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ALGEBRAIC STRUCTURE OF THE WEAK STAGE ORDER

CONDITIONS FOR RUNGE-KUTTA METHODS

ABHIJIT BISWAS, DAVID KETCHESON, BENJAMIN SEIBOLD, AND DAVID SHIROKOFF

Abstract. Runge-Kutta (RK) methods may exhibit order reduction when applied to stiff
problems. For linear problems with time-independent operators, order reduction can be
avoided if the method satisfies certain weak stage order (WSO) conditions, which are less
restrictive than traditional stage order conditions. This paper outlines the first algebraic
theory of WSO, and establishes general order barriers that relate the WSO of a RK scheme
to its order and number of stages for both fully-implicit and DIRK schemes. It is shown in
several scenarios that the constructed bounds are sharp. The theory characterizes WSO in
terms of orthogonal invariant subspaces and associated minimal polynomials. The resulting
necessary conditions on the structure of RK methods with WSO are then shown to be of
practical use for the construction of such schemes.

1. Introduction

Runge-Kutta (RK) methods may exhibit a convergence rate lower than the (classical)
order of the scheme. This order reduction phenomenon often occurs when integrating stiff
ODEs, stiff PDEs, or initial-boundary value problems (IBVPs) with time-dependent boundary
conditions [10, 5, 15, 41, 44, 29, 26, 31]. In the worst case, the observed convergence rate is
governed by the stage order of the method [34, 19]. Unfortunately, RK methods with high
stage order must be fully implicit; diagonally implicit RK (DIRK) schemes cannot have stage
order above 2.

By considering a restricted class of problems, one can obtain conditions weaker than stage
order that are sufficient to ensure high-order convergence. For instance, in some cases where
order reduction stems from time-dependent PDE boundary conditions, it can be avoided by
various problem- and method-dependent modifications [14, 1, 2, 12, 3, 13]. A set of conditions
ensuring high-order convergence for linear problems has been developed [29, 20, 9, 42] and
recently referred to by the term weak stage order [39, 23]. The conditions for weak stage
order are, as the name suggests, weaker than those for stage order; notably, DIRK methods
can have high weak stage order. The conditions are closely related to the classical order
conditions for RK methods. In this work we establish the algebraic structure of weak stage
order and use it to prove rigorous relationships between the achievable order, the weak stage
order, and the number of stages of a method.

1.1. The Weak Stage Order Conditions. We consider the initial value problem

u′(t) = f(t, u(t)), u(0) = u0; u ∈ R
m, f : R× R

m → R
m, (1)
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and its numerical approximation un ≈ u(tn), where tn = n∆t, via an s-stage Runge-Kutta
(RK) scheme, where the one-step update rule

gi = un +∆t

s
∑

j=1

aijf(tn + cj∆t, gj) , i = 1, 2, . . . , s (2a)

un+1 = un +∆t

s
∑

j=1

bjf(tn + cj∆t, gj) , (2b)

is concisely represented via the Butcher tableau

~c A
~bT

, where A = (aij)
s
i,j=1,

~b = (b1, . . . , bs)
T , ~c = (c1, . . . , cs)

T .

Method (2) is said to be of classical order p if the one-step error [18] is of O(∆tp+1) as ∆t → 0.
This requires that the coefficients of the method satisfy certain algebraic relations known as
order conditions, which are derived under the assumption that f has Lipschitz constant λ,
and that ∆tλ ≪ 1.

If one does not assume that ∆tλ is small (i.e., in the study of stiff problems), a careful
expansion of the numerical error leads to additional algebraic conditions on the scheme’s
coefficients. A necessary condition for convergence of order ξ for general stiff ODEs (cf. [19,
Theorem 15.3]) is that

~τ (k) := A~c k−1 − 1
k
~c k =

(

ACk−1 − 1
k
Ck
)

~e = 0, for 1 ≤ k ≤ ξ . (3)

Here ~c k :=
(

ck1 , c
k
2 , . . . , c

k
s

)T
denotes component-wise exponentiation, the vector ~e = (1, . . . , 1)T ∈

R
s, and the diagonal matrix C = diag(c1, c2, . . . , cs) so that ~c = C~e. Throughout this paper

we assume that ~c = A~e, which implies that τ (1) = 0. We refer to the vectors ~τ (k) as stage
order residuals.

If one assumes that f is a linear (possibly time-dependent) operator, then in the convergence
analysis for stiff problems one can replace the stage order with the largest integer ξ such that

S(ξ) : ~bTAj~τ (k) = 0, for all 0 ≤ j ≤ s− 1, 1 ≤ k ≤ ξ . (4)

Definition 1.1. (Weak stage order, WSO) The weak stage order q of an s-stage RK scheme

(A,~b) is the largest integer such that condition S(q) in (4) holds. If S(ξ) holds for every
ξ ≥ 1, then q = ∞.

Conditions (4) were first introduced in the context of ROW methods, and referred to as
parabolic order conditions [29, 30]; see §8. In §2, we review the derivation of condition (4) as
well as what is known about the class of problems for which this condition ensures convergence
of order q. We also provide a review of the literature relating to WSO and similar conditions.

1.2. Contribution of this Work. While much is known about RK order conditions, less
is known about the solvability of the WSO conditions, and more generally, the simultaneous
solution of both sets of order conditions. Since high stage order methods must be fully
implicit, the solvability of the WSO and order conditions for DIRK schemes is of particular
interest.

Previous attempts at constructing DIRK schemes with WSO [39, 23] relied upon the sim-
plifying assumption that the vectors τ (k) in (4) be eigenvectors of A. For instance, DIRK
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schemes up to order 4 and WSO 3 have been provided in [23]. This simplifying “eigenvector
criterion” limits the construction of WSO schemes for DIRKs (with invertible A) to q ≤ 3,
as shown below. A key motivating factor for the present work is the need to construct DIRK
schemes with high WSO q > 3; in order to enable this, herein the vectors ~τ (k) are not assumed
to be eigenvectors of A. Although we are particularly interested in DIRK schemes, some of
the main results herein apply to general RK schemes.

This paper provides the first known bounds relating a RK scheme’s WSO q to the order
p and number of stages s. After reviewing the background on WSO (§2), we recast WSO in
terms of orthogonal invariant subspaces related to the matrix A (§3). From there we establish
general bounds on s, q, p for both fully implicit RK schemes and refinements for DIRKs. In
§4 we introduce minimal polynomials corresponding to the orthogonal invariant subspaces.
The minimal polynomials are then combined with a family of polynomials (orthogonal with
respect to a linear functional) to yield new formulas (§5) for the stability function, relevant
for schemes with high WSO. The study also reveals necessary conditions for WSO q > 3 (§6),
which provides the theoretical foundation for devising new schemes in the companion paper
[7]. We conclude with examples (§7) demonstrating the sharpness of the bounds.

2. Relevance of Weak Stage Order

This section provides background information relevant for this work: mathematical nota-
tion and fundamentals (§2.1), the manifestations of order reduction and error formulas (§2.2),
and a literature review of prior work related to WSO (§2.3). While the expert reader familiar
with the literature may skip this section, it provides a motivation for the relevance of this
paper.

2.1. Fundamentals and Notation. The following definitions and notation about RK schemes
are used in this manuscript.

Given a RK method, we let nc denote the number of distinct abscissas cj , e.g., if c1 = · · · =
cs then nc = 1; in turn, if all cj are distinct (i.e., the scheme is non-confluent) then nc = s.

Schemes for which A is lower-triangular (aij = 0 for j > i) are called diagonally implicit
Runge-Kutta (DIRK) methods. If furthermore all diagonal entries are equal, i.e., aii = γ
for i = 1, . . . , s, then the scheme is called singly diagonally implicit (SDIRK). We refer to
DIRK methods with a11 = 0 as EDIRKs. Implicit schemes that are not diagonally implicit
are referred to as fully implicit.

The following definition generalizes the concept of an EDIRK, and will be useful in pro-
viding some results below (such as Theorem 3.2) that are less strict for certain schemes with
an explicit stage.

Definition 2.1. (GEDIRK) We call a DIRK scheme a generalized EDIRK (or GEDIRK),
if ~c contains at least one zero and aℓℓ = 0, where ℓ = min{j | cj = 0} is the index of the first
zero in ~c.

When a RK scheme is applied to the scalar ODE u′(t) = λu, it results in the iteration
un+1 = R(z)un, where z := λ∆t, and

R(z) := 1 + z~bT (I − zA)−1~e =
det(I − zA+ z~e~bT )

det(I − zA)
(5)

is the stability function of the scheme.
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A RK scheme is called stiffly accurate [34] if the last row of A equals ~bT , i.e., asj = bj for

j = 1, . . . , s. When A is invertible, stiff accuracy implies ~bTA−1~e = 1, and hence the desirable
property limz→∞R(z) = 0 results.

The (classical) order p of a RK scheme (see §1.1) imposes the well-known order conditions
on the Butcher coefficients [18]. We will also make use of the conditions

B(ξ) : ~bT~c k−1 = 1
k

for k = 1, 2, . . . , ξ , (6)

C(ξ) : ~τ (k) = 0 for k = 1, 2, . . . , ξ , (7)

which determine the accuracy of the quadrature and subquadrature rules (respectively) on
which the RK method is based [11].

