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Abstract

Given a natural n, we construct a two-coloring of Rn with the maximum metric satisfying
the following. For any finite set of reals S with diameter greater than 5n such that the
distance between any two consecutive points of S does not exceed one, no isometric copy of S is
monochromatic. As a corollary, we prove that any normed space can be two-colored such that
all sufficiently long unit arithmetic progressions contain points of both colors.

1 Introduction

For an n-dimensional normed space Rn
N , its chromatic number χ(Rn

N ) is the smallest r such that
there exists a coloring of the points of Rn

N with r colors, i.e. an r-coloring, and with no two points
of the same color unit distance apart. A general result by Kupavskii [17] establishes an upper bound
on this quantity depending only on the dimension: χ(Rn

N ) ≤ (4 + o(1))n as n→∞.
This notion was most extensively studied for the n-dimensional `p-spaces1 Rn

p and especially
for the Euclidean spaces Rn

2 . Currently, the best known bounds on the plane are 5 ≤ χ(R2
2) ≤ 7.

The lower bound is a relatively recent breakthrough by de Grey [5] (reproved quickly after by
Exoo and Ismailescu [9]). The upper bound here is classical. See also Soifer’s account of the
history of this problem in [30]. As for the growing dimension case, currently the best asymptotic
lower and upper bounds belong to Raigorodskii [25] and Larman and Rogers [20, 24] respectively:
(1.239 + o(1))n ≤ χ(Rn

2 ) ≤ (3 + o(1))n as n→∞. For non-Euclidean `p-spaces the value χ(Rn
p ) was

shown to grow exponentially with n as well (for instance, see a paper [26] and two surveys [27, 28]
by Raigorodskii). The case of the Chebyshev spaces Rn

∞ stands out here because of the folklore
equality χ(Rn

∞) = 2n that holds for all n ∈ N.
To generalize these problems, one can forbid more complex configurations to be monochromatic.

Given a normed space Rn
N and a subset M⊂ Rn, the chromatic number χ(Rn

N ,M) is the smallest
r such that there exists an r-coloring of Rn with no monochromatic N-isometric copy2 of M. In
these terms, χ(Rn

N ) = χ(Rn
N , I), where I is a two-point set.
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1Recall that the `p-norm of x ∈ Rn is given by ‖x‖p :=
(∑

i |xi|p
)1/p

for any real p ≥ 1, and in case p = ∞ by
‖x‖∞ := maxi |xi|.

2A subset M′ ⊂ Rn is called an N-isometric copy of M if there exists a bijection f : M → M′ such that
‖x− y‖N = ‖f(x)− f(y)‖N for all x,y ∈M.
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A systematic study of this notion began with three classic papers by Erdős, Graham, Montgomery,
Rothschild, Spencer, and Straus [6, 7, 8], and now grew into a separate branch of combinatorics,
see a survey [13] by Graham. In the Euclidean case, the most extensively studied question here
is the following. Given M, determine if it is Ramsey, i.e., if the value χ(Rn

2 ,M) tends to infinity
as n grows. The sets of vertices of simplices, boxes [12] and regular polytopes [16, 3] are known
to be Ramsey (for the explicit bounds on these chromatic numbers see [22, 23, 29]). However, the
problem of determining all Ramsey sets remains widely open in general, and even the conjectures
on the answer spur debates, see [21].

One of the simplest examples of non-Ramsey sets are provided by one-dimensional configurations.
Following the paper [19], given a sequence of positive reals λ1, . . . , λk, we call a set {0, λ1, λ1 +
λ2, . . . ,

∑k
t=1 λt} ⊂ R a baton and denote it by B(λ1, . . . , λk). In case λ1 = · · · = λk = 1, i.e., if the

set is just a unit arithmetic progression, we simply denote it by Bk for a shorthand. Erdős et al. [6]
showed that any baton B of at least three points is not Ramsey, since χ(Rn

2 ,B) ≤ 16 for all n ∈ N.
Moreover, they proved that

χ(Rn
2 ,Bk) = 2 (1)

for all k ≥ 5 and for all natural n. (Note that it is unknown [13] whether the values 5 and 16 here
are tight.) For asymmetric versions of these results see [1, 2, 4].

The goal of our paper is to find the analogues of (1) for non-Euclidean normed spaces. More
precisely, we positively resolve the following general problem for a wide class of normed spaces.

Problem 1. Is it true that for any normed space Rn
N , there is k = k(Rn

N ) such that χ(Rn
N ,Bk) = 2?

In a recent series of papers [10, 11, 18, 19], the chromatic numbers χ(Rn
∞,M) of the n-dimensional

Chebyshev spaces Rn
∞ were studied. In particular, it was proven in [19] that

χ(Rn
∞,Bk) ≥

(
k + 1

k

)n

(2)

for all k, n ∈ N. This inequality shows that, unlike the Euclidean case, for any given k, every
two-coloring of Rn contains a monochromatic `∞-isometric copy of Bk whenever the dimension n
is large enough in terms of k. However, the next theorem, which is the main result of our paper,
shows that this is not that case in the ‘opposite’ setting, when k is sufficiently large in terms of n.

