (x) for x ∈ R
N . Hence, for some x, DF (x) has

a ρ× ρ minor with determinant given by a real analytic function P (x1, . . . , xN ) that is not
identically zero. By Prop.2, the function P (x1, . . . , xN ) is zero only on a set of measure zero,
and elsewhere it is nonzero.

Since Prop.3 guarantees that every vector space of real analytic functions on a connected
open set has a rank-maximizer, it follows that any vector space F consisting entirely of either
linear functions or polynomial functions always has a rank-maximizer. In each of these cases,
Theorem 1 implies the vector space is ACR. In this sense such vector spaces are like spaces
of linear maps.

Definition 5. A structure matrix S is a matrix where certain entries are allowed to be
nonzero and the rest are zero. A function F respects a structure matrix S where ∂Fi

∂xj
(x) = 0

for all x when Sij = 0. In particular, let L(S) be the set of all functions Ax where A is a
matrix that respects S. We say a vector space F of C1 functions that respect a structure is
a structured function space, provided F includes L(S).

Examples of structure matrices are found in Figures 1(b) and 2(b).

Proposition 4. Every structured function space F is ACR. In particular, the vector space
of all C∞ functions that respect a structure is ACR.

Proof. Choose F in a structured function space F and x ∈ U so that rank(DF (x)) =
maxrank(F). Then from the definition of structured function space, the matrix A := DF (x)
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also respects the structure and is in F and its Jacobian DA(x) = A is independent of x.
Hence A is a constant-rank function A ∈ F whose rank is maxrank(F), so it is a rank
maximizer. Since A has constant rank, by Theorem 1, F is ACR.

Example 3. A vector space of functions that is not a structured system. For fixed
non-zero constants a and b, let F be a vector space of functions F (x) := (f1, . . . , f4) of the
form:

f1(x1, x2, x3, x4) = c1,

f2(x1, x2, x3, x4) = c2, (8)

f3(ax1 + bx2) = c3,

f4(ax1 + bx2) = c4.

Imagine that this system represents two predators, species 3 and 4, and two prey species 1
and 2, with the assumption that the two prey species both provide the predators with the
same nutrition which is proportional to ax1 + bx2. So the predators are competing what
becomes a single resource ax1+bx2 even if the prey look very different. One of the predators
will almost certainly die, according to the Competitive Exclusion Principle.

For F ∈ F , there are no robust solutions because rank(DF (x)) < 4 for all x ∈ U . Since the
functions f1 and f2 are functions of a single variable, we write f ′

1 and f ′
2 for their derivatives.

In fact, it is clear from the Jacobian

DF =









f11 f12 f13 f14
f21 f22 f23 f24
af ′

3 bf ′
3 0 0

af ′
4 bf ′

4 0 0









(9)

that maxrank(F ) is three for F ∈ F . In particular

[

af ′
3 bf ′

3

af ′
4 bf ′

4

]

has determinant zero. For

this example, we aim at simplicity. For nonzero a and b, there is a change of variables that
changes F into a structured system, but that is not true of more complicated systems.

Theorem 2 below and its corollary characterize the regularity of general solution sets, whether
they are robust or fragile. The following definition says a function F essentially partitions
the domain U into manifolds when the sets SolSet(p) are manifolds for almost every p.

Definition 6. Let U be an open subset of RN . We say F : U → R
M is “d-flat” if SolSet(p)

is a d-dimensional manifold for almost every p ∈ U . We say F is “flat” if it is “d-flat” for
some d.

This definition is also motivated by the Implicit Function Theorem. If rank DF (x) = ρ, then
SolSet(x) is an (N − ρ)-dimensional C∞ manifold in a neighborhood of x. In this article,
we use the term manifold to mean C∞ manifold without boundary. Hence if U = R

N , a
sphere {x : ‖x‖ = 1} is a manifold, but a closed disk {x : ‖x‖ ≤ 1} is not. A manifold can
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be either compact or unbounded. It can have a countable number of components, as in the
M = N = 1 case of F (x) = cos x, where SolSet(x) is a 0-manifold for each x ∈ R having
countably many components.