A RK scheme is said to have stage order q̃ := min{q1, q2} where q1, q2 are the largest
integers such that B(q1) and C(q2) hold. Stage order q̃ guarantees that each RK stage is
accurate to order q̃, and that the method itself has order at least q̃.

2.2. Order Reduction and the Role of Weak Stage Order. As the name suggests,
the conditions for WSO q are a relaxation of those for stage order q̃, i.e., q̃ ≤ q holds for
any method. The relevance of WSO in the context of order reduction can be understood by
examining the error for the (stiff) Prothero-Robinson problem [34, 19],

u′ = λ (u− φ(t)) + φ′(t), u(0) = φ(0), with Re(λ) < 0 , (8)

with solution u(t) = φ(t). For solutions starting from a different initial value, the difference
u(t)− φ(t) decays exponentially to zero with time. Problem (8) can be made arbitrarily stiff
by choosing |λ| large. As in [19, (15.9) Chap. IV.15], one can derive exact formulas for the
RK scheme’s global error (with equal time-steps):

un+1 − φ(tn+1) = (R(z))n+1(u0 − φ(0)) +

n
∑

j=0

(R(z))n−j~δ∆t(tj) .

Here z = λ∆t and R(z) are defined as in (5). The local error ~δ∆t(tn) has, for a p-th order
method, the form

~δ∆t(tn) = −
∑

k≥1

(∆t)k

(k − 1)!
Wk(z)φ

(k)(tn) +O(∆tp+1) , (9)

where φ(k)(tn) is the k-th derivative of φ at tn and Wk(z) is the function

Wk(z) := z~bT (I − zA)−1~τ (k) for k ≥ 1 .

In the classical RK convergence theory one examines the non-stiff limit where both the time
scale 1/|λ| and the solution φ(t) are fully resolved. If one assumes that ∆t → 0 with z =

O(∆t), then one can show that the local error ~δ∆t(tn) = O(∆tp+1) by using a Neumann series
for (I − zA)−1 and applying the order conditions.

In a stiff problem setting, one fully resolves the slow time scale defined by the solution φ(t)
(i.e., ∆t|φ′(t)| ≪ 1) but under-resolves the fast time scale 1/|λ| (i.e., |z| = ∆t|λ| > O(1)).

One can then investigate the local error ~δ∆t(tn) uniformly in z. As a special case this in
particular covers the stiff limit given by ∆t → 0 while simultaneously λ → −∞ such that

z → −∞. Then the local error ~δ∆t(tn) is at least order q̃ + 1 because ~τ (k) = 0 for k ≤ q̃,
but in general it will fail to be of order p + 1. The algebraic condition of WSO ensures that
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the functions Wk(z) vanish, yielding a local error ~δ∆t(tn) = O(∆tq+1). WSO is the least
restrictive condition to guarantee Wk(z) = 0 for k ≤ q [23, Thm. 2].

While the Prothero-Robinson problem (8) provides an intuitive example where the conver-
gence of the local truncation error is facilitated by WSO, both the order reduction phenom-
enon and its remedy via WSO apply much more generally.

A general class of problems for which WSO improves the convergence order are effectively
established by the results in [4]: consider any linear PDE

ut = Lu+ f(t) , with boundary data Bu = g(t) , (10)

and suitable initial data, where (L,B) generate a C0-semigroup. While the theorems in [4] are
stated assuming that the RK scheme used to approximate (10) has stage order q, the proofs
in fact only use the conditions for weak stage order q. Hence, WSO is of potential relevance
for any PDE problem generated by a C0-semigroup. The results in [4] build on previous work
that focused on analytic semigroups [29, 30], extending their applicability to a broader class
of PDEs—notably wave equations.

For PDE problems, order reduction and WSO may manifest in interesting ways that are
not encountered in the ODE problem (8). For instance, the convergence order is controlled
by the WSO of the method, plus a correction that may be fractional depending on the details
of the PDE [29]. The fractional convergence can also be understood through the creation of
spatial boundary layers in the RK error [39]. While WSO guarantees the remedy of order
reduction only for linear problems, it is also observed numerically that WSO can improve the
convergence order for certain nonlinear PDEs where the highest derivatives are linear [23].

2.3. Prior Work on Avoiding Order Reduction. The prior section highlights that for
certain classes of stiff problems the order of the local error may be reduced, in the worst case,
to the WSO of the method.

Ostermann & Roche [29] showed that, for linear problems, time-stepping schemes that
satisfy

W̃k(z) :=
k ~bT (I − zA)−1~τ (k)

R(z)− 1
≡ 0 for k = 1, 2, . . . , q , (11)

along with other technical assumptions, avoid order reduction when applied to linear parabolic
PDEs (see [29] for RK methods and [30] for the related Rosenbrock W- (ROW) methods).
The analysis considers PDE problems (10) where L defines an analytic semigroup [30] or has
a point spectrum in the left half plane with a basis of eigenfunctions [29]. The resulting error
convergence rate is min{p, q + 2 + ν̄}, where ν̄ depends on the PDE, see [29, Thm. 2].

Hundsdorfer showed that a generalization of (11) implies a convergence rate of O(∆tq+1)
for linear-implicit RK schemes applied to linear ODEs [20, Thm. 3.3]1. Montijano showed
that a necessary condition for convergence at order q on the problem (8) is bTA−1cj = 1 for
0 ≤ j ≤ q [27, 16].

Because (11) contains the variable z, it is somewhat impractical as a means to design RK
schemes. Scholz [42] converted (11) into direct “order conditions” on the scheme coefficients.

By expanding terms like z~bT (I − zA)~τ (k) in the variable H = z/(1 − zγ) (which is possible
only for SDIRK methods), Scholz developed B-convergence order barriers (up to order 4)
for ROW methods and demonstrated that the weaker conditions are compatible with ROW

1See also [9, Thm. 3.3] which used W̃k(z) to achieve improved convergence estimates.
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(SDIRK) structures by constructing schemes with up to p = q = 4 in (11). The complex-
ity of Scholz’s conditions for ROW methods were subsequently simplified by Ostermann &
Roche [30, Eq. (3.12’)] to (effectively) the conditions (4), where the A and ~τ (k) in (4) are
ROW analogues of the corresponding RK scheme quantities. For further discussion of order
reduction in the context of stiff problems we refer to [8, Chapter 4], [16, Chapter 7] and [19,
Chapter IV.15] and references therein.

Although originally derived only for SDIRK methods, the “order conditions” (4) are in
fact necessary conditions for any RK scheme to avoid order reduction in (8); see §2.2 and
[35, Eqs. (20)–(21)], [36, Thm. 3], [43] and also [39, 23]. A geometric interpretation of (4)
is provided in [39]. Recently, [37, Chap. 6] and [38] extended (4) to generalized-structure
additively partitioned Runge-Kutta (GARK) methods.

3. Bounds on Weak Stage Order via A-Invariant Subspaces

We now state the main results of the paper.

Theorem 3.1. (Main Result) A Runge-Kutta scheme with s stages, nc distinct abscissas,
order p, and weak stage order q satisfies:

(1) If the abscissa values are all non-zero (cj 6= 0), then q ≤ 2nc − 1.
(2) If some of the abscissa values are zero (cj = 0), then either (i) q ≤ 2nc − 2, or

(ii) q = ∞ in which case p = 1.
(3) If q ≤ 2nc − 1, then

q +

⌊

p+ 1 + σ

2

⌋

≤ s+ nc ,

where σ = 1 for stiffly accurate methods with invertible A, and σ = 0 otherwise.

A stricter bound can be obtained for DIRK schemes.

Theorem 3.2. (Main Result for DIRK) Let a DIRK scheme be given with s stages, nc

distinct abscissas, order p, and weak stage order q ≤ 2nc − 1. Then
⌊

q + κ

2

⌋

− κ+ p ≤ s+ 1− σ ,

where σ = 1 if A is invertible and the scheme is stiffly accurate, and σ = 0 otherwise; and
κ = 1 if A is a GEDIRK scheme, and κ = 0 otherwise.

Here ⌊x⌋ is the standard floor function for the real number x. Note that Theorem 3.1 still
applies when q ≥ 2nc − 1.

Remark 3.3. (Order barriers) When p = s+1−σ, Theorem 3.2 implies that DIRK schemes
are limited to WSO q ≤ 3, with the exception of GEDIRK schemes which are limited to WSO
q ≤ 4. For a fixed s, decreasing p by 1 increases the upper bound on q by 2. There exist
schemes that satisfy these barriers sharply (see §7). ♠

In fact, the main results appearing here can be viewed as improvements to the classical
bounds on the RK order p via the number of stages s. For instance, the classical bound
p ≤ s + 1 for DIRK methods can be recovered by setting q = 0 (κ = 0) in Theorem 3.2.
Moreover, the main results show that the maximum WSO q is controlled by the difference in
the classical bound (e.g., s+ 1− p for DIRKs).
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3.1. A Pair of Orthogonal A-invariant Subspaces. The WSO conditions (4) can be
written equivalently in terms of orthogonal subspaces. Given an s-stage RK method, let

Km := span
{

~τ (1), A~τ (1), . . . , As−1~τ (1), ~τ (2), A~τ (2), . . . , As−1~τ (m)
}

(m ≥ 1) , (12)

Y := span
{

~b,AT~b, . . . , (AT )s−1~b
}

. (13)

Note that due to the Cayley-Hamilton theorem, Km is an A-invariant subspace, while Y is
left A-invariant, i.e., A~v ∈ Km for any ~v ∈ Km and AT~v ∈ Y for all ~v ∈ Y . In fact, Km

and Y are the smallest A-invariant spaces containing the ~τ (j) (j ≤ m) and ~b respectively.
This allows for the natural generalization to m = ∞ in (12) by defining K∞ as the smallest

A-invariant space containing τ (k) for all k ≥ 1.