Theorem 1. Given n ∈ N, there exists a two-coloring of Rn with no monochromatic `∞-isometric
copies of all batons B(λ1, . . . , λk) such that maxt λt ≤ 1 and

∑k
t=1 λt ≥ 5n. In particular, for all

n ∈ N and k ≥ 5n, we have χ(Rn
∞,Bk) = 2.

Our proof of this theorem is constructive. Note that in this paper we make no attempts to
optimize the constant 5n in the statement in order to keep the proof comprehensible, see further
discussion in Section 5.

We apply Theorem 1 to get a positive solution of Problem 1 for many normed spaces Rn
N other

than Rn
∞. The main obstacle on this way is the following. An arbitrary N -isometric copy of a

baton B in Rn is not necessarily an `∞-isometric copy of some other baton3. However, this obstacle
vanishes once we consider only collinear N -isometric copies of B. In the special case B = Bk, we call
its collinear N -isometric copies unit arithmetic progressions in Rn

N of length k + 1.

3Indeed, the set of three points (0, 0), (1, 0), and (1, 1) on the plane is an `1-isometric copy of B2. At the same
time, all the `∞-distances between them are unit, and thus none of the distances equals the sum of two others.
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Corollary 1. For any normed space Rn
N there exists a real δ = δ(Rn

N ) such that the following
holds. There exists a two-coloring of Rn with no monochromatic collinear N -isometric copies of all
batons B(λ1, . . . , λk) such that maxt λt ≤ 1 and

∑k
t=1 λt ≥ δ. In particular, all sufficiently long unit

arithmetic progressions in Rn
N contain points of both colors under this coloring.

Observe that if the norm N on Rn is strictly convex4, then each N -isometric copy of any baton
B must be collinear. Thus, Corollary 1 yields a positive solution of Problem 1 for such normed
spaces. For instance, it is well-known that the `p-norm is strictly convex for all 1 < p <∞.

The next corollary deals with somewhat the ‘opposite’ situation, when the ‘unit ball’ of the
norm is a centrally symmetric convex polytope (and thus such norm is clearly not strictly convex).

Corollary 2. Let Rn
N be a normed space whose unit ball is a centrally symmetric convex polytope

in Rn with 2f facets. Then there exists a two-coloring of Rn with no monochromatic N -isometric
copies of all batons B(λ1, . . . , λk) such that maxt λt ≤ 1 and

∑k
t=1 λt ≥ 5f . In particular, for all

k ≥ 5f , we have χ(Rn
N ,Bk) = 2.

Clearly, this result can be applied to the n-dimensional space Rn
1 with the Manhattan distance,

whose unit ball is a cross-polytope with 2n facets. Along with Corollary 1, these results solve
Problem 1 for all `p-spaces. However, the general case remains open.

We organize the remainder of the paper as follows. Section 2 contains some preliminary
technical statements: a classification of all `∞-isometric copies of batons in Rn, a notion of a ‘snake
hypersurface’, and proofs of its basic properties. In Sections 3 we construct an explicit coloring of
Rn+1 based on these hypersurfaces and prove Theorem 1. In Section 4 we deal with normed spaces
other than Rn

∞ and prove Corollaries 1 and 2. Finally, in Section 5 we make some further comments
and state more open problems.

2 Preliminaries

2.1 Embeddings of the batons into Rn
∞

Let B = B(λ1, . . . , λk) ⊂ R be an arbitrary fixed baton. It is clear that, for all x ∈ R, both a
translation x+B := {x, x+λ1, . . . , x+

∑k
t=1 λt} and a reflection x−B := {x, x−λ1, . . . , x−

∑k
t=1 λt}

are isometric copies of B (regardless of the considered norm on R). Moreover, it is not hard to see
that there are no other isometric copies of B on the line.

The following simple lemma extends these ideas to the multidimensional Chebyshev spaces Rn
∞.

Roughly speaking, it states that an arbitrary set of points of Rn forms an `∞-isometric copy of B if
and only if one of the projections of the set on basic axes is either a translation or a reflection of B,
while all the other projections do not affect the distances between the points. This lemma appeared
earlier in [10], but we give its full short proof below for completeness.

In the remainder of the text we will use the notation x = (x1, . . . , xn) for points x ∈ Rn.

Lemma 1. Let k, n ∈ N and λ1, . . . , λk be a sequence of positive reals. Then the sequence x0, . . . ,xk

of points in Rn is `∞-isometric to B = B(λ1, . . . , λk) (in that order) if and only if the following two
conditions hold. First, there exists an i ≤ n such that the sequence x0i , . . . , x

k
i is either a translation

or a reflection of B. Second, for any j ≤ n and any s ≤ k we have |xsj − x
s−1
j | ≤ |xsi − x

s−1
i | = λs.

4The norm N on Rn is called strictly convex if and only if for all x,y ∈ Rn, the equality ‖x + y‖N = ‖x‖N + ‖y‖N
implies that x and y are collinear.
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Proof. Let the sequence x0, . . . ,xk of points in Rn be an `∞-isometric copy of B. For a shorthand,
put σs :=

∑s
t=1 λt for all s = 0, . . . , k. Let i be a coordinate such that |xki − x0i | = σk (there

must exist at least one such coordinate, since maxj |xkj − x0j | = ‖xk − x0‖∞ = σk). Then it should
be clear that, for all s = 1, . . . , k − 1, we have a unique choice of xsi so that two inequalities
|xsi − x0i | ≤ ‖xs − x0‖∞ = σs and |xki − xsi | ≤ ‖xk − xs‖∞ = σk − σs hold simultaneously. Moreover,
both inequalities must hold with equality in that case. This concludes the proof of the first part.
The second part of the statement is trivial, since for any j ≤ n and any s ≤ k, we clearly have
|xsj − x

s−1
j | ≤ ‖xs − xs−1‖∞ = λs = |xsi − x

s−1
i |.