The archetypal example of a flat function F : RN → R
M is a linear function. Let ρ be the

dimension of F (RN). For any p ∈ R
N , SolSet(p) is a (N − ρ)-dimensional hyperplane. In

the general definition of flat, we allow a measure zero set of exceptional p. Another example
of a nonlinear flat function is the equation F (x1, x2) = x2

1 + 2x2
2. Here SolSet(x1, x2) is an

ellipse for all (x1, x2) 6= (0, 0).

As an example of a non-flat C∞ function where M = N = 1, consider F (x) which is zero
for x ≤ 0, and is strictly monotonically increasing for x > 0, such as F (x) = exp

(

− 1

x

)

for
x > 0. Note that for x ≤ 0, SolSet(x) is one-dimensional while for x > 0, SolSet(x) is a single
point, violating the definition of flat. That is, SolSet(x) does not “have the same dimension
except for a measure zero exceptional set of x”. In addition, for x < 0, SolSet(x) is (−∞, 0]
a “manifold with boundary”, which also violates our definition.

The following result shows that the ACR property is a sufficient condition for flatness.

Theorem 2 (The Flat Theorem). Let F : U ⊂ R
N → R

M be a C∞ function. If F is ACR,
then F is d-flat, with dimension d = N− maxrank(F ).

If F is ACR and d = N− maxrank(F ), then for almost every p ∈ U , SolSet(p) is a d-
dimensional manifold and the tangent space of SolSet(p) at p is the kernel of DF (x).

The proof of the above theorem is given in the next section. It uses Sard’s 1965 Theorem [12],
which is a considerable generalization of his better known 1942 result [11].

For a function F we say a point p is exceptional if rank(DF (p)) < maxrank(F ). Let EF

denote the set of exceptional points of F . The proof of Theorem 2 requires us to show not
only that EF has measure zero, but that the union of SolSet(p) over all p ∈ E also has
measure zero. The following example shows how SolSet(p) can be much larger than p for an
exceptional point p.

Example 4. A simple but nontrivial application of Theorem 2 is the function F (x1, x2) =
x1x2 from R

2 to R
1. The function F is ACR because rank DF (x) is one except at x = (0, 0).

The conclusion of the theorem is that SolSet(p) is a smooth C∞ manifold of dimension one,
the union of two branches of a hyperbola, except for p on either of the x1 or x2 axes. Then,
the solution set is the union of the axes, which is not a manifold.

Note that for points p = (x1, 0) or (0, x2) with x1 6= 0 or x2 6= 0, the Implicit Function
Theorem implies the manifold property locally, but the solution set SolSet(p) is globally the
union of the axes – not a manifold. Therefore these points p lie in the measure-zero set
where flatness fails.

The surprising fact about Theorem 2 is that the same behaviors seen in the example follow
also for every C∞ functions F , as long as the ACR property holds. Furthermore, the following
result is an immediate corollary of Theorems 1 and 2.
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Corollary 5. Assume F is an ACR vector space of C∞ functions F : U → R
M . Then

almost every F ∈ F is d-flat with dimension d = N−maxrank(F).

3 Applications

In this section we discuss examples that illustrate Corollary 1 and Theorem 2. Systems
of equations collected into vector spaces are commonplace in engineering applications. To
begin, consider the following simple example of mechanical linkage problems in the spirit of
those in [4, 14, 17].

Example 5. The robotic arm has two interior joints, at u1 ∈ R
3 (the elbow) and u2 ∈ R

3

(the wrist), each of which is considered a variable. One end is fixed at a pivot point s1 ∈ R
3,

the shoulder, and the other end is fixed at a pivot point s2 ∈ R
3, the end of a hand. The

joint positions u1 and u2 satisfy the following length restrictions.

||s1 − u1||
2 = c1,

||s2 − u2||
2 = c2, (10)

||u2 − u1||
2 = c3.

More generally the equations for u1 and u2 have the following form.

f1(u1) = c1,

f2(u2) = c2, (11)

f3(u1, u2) = c3.

Write p = (u1, u2) ∈ R
6 and F = (f1, f2, f3). Theorem 2 implies the following global result.

Almost every C∞ function F : R6 → R
3 that has the form (11) has the following property:

For almost every p ∈ R
6, SolSet(p) is a manifold of dimension 3.