Then (4) is equivalent to the condition that ~v T ~w = 0 for every ~v ∈ Y and ~w ∈ Kq. Since
Km and Y are subspaces of Rs, we have

Lemma 3.4. Given a Runge-Kutta scheme defined by A,~b, let q ≥ 1 be an integer or ∞, and
Kq and Y be the subspaces (12) and (13) of Rs. Then the scheme has weak stage order of at
least q if and only if Y and Kq are orthogonal, in which case

dim(Y ) + dim(Kq) ≤ s . (14)

RK methods with (classical) stage order q have dim(Kq) = 0 and dim(Kq+1) > 0. Except
for schemes that were specifically designed with high WSO, almost all irreducible schemes
in the literature have dim(Y ) = s, so Lemma 3.4 implies that their WSO is no greater than
their stage order. However, some existing schemes have dim(Y ) < s; for example, explicit
methods with one or more entries on the first subdiagonal equal to zero. These include the
8th-order method of Prince & Dormand [33], as well as some of the fifth-order SSP methods
of Ruuth & Spiteri [40].

Remark 3.5. In the proof of Theorem 3.2 (to follow) the bound (18) for DIRK schemes is
used. However, if p = 1, (17) for fully implicit schemes gives dimY ≥ 1 which is tighter than
the DIRK bound (18) (dimY ≥ 0) and yields a slight improvement to Theorem 3.2. ♠

Remark 3.6. For simplicity we have written “order p” in Theorem 3.1 and Theorem 3.2;
however, both results hold under the weaker condition that R(z) = ez+O(zp+1) is a p-th order
approximation as z → 0. ♠

The proof of the main results follows from the inequality (14) along with lower bounds
on the dimensions of Y and Kq. The proof can be divided into three steps. Step 1 (§3.2)
bounds the dimension of Y for both fully implicit and DIRK schemes; Step 2 (§3.3) bounds
the dimension of Km for fully implicit schemes which is then refined in Step 3 (§3.4) for DIRK
schemes.

3.2. (Step 1) A Lower Bound on the Dimension of the Subspace Y . Here we show
that the degrees of the numerator and the denominator of the Runge-Kutta stability function
are bound by the dimension of the subspace Y . When combined with classical results on
rational approximations to ez , we obtain a lower bound on dimY in terms of p.

Throughout, we denote a rational function that approximates ez to order p as

N(z)/D(z) = ez +O(zp+1) , as z → 0 , (15)

where N and D are polynomials with no common factors.
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Theorem 3.7. (Rational approximations of ez, [19, Thm. IV.3.11,Thm. IV.4.18], [28, Thm. 2.1])
Let polynomials N(z),D(z) satisfy (15). Then p ≤ degN +degD. If, further, N/D has only
real poles then p ≤ degN + 1.

For an s-stage RK method, the stability function is a rational approximation of ez with
numerator and denominator of degree at most s. In fact, we can replace s in this statement
with dimY .

Theorem 3.8. Let a RK method (A, b) be given, with Y defined as in (13). Then the stability
function of the method is R(z) = N(z)/D(z), where degN ≤ dimY and degD ≤ dimY .

Proof. Define an orthogonal matrix L = (U | V ) ∈ R
s×s, where the columns of U ∈ R

s×d, with
d := dimY , are a basis of Y and the columns of V are a basis of its orthogonal complement.

Then ~bTV = ~0 and ~bT (I − zA)−1V = ~0.

So the stability function (5) is

R(z) = 1 + z~bTLLT (I − zA)−1LLT~e = 1 + z~bTUMUT~e , (16)

where ~bTU = ~bTU ∈ R
d and M = UT (I − zA)−1U ∈ R

d×d. Using this and Cramer’s rule
it can be shown that the numerator and denominator of R(z) are given by determinants of
d× d matrices whose entries are linear functions of z. Thus R(z) is a rational function with
numerator and denominator of degree at most d. �

For stiffly accurate schemes with A invertible, R(z) is further constrained to satisfy limz→∞R(z) =
limz→∞N(z)/D(z) = 0, so that degN ≤ degD − 1 ≤ dimY − 1. For DIRK schemes, the
stability function R(z) has real poles since the eigenvalues of A are confined to the diagonal
entries—which are real. Combining these observations with Theorem 3.7 and Theorem 3.8,
we have proved:

Theorem 3.9. Let a RK scheme (A, b) be given with Y defined as in (13) and stability
function R(z) = ez +O(zp+1), as z → 0. Then

⌊

p+ 1 + σ

2

⌋

≤ dimY . (17)

If the scheme is diagonally implicit, (17) we have the stronger bound

p ≤ dim(Y ) + 1− σ . (18)

where σ = 1 if the scheme is stiffly accurate and A is invertible, and σ = 0 otherwise.

3.3. (Step 2) A Lower Bound on the Dimension of the Subspace Km for General
RK Schemes. Here we provide a lower bound on dim(Km) in terms of m and the number
of distinct abscissas nc. The key idea is that Km contains linear combinations of the vectors
~τ (k), and for large enough m the addition of each new vector increases the dimension of the
space Km.

We first denote the column space of the Vandermonde matrix with columns ~c

V :=

{

span{~e,~c, . . . ,~cnc−1}, if all cj 6= 0 ,
span{~c,~c 2, . . . ,~cnc−1}, if at least one cj = 0,

.
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Now define subspaces of V for values of m ≥ nc + 1 as follows:

Wm :=

{

w(C)~e
∣

∣ for all w(x) =

∫ x

0
α(x)PC(x) dx and α(x) ∈ Πm−1−nc

}

,

Πd =
{

α0 + . . .+ αdx
d | αj ∈ R, for j = 0, . . . , d

}

.

Here PC(x) is the minimal polynomial for the matrix C (so that PC(C) = 0) and Πd is the
space of polynomials of degree at most d. By construction Wm ⊆ Wm+1.

We denote the smallest A-invariant subspace containing a vector space X by K(X); namely
K(X) can be constructed explicitly by taking the span of all the A-Krylov subspaces of the
basis vectors of X (similar to (12)). In particular, K(V ) and K(Wm) are the smallest A-
invariant spaces containing V and Wm respectively. With these notations, we now have

Lemma 3.10. (The Km Sandwich) For any m ≥ nc + 1 (or m = ∞) it holds:

Wm ⊆ K(Wm) ⊆ Km ⊆ K(V ) .

Proof. The fact that Km ⊆ K(V ) follows from the observation that every ~τ (k), for arbitrary
k, is a linear combination of A~c k ∈ K(V ) and ~c k+1 ∈ K(V ).

Next we show that Km contains the subspace Wm. Due to the fact that K(Wm) and Km

are both A-invariant, this implies K(Wm) ⊆ Km.

Let w′(x) = wm−1x
m−1 +wm−2x

m−2 + . . .+w0 denote an arbitrary (real) polynomial and
let w(x) :=

∫ x

0 w′(s) ds. The space Km then contains the linear combination

m
∑

j=1

wj−1~τ
(j) =





m
∑

j=1

Awj−1C
j−1 −

1

j
wj−1C

j



~e, using (3) ,

=
(

Aw′(C)− w(C)
)

~e ∈ Km . (19)

Since C is diagonal, its minimal polynomial PC(x) has simple roots (one for each distinct
entry of ~c) and so degPC = nc. Thus, for m ≥ nc + 1, we can set w′(x) = α(x)PC(x) in (19),
(so that w′(C) = 0) showing that w(C)~e ∈ Km. Hence Km contains the subspace Wm. �

The next theorem follows directly from properties of Wm.

Theorem 3.11. (Properties of Km) Consider a Runge-Kutta scheme with nc distinct abscis-
sas and the space Km defined in (12). Then:

(a) If m ≤ 2nc − 1, then dimKm ≥ max{m− nc, 0}.
(b) If m ≥ 2nc and all cj 6= 0 (i.e., PC(0) 6= 0), then Km = K(V ); in particular ~e ∈ Km

and dimKm ≥ nc.
(c) If m ≥ 2nc − 1 and cj = 0 for at least one value of j (i.e., PC(0) = 0), then Km =

K(V ), in particular ~c ∈ Km and dimKm ≥ nc − 1;

Proof. For (a), we compute dimWm which bounds dimKm from below. First note that
vectors of the form w(C)~e (for any polynomial w(x)) are in one-to-one correspondence with
their associated polynomial remainders2 w(x) mod PC(x) (i.e., as vector spaces they are

2Here w(x) mod PC(x) is the remainder of w(x) when divided by PC(x); the set of all such remainders can
be identified with the vector space Πnc−1.
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isomorphic3). Thus, Wm has the same dimension as the range of I : Πm−1−nc → Πnc−1

defined by

I[α] :=

(
∫ x

0
α(x)PC(x) dx

)

mod PC(x) ,

where I[·] is the linear (integral) operator that maps Πm−1−nc (which has dimension m−nc)
into polynomials modulo PC(x) (which has dimension nc). We now claim that I[·] has a
trivial null space whenever m ≤ 2nc − 1. Suppose not—then there are polynomials α(x) 6= 0
(degα ≤ nc − 2) and β(x) (deg β ≤ nc − 1) such that

∫ x

0
α(x)PC(x)dx = β(x)PC(x) .