To prove the opposite direction, let us assume that the sequence x0, . . . ,xk of points in Rn

satisfies both conditions of the lemma. Given 0 ≤ l < r ≤ k, observe that the first condition implies
that |xri − xli| = σr − σl. Moreover, from the second condition and the triangle inequality it follows
that

|xrj − xlj | ≤
r∑

s=l+1

|xsj − xs−1j | ≤
r∑

s=l+1

|xsi − xs−1i | =
r∑

s=l+1

λs = σr − σl

for all j ≤ n. Hence, we have ‖xr − xl‖∞ = |xri − xli| = σr − σl. So, the sequence x0, . . . ,xk is
indeed an `∞-isometric copy of B.

We say that a given `∞-isometric copy of B has direction i if its projection on the i-th basic axis
forms either a translation or a reflection of B. Lemma 1 implies that each `∞-isometric copy of B
has at least (but not necessarily exactly) one direction.

2.2 Snake hypersurfaces

In the present section we introduce a notion of a ‘snake hypersurface’ and prove that it shares
many basic properties with hyperplanes. Informally speaking, Lemma 2 shows that the family of
snake hypersurfaces is closed under scaling. Lemma 3 ensures that the smallest distance between
two parallel copies of a snake hypersurface is attained on any pair of the corresponding points.
Lemma 4 states that an orthogonal projection on a snake hypersurface is well defined. Finally,
Lemma 5 affirms that a hyperplane section of a snake hypersurfaces is also a snake hypersurface but
of dimension one less. These properties will play a crucial role in constructing a family of ‘snake
colorings’ and proving the main result of this paper in Section 3.

We begin with setting up some notation. Let e1, . . . , en be the standard basis vectors for Rn,
and 1n ∈ Rn be their sum, i.e., a vector with all n coordinates being unit5. For all m < n, we also
identify Rm with an m-dimensional subspace of Rn which is spanned by its first m basis vectors
e1, . . . , em. For instance, we identify the points (1, 2) ∈ R2 and (1, 2, 0) ∈ R3. For two subsets
A,B ⊂ Rn, we denote their Minkowski sum {a + b : a ∈ A,b ∈ B} ⊂ Rn by A+B as usual. We
call the Minkowski sum injective if for all a,a′ ∈ A,b,b′ ∈ B, the equality a + b = a′ + b′ implies
that a = a′ and b = b′. Finally, for a subset A ⊂ Rn and for a set of reals I ⊂ R, we denote the set
of pairwise products {i · a : i ∈ I,a ∈ A} ⊂ Rn by I ·A.

Given n ∈ N, a snake hypersurface sn(a1, b1, . . . , an, bn) is an n-dimensional piecewise linear
hypersurface in Rn+1 that depends on 2n positive real parameters. The definition is by induction

5Note that here and in what follows we do not distinguish points from their position vectors.
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on n. Let s0(∅) := {0} be just the origin of the line. For n > 0, we define sn(a1, b1, . . . , an, bn) by

sn(a1, b1, . . . , an, bn) = sn−1(a1, b1, . . . , an−1, bn−1)

+ Z · {an · en+1 − bn · 1n}+ [0, an) · en+1 ∪ (0, bn] · 1n. (3)

We visualize this definition in case n = 1, 2 in Figure 1.

Figure 1: Snake hypersurfaces on the plane and in space

In what follows, whenever this does not cause confusion, we omit the parameters of a snake
hypersurface and denote sn(a1, b1, . . . , an, bn) simply by sn for a shorthand.

Now we give the aforementioned basic properties of these hypersurfaces as separate lemmas.

Lemma 2. For all n ∈ N, positive reals a1, b1, . . . , an, bn and µ, we have

sn(µa1, µb1, . . . , µan, µbn) = µ · sn(a1, b1, . . . , an, bn).

Proof. The proof is by induction on n. In case n = 0 we have {0} = µ · {0}, and there is simply
nothing to prove. If n > 1, we combine the induction hypothesis with (3) to conclude that

sn(µa1, µb1, . . . , µan, µbn) = sn−1(µa1, µb1, . . . , µan−1, µbn−1)

+ Z · {µan · en+1 − µbn · 1n}+ [0, µan) · en+1 ∪ (0, µbn] · 1n
= µ · sn−1(a1, b1, . . . , an−1, bn−1)

+ µ · Z · {an · en+1 − bn · 1n}+ µ · [0, an) · en+1 ∪ µ · (0, bn] · 1n

= µ ·
(
sn−1(a1, b1, . . . , an−1, bn−1)

+ Z · {an · en+1 − bn · 1n}+ [0, an) · en+1 ∪ (0, bn] · 1n
)

= µ · sn(a1, b1, . . . , an, bn).

