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Abstract

The celebrated dependent random choice lemma states that in a bipartite graph an average vertex

(weighted by its degree) has the property that almost all small subsets S in its neighborhood

has common neighborhood almost as large as in the random graph of the same edge-density.

Two well-known applications of the lemma are as follows. The first is a theorem of Füredi [12]

and of Alon, Krivelevich, and Sudakov [2] showing that the maximum number of edges in an

n-vertex graph not containing a fixed bipartite graph with maximum degree at most r on one

side is O(n2−1/r). This was recently extended by Grzesik, Janzer and Nagy [14] to the family of

so-called (r, t)-blowups of a tree. A second application is a theorem of Conlon, Fox, and Sudakov

[5], confirming a special case of a conjecture of Erdős and Simonovits and of Sidorenko, showing

that if H is a bipartite graph that contains a vertex complete to the other part and G is a graph

then the probability that the uniform random mapping from V (H) to V (G) is a homomorphism

is at least
[

2|E(G)|
|V (G)|2

]|E(H)|

.

In this note, we introduce a nested variant of the dependent random choice lemma, which might

be of independent interest. We then apply it to obtain a common extension of the theorem of

Conlon, Fox, and Sudakov and the theorem of Grzesik, Janzer, and Nagy, regarding Turán and

Sidorenko properties of so-called tree-degenerate graphs.

1 Introduction

Given a graph G, let |G| denote its number of vertices. A homomorphism from a graph H to a

graph G is a mapping f : V (H) → V (G) such that for each edge uv in H, f(u)f(v) is an edge in G.

Let hH(G) denote the number of homomorphisms from H to G and tH(G) = hH(G)/|G||H|. Thus

tH(G) represents the fraction of mappings from V (H) to V (G) that are homomorphisms. Viewed

probabilistically, tH(G) is the probability that the uniform random mapping from V (H) to V (G)

is a homomorphism. A beautiful conjecture of Sidorenko [22] is as follows.

Conjecture 1.1 (Sidorenko[21]). For every bipartite graph H and every graph G,

tH(G) ≥ [tK2
(G)]e(H).
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Since [tK2
(G)]e(H) =

(

2e(G)
n2

)e(H)
, one may view Sidorenko’s conjecture as saying that the number

of homomorphic copies of H in an n-vertex graph G is asymptotically at least as large as in the

n-vertex random graph with the same edge-density. The following lemma, based on tensor products,

(see Remark 2 in the English version of [21] for instance), is commonly known and is used in many

earlier papers (see [1],[5],[18] for instance). It reduces the conjecture to a slightly weaker statement.

Lemma 1.2 ([21]). Let H be a bipartite graph. If there exists a positive constant c depending only

on H such that for all graphs G tH(G) ≥ c[tK2
(G)]e(H) holds, then for all G, tH(G) ≥ [tK2

(G)]e(H).

When the edge-density of G is sufficiently high, it is expected that many of the homomorphisms

from H to G are injective. Erdős and Simonovits [10] made several conjectures regarding the

number of injective homomorphisms. As usual, let ex(n,H) denote the Turán number of H, which

is the maximum number of edges in an n-vertex graph not containing H. Let h∗H(G) denote

the number of injective homomorphisms from H to G, and let t∗H(G) = h∗H(G)/|G|H|. The first

conjecture of Erdős and Simonovits from [10] states that for every c > 0 there is a c′ > 0 such

that if e(G) > (1 + c) ex(n,H) then t∗H(G) ≥ c′tK2
(G)e(H). The second, weaker, conjecture from

[10] says if ex(n,H) = O(n2−α) then there exist constants 0 ≤ α̃ ≤ α, c, c′ > 0 such that if

e(G) > cn2−α̃ then t∗H(G) ≥ c′tK2
(G)e(H). It is known (see [21]) that this weaker version is

equivalent to Sidorenko’s conjecture. However, compared to the stronger conjecture of Erdős and

Simonovits, Sidorenko’s conjecture does not give an explicit sharp edge-density threshold on when

to guarantee the stated number of injective homomorphisms. There is yet another version of the

Erdős-Simonovits conjecture, given in [19], that is equivalent to saying that there exist two constants

c, c′ > 0 such that if G is an n-vertex graph G with e(G) > c ex(n,H) then t∗H(G) ≥ c′[tK2
(G)]e(H).