Differentiating both sides yields:
(

α(x)− β′(x)
)

PC(x) = β(x)P ′
C(x) . (20)

The minimal polynomial PC(x) contains nc ≥ 1 distinct roots, and hence P ′
C(x) has no

common root with PC(x) (i.e., PC(x) and P ′
C(x) are relatively prime). Thus, (20) requires

that P ′
C(x) divide (α(x)− β′(x)) and PC(x) divide β(x), which is impossible in light of the

degrees of α(x), β(x). Thus no α(x) exists, and whenever nc + 1 ≤ m ≤ 2nc − 1 one has the
following dimension:

dimWm = dimΠm−1−nc = (m− nc) ≤ dimKm . (21)

Combining (21) with the trivial dimKm ≥ 0 when m < nc + 1 proves (a).

For (b), when m = 2nc, (20) has the (unique) family of solutions

β(x) = γPC(x) , and α(x) = 2γP ′
C(x) (γ ∈ R) .

Substituting this value of α(x) into

I[α] = γPC(x)
2 − γPC(0)

2 = −γPC(0)
2 mod PC(x) ,

shows that γ = 0 is still the only solution to I[α] = 0. Hence, I[·] has a trivial null space, Wm

contains the vector ~e (e.g., take γ = −PC(0)
−2), and dimWm = nc. Thus, Wm has the same

dimension as V which forces Wm = V showing that Km = K(V ). For m ≥ 2nc, Km = K(V )
holds trivially since Km ⊆ Km+1.

For (c), if PC(0) = 0, then every w(x) appearing in Wm is divisible by x2 so that w(x) and
PC(x) share a common factor of x. Thus x divides the remainder w(x) mod PC(x) as well as
every polynomial in the range of I[·], i.e., for every α ∈ Πm−1−nc , I[α] = xr(x) for some r(x)
with deg r ≤ nc − 2. When m = 2nc − 1 the range of I[·] has dimension nc − 1 and includes
all monomials xj for 1 ≤ j ≤ nc − 1. Hence Wm = V showing that Km = K(V ).

The vector ~c has an explicitly construction: since PC(x) and P ′
C(x) are relatively prime,

polynomials β(x) (deg β ≤ nc − 1) and γ(x) (deg γ(x) ≤ nc − 2) exist such that

γ(x)PC(x) = β(x)P ′
C(x) + 1 .

Set α(x) := γ(x) − β′(x) (deg α ≤ nc − 2), so that α(x)PC(x) =
d
dx

(β(x)PC(x)) + 1. Since
PC(0) = 0, integrating both sides shows that I[α] = x and hence: ~c ∈ Wm. �

3For any polynomial w(x) mod PC(x), the identification of w(x) 7→ w(C)~e is surjective and preserves the
operations of the vector space. It is also injective: since w(C) is a diagonal matrix, the vector w(C)~e = 0 if and
only if w(C) = 0, and w(C) = 0 if and only if w(x) is divisible by PC(x). Hence, the vectors w1(C)~e = w2(C)~e
if and only if w1(x)− w2(x) = α(x)PC(x) for some α(x), i.e., w1(x) ≡ w2(x) mod PC(x).
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By combining the lower bounds, we obtain a proof of the main result.

Proof. (Of the Main Result Theorem 3.2) Parts (1) and (2) of Theorem 3.2 follow from

Theorem 3.11(b) and (c) (respectively) with the fact that the order conditions ~bT~e = 1 (for

p = 1) and ~bT~c = 1/2 (for p = 2) are incompatible with the WSO requirement that ~b ⊥ Km

whenever ~e ∈ Km or ~c ∈ Km.

Theorem 3.1(3) follows from combining the inequality (14); the lower bound for dimY from
Theorem 3.9 for fully implicit schemes; and the lower bound for dimKm in Theorem 3.11(a).

�

3.4. (Step 3) A Lower Bound on the Dimension of the Subspace Km for DIRK
Schemes. We now turn to obtaining lower bounds on the dimension of Km in the more
restrictive setting when A is DIRK. The results in this section build on Theorem 3.11. The
difference of 1 (dimension) in parts (b) and (c) in Theorem 3.11 creates a somewhat bother-
some issue for directly obtaining the lower bound in this section. However, this difference of
1 can be avoided for DIRK schemes that do not admit a GEDIRK structure.

Lemma 3.12 (Extra dimension in Km when cj = 0). For a DIRK scheme that is not a
GEDIRK scheme, if m ≥ 2nc then dimKm ≥ nc (where the space Km is defined in (12)).

Proof. If ~c has no zero, then Theorem 3.11(b) applies and we are done. Let ℓ be the first
occurrence of cℓ = 0 in ~c (i.e., cj 6= 0 for j < ℓ). Note that ℓ > 1 since c1 = a11 6= 0 (because
A is not a GEDIRK). Theorem 3.11(c) shows that Wm ⊆ Km has dimension nc − 1, that the
vector ~c ∈ Km, and that Wm is orthogonal to ~eℓ, i.e., ~e

T
ℓ ~u = 0 for all ~u ∈ Wm. In addition,

Wm contains a vector of the form (since ℓ is the first occurrence of 0)

~y := (1, . . . , 1, 0, ⋆) ∈ Wm ,

where the first ℓ − 1 entries of ~y are 1 and ⋆ is unimportant. Since Km is A-invariant, we
have ~c−A~y ∈ Km; however ~eT

ℓ (~c−A~y) = aℓℓ 6= 0 (where aℓℓ 6= 0 since A is not a GEDIRK),
showing that dimKm ≥ nc. �

To expedite the remaining proofs below, we define a truncation map [·]j which acts on

matrices as [·]j : Rs×s → R
j×j to isolate the upper j × j block of A, and acts on vectors as

[·]j : R
s → R

j to isolate the top s components of ~c:

[A]j :=











a11 a12 · · · a1j

a21
. . .

...
...

aj1 aj2 · · · ajj











and [~c]j :=











c1
c2
...
cj











.

For a lower-triangular matrix A, the first j (≤ s) components of the vectors ~τ (k) and ~c are
functions of the upper j × j sub-block of the matrix A ∈ R

s×s only. Moreover:

[An]j =
(

[A]j

)n

, and [~cn]j =
(

[~c]j

)n

. (22)

We will also refer to the vectors ~τ (k) that arise when A is replaced by [A]j in (3):

~τ (k)([A]j) := [A]j

[

~c k−1
]

j
− 1

k

[

~c k
]

j
for k ≥ 1 , (23)
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which commute with the map in the sense that for every 1 ≤ j ≤ s, n ≥ 0, and k ≥ 1:

[

~τ (k)(A)
]

j
= ~τ (k)([A]j) ,

[

An~τ (k)(A)
]

j
= [A]nj ~τ

(k)([A]j) . (24)

We also extend [·] to vector subspaces U ⊆ R
s as [U ]j := span{[~u]j | ~u ∈ U}, which implies

dimU ≥ dim [U ]j.

Lemma 3.13. (Dimension of Km for a DIRK scheme) Consider a DIRK scheme with nc

distinct abscissas, and the corresponding space Km defined in (12). Then

dimKm ≥ min

{⌊

m+ κ

2

⌋

, nc

}

− κ , (25)

where κ = 1 if A is a GEDIRK scheme, and κ = 0 otherwise.

The main idea in the proof is that the commutation property (24) implies that the matrix
[A]j and vectors ~τ (k)([A]j), define an [A]j-invariant space. Specifically, [Km]j is exactly the

smallest [A]j-invariant space containing ~τ (k)([A]j) for k = 2, . . . ,m. Hence, Theorem 3.11

and Lemma 3.12 apply4 to [A]j for each 1 ≤ j ≤ s, where nc is replaced with the number of

distinct values in {c1, . . . , cj}. The dimension of the associated [A]j-invariant space (for any

j) bounds dimKm ≥ dim [Km]j. We then pick the “worst case” j. For simplicity let

T (j) := max{r |#{c1, . . . , cr} = j} ,

where # denotes the number of distinct values in a set. Then T (·) is strictly increasing,
T (1) ≥ 1, T (nc) = s, and the set {c1, . . . , cT (j)} contains j distinct values.

Proof. (of Lemma 3.13) Assume m > 1 (it holds trivially for m = 1). If A is not a GEDIRK,
set r := min{⌊m2 ⌋, nc}. Apply Lemma 3.12 to [A]T (r), which has r distinct ~c values, to obtain

dimKm ≥ r (which is (25) when κ = 0).

If A is a GEDIRK we use the more general bound Theorem 3.11(a–c) applied to a DIRK
matrix [A]T (r′) with r′ (≤ m) distinct abscissas values:

dimKm ≥ min{r′ − 1,m− r′}. (26)

Set r′ := min{m
2 , nc} if m is even and r′ := min{m+1

2 , nc} if m is odd. Applying (26), and
observing that (in all 4 cases) min{r′ − 1,m− r′} = r′ − 1 yields (25) with κ = 1. �

We conclude this section with a proof of the main result for DIRKs.