This completes the proof.
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Lemma 3. For all n ∈ N, positive reals a1, b1, . . . , an, bn and t the following holds. For any two
points x,y ∈ sn = sn(a1, b1, . . . , an, bn), we have ‖x + t · 1n+1 − y‖∞ ≥ t. In other words, the
`∞-distance between sn and a translation sn + t · 1n+1 equals t.

Proof. Let us use induction on n. If n = 0, there is nothing to do, since |0 + t− 0| = t. So, we turn
to the induction step. Fix n ≥ 1, and assume that there exist x,y ∈ sn such that

‖x + t · 1n+1 − y‖∞ < t. (4)

We use the definition (3) of the snake hypersurface to represent x as a sum

x = x′ + cx(an · en+1 − bn · 1n) + vx · en+1 + wx · 1n,

where x′ ∈ sn−1, cx ∈ Z, vx ∈ [0, an), wx ∈ [0, bn], and either vx or wx is equal to zero. Then we
represent y similarly.

Considering only the last coordinate, we deduce from (4) that

|an(cx − cy) + vx − vy + t| < t. (5)

As far as vx − vy > −an, the last inequality implies that cx − cy ≤ 0.
Similarly, one can consider the first n out of n+ 1 coordinates in (4) to get that

‖x′ +
(
bn(cy − cx) + wx − wy + t

)
· 1n − y′‖∞ < t.

By the induction hypothesis, the last inequality implies that

|bn(cy − cx) + wx − wy + t| < t. (6)

Since wx − wy ≥ −bn, it follows from (6) that cy − cx ≤ 0.
Hence, if both inequalities (5) and (6) hold, then cx = cy. Under this assumption, these

inequalities turn into |vx − vy + t| < t and |wx − wy + t| < t, respectively. In particular, we have
vx < vy and wx < wy. However, this is a contradiction, because either vy or wy is equal to zero.
This establishes the induction step.

So, we have shown that for all x,y ∈ sn, we have ‖x + t · 1n+1 − y‖∞ ≥ t. Besides, if x = y,
then the last inequality holds with the equality. This proves that the `∞-distance between the
hypersurfaces sn and sn + t · 1n+1 equals t.

Lemma 4. For all n ∈ N and positive reals a1, b1, . . . , an, bn, the following two statements are valid.
First, the Minkowski sum from the right-hand side of (3) is injective. Second, we have

Rn+1 = sn(a1, b1, . . . , an, bn) + R · 1n+1,

ans this sum is also injective.

Proof. As in the case of previous lemmas, the proof here is by induction on n. The base case n = 0
is immediate. Indeed, the first statement is degenerate in this case, while the second one is trivial,
since the sum R = {0}+ R · 11 is clearly injective. So, we turn to the induction step.

Assume that n ≥ 1 and consider the Minkowski sum

Σ := sn−1 + Z · {an · en+1 − bn · 1n}+ [0, an) · en+1 ∪ (0, bn] · 1n + R · 1n+1. (7)
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Observe that the last term of the right-hand side of (7) allows us to subtract an arbitrary vector
collinear to 1n+1 from any point of the preceding terms of the Minkowski sum. Moreover, this
operation does not change whether the sum is injective or not. In particular, for all v ∈ [0, an), we
can replace v ·en+1 by v ·en+1−v ·1n+1 = −v ·1n. So, we replace [0, an) ·en+1 from the penultimate
term of (7) by (−an, 0] · 1n and conclude that

Σ = sn−1 + Z · {an · en+1 − bn · 1n}+ (−an, bn] · 1n + R · 1n+1.

Similarly, we replace Z · {an · en+1 − bn · 1n} by Z · {−(an + bn) · 1n} in the right-hand side of
the last equality. Then, observe that

Z · {−(an + bn) · 1n}+ (−an, bn] · 1n = R · 1n

and this sum is injective. Therefore,

Σ = sn−1 + R · 1n + R · 1n+1 = Rn + R · 1n+1,

where the last equality hold by induction. Finally, it is easy to check that Rn + R · 1n+1 = Rn+1

and this sum is injective.
Summing up, we have seen that the Minkowski sum (7) is equal to Rn+1 and injective. Taking

into account the definition (3) of the snake hypersurface, this observations yields both the desired
statements and completes the proof.

Lemma 4 implies that

Rn+1 = sn + R · 1n+1 = sn + [0, 1) · 1n+1 + Z · 1n+1 = ŝn + Z · 1n+1, (8)

where
ŝn = ŝn(a1, b1, . . . , an, bn) = sn(a1, b1, . . . , an, bn) + [0, 1) · 1n+1, (9)

and all these sums are injective.
The following technical lemma describes the ‘contours’ of ŝn, i.e., its intersections

ŝn(h) :=
{

(x1, . . . , xn) ∈ Rn : (x1, . . . , xn, h) ∈ ŝn
}

(10)

with the hyperplanes xn+1 = h in case an > 1.