Sidorenko [22] verified his own conjecture when H is a complete bipartite graph, an even cycle, a

tree, or a bipartite graph with at most four vertices on one side. Hatami [15] proved that hypercubes

satisfy Sidorenko’s conjecture by developing a concept of norming graphs. The first major progress

on Sidorenko’s conjecture was made by Conlon, Fox and Sudakov [5], who used the celebrated

dependent random choice method (see [11] for a survey) to show

Theorem 1.3 (Conlon-Fox-Sudakov [5]). If H is a bipartite graph with m edges which has a vertex

complete to the other part, then H satisfies Sidorenko’s conjecture.

In fact, Conlon, Fox and Sudakov proved the stronger theorem that H contains a vertex complete

to the other part and the minimum degree in the first part is at least d then tH(G) ≥ [tKr,d
(G)]

m
rd .

From Theorem 1.3, Conlon, Fox, and Sudakov [5] also deduced an approximate version of Sidorenko’s

conjecture. Since the work of Conlon, Fox, and Sudakov, there has been a lot of further progress

on Sidorenko’s conjecture. Li and Szegedy [20] used entropy method (presented in the form of

logarithmic convexity inequalities) to the extend the result of Conlon, Fox and Sudakov to a more

general family of graphsH, which they refer to as reflection trees. These ideas were further developed

by Kim, Lee and Lee [18], who proved the conjecture for what they called tree-arrangeable graphs

and showed that if T is a tree and H is a bipartite graph that satisfies Sidorenko’s conjecture then

the Cartesian product of T and H also satisfies Sidorenko’s conjecture. Subsequently, Conlon, Kim,

Lee and Lee [6, 7] and independently Szegedy [23] established more families of bipartite graphsH for
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which Sidorenko’s conjecture holds. These include bipartite graphs that admit a certain type of tree

decomposition, subdivisions of certain graphs including cliques, and certain cartesian products, and

etc. More recently, Conlon and Lee [8] showed that Sidorenko’s conjecture holds for any bipartite

graph H with a bipartition (A,B) where the number of vertices in B of degree k satisfies a certain

divisibility condition for each k. As a corollary, for every bipartite graph H with a bipartition (A,B)

there is a positive integer p such that the blowup Hp
A formed by taking p vertex-disjoint copies of

H and gluing all copies of A along corresponding vertices satisfies Sidorenko’s conjecture.

Another line of work that motivates our result is related to a long-standing conjecture of Erdős

regarding the Turán number of so-called r-degenerate graphs. Given a positive integer r, a graph

H is r-degenerate if its vertices can be linearly ordered such that each vertex has back degree at

most r.

Conjecture 1.4 (Erdős [9]). Let r be a fixed positive integer. Let H be any r-degenerate bipartite

graph. Then ex(n,H) = O(n2−1/r).

The first major progress on Conjecture 1.4 was the following theorem, which was first obtained by

Füredi [12] in an implicit form and then later reproved by Alon, Krivelevich, and Sudakov [2] using

the dependent random choice method.

Theorem 1.5 (Füredi [12], Alon-Krivelevich-Sudakov [2]). Let r be a positive integer. Let H be a

bipartite graph with maximum degree at most r on one side. Then ex(n,H) = O(n2−1/r).

The family of graphs satisfying the condition of Theorem 1.5 forms a very special family of r-

degenerate bipartite graphs, which we will refer to as one side r-bounded bipartite graphs. Recently,

Grzesik, Janzer, and Nagy [14], among other things, extended Theorem 1.5 to a broader family of

graphs, called (r, t)-blowups of a tree.

Definition 1.6 ((r, t)-blowups of a tree). Let r ≤ t and m be positive integers. A bipartite graph

H is an (r, t)-blowup of a tree (or (r, t)-blowup in short) with root block B0 and non-root blocks

B1, . . . , Bm if B0, B1, . . . , Bm partition V (H), |B0| = r, |B1| = · · · = |Bm| = t and H can be

constructed by joining B1 completely to B0 and for each 2 ≤ i ≤ m joining Bi completely to a

r-subset of Bγ(i) for some γ(i) ≤ i− 1.

Theorem 1.7 (Grzesik-Janzer-Nagy [14]). Let r ≤ t be positive integers. If H is an (r, t)-blowup

of a tree, then ex(n,H) = O(n2−1/r).

Since every one-side r-bounded graph is a subgraph of an (r, t)-blowup with two blocks B0, B1,

Theorem 1.7 substantially generalizes Theorem 1.5.

