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Abstract. Hip-Hop solutions of the 2N -body problem are solutions that satisfy at every
instance of time, that the 2N bodies with the same mass m, are at the vertices of two regular
N -gons, each one of these N -gons are at planes that are equidistant from a fixed plane Π0

forming an antiprism. In this paper, we first prove that for every N and every m there
exists a family of periodic hip-hop solutions. For every solution in these families the oriented
distance to the plane Π0, which we call d(t), is an odd function that is also even with respect
to t = T for some T > 0. For this reason we call solutions in these families, double symmetric
solutions. By exploring more carefully our initial set of periodic solutions, we numerically
show that some of the branches stablished in our existence theorem have bifurcations that
produce branches of solutions with the property that the oriented distance function d(t) is
not even with respect to any T > 0, we call these solutions single symmetry solutions. We
prove that no single symmetry solution is a choreography. We also display explicit double
symmetric solutions that are choreographies.

1. Introduction

Hip-hop solutions of the 2N -body problem are solutions satisfying that: (i) The masses of all
the bodies are the same. (ii) At every instance of time t, N of the bodies are at the vertices
of a regular N -gon contained in a plane Π1(t) and the other N bodies are at the vertices of
a second regular N -gon that differ from the first N -gone by a translation and a rotation of
2π
N radians and it is contained in a plane Π2(t). (iii) For every t, the planes Π1(t) and Π2(t)
are parallel and they are equidistant from a fixed plane Π0. (iv) The center of the N -gones
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are always in a fixed line l0 perpendicular to Π0. In particular when Π1(t) 6= Π2(t) the 2N
bodies form an antiprism, and when Π1(t) = Π2(t) the 2N bodies form a regular 2N -gon. For
any hip-hop solution we can define the function d(t) that gives the oriented distance from the
plane Π0 to the plane Π1 and the function r(t) that gives the distance from the line l0 to any
of the bodies. We will assume that the line l0 is the z-axis and the plane Π0 is the x-y plane.

P1

P2

P
P5P

P3P

P4P

P6P

d(t)

r(t)

z-axis

Figure 1. Six bodies moving at the vertices of a regular antiprism all time.
The function r(t) is the distance of each body respect to the z-axis passing
through the center of the two parallel planes where each group of three bodies
moves. The function d(t) is the distance of the plane Π1 to the plane Π0 =
{(x, y, z) : z = 0}.

We will call a hip-hop solution, double symmetric, if the function d(t) satisfies that for all t,
d(−t) = −d(t) and d(T − t) = d(T + t) for some nonzero T . We will call a hip-hop solution,
single symmetric, if the function d(t) satisfies that d(−t) = −d(t) for all t and there is not a
T such that, d(T − t) = d(T + t) for all t.

The differential equations for hip-hop solutions were provided by Meyer and Schmidt in 1993
[MS93] as a model for braided rings of a planet based on a previous model for the rings of
Saturn. They called these solutions alternating solutions and the only difference with the
hip-hop solutons is that the alternating solutions consider an additional motionless body in
the center of mass of the 2N bodies. For the alternating solutions, the body in the center
makes the role of the planet while the 2N bodies are the small bodies conforming the ring.
One of the pioneer works that showed the periodicity of some hip-hop solutions is the work
of Chenciner and Venturelli [CV00], where the authors used variational methods to prove
existence of periodic solutions. Some other papers that show the periodicity of hip-hop so-
lutions by variational methods are [CV00, Fer08, FT04]. It is well known that the periodic
solutions of the two body problem can be extended to periodic planar solutions of the n
body problem, with the trajectory of each body being a rotation of a single ellipse. The link
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https://youtu.be/RjlZpqDFsDM leads to a video showing some of these periodic solutions.
Using a Bolzano argument, in [BCPS10] the authors show the periodicity of hip-hop solution
with motion close to ellipses with high eccentricity. In [BCPS06] the authors use a Poincaré
analytical continuation method to show the existence of double symmetric hip-hop solutions
with trajectories close to circles.

Similar to the work in [BCPS06] our solutions emerge from planar periodic solutions where all
the bodies move in the same circle. We study both, doubly and single symmetric solutions.
The technique that we use is slightly different from the regular Poincaré analytical method.
We can say that it is more direct. Let us give the idea behind the method. We consider
the functions r(t) and d(t) defined above as functions of one of the initial conditions and
the angular momentum, more precisely we consider R(a, b, t) = r(t) and D(a, b, t) = d(t)