Lemma 5. For all n ∈ N, positive reals a1, b1, . . . , an, bn such that an > 1, and for all m ∈ Z, the
following holds. First, if h ∈ [man,man + 1), then

ŝn(h) = sn−1 −mbn · 1n + [0, bn + 1) · 1n. (11)

Second, if h ∈ [man + 1,man + an), then

ŝn(h) = sn−1 −mbn · 1n + [0, 1) · 1n. (12)

Proof. We begin with the proof of the second statement.
Fix m ∈ Z and h ∈ [man + 1,man + an). Recall that it follows from (3) and (9) that each point

x ∈ ŝn has a unique representation as a sum

x = x′ + cx(an · en+1 − bn · 1n) + vx · en+1 + wx · 1n + ux · 1n+1, (13)

7



where x′ ∈ sn−1, cx ∈ Z, ux ∈ [0, 1), vx ∈ [0, an), wx ∈ [0, bn], and either vx or wx is equal to zero.
The last coordinate of such x is equal to

xn+1 = cxan + vx + ux, (14)

while the fist n its coordinates are

(x1, . . . , xn) = x′ − cxbn · 1n + (wx + ux) · 1n. (15)

Observe that if cx > m, then we have xn+1 ≥ (m + 1)an > h. Similarly, if cx < m, then
we have xn+1 < (m − 1)an + an + 1 ≤ h. Thus, xn+1 = h if and only if cx = m,ux ∈ [0, 1),
vx = h−man − ux > 0. Clearly, the last inequality implies that wx = 0. Now it follows from (15)
that the first n coordinates of such points form the set from the right-hand side of (12).

Let us move on the fist part of the lemma. Fix m ∈ Z and h ∈ [man,man + 1). We use the
same representation (13) of an arbitrary x ∈ ŝn as before. Again, if cx > m, then (14) implies that
xn+1 ≥ (m + 1)an > h. Similarly, if cx < m − 1, then we have xn+1 < (m − 2)an + an + 1 < h.
However, there are two options for cx this time: if x ∈ ŝn(h), then either cx = m− 1, or cx = m.

In the former case, xn+1 = h if and only if vx+ux = h−(m−1)an. Observe that if ux ≤ h−man,
then vx = h− (m− 1)an − ux ≥ an, which is impossible. At the same time, if h−man < ux < 1,
then we have 0 < vx < an as required. Moreover, wx = 0 for all such x since vx is positive. Thus, it
follows from (15) that the first n coordinates of the points x ∈ ŝn such that xn+1 = h and cx = m−1
form the set S1 defined by

S1 = sn−1 − (m− 1)bn · 1n + (h−man, 1) · 1n = sn−1 −mbn · 1n + I1 · 1n,

where
I1 = (h−man + bn, bn + 1).

Now let us consider the other case, namely, cx = m. By (14), we have xn+1 = h if and only if
vx + ux = h−man. As far as 0 ≤ h−man < 1, there are two options to satisfy the last equation.
The first one is to put ux = h−man, vx = 0, and thus the value of wx ∈ [0, bn] may be arbitrary. It
follows from (15) that the first n coordinates of such points form the set

S2 = sn−1 −mbn · 1n + I2 · 1n, where I2 = [h−man, h−man + bn].

The second option6 is to take an arbitrary ux ∈ [0, h−man) and to put vx = h−man − ux > 0.
We shall have wx = 0 for all such points since vx is positive. Hence, by (15), the first n coordinates
of these points form the set

S3 = sn−1 −mbn · 1n + I3 · 1n, where I3 = [0, h−man).

After considering all these possibilities, we conclude that

ŝn(h) = S1 ∪ S2 ∪ S3 = sn−1 −mbn · 1n + (I1 ∪ I2 ∪ I3) · 1n.

Finally, it is easy that I3 ∪ I2 ∪ I1 = [0, bn + 1). This yields (11) and finishes the proof.

Corollary 3. In the notation of Lemma 5, for all m ∈ Z, h ∈ [man − an + 1,man + an), we have

ŝn(h) ⊂ ŝn(man) = sn−1 −mbn · 1n + [0, bn + 1) · 1n.
6Note that this option may be degenerate if h = man.
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3 Proof of Theorem 1

In the present section we construct a special two-coloring of the space, a snake coloring, and prove
that it has the desired property. The construction is based on the notion of a snake hypersurface,
so we use the notation from the previous section.

Given n ∈ N, put, with a foresight,

ai = ai(n) :=
7

4
· (5n − 5n−i), bi = bi(n) := 4 · 5n−i, i = 0, . . . , n. (16)

For all m ≤ n, let us denote the snake hypersurface sm(a1, b1, . . . , am, bm) by smn for a shorthand.
According to (9), put ŝn := snn + [0, 1) · 1n+1. Recall that by (8), we have Rn+1 = ŝn +Z · 1n+1 and
this sum is injective. Therefore, Rn+1 can be represented as a disjoint union

Rn+1 = R tB,

where
R := ŝn + {2z : z ∈ Z} · 1n+1, B := ŝn + {2z + 1 : z ∈ Z} · 1n+1.

Finally, let us color all points of R and B red and blue, respectively. We illustrate this coloring in
case n = 1 in Figure 2.