Example 6. Consider the ordinary differential equation

ṁ1 = f1(m1, p1, p2),

ṁ2 = f2(m2, p1),

ṗ1 = f3(m1, p1),

ṗ2 = f4(m2, p2).

modeling a two-gene regulatory network [2]. Here mi, pi represent the concentrations of
mRNA and protein of gene i, for i = 1, 2. The model assumes that gene 1 is an activa-
tor/regressor of genes 1 and 2, and gene 2 is an activator/regressor of gene 1 only. To find
equilibria of the network we set the left sides to zero. Let F denote the function space of
C∞ functions F = (f1, f2, f3, f4) : R4 → R4 of this form, which is ACR by Proposition 4.
Then Corollary 1 states that either solutions are robust for almost every F ∈ F , or fragile
for almost every f ∈ F . It is easy to check that the maximum rank of the 4× 4 Jacobian of
the system is equal to 4, so the former case holds.
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Example 7. The following structure graph represents the “JaK (Janus kinase )/Stat” sig-
naling pathway. There are clinical evidence that confirms that Jak/Stat signaling pathway
is often activated in hematologic cancers [16]. Therefore, understanding this signaling path-
way could help in designing more efficient targeted therapies to suppress this pathway. This
graph is motivated by Model MedB-1 in [10]. For the convenience of the reader we write the
structured system associated with Model MedB-1 below.

Rec ẋ1 = f(x1, x2),
Rec i ẋ2 = f2(x1, x2),

IL13 Rec ẋ3 = f3(x1, x3, x7),
p IL13 Rec ẋ4 = f4(x3, x4, x7),

p IL13 Rec i ẋ5 = f5(x4, x5),
JAK2 ẋ6 = f6(x3, x4, x6, x7, x11),

pJAK2 ẋ7 = f7(x3, x4, x6, x7, x11),
STAT5 ẋ8 = f8(x7, x8, x9),

pSTAT5 ẋ9 = f9(x7, x8, x9),
SOCS3mRNA ẋ10 = f10(x9),

SOCS3 ẋ11 = f11(x10, x11),
CD274mRNA ẋ12 = f12(x9).

(12)

The above pathway starts by binding an enzyme called IL13 to receptor Rec (variable x1)
and ends up in the production of two mRNAs, CD274mRNA (x12) and SOCS3mRNA (x10).
What triggers the transcription of these two mRNAs is a molecule called pSTAT5 (x9).
Once x9 is produced, either it triggers the transcription of CD274mRNA or SOCS3mRNA
. If a suppressor gene is used to block the transcription of CD274mRNA, then the process
of translation of protein SOCS3 from SOCS3mRNA will be a robust path and it will not be
sensitive to perturbations.

The vector space of functions that respects this structure has maxrank 11. Hence, Theorem 2
implies that almost every steady state solution to the above system lies on a one-dimensional
manifold. On the other hand, by knocking out the node x12 (suppressing the gene that leads
to production of CD274mRNA), the above structure would be robust to perturbations. One
may use such a method to assess what will happen under a certain treatment regimen. For
example, blocking the production of CD274mRNA (x12) using gene suppressors will make
the alternative pathway (production of SOCS3mRNA) robust.

Example 8. Consider the “trophic” ecosystem of three predator species and two prey species
illustrated in Fig. 4. This is a slightly more complicated version of Figs. 1 and 2. Let F
be the function space of structured systems of this form. Note that the Jacobian matrix has
form

DF =













0 0 0 f14 f15
0 0 0 f24 f25
0 0 0 f34 f35
f41 f42 f43 0 0
f51 f52 f43 0 0













(13)
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6
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1

11
7

9

8

10

Figure 3: A signaling pathway leading to cancer. This structure graph represents the
Jack/stat signaling pathway represented by system of equations (12). Every 12 by 12 matrix
S that respects the above structure has rank at most 11. By Corollary 1 this signaling
pathway is not robust.