In this paper, we give a common strengthening of Theorem 1.3 and Theorem 1.7 by proving a

general theorem on the Turán and Sidorenko properties of so-called tree-degenerate graphs.

Definition 1.8 (Tree-degenerate graphs). A bipartite graph H is tree-degenerate with root block

B0 and non-root blocks B1, . . . , Bm if B0, B1, . . . , Bm partition V (H) and H can be constructed by

letting P (B1) = B0 and joining B1 completely to B0 and for each 2 ≤ i ≤ m joining Bi completely

to a subset P (Bi) of Bγ(i) for some 1 ≤ γ(i) ≤ i−1, such that for all i ≥ 2 |P (Bγ(i))| ≤ |P (Bi)|. We

call P (Bi) the parent set of Bi and Bγ(i) the parent block of Bi and we call P the parent function.

We call (B0, . . . , Bm, P ) a block representation of H.
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We present our main result in terms of so-called r-norm density. We will explain the advantage

of doing so after the presenting the theorem. Let G be a graph with n vertices. For each positive

integer r, we define the the r-norm density of G, denoted by pr(G), as

pr(G) := tK1,r
(G)1/r .

Note that p1(G) = tK2
(G) = 2e(G)

n2 , is the usual edge-density of G. In general, one may view pr(G)

as a modified measure of edge-density of G that takes the degree distribution into account. Using

convexity, one can show that pr(G) ≥ ps(G) whenever r ≥ s (see Lemma 2.3).

Theorem 1.9 (Main theorem). For any graph G and positive integer ℓ, let pℓ(G) = tK1,ℓ
(G)1/ℓ.

Let H be a tree-degenerate graph with a block representation (B0, B1, . . . , Bm, P ). Let s = |B0| and

r = maxi |P (Bi)|. There exist positive constants c1 = c1(H), c2 = c2(H), c3 = c3(H) depending only

on H such that for any graph G

tH(G) ≥ c1[ps(G)]e(H) ≥ c1[tK2
(G)]e(H).

Furthermore, if hK1,r
(G) > c2n

r, where n = |G|, then

t∗H(G) ≥ c3[pr(G)]e(H) ≥ c3[tK2
(G)]e(H).

The first part of the theorem and Lemma 1.2 imply the following.

Corollary 1.10. Let H be a tree-degenerate graph. Then H satisfies Sidorenko’s conjecture.

Since a bipartite graph H containing a vertex complete to the other part is tree-degenerate with

|B0| = 1 and γ(i) = 1 for all i ≥ 2, Corollary 1.10 generalizes Theorem 1.3.

A special case of the second part of Theorem 1.9 yields the following.

Corollary 1.11. Let r ≤ t be positive integers. Let H be an (r, t)-blowup of a tree with h vertices.

Then ex(n,H) = O(n2−1/r). Furthermore, there exist constants c, c′ > 0 such that every n-vertex

graph G with hK1,r
(G) ≥ cnr contains at least c′nh(2e(G)

n2 )e(H) copies of H.

Corollary 1.11 strengthens Theorem 1.7 in two ways. First, it relaxes the density requirement on

G from e(G) = Ω(n2−1/r) to hK1,r
(G) = Ω(nr) (i.e. from p1(G) = Ω(n−1/r) to pr(G) = Ω(n−1/r)).

Second, it not only gives at least one copy of H, but an optimal number (up to a multiplicative

constant) of copies of H. A closer examination of the proof of Theorem 1.7 given by Grzesik,

Janzer, and Nagy in [14] shows that their proof can be strengthened to also give Corollary 1.11.

However, Theorem 1.9 is more general than Corollary 1.11, as the counting statement applies to

any tree-degenerate graph H, where parent set sizes can vary, instead of just to (r, t)-blowups.

The relaxation of p1(G) = Ω(n−1/r) to pr(G) = Ω(n−1/r) is also a useful feature, as in bipartite

Turán problems sometimes we need to handle cases where the host graph has very uneven degree

distribution and hence high r-norm density, despite having relatively low 1-norm density (see [17]

for an instance of this kind).
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To prove Theorem 1.9, we introduce a notion of goodness and prove a lemma that might be viewed

as a nested variant of the dependent random choice lemma. Once we establish the lemma, the proof

of Theorem 1.9 readily follows. Conceivably this variant could find more applications.

We organize our paper as follows. In Section 2, we introduce some preliminary lemmas. In Section

3, we establish the nested goodness lemma. In Section 4, we prove Theorem 1.9. In Section 5, we

give some concluding remarks.