Figure 2: Part of the snake coloring of the plane

In order to prove Theorem 1, we shall show that there are no monochromatic `∞-isometric
copies of all batons B(λ1, . . . , λk) such that maxt λt ≤ 1 and

∑k
t=1 λt ≥ 5n+1. In view of the

symmetry between R and B, it is sufficient to prove the absence of only such red copies. Besides,
from Lemma 3 it follows that for all z, z′ ∈ Z, x ∈ ŝn + 2z · 1n+1, y ∈ ŝ

n
+ 2z′ · 1n+1, we have

‖x − y‖∞ > 2 · |z − z′| − 1. In particular, the `∞-distance between any two points of different
translates of ŝn in R is strictly greater than one. So, since maxt λt ≤ 1, any red `∞-isometric copy
of B(λ1, . . . , λk) must lie entirely within some translate ŝn + 2z · 1n+1 of ŝn in R. Moreover, since
5n+1 > 7

4 · 5
n − 3

4 = an + 1, the following proposition finishes the proof of Theorem 1.

Proposition 1. In the notation of this section, given n ∈ N and positive reals λ1, . . . , λk, if
maxt λt ≤ 1 and

∑k
t=1 λt ≥ an + 1, then ŝn contains no `∞-isometric copy of B = B(λ1, . . . , λk).
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The proof of this proposition is trivial if n = 0. Indeed, in this case, ŝ0 is just a half-opened
interval [0, 1) ⊂ R which clearly does not contain an isometric copy of B because diam(B) =∑k

t=1 λt ≥ a0 + 1 = 1.
Let us also illustrate the proof in case n = 1 with the aid of Figure 2. It is easy to see that

ŝ1, which looks like a single red ‘snake’, does not contain a vertical isometric copy of B since∑k
t=1 λt ≥ a1 + 1. Indeed, the condition maxt λt ≤ 1 makes the potential isometric copy too narrow

to ‘jump’ between different half-open vertical segments of the snake, and thus it has to fit within a

single one of them of length a1 + 1. By the same reason, ŝ1 does not contain a horizontal isometric
copy of B as well because

∑k
t=1 λt ≥ b1 + 1 (note that a1 = 7 > 4 = b1 by definition). However, it

would be better to say, with a foresight, that ŝ1 does not contain such isometric copies of B ‘by
the induction hypothesis’ since the case n = 0 yields this upper bound on the maximal length of a
baton inside a horizontal segment [0, b1 + 1). This concludes the proof of Proposition 1 in case n = 1
as far as there are only these two possible directions for an isometric copy of B (see Section 2.1).

In the rest of this section we extend the argument from the previous paragraph and prove
Proposition 1 by induction on n using only the trivial case n = 0 as the base of induction7.

So, let us assume that n ≥ 1. Our argument consists of two steps, which are a natural
generalization of the above dichotomy between vertical and horizontal isometric copies. The first
step is to prove that no `∞-isometric copy of B in ŝn has direction n+ 1, while during the second
one we show that directions 1, . . . , n are also excluded. This would immediately finish the proof of
Proposition 1 (and thus the one of Theorem 1 as well), since Lemma 1 ensures that each `∞-isometric
copy of B in ŝn ⊂ Rn+1 has at least one direction among the first n+ 1 positive integers.

Step 1: no `∞-isometric copy of B in ŝn has direction n+ 1.

Assume the contrary. Let the sequence x0, . . . ,xk of points in ŝn be an `∞-isometric copy of B
that has direction n+ 1. Thus, their last coordinates x0n+1, . . . , x

k
n+1 form (in that order) either a

translation, or a reflection of B. Without loss of generality, assume that the former holds, i.e., that
we have xsn+1 − x

s−1
n+1 = λs ≤ 1 for all s = 1, . . . , k.

Choose m ∈ N such that man ≤ x0n+1 < (m+ 1)an. A priori, there are two possibilities: either
xkn+1 < (m+ 1)an + 1, or xkn+1 ≥ (m+ 1)an + 1.

The former option leads to a contradiction since

k∑
t=1

λt = xkn+1 − x0n+1 < (m+ 1)an + 1−man = an + 1.

So, let us assume that xkn+1 ≥ (m+ 1)an + 1. In this case, put

l := max{s : xsn+1 < (m+ 1)an} and r := min{s : xsn+1 ≥ (m+ 1)an + 1}.

Now we estimate the distance ‖xr − xl‖∞ in two ways to get a contradiction again.
On the one hand, it is clear that

(m+ 1)an ≤ xl+1
n+1 = xln+1 + λl+1 ≤ xln+1 + 1 < (m+ 1)an + 1.

Similarly, we have

(m+ 1)an ≤ xrn+1 − 1 ≤ xrn+1 − λr = xr−1n+1 < (m+ 1)an + 1.

7As a byproduct, this would provide a more formal proof for the case n = 1 considered above.
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Thus,

‖xr − xl‖∞ = xrn+1 − xln+1 = (xrn+1 − xr−1n+1) + (xr−1n+1 − x
l+1
n+1) + (xl+1

n+1 − x
l
n+1)

= λr + (xr−1n+1 − x
l+1
n+1) + λl+1 < 1 + 1 + 1 = 3. (17)

On the other hand, it is clear that ‖xr − xl‖∞ ≥ ‖yr − yl‖∞, where ys = (xs1, . . . , x
s
n) is a set of

the first n coordinates of xs, s = 0, . . . , k. Besides, we have yl ∈ ŝn(xln+1) by definition, see (10).
Recall that

(m+ 1)an > xln+1 = xl+1
n+1 − λl+1 ≥ (m+ 1)an − 1 ≥ man + 1,

where the last inequality holds because an ≥ 2, see (16). Therefore, the second part of Lemma 5
implies that

ŝn(xln+1) = sn−1n −mbn · 1n + [0, 1) · 1n.