Proof. (Of the Main Result for DIRKs, Theorem 3.2) When q ≥ 2nc − 1, the Lemma 3.13
gives a lower bound on dimKm of ⌊m+κ

2 ⌋ − κ. Substituting this and the lower bound on
dimY in Theorem 3.9 for DIRKs into (14) yields the result. �

4The new space Wm as well as the definition I [·] must use the minimal polynomial of [C]
j
.



ALGEBRAIC STRUCTURE OF WEAK STAGE ORDER 13

4. Minimal Polynomials for the Spaces Y and Kq

Our results in the next two sections will be based on the linear algebra of orthogonal left
and right invariant subspaces applied to Y and Km. We therefore first review and establish
key results (e.g., eigenspace, eigenvalue and minimal polynomials) pertaining to the action of
a matrix on its orthogonal invariant subspaces. We employ the standard terminology: a monic
polynomial p(x) is defined as having a leading (i.e., highest degree term) coefficient of one;
the characteristic polynomial of a matrix is defined as the (monic) polynomial charA(x) :=
det(xI −A); the minimal polynomial p(x) of a matrix A is the monic polynomial of smallest
degree for which p(A) = 0. While it is often the case that (for instance when the eigenvalues of
A are distinct) the minimal polynomial is the characteristic polynomial, i.e., p(x) = charA(x),
in general p(x) is of lower degree than charA(x) when A has repeated eigenvalues.

For a real matrix A, [6, Chap. 8 & 9A] the minimal polynomial p(x) of A: (i) is unique;
(ii) has real coefficients5; (iii) divides the characteristic polynomial of A (thus every root of
p(x) is an eigenvalue of A and the deg p ≤ deg charA(x)); moreover, (iv) every eigenvalue of
A (not including multiplicity) is a root of p(x); (v) every polynomial p̃(x) satisfying p̃(A) = 0
is divisible by p(x). The following two theorems concern minimal polynomials for matrices
restricted to invariant subspaces and will be employed in our study of WSO.

Theorem 4.1. (A-invariant subspaces) Let A ∈ R
s×s, and U ⊆ R

s an A-invariant subspace
with dimension d := dim(U) (d = 0 is possible). Then there exists a unique monic polynomial
p(x) of minimal degree and coefficients in R, such that:

p(A)~u = 0, ∀~u ∈ U . (27)

This polynomial has the following properties:

(a) p(x) divides the characteristic polynomial charA(x);
(b) every root of p(x) is an eigenvalue of A; and
(c) deg p ≤ dim(U).

If, in addition, U has the form U = span{~v,A~v, . . . , Ad−1~v} (or U = {0} when dim(U) = 0)
where Aj~v are linearly independent for j = 0, . . . , d− 1, then

(d) deg p = dim(U).
(e) Condition (27) is equivalent to p(A)~v = 0.

We include a proof of Theorem 4.1 in Appendix A, using straightforward generalizations
of textbook arguments: p(x) is the minimal polynomial for A restricted to the subspace U
(from which properties (a–e) follow). Theorem 4.1 can then be extended to the case when A
has both a left and right orthogonal invariant subspace.

Theorem 4.2. (Left and right orthogonal A-invariant subspaces) Let A ∈ R
s×s be a real

matrix and U ⊆ R
s and V ⊆ R

s orthogonal subspaces, where U is A-invariant and V is
AT -invariant. Denote the minimal polynomials in (27) from Theorem 4.1 as p(x) for U and
q(x) for V , i.e., p(A)~u = 0 ∀~u ∈ U and q(AT )~v = 0 ∀~v ∈ V . Then the product p(x)q(x)
divides the characteristic polynomial charA(x).

Again, a proof of Theorem 4.2 is included in Appendix A for completeness. These results
have a direct consequence for RK schemes with high WSO.

5More precisely, when A is real with pr(x) the minimal polynomial with coefficients in R, and pc(x) is the
minimal polynomial with coefficients over C, then pr(x) = pc(x).
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Example 4.3. To highlight Theorem 4.1 and Theorem 4.2, consider

A =









1 0 0 0
1 1 0 0
2 −1 1 0

−2 0 1 2









, U =









1 0 1
0 1 −1
0 1 1
1 0 −1









, ~v =









1
1

−1
−1









.

The matrix A has an A-invariant subspace spanned by the columns of U , and an orthogonal
AT -invariant space spanned by ~v. The associated minimal polynomials are p(x) = (x − 1)3,
s.t. p(A)U = 0, and q(x) = (x−2), s.t. ~v T q(A) = 0. The product p(x)q(x) = (x−1)3(x−2) =
charA(x) equals, and thus divides, the characteristic polynomial. The example here will also
be used to illustrate the lemmas in §6.

Lemma 4.4. Let (A,~b) be a Runge-Kutta method. Then there exists a unique (non-zero, real
coefficient) monic polynomial Q(x) of minimal degree such that

~bTQ(A) = 0 . (28)

The polynomial Q(x) has degQ = dimY and divides charA(x).

If, in addition, the RK method has WSO q ≥ 2, then there exists a unique (non-zero, real
coefficient) monic polynomial P (x) of minimal degree, such that

P (A)~τ (k) = 0, for k = 2, . . . , q . (29)

Moreover, degP ≤ dimKq, and the product P (x)Q(x) divides charA(x).

In (28–29), Kq and Y are the subspaces defined by (12) and (13); and ~τ (k) are the stage
order residuals. We refer to Q(x) and P (x) in Lemma 4.4 as the minimal polynomials for Y
and Kq, respectively.

Proof. For the existence of Q and its properties, set U = Y and apply Theorem 4.1(d–e). For
the existence of P and its properties, set U = Kq and V = Y and apply Theorem 4.2, where
we denote the polynomials p(x), q(x) in Theorem 4.2 as P (x), Q(x) respectively. The only
point to prove is that the condition

P (A)~v = 0, ∀~v ∈ Kq , (30)

from Theorem 4.2 is equivalent to (29) where ~v is restricted to be the stage order residuals

~τ (k) for k = 1, . . . , q. Clearly, (30) implies (29) since Kq trivially includes ~τ (k) for k = 1, . . . , q.

Conversely, (29) implies that every basis vector in Kq, i.e., A
j~τ (k), satisfies P (A)Aj~τ (k) = 0.

Hence, (29) may be used in lieu of (30) to define the minimal polynomial P (x). �

Combined with (14) and Theorem 3.9, Lemma 4.4 implies the following:

Corollary 4.5. For an s-stage Runge-Kutta scheme with order p ≥ 1 and weak stage order
q (with Kq and P (x) defined in (12) and (29)), one has

deg(P ) ≤ dim (Kq) ≤

{

s−
⌊

p+1+σ
2

⌋

, for fully implicit schemes,

s− p− 1 + σ, for diagonally implicit schemes,

where σ = 1 if A is invertible and the method is stiffly accurate, and σ = 0 otherwise.

Remark 4.6. (Eigenvalues of A) A consequence of Lemma 4.4 is that the eigenvalues of A
(including multiplicity) for a RK scheme can be partitioned into three sets: the roots of P (x),
the roots of Q(x), and the roots of N(x), where charA(x) = P (x)Q(x)N(x). ♠
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Remark 4.7. For an SDIRK with diagonal entries of γ in A, the polynomials P,Q have the
form Q(x) = (x− γ)d (d = dimY ), and P (x) = (x− γ)µ (µ ≤ dimKq). ♠

Broadly speaking, the polynomials Q(x) and P (x) are algebraic objects associated with
the corresponding geometric (orthogonal) spaces Kq and Y . In the next sections, we use the
polynomial P (x) to obtain an expression for the stability function of RK schemes (particularly
useful for schemes with WSO), and use Q(x) to obtain necessary conditions for high WSO
schemes (useful in the construction of WSO schemes).

5. Stability Function in a Basis for Y

In general, the Runge-Kutta stability function has a restricted form when p is close to (the
optimal) 2s, and also when p ≥ s (e.g., see [19, Chap. IV.3, p. 47]). In this section, we extend
this constrained structure for R(z) to the more general setting p ≥ dimY and to when p is
close to 2 dimY (which is a setting applicable for WSO). The key idea is to write Q(x), and
Y , in a basis of orthogonal polynomials related to the (tall-tree) p-th order conditions

~bTAj~e =
1

(j + 1)!
, 0 ≤ j ≤ p− 1 . (31)

Specifically, define the linear functional L(·) on the space of monomials xn with moments
(µn)n≥0 as

L(xn) := µn, where µn :=
1

(n+ 1)!
, for n ≥ 0 . (32)

Associated to L are the Hankel moment matrices Hn = (µi+j−2)
n
i,j=1. Appendix B shows that

detHn 6= 0 for all n ≥ 0, which is a sufficient condition to construct a basis of polynomials
(Qj)j≥0 satisfying the orthogonality relation

L (QiQj) = ζiδij , where ζ0 = 1, and ζi =
det(H i+1)

det(H i)
, if i ≥ 1 .