2 Preliminary lemmas

In this section, we first give some useful lemmas. They will be used in motivating some definitions

and will also be used in the proofs in later sections. We start with a standard convexity-based

inequality, which is sometimes referred to as the power means inequality. We include a proof for

completeness.

Lemma 2.1. Let n be a positive integer. Let 1 ≤ a ≤ b be reals. Let x1, . . . , xn be reals. Then

n
∑

i=1

xai ≤ n1−a/b ·

(

n
∑

i=1

xbi

)a/b

.

Equivalently,
(

1

n

n
∑

i=1

xai

)1/a

≤

(

1

n

n
∑

i=1

xbi

)1/b

.

Proof. Since the function xb/a is either linear or is concave up, by Jensen’s inequality, we have
∑n

i=1 x
b
i =

∑n
i=1(x

a
i )

b/a ≥ n[ 1n
∑n

i=1 x
a
i ]
b/a. Rearranging, we obtain the desired inequalities.

Let G be a graph with n vertices. Let r be a positive integer. Recall that pr(G) := tK1,r
(G)1/r .

Lemma 2.2. For any graph G and positive integers r, pr(G) = 1
n

(

1
n

∑

v∈V (G) d(v)
r
)1/r

.

Proof. Let n = |G|. Recall that t1,r(G) = hK1,r(G)/n
r+1, where hK1,r

(G) is the number of

homomorphisms from K1,r to G. It is easy to see that hK1,r
(G) =

∑

v∈V (G) d(v)
r. Hence,

pr(G) = tK1,r
(G)1/r =

(

1
nr+1

∑

v∈V (G) d(v)
r
)1/r

= 1
n

(

1
n

∑

v∈V (G) d(v)
r
)1/r

.

Lemma 2.2 and Lemma 2.1 imply the following useful fact.

Lemma 2.3. For any graph G and positive integers r ≥ s, we have pr(G) ≥ ps(G).

3 Nested goodness Lemma

Given a set W and a sequence S of elements of W , we call S a sequence in W for brevity. The

length of S is defined to be number of elements in the sequence S (multiplicity counted) and is

denoted by |S|. Given a positive integer k, we let W k denote the set of sequences of length k in W

and we let Wk denote the set of sequences of length k in W in which the k elements are all different.
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Given a graph G and a sequence S in V (G), the common neighborhood N(S) is the set of vertices

adjacent to every vertex in S.

We now introduce a goodness notion that is inspired by Lemma 2.1 of [5]. A more specialized

version of it was introduced in [16].

Definition 3.1 (i-good sequences). Let 0 < α, β < 1 be reals. Let h, r be positive integers. Let

G be an n-vertex graph. Let p = pr(G) = tK1,r
(G)1/r . For each 0 ≤ i ≤ h, we define an i-good

sequence in V (G) relative to (α, β, h, r) (or simply i-good in short) as follows. We say that a sequence

T in V (G) is 0-good if |N(T )| ≥ αp|T |n. For all 1 ≤ i ≤ h, we say that a sequence S of length

at most h in V (G) is i-good if S is 0-good and for each |S| ≤ k ≤ h, the number of (i − 1)-good

sequences of length k in N(S) is at least (1− β)|N(S)|k.

Below is our main theorem on the goodness notion.

Theorem 3.2 (Nested goodness lemma). Let h ≥ r be positive integers. Let 0 < β < 1 be a real.

There is a positive real α depending on h, r and β such that the following is true. Let G be any

graph on n vertices. Let p = pr(G) = tK1,r
(G)1/r. For any i, j ∈ [h], let Ai,j denote the set of i-good

sequences of length j relative to (α, β, h, r) in V (G). Then for each i ∈ [h] and r ≤ j ≤ h

∑

S∈Ai,j

|N(S)|r ≥ (1− β)nj+rpjr.

In particular, there exists an i-good sequence S of size j such that |N(S)| ≥ (1− β)1/rpjn.

Applying Theorem 3.2 with r = 1, we get the following theorem that is of independent interest.

Theorem 3.3. Let h be a positive integer. Let 0 < β < 1 be a real. There is a positive real

α depending on h and β such that the following is true. Let G be any graph on n vertices. Let

p = 2e(G)
n2 . For any i, j ∈ [h], let Ai,j denote the set of i-good sequences of length j relative to

(α, β, h, 1) in V (G). Then, for all i ∈ [h]

∑

S∈Ai,j

|N(S)| ≥ (1 − β)nj+1pj.