Similarly, we have

(m+ 1)an + 1 ≤ xrn+1 = xr−1n+1 + λr < (m+ 1)an + 1 + 1 ≤ (m+ 2)an.

Thus, by the second part of Lemma 5, we have

yr ∈ ŝn(xrn+1) = sn−1n − (m+ 1)bn · 1n + [0, 1) · 1n.

Finally, let us apply Lemma 3 and conclude that the `∞-distance between ŝn(xln+1) and ŝn(xrn+1)
is equal to bn − 1 = 3, see (16). In particular, we have

‖xr − xl‖∞ ≥ ‖yr − yl‖∞ > 3.

However, the last inequality contradicts (17). This observation completes Step 1.

Step 2: for all 1 ≤ i ≤ n, no `∞-isometric copy of B in ŝn has direction i.

This proof shares similarities with the argument from the previous step. As earlier, assume
the contrary. Let the sequence x0, . . . ,xk of points in ŝn be an `∞-isometric copy of B that has
direction i for some 1 ≤ i ≤ n. Since their last coordinates do not determine the distances between
these points (see Lemma 1), it is easy to see that the sequence y0, . . . ,yk is also an `∞-isometric
copy of B that has direction i, where ys = (xs1, . . . , x

s
n), s = 0, . . . , k.

Pick an index l such that xln+1 = mins x
s
n+1. If this choice is not uniquely determined, we pick

an arbitrary of them. Next, let us choose m ∈ N such that (m − 1)an + 1 ≤ xln+1 < man + 1. A
priori, there are two possibilities: either maxs x

s
n+1 < (m+ 1)an, or maxs x

s
n+1 ≥ (m+ 1)an.

In the former case, given s = 0, . . . , k, we have (m − 1)an + 1 ≤ xsn+1 < (m + 1)an. Thus,
Corollary 3 implies that

ys ∈ ŝn(xsn+1) ⊂ ŝ
n
(man) = sn−1n −mbn · 1n + [0, bn + 1) · 1n. (18)

This proves the following statement.

Claim 1. The set {y0, . . . ,yk} + mbn · 1n is a subset of sn−1n + [0, bn + 1) · 1n and forms an
`∞-isometric copy of B.
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On the other hand, recall that bn = bn(n) = 4 due to (16). Besides, we have ai(n)
5 = ai(n− 1)

and bi(n)
5 = bi(n− 1) for all i = 1, . . . , n− 1. Hence, it follows from Lemma 2 that

sn−1n + [0, bn + 1) · 1n = sn−1
(
a1(n), b1(n), . . . , an−1(n), bn−1(n)

)
+ [0, 5) · 1n

= 5 ·
(
sn−1

(a1(n)

5
,
b1(n)

5
, . . . ,

an−1(n)

5
,
bn−1(n)

5

)
+ [0, 1) · 1n

)
= 5 ·

(
sn−1

(
a1(n− 1), b1(n− 1), . . . , an−1(n− 1), bn−1(n− 1)

)
+ [0, 1) · 1n

)
= 5 ·

(
sn−1n−1 + [0, 1) · 1n

)
= 5 · ŝn−1.

Now we apply the induction hypothesis of Proposition 1 to ŝn−1 and conclude the following.

Claim 2. For all positive reals λ′1, . . . , λ
′
k′, if maxt λ

′
t ≤ 5 and

∑k′

t=1 λ
′
t ≥ 5an−1(n − 1) + 5, then

sn−1n + [0, bn + 1) contains no `∞-isometric copy of B(λ′1, . . . , λ
′
k′).

In particular, the last statement implies that sn−1n + [0, bn + 1) contains no `∞-isometric copy of
B = B(λ1, . . . , λk) because

k∑
t=1

λt ≥ an(n) + 1 =
7

4
· 5n − 3

4
>

7

4
· 5n − 15

4
= 5an−1(n− 1) + 5.

However, this observation contradicts Claim 1.
So, it remains only to consider the case when xsn+1 ≥ (m + 1)an for some s. Let r be the

closest to l index such that xr+1
n+1 ≥ (m + 1)an. Without loss of generality, assume that r > l. It

is clear the set {xs : l ≤ s ≤ r} is an `∞-isometric copy of B′ := B(λl, . . . , λr−1). Thus, so is the
set {ys : l ≤ s ≤ r}. Moreover, by the choice of r, we have xsn+1 < (m+ 1)an for all l ≤ s ≤ r. As
earlier, these inequalities together with Corollary 3 imply (18) and prove the following statement.

Claim 3. The set {ys : l ≤ s ≤ r}+ mbn · 1n is a subset of sn−1n + [0, bn + 1) · 1n and forms an
`∞-isometric copy of B′ = B(λl, . . . , λr−1).

Finally, we estimate the diameter of B′ to get a contradiction with Claim 2. Indeed,

r−1∑
t=l

λt =
r∑

t=l

λt − λr = ‖xr+1 − xl‖∞ − λr ≥ xr+1
n+1 − x

l
n+1 − 1

> (m+ 1)an(n)−
(
man(n) + 1

)
− 1 = an(n)− 2 = 5an−1(n− 1) + 5,

where the final equality is via a straightforward calculation. This observation completes the proofs
of both Proposition 1 and Theorem 1.