1 2 3

4 5

Figure 4: Trophic systems. Predator species numbered 1, 2, and 3 interact with prey
species 4, 5, with no intralevel interactions. The system represented by this graph cannot
have robust equilibrium solutions. Adding one well-placed arrow, however, changes the
structured system into one with robust solutions for almost every choice of C∞ functions.

which has max rank 4, and is fragile for every F ∈ F . According to Theorem 2, SolSet(p) is
a one-dimensional manifold for almost every F ∈ F .

Note that adding one more connection to the network, say an arrow from predator species
1 to predator species 2, changes the max rank to 5. In this case, Corollary 1 implies that
solutions are robust for almost every F ∈ F . Therefore, unlike the original system, the
revised system has plausible biological solutions.

Example 9. Fig. 5 shows an ecosystem proposed by Solé and Montoya in [15]. One can
show that in this 26-species system, the max rank of the Jacobian matrix is 20. Therefore
robust solutions do not exist. According to Theorem 2, when solutions do exist, they belong
to 6-dimensional C∞ manifolds for almost every F : R26 → R26 in the structured function
space of the system.
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1 2 3 4 5 6 7

8 9
10

11 12 13 14 15

16 17 18 19

20 21 22 23 24 25 26

Figure 5: The graph represents a proposed ecosystem of Solé and Montoya in [15]. The max
rank of the Jacobian of the equilibrium equations for the 26 species is 20. No solutions are
robust. By Theorem 2, for almost every F of this form, for almost every p, solution set
solset(p) is 6-dimensional C∞ manifolds in the domain R26

4 Proofs of Theorems

In this section, we prove Theorems 1 and 2 . We will find versions of Fubini’s Theorem
helpful in several ways.

To make clear what “almost every” and “measure 0” mean, we sometimes write Leb-almost
every when we mean Lebesgue measure almost every, and write Lebd to denote d-dimensional
Lebesgue measure. We denote Lebesgue measure on a finite dimensional Euclidean space Y
by Leb(Y ).

Fubini Theorem. Let X and Y be finite dimensional Euclidean spaces. Let E be a
measurable subset of X×Y . Then E has Leb(X×Y ) measure zero if and only if for Leb(Y )
almost every y ∈ Y , (X × {y}) ∩ E has Leb(X) measure zero.

In the following result, there are infinitely many linear coordinate choices one could use to
define Lebesgue measure on Y , but the resulting Lebesgue measures all agree on which sets
have measure 0.

Fubini Corollary. Let X and Y be finite dimensional vector spaces with X ⊆ Y . Let E
be a measurable subset of Y .
Then E has measure zero in Y if and only if

(X + y) ∩ E has Leb(X) measure zero for almost every y ∈ Y, (14)

where Leb(X)-measure zero means with respect to the translated Lebesgue measure onX+y.

We will use the above Fubini Corollary by showing that if there is a subspace X for which the
property (14) holds, then it holds for every subspace X . Below in the proof of Theorem 1,
we apply this indirectly for Y of dimension N + 1 and we use two choices of X , one with
dimension 1 and the other with dimension N .
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The following maximal rank result for a vector space of linear functions is elementary and
is included as an illustrative example of an almost every property and as a method of proof
we use later. In particular, the vector space V in Proposition 6 is ACR.

Proposition 6. Let V be a subspace of M × N matrices RMN . Let ρ = maxA∈V rank(A).
Then almost every matrix A in V has rank ρ (“almost every” with respect to Lebesgue
measure on V ).

Proof. Let B be a matrix in V with maximal rank(B) = ρ. We will show that for each
A ∈ V , rank(A + cB) = ρ for almost every scalar c. There is at least one nonsingular ρ× ρ
submatrix Bρ of B. The corresponding ρ × ρ submatrix of A + cB has determinant that
is a degree ρ polynomial in c. We need to show the polynomial is not identically zero. It
equals cρ ·detρ(

1

c
Aρ+Bρ) for c 6= 0. It is not identically zero since for large c, det

(

1

c
Aρ +Bρ

)

approaches detρ(Bρ), which by assumption is nonzero. By the Fundamental Theorem of
Algebra, A + cB has rank ρ for all but a finite set of c. Now the Fubini Corollary applies
where y = A, Y = V , and X is the one-dimensional subspace including B, and E is the
exceptional subset of V of matrices with rank < ρ.