In particular, there exists an i-good sequence S of size j such that |N(S)| ≥ (1− β)pjn.

Loosely speaking, one may think of the usual dependent random choice lemma as saying that for

any positive integers j, h and real 0 < β < 1, there is a 1-good sequence S of size j relative to

(α, β, h, 1) for some appropriate α > 0 such that most of the subsets T in N(S) of size at most

h have their common neighborhood fractionally as large as expected in the random graph of the

same edge-density. In that regard, one may view Theorem 3.3 as a strengthening of the dependent

random choice lemma to a stronger notion of goodness. Theorem 3.2 follows from the following

more technical lemma.

Lemma 3.4. Let h ≥ r be positive integers. Let 0 < β < 1 be a real. There exists a positive real α

depending on h, r and β such that the following is true. Let G be a graph on n vertices. Let G be any
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graph on n vertices. Let p = pr(G) = tK1,r
(G)1/r. For each 0 ≤ i ≤ h and 1 ≤ j ≤ h, let Ai,j denote

the set of i-good sequences of length j relative to (α, β, h, r) in V (G) and let Bi,j = [V (G)]j \ Ai,j.

Then for each 0 ≤ i ≤ h, 1 ≤ j ≤ h and 1 ≤ ℓ ≤ j,

∑

S∈Bi,j

|N(S)|ℓ ≤ βnj+ℓpjℓ.

Proof. Suppose α has been specified, we define a sequence αi, 0 ≤ i ≤ h, by letting α0 = α and

αi = α + h(αi−1/β)
1/h for each i ∈ [h]. For fixed h and β, it is easy to see that by choosing α to

be small enough, we can ensure that αi in increasing in i and αh < β. Let us fix such an α. Now,

let Ai,j and Bi,j be defined as stated. We use induction on i to prove that for all 0 ≤ i ≤ h, j ∈ [h],

and 1 ≤ ℓ ≤ j
∑

S∈Bi,j

|N(S)|ℓ ≤ αin
j+ℓpjℓ.

For the basis step, let i = 0. Let j, ℓ ∈ [h] where ℓ ≤ j. By definition,

∑

S∈B0,j

|N(S)|ℓ ≤ nj(αpjn)ℓ ≤ αnj+ℓpjℓ ≤ α0n
j+ℓpjℓ. (1)

Hence the claim holds for i = 0. For the induction step, let i ≥ 1 and suppose the claims hold when

i is replaced with i − 1. Let j ∈ [h]. For each j ≤ k ≤ h, let Ck
i,j denote the set of sequences S

in Bi,j such that the number of sequences of length k in N(S) that are not (i− 1)-good is at least

β|N(S)|k. By definition, Bi,j = B0,j ∪
⋃h

k=j C
k
i,j. Let Fk be the collection of pairs (S, T ), where

S ∈ Ck
i,j and T is a sequence of length k in N(S) that is not (i− 1)-good. By our definition,

|Fk| ≥
∑

S∈Ck
i,j

β|N(S)|k = β ·
∑

S∈Ck
i,j

|N(S)|k.

On the other hand, for each sequence T of length k in V (G) that is not (i − 1)-good, the number

of sequences S of length j that satisfy (S, T ) ∈ Fk is most |N(T )|j . Hence,

|Fk| ≤
∑

T∈Bi−1,k

|N(T )|j ≤ αi−1n
j+kpjk,

where the last inequality follows from the induction hypothesis. Combining the lower and upper

bounds on |Fk|, we get
∑

S∈Ck
i,j

|N(S)|k ≤ (αi−1/β)n
j+kpjk. (2)

Let ℓ ∈ [h] such that ℓ ≤ j. Since j ≤ k, we have ℓ ≤ k. Applying Lemma 2.1 with a = ℓ, b = k and

using |Ck
i,j | ≤ nj, we get

∑

S∈Ck
i,j

|N(S)|ℓ ≤ (nj)1−ℓ/k(αi−1/β)
ℓ/k(nj+kpjk)ℓ/k ≤ (αi−1/β)

1/hnj+ℓpjℓ,

7



where we used the fact that αi−1/β < 1. By (1) and (2), we have

∑

S∈Bi,j

|N(S)|ℓ ≤
∑

S∈B0,j

|N(S)|ℓ +

h
∑

k=j

∑

S∈Ck
i,j

|N(S)|ℓ ≤ [α+ h(αi−1/β)
1/h]nj+ℓpjℓ ≤ αin

j+ℓpjℓ.