Here δij is the Kronecker delta. For the moments in (32), the first two orthogonal polynomials
are Q0(x) = 1 and Q1(x) = x − 1/2; subsequent polynomials Qj(x) satisfy the three term
recursion relation given by (see Appendix B for details):

Qn+1(x) = xQn(x) + ξ2nQn−1(x), ξ2n =
1

4(4n2 − 1)
, for n ≥ 1 . (33)

For instance, the next two polynomials are

Q2(x) = x2 − 1
2x+ 1

12 and Q3(x) = x3 − 1
2x

2 + 1
10x− 1

120 .

Any degree d polynomial can then be written in terms of the basis {Q1, . . . , Qd}. We use αj

to denote the coefficients of the minimal polynomial for Y in this basis:

Q(x) = Qd(x) + αd−1Qd−1(x) + . . .+ α0Q0(x), where d := dimY . (34)

The order conditions then constrain (34) as follows.

Lemma 5.1. (Q is “orthogonal” to Qj) Consider a RK method with coefficients (A,~b), and
let Q be the minimal polynomial for the subspace Y , as defined in (13), written in the form
(34). If the method’s stability function is R(z) = ez + O(zp+1) as z → 0, then αj = 0 for
j ≤ p− d− 1.
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Proof. Set N := p− d− 1 ≥ 0 (if N < 0 there is nothing to prove). The p-th order conditions

(31) imply ~bTQ(A)Aℓ~e = L(xℓQ(x)) for all 0 ≤ ℓ ≤ N . On the other hand, ~bTQ(A) = 0.
Hence, L(QℓQ) = ζℓαℓ = 0 for all 0 ≤ ℓ ≤ N , so αj = 0 for j ≤ N (since ζj 6= 0). If
N ≥ d, this would imply L(QQd) = ζd = 0, which is a contradiction. Note: p ≤ 2d or

⌊p+1
2 ⌋ ≤ dim(Y ) when p ≥ 1 and d ≥ 0 are integers. �

Utilizing the the basis (Qj)j≥0, we now work out an expression for the stability function

R(z). We first expand ~bT (I − zA)−1 in the Krylov basis ~bTQ0(A),. . ., ~b
TQd−1(A) with (to

be determined) coefficients βj = βj(z) functions of z:

~bT (I − zA)−1 = ~bT
(

βd−1Qd−1(A) + βd−2Qd−2(A) + . . . + β0Q0(A)
)

. (35)

Right-multiplying (35) by I − zA and using the fact that ~bTQ(A) = 0, leads to the algebraic
equation for the coefficients:

(1− zx)
(

βd−1Qd−1(x) + βd−2Qd−2(x) + . . .+ β0Q0(x)
)

≡ 1 mod Q(x) . (36)

To solve for ~β = (β0, β1, . . . , βd−1)
T , write ~Q(x) = (Q0(x), Q1(x), . . . , Qd−1(x))

T . Using

relation (33), multiplication x~Q can be written as a matrix multiplication S ~Q:

x~Q =













Q1 +
1

2
Q0

Q2 − ξ21Q0
...

Qd − ξ2d−1Qd−2













= S ~Q, where S :=

















1
2 1 0 · · · 0

−ξ21 0 1
...

0 −ξ22 0
...

. . . 1
0 · · · −ξ2d−1 0

















− ~ed~α
T .

Here ~ej is the j-th unit vector and ~α = (α0, . . . , αd−1)
T are the coefficients of Q(x) in (34).

Using these notations and relations, (36) becomes:

(1− zx)~βT ~Q ≡ 1 mod Q(x) ,
(

(

I − zST
)

~β − ~e1

)T
~Q ≡ 0 mod Q(x) .

The vector ~β then has solution:

(

I − zST
)

~β = ~e1, and via Cramer’s rule: βj−1(z) =
det
(

(I − zST )j
)

det(I − zS)
, (37)

where (I − zST )j is the matrix I − zST with column j replaced by ~e1. Substituting the

expression for ~bT (I − zA)−1 into R(z) yields:

R(z) = 1 +

d−1
∑

j=0

(

~bTQj(A)~e
)

zβj(z) . (38)

Finally, the orthogonality property Lemma 5.1 implies that~bTQj(A)~e agrees with L(Qj) = δ0j
for all j ≤ p− 1. This (significantly) simplifies the summation in (38):

Lemma 5.2. (Stability function when p ≥ dimY ) If R(z) = ez + O(zp+1) is a p-th order
approximation as z → 0 and p ≥ dimY , then

R(z) = 1 + zβ0(z) , (39)

where β0(z) is given by (37) and depends only on the expansion of Q(x) from (34), i.e., R(z)
is a function of αj (for j = p− dimY, . . . ,dimY − 1).
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To the authors’ knowledge, the orthogonal polynomials (Qj)j≥0 have not previously been
introduced in the context of RK schemes. However, they are connected with existing ideas
in the (extensive) literature on RK methods. For instance, the values ξj defined in (33)
appear in the W -transform and in recurrence relations for the shifted Legendre polynomials
[19, Chap. IV.5] commonly used in the construction of high stage order schemes. Lemma 5.1
is also similar in spirit to the orthogonality relation Lemma 5.15 in [19, Chap. IV.5] which
expands the characteristic polynomial of C (when nc = s) in the shifted Legendre polynomial
basis.

Remark 5.3. (Orthogonal polynomials with respect to a linear functional) In the (semi)classical
theory of orthogonal polynomials, the Hankel (moment) matrices are positive definite and L(·)
defines an inner product as an integral with respect to a (non-negative) measure [17, 22]. In
contrast, for the matrices Hd considered here, both detHd 6= 0 and ζi 6= 0. However, ζi < 0
for some values of i, so L(·) does not have an inner product representation. While much
of the (semi)classical theory of orthogonal polynomials still holds [17] (e.g., the three-term
recurrence), some properties do not. For instance, the basis polynomials Qj(x) have complex
roots, whereas in the classical theory of orthogonal polynomials the roots are real and simple.
♠

Remark 5.4. (Moment-generating function of L) The moments (µn)n≥0 do not arise by ac-
cident; their generator function is G(z) = (ez − 1)/z =

∑

n≥0 µnz
n, whose Taylor expansion

agrees up to a suitable order with (R(z) − 1)/z. The Hankel determinants, or coefficients
of the recurrence relation (33) appear in the J-fraction (continued fraction) of the generat-
ing function. For G(z), this continued fraction appears in the RK literature through Padé
approximations of ez (see e.g. Exercise 4 in Chap. IV.3 or Theorem 5.18 of [19]). ♠

Remark 5.5. (Stiff accuracy) Equation (39) can be extended to incorporate the structure

imposed by stiff accuracy (for invertible A) using an alternative polynomial basis (Q̃)n≥0.

Specifically, let µ̃0 = 1, µ̃n+1 := µn for n ≥ 0 and L̃(xn) := µ̃n. The Hankel matrices with
moments µ̃n are shown in (47) to have non-zero determinants and define a basis orthogonal

with respect to L̃, i.e., Q̃0(x) = 1, Q̃1(x) = x− 1, etc. The stability function (having one less
degree of freedom), for stiffly accurate schemes can then be obtained in this basis. ♠

6. Necessary Conditions on P (x) for DIRK Schemes

Theorem 3.2 provides a bound on the WSO for a method with order p and number of stages
s. However, the theorem does not explain how one might go about constructing schemes with
high WSO. In this section we examine the solvability of the equations P (A)~τ (k) = 0 for the
matrices [A]j . The results impose necessary conditions on P (x) (e.g., constraints on the roots)
for the construction of high WSO schemes. The necessary conditions also restricts how the
spectrum of A is partitioned into the minimal polynomials Q(x), P (x). We focus in this
section on schemes that are not GEDIRK schemes.

Here we write pj(x) to denote the minimal polynomial of [A]j when j ≥ 1 (we have pj(x) = 1

if j = 0). The main result is that pr must divide P (x) when the first r abscissas are distinct.

Lemma 6.1. (Necessary condition on P (x) for a DIRK) Let a DIRK scheme that is not a
GEDIRK be given with WSO q ≥ 2. If the abscissas {c1, c2, . . . , cr} are distinct for r ≤ ⌊ q2⌋
then pr(x) divides P (x).
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Proof. Apply the map [·]r to (29) and use (22) to obtain:

P ([A]r) τ
(k)([A]r) = 0, for k = 2, . . . , q . (40)

By Lemma 3.12 we have that [Kq]r = R
r, which when combined with (40) implies P ([A]r) = 0.

Thus pr(x) divides P (x). �

Corollary 6.2. For any non-confluent DIRK scheme (that is not a GEDIRK scheme), pr(x)
divides P (x) where r = ⌊ q2⌋.

Example 4.3 demonstrates that the assumption of distinct abscissas in Lemma 6.1 is nec-
essary. It provides a confluent scheme (~c = (1, 2, 2, 1)T ) that is S-irreducible and for which
the minimal polynomial of A (i.e., p4(x) = (x − 1)3(x − 2)) is equal to the characteristic
polynomial and does not divide P (x) = (x− 1)3.

One might wonder (I) whether the assumption of distinct abscissas in Lemma 6.1 can be
relaxed; and (II) whether pj(x) must ever be the characteristic polynomial of [A]j . In general

the answer to both questions is no (see Example 4.3). However, due to the small number of
variables in the top block of [A]j the answer to both questions is yes when j ≤ 3 in (I) and

j ≤ 2 in (II), provided that the scheme is S-irreducible.