Proof of Theorem 1. Let ρ = maxrank(F). Let Fmax be a rank-maximizer function in F .
Then, rank(DFmax(x)) = ρ for almost every x ∈ U .

Let Fubini Corollary subspace X be the one-dimensional subspace of F consisting of the
functions cFmax for c ∈ R. Define Uρ := {x : rank(DFmax(x)) = ρ}. To prove the lemma, it
is sufficient to show that for each F ∈ F , F + cFmax is a rank-maximizer for almost every
c ∈ R, i.e., for each F , for almost every x ∈ Uρ,

rank(D(F + cFmax)(x)) = ρ for almost every c ∈ R. (15)

Fix an F . Let E = {(x, c) : rank(D(F + cFmax)(x)) < ρ} and
Ex = {(y, c) ∈ E : y = x}.

Since c ∈ R, we will first show Ex has one-dimensional measure zero for each x ∈ Uρ. For
each x ∈ Uρ, apply the argument in the proof of Proposition 6 (where a ρ × ρ submatrix is
chosen) and conclude that Ex contains at most finitely many points and so has measure 0.
Apply the Fubini corollary to conclude that since Lebesgue almost every “slice” Ex of E has
measure 0, so does E.

Next we switch the roles of x and c and prove that for almost every c,

rank
(

D(F + cFmax)(x)
)

= ρ for almost every x ∈ U. (16)

That is, F + cFmax is a rank-maximizer for almost every c ∈ R.

Define Ec := {(x, s) ∈ E : s = c}. Above by using Fubini’s Theorem we showed that the set
E has measure zero, which implies by Fubini’s Theorem that for almost every c ∈ R, Ec has
measure zero, proving (16).
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The Hausdorff dimension of a set can be defined by first defining measure zero for a Hausdorff
measure of dimension s, which is an extension of Lebesgue measure zero.

Definition 7. We say that B has s-Hausdorff measure zero if for each ε > 0 there is a
countable cover of B by sets for which the sum of the s-th powers of the “diameters” of the
covering sets is less than ε. The diameter of a set C is sup ‖x−y‖ over x, y ∈ C. Let d be the
infimum of s for which B is s-Hausdorff measure zero. Then d is the Hausdorff dimension
of B. We will also encounter ρ-dimensional Hausdorff measure on a manifold of dimension
ρ, in which case that Hausdorff measure equals Lebesgue measure of the manifold.

Notation for Lemma 7 and its proof. Let F : U ⊂ R
N → R

M be a C∞ function, and
define ρ := max

x∈U
rank(DF (x)). Define Uρ := {x ∈ U : rank(DF (x)) = ρ}, an open subset of

R
N . As mentioned above, Lebk denotes k-dimensional Lebesgue measure.

Define Aρ−1 := {F (x) : x ∈ U and rank(DF (x)) ≤ ρ − 1}. Sard [12] proved that Aρ−1 has
Hausdorff dimension ≤ ρ − 1. Of course there may also be x′ for which F (x′) ∈ Aρ−1 and
rank(DF (x′)) = ρ.

For any set A ⊂ R
M , let F−1(A) = {x : F (x) ∈ A}. For the proof of Theorem 2 we need to

show that Uρ ∩ F−1(Aρ−1) has measure 0 in R
N .

Lemma 7. Let A ⊂ R
M have ρ-Hausdorff measure 0. Then Uρ ∩ F−1(A) has Lebesgue

measure 0.

Proof. Assume the notation in the Lemma. We will prove that if A has ρ-Hausdorff measure
0 and B = Uρ ∩ F−1(A), then B has measure 0 in R

N .

Suppose the contrary, that B has positive LebN -measure. Choose a point q ∈ Uρ so that
every neighborhood Uq of the point p intersects B in a set of positive LebN -measure. The
Constant Rank Theorem (Theorem 11.1 in [18]) says that under the above hypotheses, there
is a neighborhood Uq of q in Uρ on which F is the projection:

F (x1, . . . , xN) = (x1, . . . , xρ, 0, . . . , 0) ∈ R
M (17)

for some smooth choice of coordinates in the domain Uq and range RM . We apply the Fubini
Theorem to the projection (17). Let X be the subspace of RN of points (x1, . . . , xρ, 0, . . . , 0)
and Y the complementary space of points y = (0, . . . , 0, yρ+1, . . . , yN). Let B∗ = {x ∈ X :
(x + Y ) ∩ (B ∩ Uq) has positive LebN−ρ-measure}. Fubini says B having positive LebN -
measure, implies B∗ has positive Lebρ-measure in Y , as sketched in Fig.6.