This completes the induction and the proof.

We need another quick lemma. Given two positive integers n, j, let nj = n(n− 1) · · · (n− j + 1).

Lemma 3.5. Let G be a graph on n vertices and j, r positive integers. Let p = pr(G) = tK1,r
(G)1/r.

Then
∑

S∈[V (G)]j |N(S)|r ≥ nj+rpjr. If p > 4jn−1/r then
∑

S∈[V (G)]j
|N(S)|r ≥ 1

2j+1n
j+rpjr.

Proof. First, note that
∑

T∈[V (G)]r |N(T )| = hK1,r
(G) = ntK1,r

(G) = nr+1pr. Hence, by convexity

∑

T∈[V (G)]r

|N(T )|j ≥ nr

(
∑

T∈[V (G)]r |N(T )|

nr

)j

= nr(npr)j = nj+rpjr.

If p > 4jn−1/r, then

∑

T∈[V (G)]r ,|N(T )|≥2j

|N(T )|j ≥ nj+rpjr − nr(2j)j ≥
1

2
nj+rpjr.

Hence,
∑

T∈[V (G)]r ,|N(T )|≥2j

|N(T )|j ≥
∑

T∈[V (G)]r ,|N(T )|≥2j

(|N(T )|/2)j ≥
1

2j+1
nj+rpjr.

To prove the first statement, note that
∑

S∈[V (G)]j |N(S)|r counts pairs (S, T ), where S is a se-

quence of length j and T is a sequence of length r in N(S). By double counting, we have
∑

S∈[V (G)]j |N(S)|r =
∑

T∈[V (G)]r |N(T )|j ≥ nj+rpjr.

For the second statement, note that
∑

S∈[V (G)]j
|N(S)|r counts pairs (S, T ), where S is a sequence

of length j with no repetition and T is sequence of length r in N(S). By double counting and

convexity, we have
∑

S∈[V (G)]j
|N(S)|r =

∑

T∈[V (G)]r |N(T )|j ≥
1

2j+1n
j+rpjr.

Now we are ready to prove Theorem 3.2.

Proof of Theorem 3.2: Let h ≥ r be positive integers and 0 < β < 1 a real. Let α be defined as in

Lemma 3.4. Let i ∈ [h] and r ≤ j ≤ h. LetAi,j denote the set of i-good sequences of length j relative

to (α, β, h, r) in V (G) and let Bi,j = [V (G)]j \ Ai,j. By Lemma 3.5,
∑

S∈[V (G)]j |N(S)|r ≥ nj+rpjr.

By Lemma 3.4,
∑

S∈Bi,j
|N(S)|r ≤ βnj+rpjr. Hence,

∑

S∈Ai,j
|N(S)|r ≥ (1− β)nj+rpjr, as desired.

This proves the first part of the theorem. Now, since |Ai,j| ≤ nj, by averaging, there exists an

S ∈ Ai,j such that |N(S)|r ≥ (1− β)pjr and hence |N(S)| ≥ (1− β)1/rpjn. This proves the second

part of the theorem. �

In order to prove the second part of Theorem 1.9, we need the following variant of Theorem 3.3.

We omit the proof since it is almost identical to that of Theorem 3.3, except that we use the second

statement of Lemma 3.5 instead of the first statement.
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Lemma 3.6. Let h ≥ r be positive integers. Let 0 < β < 1 be a real. There is a positive real α

depending on h, r and β such that the following is true. Let G be any graph on n vertices. Let

p = pr(G) = tK1,r
(G)1/r. For any i, j ∈ [h], let A∗

i,j denote the set of i-good sequences of length

j relative to (α, β, h, r) in V (G) that has no repetition. If p > 4jn−1/r, then for each i ∈ [h] and

r ≤ j ≤ h
∑

S∈A∗
i,j

|N(S)|r ≥ (
1

2j+1
− β)nj+rpjr.

4 Proof of Theorem 1.9

Proof of Theorem 1.9: Let n = |G| and h = |H|. Let β = 1
2h+2 . Let α be the positive constant

given by Theorem 3.2 for the given h, β, and r. Let

c1 = c1(H) = (1− β)|B1|/|B0|α
∑m

i=2 |Bi|(1− hβ)m−1.

Let

c2 = c2(H) = 4h/α, and c3 = c3(H) = c1/2
h2

.