Definition 6.3. (S-reducible, Def. 12.17 in [19]) A RK method is S-reducible, if for some

partition (S1, . . . , Sr̃) of {1, . . . , s} (r̃ < s) the indicator vectors6 ~S(m) =
∑

j∈Sm
~ej satisfy for

all ℓ, m:

(~ei − ~ej)
TA~S(m) = 0, if i, j ∈ Sℓ . (41)

An S-reducible scheme is equivalent to a smaller r̃-stage RK scheme (A∗,~b∗) where each
partition Sj is replaced by a single stage (see Eq. (12.24) of [19, Chapt. IV.12]; the smaller
scheme generates the same stage solutions gi in (2a)). For S-reducible DIRKs, the new scheme
can also be made a DIRK7.

Remark 6.4. (A simple S-reducibility observation) Any DIRK scheme with c1 = c2 is S-
reducible: apply Def. 12.17 in [19], where the partition of equivalent stages (i.e., partition
of the integers {1, . . . , s}) is taken as S1 = {1, 2} and S2 = {3}, . . ., Ss−1 = {s}. Then
[21, Thm. 2.2] implies that the first 2 stages of A yield the same intermediate stage value
solutions—and can be replaced by a single stage.

Lemma 6.5. (A general necessary condition on P (x)) Let an S-irreducible DIRK scheme
(that is not a GEDIRK) be given with coefficient matrix A and WSO q, such that [A]3 is
invertible.

(a) If q > 1, then degP ≥ 1 and a11 is a root of P .
(b) If q > 3, then degP ≥ 2, and a11, a22 are roots of P .

(c) If q > 5, then P (x) = p3(x)P̃ (x) where p3(x) is the minimal polynomial of [A]3 and
is divisible by (x− a11)(x− a22).

Proof. (a) Since the set {c1} contains 1 distinct element (trivially), we can apply Lemma 6.1
with r = 1 when q > 1, so that p1(x) = (x− a11) divides P (x).

6In a slight abuse of notation we use ~Sj to denote both the set and the indicator vector. The notation ~Sj

is non-standard—the definition typically writes (41) as a summation.
7Formally, if we order the partitions so that min{x ∈ Si} < min{y ∈ Sj} whenever i < j. Then for 1 ≤ i ≤ r̃

define the new scheme (which is a DIRK) as a∗

ij =
∑

k∈Sj
aij , b

∗

j =
∑

k∈Sj
bj .
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For (b), Remark 6.4 implies that c1 6= c2 for any S-irreducible method. Applying Lemma 6.1
with r = 2 when q > 3 implies that p2(x) divides P (x). If p2(x) = (x− a11) has only 1 root
(which must be a11 by (a)), then p2([A]2) = 0 implies [A]2 = a11I, whence c1 = c2 = a11
(which is a contradiction). Thus, p2(x) = (x− a11)(x− a22) is the characteristic polynomial
of [A]2.

For (c), suppose by way of contradiction that p3(x) does not divide P (x), so by (b), p2(x)
is the minimal polynomial of [A]3 restricted to [Kq]3. When q > 5, we claim that

[Kq]3 = span{[~e]3 , [~c]3}, (42)

where either c1 = c3 6= c2 or c2 = c3 6= c1. The reasons are: (i) Lemma 6.1 implies that ~c is
confluent (with c1 6= c2) so nc = 2 and (by the same argument in the proof) dim [Kq]3 ≤ 2;
(ii) if cj = 0, (42) follows immediately from Theorem 3.11(b); (iii) If cj = 0, the construction
in Lemma 3.12 implies [Kq]3 = span{[~c]3 , [A~c]3} which is (42) when [A]3 is invertible (i.e.,

multiply by [A]−1
3 ). For [Kq]3 to be A-invariant requires

A =





a11 0 0
a21 a22 0

a11−a33 0 a33



 if c1=c3, A =





a11 0 0
a21 a22 0
a21 a22−a33 a33



 if c2=c3 . (43)

In both cases A is S-reducible with partitions S1 = {1, 3}, S2 = {2} (c1 = c3) or S1 = {1},
S2 = {2, 3} (c2 = c3). Hence p2(x) divides p3(x) which divides P (x). �

While this section has focused entirely on P (x), the final remark concerns a similar-in-spirit
result for Q(x).

Remark 6.6. (ass is a root of Q(x)) A DJ-irreducible DIRK scheme has ~eT
s
~b 6= 0; otherwise,

the scheme is independent of the last stage. Since 0 = ~bTQ(A)~es = Q(ass)~b
T~es, the entry ass

must be a root of Q, i.e., Q(x) = (x− ass)Q̃(x). ♠

7. Examples

This section provides some concrete examples that highlight how the theory established
above can be used to reduce the number of degrees of freedom when constructing RK schemes
with high WSO. In Example 7.1 and Example 7.2 we parameterize DIRK schemes with
invertible A and WSO q = 3. Based on Remark 4.6 and Lemma 6.1, we can determine that
certain diagonal entries of A (those closest to the top left) are roots of P (x), while those near
the bottom right are roots of Q(x).

Example 7.1. The theory enables a complete characterization of DIRK schemes with (s, p, q) =
(2, 2, 3). Theorem 3.9 and Lemma 3.13 require: dimY = 1, dimKq = 1. Via Lemma 6.1
the associated polynomials are P (x) = x − a11 and Q(x) = x − a22. For a p = 2 method,
the orthogonality property from Lemma 5.1 implies that Q(x) = Q1(x) = x − 1

2 , so a22 = 1
2 .

The first row of equation P (A)~τ (k) = 0 for k = 2, 3 is automatically satisfied; the second row

yields two equations, the solution of which determines A. The last order condition ~bT~e = 1

determines ~b, resulting in two schemes:

A =

(

1∓
√
2
2 0

1
2 ±

√
2
2

1
2

)

, ~b =

(

1
2 ±

√
2
4

1
2 ∓

√
2
4

)

, R(z) =
1 + z

2

1− z
2

. (44)
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Either choice of signs leads to a (2, 2, 3) scheme. In both cases, ~bTA = 1
2
~bT is a left eigenvector

of A and K3 = span{2~c − ~e } = W3.

Example 7.2. (DIRK schemes with (s, p, q) = (3, 3, 3)) The chosen values of (s, p, q) satisfy
Theorem 3.2 sharply and require that dimY = 2 and degP = dimKq = 1 with P (x) = x−a11,
Q(x) = (x− a22)(x− a33). Since [A]2 satisfies (40) it must be a scalar multiple (call the ratio
a) of the Butcher matrix in (44). The polynomial Q(x) = Q2(x)+α1Q1(x) then has a22 = a/2
as a root so that α1 = −Q2(

a
2 )/Q1(

a
2 ), which uniquely determines (i) a33 as the second root

of Q(x); and (ii) the stability function in terms of a. The matrix A and R(z) are constrained
to be:

A =







(1∓
√
2
2 )a 0 0

(12 ±
√
2
2 )a 1

2a 0
a31 a32

3a−2
6(a−1)






, R(z) =

(1 + 6α1)z
2 + (6 + 12α1)z + 12

(1− 6α1)z2 + (12α1 − 6)z + 12
.

The values (a31, a32) can be parameterized in terms of a via the 3rd row equations of P (A)~τ (j) =
0 for j = 2, 3. For each choice of ± in A, we have the following. There are 3 solution branches
for (a31, a32), two of which yield S-reducible schemes with the structures given in (43). The

one irreducible solution branch has that ~τ (2) and ~τ (3) are parallel. The vector ~b is determined

via ~bT (~e,~c, ~τ (2)) = (1, 12 , 0). By construction, ~bTQ(A) = 0 so that ~bT~e = 1 and ~bT~c = 1
2

ensure ~bTA2~e = 1
6 . Finally, combining ~bT (A~τ (1)+~τ (2)) = 0 with ~bTA2~e = 1

6 yields ~bT~c 2 = 1
3 .

As expected, with s = 3 there is no choice of a that satisfies the additional conditions
imposed by order p = 4 or q = 4. Finally, 0 < a < 2

3 or a > 1 is required for A to have
positive eigenvalues and R(z) to have all its poles in the right half plane.

Example 7.3. The bound in Theorem 3.1 can be sharp for both stiffly accurate schemes and
EDIRKs. Specifically, stiffly accurate DIRK schemes with (s, p, q) = (4, 3, 3) were constructed
in an ad-hoc fashion in [23], where a-posteriorily s is observed to be sharp. Setting dimKq = 0
in Lemma 3.13, the fact q̃ ≤ q recovers the known result that stage order is limited to q̃ = 2
for EDIRKs and q̃ = 1 for DIRKs.

Example 7.4. (Schemes with high stage order) The Gauss-Legendre RK methods satisfy the
bound in Theorem 3.1 sharply since p = 2s, q = p (so that dim(Kq) = 0) and nc = s (and
are not stiffly accurate). As an example of Corollary 4.5, we obtain the bound p ≤ 2s, well
known already from the theory of numerical quadrature.