The ρ-dimensional Hausdorff measure of a set F (B ∪ Uq) is its ρ-dimensional Lebesgue
measure on the subspace Zρ = {(z1, . . . , zρ, 0, . . . , 0) : for all z1, . . . , zρ ∈ R} ⊂ R

M , and
F (B∗) has the same measure (ρ -dimensional Lebesgue measure) as B∗. This is the ρ-
dimensional Hausdorff measure of F (B ∪ Uq) in R

M . We conclude that F (B∗) has positive
measure, and thereforeA has positive measure since F (B) ⊂ A, contradicting our assumption
that A has measure zero.
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ρ

x+ YB∗ F (B∗) = F (B)

Figure 6: Sketch of Lemma 7. Projection of the set B where F is defined in (17).

Lemma 8. Let F : U ⊂ R
N → R

M be a C∞ function. Let ρ = maxrank(F ) :=
maxx∈U rank(DF (x)). Assume some p ∈ U has the following property: DF (x) has rank
ρ for all x ∈ SolSet(p). Then SolSet(p) is a manifold of dimension N − ρ.

Proof. Note that if DF (p) has rank ρ, then there are ρ vectors in R
N whose images under

DF (p) are linearly independent. That is an “open” property in the sense that p has an
open neighborhood in which those vectors are independent. Since ρ is the maximum of
rank(DF (x)), there is an open neighborhood of SolSet(p) on which the the rank of DF (x) is
ρ. This is the precise setting of Thm. 11.2 of the “Constant-rank level set theorem” in [18].
There F is assumed to be a C∞ map between manifolds, which in our case are U and R

M .

Next we give a proof of Theorem 2. When ρ = M , the proof can be simplified and follows
from Sard’s 1942 theorem [11]. The general case, including ρ < M , requires Sard’s 1965
theorem [12] involving Hausdorff dimension.

Proof of Theorem 2. Assume F is C∞ and is ACR. Let ρ =maxrank(F ). Following Sard [12],
for each integer n ≥ 0, we define the set

An = {c ∈ R
M : there exists an x such that F (x) = c and rank

(

DF (x)
)

≤ n}.

When ρ is the largest value of rank(DF ), as it is in our case, then the ρ-Hausdorff measure
of Aρ is positive, and by Sard’s 1965 paper, Aρ has dimension ρ while Aρ−1 has dimension
at most ρ− 1, and its ρ-Hausdorff measure is 0. We need F−1(Aρ−1)∩Uρ to have measure 0
in R

N . This is assured by Lemma 7. Hence for almost every point p ∈ Uρ, SolSet(p) ⊂ Uρ,
in which case all points q ∈ SolSet(p) satisfy rank(DF (q)) = ρ. By Lemma 8, SolSet(p) is a
manifold of dimension N − ρ.

5 Discussion

Structured systems of equations are common in scientific applications where detailed infor-
mation about the relationships between variables is scarce. Section 3 shows several examples
of structured systems in ecology, genetic networks, and engineering systems.
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Our interest in this study was to explore the implications of such structure on generic
properties of solutions, regardless of the specific functions involved, in the same manner that
the Competitive Exclusion Principle imposes limits on what solutions can be robust. By
generic properties, we mean properties held by almost every function in the vector space of
functions with that structure.

To better understand global properties, we coined the term “almost constant rank” (ACR).
It turned out that this property, possessed by all linear systems, was the pivotal property
that encodes the common properties that vector spaces of structured systems have. Our
main results are stated in the more general context of ACR vector spaces of functions, of
which structured systems are examples.

The theory presented here is related to and can be compared with Sard’s 1942 and 1965
Theorems and the Implicit Function Theorem.