Suppose H has root block B0 and non-root blocks B1, . . . , Bm such that B1 is completely joined

to its parent set P (B1) = B0 and for each i = 2, . . . ,m, Bi is completely joined to its parent set

P (Bi) where P (Bi) ⊆ Bγ(i) for some 1 ≤ γ(i) < i and |P (Bi)| ≥ |P (Bγ(i))|. For each i ∈ [m], let

Fi denote the collection of all the parent sets P (Bj) that are contained in Bi. Let T be a tree with

V (T ) := {v0, v1, . . . , vm} and edge set E(T ) := v0v1 ∪ {vivγ(i) :∈ [m]}. We call T the auxiliary tree

for H. For each i ∈ [m], define the depth of Bi, denoted by di, to be the distance from v0 to vi in

T . Let q denote the maximum depth of a block. Then clearly q ≤ m ≤ h− 1.

Let G be any graph. For convenience, we say that a sequence in V (G) is i-good if it is i-good

relative to (α, β, h, r). As in Theorem 3.2, for each 0 ≤ i ≤ h and r ≤ j ≤ h, let Ai,j be the set

of i-good sequences of length j in V (G). Let Bi,j = [V (G)]j \ Ai,j. Let A∗
i,j be the set of i-good

sequences of length j in V (G) that contains no repetition. Let f be the uniform random mapping

from V (H) to V (G).

Let

E1 = the event that f(B0) ∈ Aq,|B0| and f(B1) ∈ [N(f(B0))]
|B1|,

F1 = the event that each sequence in F1 is mapped to a (q − 1)-good sequence ,

E∗
1 = the event that f(B0) ∈ A∗

q,|B0|
and f(B1) ∈ [N(f(B0))]

|B1|.

For each i ∈ {2, . . . ,m}, let

Ei = the event that f(Bi) ∈ [N(f(P (Bi))]
|Bi|,

Fi = the event that each sequence in Fi is mapped to an (q − di)-good sequence

Li = the event that f is injective on B0 ∪B1 ∪ · · · ∪Bi.

9



Recall that s = |B0| and r = maxi |P (Bi)|. By Theorem 3.2,

∑

S∈Aq,|B0|

|N(S)|s ≥ (1− β)n2sps
2

. (3)

Furthermore, by Lemma 3.6 if p ≥ 4jn−1/r then

∑

S∈A∗
q,|B0|

|N(S)|s ≥ (
1

2j+1
− β)n2sps

2

. (4)

Hence, since |B1| ≥ |B0| = s, using (3) and convexity we get

∑

S∈Aq,|B0|

|N(S)||B1| =
∑

S∈Aq,|B0|

(|N(S)|s)
|B1|
s ≥ ns(

1

ns
(1−β)n2sps

2

)
|B1|
s = (1−β)

|B1|
|B0|n|B0|+|B1|p|B0||B1|,

and if p ≥ 4jn−1/r then

∑

S∈A∗
q,|B0|

|N(S)||B1| = (
1

2j+1
− β)

|B1|

|B0|n|B0|+|B1|p|B0||B1|,

Hence,

P(E1) =
∑

S∈Aq,|B0|

1

n|B0|
·
|N(S)||B1|

nB1
=

1

n|B0|+|B1|

∑

S∈Aq,|B0|

|N(S)||B1| ≥ (1− β)
|B1|
|B0| p|B0||B1|, (5)

and if p ≥ 4jn−1/r then

P(E∗
1) =

∑

S∈A∗
q,|B0|

1

n|B0|
·
|N(S)||B1|

nB1
≥ (

1

2j+1
− β)

|B1|
|B0| p|B0||B1| ≥ (

1

2h+2
)|B1|p|B0||B1|. (6)

We now bound P(F1|E1). Recall that F1 consists of parent sets P (Bj) that are contained in B1.

By requirement, these sets have size at least |P (B1)| = |B0|. Let S be any fixed sequence in Aq,|B0|.

By the definition of Aq,|B0|, for each |B0| ≤ k ≤ h, the number of (q − 1)-good sequences of length

k in N(S) is at least (1 − β)|N(S)|k. So, conditioning on f mapping B0 to S and B1 to N(S),

the probability that f maps any particular sequence in F1 to an (q − 1)-good sequence is at least

(1−β). Since there are clearly at most h sequences in F1, the probably that f maps every sequence

in F1 to a (q − 1)-good sequence is at least 1− hβ. Hence

P(F1|E1) ≥ 1− hβ. (7)

For each i = 2, . . . , h, we estimate P(Ei|E1F1 . . . Ei−1Fi−1). Assume the event E1F1 · · ·Ei−1Fi−1.