4 Corollaries

4.1 Proof of Corollary 1

Given n ∈ N, let N be a norm on Rn. A well-known result states that any two norms on a
finite-dimensional space are equivalent, i.e., each one is bounded by some linear function of another.
In particular, there are positive reals c and C such that c‖x‖N ≤ ‖x‖∞ ≤ C‖x‖N for all x ∈ Rn.
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After a proper scaling, we may assume without loss of generality that C = 1. We prove that the
two-coloring of Rn from Theorem 1 has the desired property with δ = δ(Rn

N ) := 5n/c.

Indeed, let B = B(λ1, . . . , λk) be a baton such that maxt λt ≤ 1 and
∑k

t=1 λt ≥ δ. Fix a sequence
of collinear points x0, . . . ,xk in Rn that forms an N -isometric copy of B. Consider a ratio

µ :=
‖xr − xl‖∞
‖xr − xl‖N

.

In is not hard to see that the collinearity of these points implies that the value of µ does not depend
on the indexes l and r such that 0 ≤ l < r ≤ k. In particular, we conclude that the sequence
x0, . . . ,xk forms an `∞-isometric copy of the baton B′ = B(λ′1, . . . , λ

′
k), where λ′s = µλs for all

s = 0, . . . , k. Moreover, we have c ≤ µ ≤ 1 by construction.
Finally, observe that maxt λ

′
t = µ ·maxt λt ≤ 1 and

∑k
t=1 λ

′
t = µ ·

∑k
t=1 λt ≥ c · δ = 5n. Hence,

Theorem 1 implies that the sequence x0, . . . ,xk contains points of both colors.

4.2 Proof of Corollary 2

Let Rn
N be an n-dimensional normed space whose unit ball U is a centrally symmetric convex

polytope in Rn with 2f facets. The following proof is based on the well-known fact that U can be
considered as an intersection of an f -dimensional hypercube with some n-dimensional hyperplane
that contains the origin (see [14], Theorem 5.1.3 or [15], Proposition 4.5). However, we write down
all the details below for clarity.

Given 1 ≤ i ≤ f , let ci ∈ Rn be a vector orthogonal to the i-th pair of the opposite facets of U
such that their hyperplains are defined by the equations 〈ci,x〉 = 1 and 〈ci,x〉 = −1, where 〈·, ·〉
stands for the standard Euclidean dot product on Rn. Then it is not hard to see that

U = {x ∈ Rn : |〈ci,x〉| ≤ 1 for all 1 ≤ i ≤ f},

and that for all x ∈ Rn, we have
‖x‖N = max

1≤i≤f
|〈ci,x〉|. (19)

Consider a linear function ϕ : Rn → Rf defined for all x ∈ Rn by

ϕ(x) =
(
〈c1,x〉, . . . , 〈cf ,x〉

)
.

It follows from (19) that ‖x‖N = ‖ϕ(x)‖∞ for all x ∈ Rn. Thus, ϕ provides an isometric embedding

of Rn
N into Rf

∞. Finally, it is easy to see that the two-coloring of Rf from Theorem 1 induced on
the image ϕ(Rn) possesses the desired property.

5 Concluding remarks

The statement of Theorem 1 raises the following problem. Given n ∈ N, what is the minimum
k = k(Rn

∞) ≤ 5n such that χ(Rn
∞,Bk) = 2? With a more careful choice of the auxiliary parameters

for the snake coloring, we can show that k(Rn
∞) = O(3n). However, this approach does not

seem to lead to any subexponential upper bound. On the other hand, it follows from (2) that
k(Rn

∞) ≥ n/ ln(2). It would be interesting to reduce the gap between these bounds and find the
correct asymptotic.
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The cases of small dimensions are usually of independent interest regarding the problems of this
flavor. It is not hard to check that χ(R2

∞,B1) = 4, χ(R2
∞,B2) = χ(R2

∞,B3) = 3 and χ(R2
∞,Bk) = 2

for all k ≥ 4. However, finding such a complete list seems to be a computationally challenging
problem even in case of three-dimensional space R3

∞.
Following the proof of Corollary 1, one can easily show that the minimum k = k(Rn

p ) such that
χ(Rn

p ,Bk) = 2 does not exceed n · 5n for all 1 < p <∞. However, it is natural to conjecture that
k(Rn

p ) is bounded for such values of p as n→∞ by analogy with the Euclidean case, where we have
k(Rn

2 ) ≤ 5 for all n ∈ N.
The situation with the Manhattan distance is also obscure for us. We know the way to establish

an almost linear lower bound k(Rn
1 ) ≥ n1−o(1), but the best upper bound we have is only doubly

exponential, see Corollary 2.
Furthermore, note that the upper bound on k(Rn

N ) from Corollary 2 depends only on the number
of facets of the unit ball, and is independent of the dimension n. For instance, if P (2f) is a norm
on the plane whose unit ball is a regular (2f)-gon, then Corollary 2 implies that k

(
R2
P (2f)

)
≤ 5f . Is

there a uniform upper bound independent of f for this sequence of norms?
Finally, one can also consider the multicolor versions of all the aforementioned problems, where

each isometric copy of Bk is required to intersect not with two, but with a greater number of colors.
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