Comparison with Sard’s Theorems. Let U ⊂ R
N be open and let F : U → R

M .
Theorem 2 can be viewed as a dual of (S2), below, which is a consequence of Sard’s 1965
Theorem [12]. Our statement is about the domain U ⊂ R

N of a function F , while Sard’s is
about the range space R

M .

Let ZF := {x ∈ U : rank(DF (x)) < M}. Theorem 1 concludes under certain circumstances
that for almost every F , ZF has Lebesgue measure zero. In contrast, Sard’s 1942 theorem,
which we denote by S1942, says its image F (ZF ) has Lebesgue measure zero [11].

Write F−1(c) = {x : F (x) = c}. Sard’s S1942 together with our Prop 8 implies the following.

(S1) = (S1942+ Prop. 8) For (Lebesgue) almost every c ∈ R
M , F−1(c) either is a manifold

of dimension N −M or is the empty set.

Let ρ = maxx rank(DF (x)). When ρ < M , (S1) tells us nothing about the solutions. Since
in this case, for almost every c, F−1(c) is empty. In 1965 Sard generalized his 1942 result
in a manner that is important for us. Sard’s 1965 theorem, which we denote by S1965, says
the following: Let Xρ−1 = {x ∈ U ⊂ R

N : DF (x) has rank ≤ ρ − 1}. Then the set F (U)
has Hausdorff dimension ρ and F (Xρ−1) has Hausdorff dimension ≤ ρ−1. That implies that
almost every c ∈ F (U) (with respect to ρ-dimensional Hausdorff measure), c /∈ F (Xρ−1).
The following is a consequence.

As argued in [12], since maxx rank(DF (x)) = ρ, ρ is the Hausdorff dimension of F (U), and
the ρ-dimensional Hausdorff measure of F (U) is positive and possibly infinite.

(S2) = (S1965+ Prop. 8) For almost every c ∈ F (U) (“almost every” with respect to ρ-
dimensional Hausdorff measure), whenever F (x) = c, DF (x) has rank ρ. Therefore, F−1(c)
is a manifold of dimension N − ρ.

The role of the Implicit Function Theorem (IFT). Theorem 2 can be viewed as a
globalization of the IFT. If it is known that the JacobianDF (p) maps onto the target tangent
space for almost every p in the domain, then the IFT shows that locally, the solution set
has smooth manifold structure in a neighborhood of such points p. However, as Example
4 shows, this does not mean that the solution set is a manifold, globally speaking. The
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problem is that as the solution set is followed beyond the local neighborhood, a point may
be encountered in the solution set where the Jacobian rank drops. The fact that this is
almost always avoided is precisely the extra information that Theorem 2 provides. When
combined with Theorem 1, we find that this behavior is actually prevalent, in the formal
sense, in vector spaces with the ACR property.

In this treatment, we have restricted discussion to vector spaces of functions F : U ⊂ R
N →

R
M , for simplicity. However, the proofs extend almost without change to vector spaces of

functions between C∞-manifolds of dimensions N and M . See [1] for a parametric approach
to the problem of rank.

The main theoretical results of this article, Corollary 1 and Theorem 2, show that generic
properties of solutions of structured systems depend crucially on a single number, the generic
rank of the structure matrix S of the system. The rank is in turn connected to the topological
properties of the associated directed graph of the system, which will be addressed more fully
in future work.
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A A brief overview of prevalence

The concept of prevalence is useful when a vector space F is infinite dimensional. Prevalence
is a concept that is used to extend the idea of “Lebesgue almost every” to infinite-dimensional
vector spaces [13, 6, 9]. The term “prevalence” was introduced by Sauer, Yorke, and Cas-
dagli [13] and generalized in [6]. For a 1972 similar definition by Christensen see also [3, 7].
Prevalence can be compared with full measure in finite dimensions from the Fubini Corollary
in Section 4. There we stated the Corollary for determining if a set was measure 0. Here we
state it for full measure sets. The wording is chosen so that the prevalence definition is a
small change in the wording of the Corollary, following the old practice of turning a theorem
(or corollary) into a definition.

Fubini Corollary 2. Let Y and X ⊂ Y be vector spaces where X and Y are finite
dimensional. Let G be a measurable subset of Y .
Then the corollary says “almost every y ∈ Y is in G”
if for almost every p ∈ Y and almost every x ∈ X , x+ p is in G.