Since P (Bi) ⊆ Bγ(i), where γ(i) < i, by our assumption, P (Bi) is mapped to a (q − dγ(i))-good

sequence. Since a (q − dγ(i))-sequence is 0-good by definition, we have |N(f(P (Bi)))| ≥ αp|P (Bi)|n.
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Hence,

P(Ei|E1F1 . . . Ei−1Fi−1) =
|N(f(P (Bi))|

Bi|

n|Bi|
≥

(αp|P (Bi)|n)|Bi|

n|Bi|
= α|Bi|p|P (Bi)||Bi|. (8)

Now assume E1F1 . . . Ei−1Fi−1Ei. Since S := f(P (Bi)) is a (q−dγ(i))-good sequence, by definition,

for each |S| ≤ k ≤ h the number of (q − 1− dγ(i))-good sequences is at least (1− β)|N(S)|k . Since

there are at most h sequences in Fi, as in deriving (7), we have

P(Fi|E1F1 . . . Ei−1Fi−1Ei) ≥ 1− hβ. (9)

By (5), (7), (8), and (9),

P(f is a homomorphism) ≥ P(E1F1 . . . Em−1Fm−1Em)

≥ (1− β)
|B1|
|B0|α

∑m
i=2 |Bi|(1− hβ)m−1p|B0||B1|+

∑m
i=2 |P (Bi)||Bi| (10)

= c1p
e(H).

The proves the first and the main part of the theorem.

For the second statement, suppose hK1,r
(G) > c2n

r. Then

p = pr = (hK1,r
/nr+1)1/r ≥ c

1/r
2 n−1/r ≥ (4h/α)1/rn−1/r.

For each i ≥ 2, we bound P(Li|E
∗
1F1E2F2L2 . . . Li−1EiFi). Assume E∗

1F1E2F2L2 . . . Li−1EiFi. By

our assumption P (Bi) is mapped to a (q−dγ(i))-good sequence and Bi is mapped into N(f(P (Bi)).

Since f(P (Bi)) is 0-good, |N(f(P (Bi))| ≥ αp|P (Bi)|n ≥ α[(4h/α)1/rn−1/r]rn = 4h, where we used

the fact that |P (Bi)| ≤ r. Given E∗
1F1E2F2L2 . . . Li−1Fi−1, the probability that f maps Bi injec-

tively into N(F (P (Bi)) and avoids f(B0 ∪B1 ∪ · · · ∪Bi−1) is at least (3h)|Bi|/(4h)
|Bi| > (1/2)|Bi|.

Hence,

P(Li|E
∗
1F1E2F2L2 . . . Li−1EiFi) > (1/2)|Bi|. (11)

By (6), (11), and a similar calculation as in (10), we have

P(f is an injective homomorphism) ≥ P(E∗
1F1E2F2L2 . . . EmFmLm)

≥ (
1

2h+2
)|B1|(

1

2
)|B2|+···+|Bm|c1p

e(H)

≥
1

2h2
c1p

e(H) = c3p
e(H).

This proves the second part of the theorem. �

5 Concluding remarks

In this note, we used a nested variant of the dependent random choice to not only embed an

appropriate tree-degenerate bipartite graph H in a host graph G, but also give tight (up to a
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multiplicative factor) counting bound on the number of copies of H in G. In this variant, we get

extra goodness features almost for free. It will be interesting to find more applications of it.

Another interesting feature of Theorem 1.9 is that the condition of the host graph is relaxed from 1-

norm density to r-norm density, which makes the result more flexible for applications. In principle,

one could study the so-called r-norm Turán problem for bipartite graphs, where one wants to

determine the maximum r-norm density of an H-free graph on n-vertices for a given bipartite graph

H. The problem seems particularly natural for the family of r-degenerate graphs. For hypergraph

co-degree problems, such a study has recently been initiated by Balogh, Clemen, and Lidický [3, 4].

Last but not least, it will be highly desirable to make more progress on Conjecture 1.4 beyond the

following general bound obtained by Alon, Krivelevich, and Sudakov [2], which has stood as the

best known bound in the last two decades.

Theorem 5.1 ([2]). If H is an r-degenerate bipartite graph, then ex(n,H) = O(n2−1/4r).
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