Remark 7.5. (Guide to constructing DIRK schemes with high WSO) For schemes with q = p,
one can take r = ⌊q/2⌋, set P (x) = (x− a11) · · · (x− arr) and then solve (29) as a sufficient
condition (and use Theorem 3.2 to guide the number of stages). ♠

8. Conclusions and Outlook

Weak stage order can be viewed as a geometric condition that, when satisfied, can remove
order reduction in Runge-Kutta schemes applied to linear problems with time-independent
operators. The general theory of WSO provided here relates geometric objects (WSO invariant
subspaces) to associated algebraic objects (minimal polynomials). This relationship allows us
to establish order barriers for WSO that generalize the well-known bounds on the RK order
p in terms of s (both for general RK schemes and DIRKs). Along the way, we also provide
new formulas for the RK stability function in terms of a family of polynomials which are
“orthogonal” with respect to a linear functional. The new necessary conditions show how one
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needs to split the spectrum of A into the roots of P (x) and Q(x)—which is of practical use
when constructing high WSO schemes (i.e., beyond 3). Indeed, the necessary conditions were
used in the companion work [7] in the construction of new DIRK schemes with WSO 4 and
5 (and satisfy the full set of order conditions).

Since SDIRK methods are a subset of DIRK methods, and ERK methods are a subset of
GEDIRK methods, the bounds in Theorem 3.2 apply to these classes as well. It is natural to
ask whether stricter bounds can be found for these smaller classes. Based on Theorem 3.7,
it seems that no further improvement can be obtained in the bounds on dim(Y ) for SDIRK
methods compared to DIRK methods, but it might be possible to obtain tighter bounds by
further exploiting the structure of Kq. Stricter bounds on ERK methods are an area of current
research.

The results presented here give rise to several research directions. First, is Theorem 3.2
sharp for all p, q, s? And, is it further constrained by the non-tall tree order conditions?
There is also the related (practical) issue of constructing DIRK schemes with q = p (or
q = p − 1) and the fewest stages s ∼ 2

3p satisfying Theorem 3.2 (or better yet, analytically
parameterizing such schemes). While the main results in this work do apply to all (E)DIRKs,
DIRKs with additional constraints such as SDIRKs or ERKs are expected to further impact
the bounds in Theorem 3.2.
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Appendix A. Proofs of Theorems 4.1 and 4.2

We collect the linear algebra proofs here, which are adapted from various materials (e.g.,
[32, Chap. 2.6]).

Proof. (Theorem 4.1, A-invariant subspaces) Let U ∈ R
s×d form an orthogonal basis for U .

Since U is A-invariant, there is a square matrix AUU := UTAU ∈ R
d×d such that (each

column of U is mapped back into the column space of U)

AU = UAUU , (45)

For any polynomial p(x), (45) then implies that p(A)U = Up(AUU ). Thus, p(x) in (27) is the
minimal polynomial of AUU (which has real coefficients since AUU is real) because it satisfies
p(A)U = 0 and any other smaller degree polynomial fails to satisfy p(A)U = Up(AUU ) 6= 0.

For (a), p(x) divides the characteristic polynomial of AUU , which divides charA(x); (c) also
follows since deg p ≤ deg charAUU

(x) = dim(U).

For (b), every root λ of p(x) is an eigenvalue of AUU and hence of A.

For (d), set ℓ = deg p. The condition p(A)~v = 0 (where ~v is the vector defining U) implies
that Aℓ~v is a linear combination of ~v, . . . , Aℓ−1~v, which is only possible if dim(U) ≤ deg p.
Combined with part (c), this shows dimU = deg p.
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For (e), when U = {~v,A~v, . . . , Ad−1~v}, condition (27) implies that p(A)~v = 0 since ~v ∈ U .
Conversely, any element ~u ∈ U is a linear combination of Aj~v for j = 0, . . . , d− 1. But then,
p(A)~v = 0 implies (since Aj and p(A) commute) that p(A)Aj~v = 0 for any j, and hence
p(A)~u = 0 for any ~u ∈ U . �

Proof. (Theorem 4.2, Left and right orthogonal A-invariant subspaces). Similar to the proof
of Theorem 4.1, introduce the orthogonal matrix O = (U | W | V) ∈ R

s×s, where the
columns of U ∈ R

s×du and V ∈ R
s×dv form an orthogonal basis for U and V , respectively

(the columns of W span the remaining space). Now A block-diagonalizes as

OTAO =





AUU AUW AUV

0 AWW AWV

0 0 AV V



 ,

where AΣΘ = ΣTAΘ where Σ,Θ ∈ {U,V,W}. Hence,

charA(x) = charAUU
(x) charAWW

(x) charAV V
(x) . (46)

Via Theorem 4.1 the polynomial p(x) is the minimal polynomial of AUU . Theorem 4.1 applies
to AT with space V, so that q(x) is the minimal polynomial of AT

V V (and is the same as the
minimal polynomial of AV V ). Hence, p(x)q(x) divides charAWW

(x)charAV V
(x), which, from

(46), divides charA(x). �

It is generally not true that p(x)q(x) divides the minimal polynomial of A.

Appendix B. Proofs of Hankel Matrix Determinant and Orthogonal

Polynomial Recurrence Relation

Here we provide details for the determinant computation (m ∈ Z≥0) of

Hn(m) =















1
m!

1
(m+1)! · · · 1

(m+n−1)!

1
(m+1)!

. . . 1
(m+n)!

...
. . .

...
1

(m+n−1)! · · · · · · 1
(m+2n−2)!















∈ R
n×n. (47)

Let Mn(m) := det(Hn(m)). A formula (without proof) for Mn(m) is given in [25]:

Mn(m) = σ(n)
c(n)c(m + n− 1)

c(m+ 2n− 1)
, where c(n) := Πn−1

i=1 i! , (48)

and σ(n) :=

{

1, if r = 0 or 1,
−1, if r = 2 or 3,

where n ≡ r mod 4 .

Since we could not find a proof of (48) in the literature, we provide a brief one here. Following
the approach in [24, Method 2 in §4], for any square matrix A, a determinant formula due to
Jacobi reads:

detA · detA1,n
1,n = detA1

1 · detA
n
n − detAn

1 · detA1
n , (49)

where Aj
i denotes the submatrix of A with row i and column j removed. Applying (49) to

the matrix Mn(m) and using the symmetry of the Hankel matrix yields the recursion:

Mn(m)Mn−2(m+ 2) = Mn−1(m+ 2)Mn−1(m)−Mn−1(m+ 1)2 . (50)
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Formula (50) relates Mn(m) to matrices of size n−1 and n−2, and can be used to prove (48)
via induction. Note that for M1(m) = 1/m! and M2(m) = −[(m + 1)!(m + 2)!]−1, formula
(48) is readily verified (and holds ∀m ≥ 0). Assume (48) holds for 1 ≤ k < n. We can then
divide (50) through by Mn−1(m + 1)Mn−2(m + 2) (which are non-zero by assumption) to
obtain:

Mn(m)
Mn−1(m+1) =

Mn−1(m+2)Mn−1(m)
Mn−2(m+2)Mn−1(m+1) −

Mn−1(m+1)
Mn−2(m+2) . (51)

It is then a matter of substituting the formulas from (48) into (51) to verify (after several
lines of factorial cancellations) that the following holds8:

(n−1)!
(m+2n−2)! = −

(

(n−2)!(m+n−1)!(m+2n−3)!
(m+2n−2)!(m+2n−3)!(m+n−2)! −

(n−2)!
(m+2n−3)!

)

.

Since (for every n) the Hankel matrix determinants Mn(m) do not vanish, the entries
of Hn(m) define a quasi-definite linear functional which then have associated orthogonal
polynomials. Monic orthogonal polynomials (always) satisfy a three term linear recurrence
of the general form

Qn+1(x) = (x+ γn)Qn(x) + βnQn−1(x) , (52)

where Hn(m) is initialized via Q0(x) = 1, Q1(x) = x− 1/(m + 1). We now obtain formulas
for βn, γn via determinant computations. From [24, Thm. 29] we have:

βn(m) = −Mn−1(m)
Mn(m) · Mn+1(m)

Mn(m) = n(m+n−1)
(m+2n)(m+2n−1)2(m+2n−2)

,

When m = 1 : βn = 1
4(4n2−1)

.

The γn depend only on the second leading term λn(m) of Qn(x) = xn + λn(m)xn−1 +
low order terms. That is, evaluating the coefficient of xn in equation (52) yields γn(m) =
λn+1(m)− λn(m).

Orthogonality of Qj(x) demands that the coefficients ~λ = (λ0(m), . . . , λn(m))T satisfy

Hn(m)~λ = ~hn with ~hn = −(1/(m+n)!, . . . 1/(m+2n+1)!)T . Using Cramer’s rule for λn(m)
and (49), one obtains the two term recursion for λn(m)

λn(m)Mn(m)Mn−2(m+ 2) = λn−1(m+ 2)Mn−1(m+ 2)Mn−1(m)

− λn−1(m+ 1)Mn−1(m+ 1)2 ,

which simplifies to

λn(m) = (m+2n−2)
(n−1) λn−1(m+ 1)− (m+n−1)

(n−1) λn−1(m+ 2) .

Induction then shows that

λn(m) = − n
m+2n−1 , ∀n ≥ 1,m ≥ 0 .

The orthogonal polynomials in this paper use the values m = 0, 1. In the case when m = 1,
the coefficient λn(1) = −1

2 is constant, in which case γn(1) = 0, ∀n ≥ 1.

8Note that σ(n)/σ(n− 1) always has opposite sign to σ(n− 1)/σ(n− 2).
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