Infinite dimensional spaces Y have no Lebesgue measure to give meaning to “almost every
p ∈ Y ” so we substitute “every p ∈ Y ”. We can extend the definition of measurable by
saying G ⊂ Y is measurable in the sense of prevalence if for each finite-dimensional plane
Z ⊂ Y , Z ∩G is measurable.

Prevalence Definition. Let Y and X ⊂ Y be vector spaces where X is finite dimensional.
Let G be a measurable subset of Y .
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Then we define “almost every y ∈ Y is in G” (in the sense of prevalence)
if for every p ∈ Y and almost every x ∈ X , x+ p is in G.

The following are some examples of how prevalence can be helpful in getting a general insight
about common properties in an infinite dimensional vector space.

(P1) For 1 < p ≤ ∞ almost every sequence (ai) ∈ lp(R) has the property that
∑

∞

i=1
ai

diverges. Here, a convenient probe space is the one-dimensional subspace spanned by the
infinite sequence of 1’s.

(P2) In 1994 Hunt [5] showed that almost every (continuous) function in C([0, 1]) is nowhere
differentiable. The proof requires a two-dimensional probe space.

(P3) The following is a generalization of the Whitney Embedding Theorem. Whitney proved
that if Q is a manifold of dimension d and M > 2d, then for topologically generic F : RN →
R

M , F is one-to-one on Q. That has a prevalence generalization that is useful in investigating
chaotic attractors. Whitney’s manifold is replaced by an arbitrary compact set Q ⊂ R

N of
box dimension d. Then for “almost every” F : R

N → R
M , F is one-to-one on Q. In

particular, the dimension d does not need to be an integer [13]. There are many other
examples of application of prevalence in [13, 6, 7, 9].

Prevalence has two important properties that make it a useful extension of probabilistic
almost every: (1) If the vector space V is finite-dimensional, prevalence is the same as “almost
every in the sense of Lebesgue measure”, and (2) prevalence implies dense, so that it meets
and exceeds a common topological version of typical. Even in finite-dimensional Euclidean
spaces, dense (and residual) sets can have arbitrarily small measure, so the stronger property
of prevalence is a handy addition to characterize typical behavior in infinite-dimensional
spaces.

Acknowledgment. We thank Dima Dolgopyat, Shuddho Das, and Roberto De Leo for
their helpful comments.

References

[1] V I Arnold. On matrices depending on parameters. Russian Mathematical Surveys,
26(2):29–43, 1971.

[2] Graziano Chesi and Yeung Sam Hung. Stability analysis of uncertain genetic sum
regulatory networks. Automatica, 44(9):2298–2305, 2008.

[3] J.P.R. Christensen. On sets of haar measure zero in abelian polish groups. Israel J.
Math, 13:255–260, May 1972.

[4] Adrian-Vasile Duka. Neural Network based Inverse Kinematics Solution for Trajectory
Tracking of a Robotic Arm. Procedia Technology, 12:20–27, 2014.

18



[5] Brian R. Hunt. The prevalence of continuous nowhere differentiable functions. Proc.
Amer. Math. Soc., 122:711–717, 1994.

[6] Brian R. Hunt, Tim Sauer, and James A. Yorke. Prevalence: a translation-invariant
“almost every” on infinite-dimensional spaces. Bulletin of the American Mathematical
Society, 27(2):217–238, 1992.

[7] Brian R. Hunt, Timothy Sauer, and James A. Yorke. Prevalence. an addendum to:
“prevalence: a translation-invariant ‘almost every’ on infinite-dimensional spaces”. Bul-
letin of the American Mathematical Society, 28:306–307, 1993.

[8] Boris Mityagin. The zero set of a real analytic function. Mat. Zametki(Russian),
107(3):473–475, 2020. See also arXiv:1512.07276 for a 2015 version.

[9] William Ott and James Yorke. Prevalence. Bulletin of the American Mathematical
Society, 42(3):263–290, 2005.

[10] Valentina Raia, Marcel Schilling, Martin Böhm, Bettina Hahn, Andreas Kowarsch,
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