where b = ḋ(0) and a is the angular momentum. All our solutions satisfy d(0) = 0. For
the circular solutions b = 0 because the solution are planar, d(t) ≡ 0, and the value of
a = a0 can be easily found from the condition that r(t) is constant. In the Euclidean space
(a, b, T ) with T a fixed value of time, we have that due to the symmetries of the ordinary
differential equations that govern the hip-hop solutions, we have that points in the space that
satisfy the system of equations Dt(a, b, T ) = Rt(a, b, T ) = 0 produce double symmetric hip-
hop solutions with angular momentum a and period 4T , while points (a, b, T ) that satisfy
D(a, b, T ) = Rt(a, b, T ) = 0 produce hip-hop solutions with angular momentum a and period
2T that are potentially single symmetric. With this idea in mind we have that double and
single symmetric solutions are obtained from studying three surfaces: The surface in the
space (a, b, T ) that satisfies Rt(a, b, T ) = 0, the surface in the space (a, b, T ) that satisfies
Dt(a, b, T ) = 0 and the surface in the space (a, b, T ) that satisfies D(a, b, T ) = 0. Recall that
the intersection of two surfaces is in general a curve and that if the gradient of the functions
that define two surfaces are linearly dependent at a particular point in the intersection, then
the solution of the system may be the union of two curves. As an example, Figure 5 show points
(a, b, T ) that solve the system D(a, b, T ) = Rt(a, b, T ) = 0. In this paper we notice that the
circular solutions of the 2N body problem produces a line Γ = {(a0, 0, T ) ∈ R3} in the space
(a, b, T ) that solve the systems D(a, b, T ) = Rt(a, b, T ) = 0 and Dt(a, b, T ) = Rt(a, b, T ) = 0.
By computing the gradient of the functions D, Dt and Rt we find points in Γ that potentially
allows nearby points that solve both systems. Half of these (bifurcation) points were found in
the paper [BCPS06] using the Poincare analytical method. The other half that we found were
those bifurcation points that potentially may produce single symmetric solutions. It turned
out that points in the smooth curves Ωi emanating from the new bifurcation points, did
not produced single symmetric hip-hop solutions near the circular solutions but, after doing
analytic continuation, we found out that for some values of N , Ωi has a bifurcation point that
generates a curve of points Φ in the space (a, b, T ) with the property that each of its point
represents a single symmetric solution. We proved that an interesting difference between the
single and double symmetric families of hip-hop solutions of the 2N body problem is the fact
that no single symmetric solution can produce a choreographic while there are infinitely many
choreographies in the family of double symmetric hip-hop solutions.
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2. Preliminary results

The anti-prism 2N -body problem will be characterized in the following concrete framework:
Consider Q1, Q2, . . . , Q2N bodies of equal mass m > 0, located on the vertices of a regular
anti-prism. If rj(t) is the position of the body Qj , j = 1, . . . , 2N at each instant t and satisfy

rj(t) = Rj−1r1(t), j = 1, . . . , 2N,

where R is a rotation/reflection matrix given by

R =

cos( πN ) − sin( πN ) 0
sin( πN ) cos( πN ) 0

0 0 −1

 .

Introducing cylindrical coordinates (r, θ, d) it is shown that the equations of motions of the
bodies are given by 

r̈ =
a2

r3
− 2rmf(r, d),

d̈ = −md

2
g(r, d),

θ̇ = a/r2,

(1)

where a is the angular momentum of the system and

f(r, d) =

2N−1∑
k=1

sin2(kπ/2N)[
4r2 sin2(kπ/2N) + ((−1)k − 1)2d2

]3/2 ,
g(r, d) =

2N−1∑
k=1

((−1)k − 1)2[
4r2 sin2(kπ/2N) + ((−1)k − 1)2d2

]3/2 .
From now on, for r0,m and N fixed, we denote by

R(a, b, t) = r(t), D(a, b, t) = d(t), and Θ(a, b, t) = θ(t),

the solutions of the system (1) with initial conditions

r(0) = r0, ṙ(0) = 0, d(0) = 0, ḋ(0) = b, θ(0) = 0. (2)

It is clear that r(t), d(t) solves the reduced problem
r̈ =

a2

r3
− 2rmf(r, d),

d̈ = −md

2
g(r, d),

(3)

then r(t), d(t) and θ(t) solves (1) if

θ(t) =

∫ t

0

a

r2(s)
ds.
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Notice that if for some a, b ∈ R the functions R(a, b, t) and D(a, b, t) have the same period
T > 0 then, they provide a periodic hip-hop solution of (1) if and only if θ(a, b, T ) is equal to
p π/q with p and q whole numbers. In general, T -periodic solutions of the systems (3) define
reduced-periodic solutions of the 2N -body problem (1). That is, solutions with the property
that every T units of time, the positions and velocities of the 2N -bodies only differ by an rigid
motion in R3.

Let us present some useful results on the existence of symmetric periodic solutions of (1). To
this end, let r0,m ∈ R+ and consider the following initial value problem{

r̈ = F (a, r, d), r(0) = r0, ṙ(0) = 0,

d̈ = G(r, d) d(0) = 0, ḋ(0) = b.
(4)

with

F (a, r, d) =
a2

r3
− 2rmf(r, d), and G(r, d) = −md

2
g(r, d).

Recall that, we are denoting the solutions of (4) as t→ R(a, b, t) and t→ D(a, b, t). Moreover,
it is easy to check the following symmetries:

F (a, r, d) = F (a, r,−d), and G(r, d) = −G(r,−d)

From previous symmetries it is clear that R(a, b, t) is even and D(a, b, t) is odd. Moreover, we
have the following result.

Lemma 1. Let t→ R(a, b, t) and t→ D(a, b, t) be a solution of (4).

. If for some 0 < T we have

(I) Rt(a, b, T ) = 0, Dt(a, b, T ) = 0,

then R(a, b, t), D(a, b, t) are even functions respect to the line t = T . Moreover, both
functions are 4T -periodic.

. If for some 0 < T̃ we have

(II) Rt(a, b, T̃ ) = 0, D(a, b, T̃ ) = 0,

then with respect to the line t = T̃ , D(a, b, t) is an odd function and R(a, b, t) is an

even function. Moreover, both functions are 2T̃ -periodic.

Definition 1. We say that a solution of (4) is of type I (type II) if it satisfies condition (I)
(condition (II)) in Lemma 1. We also call the solutions of type I double symmetry solutions.

Remark 1. If (a, b, T ) solve system (I) then (a, b, 2T ) solve system (II).

For a given N > 1 define the parameters

αN =
1

16

2N−1∑
k=1

((−1)k − 1)2

sin3( kπ2N )
, γN =

1

4

2N−1∑
k=1

1

sin( kπ2N )
. (5)

Proposition 2. For any integer N > 1, the sum αN and γN defined in (5) satisfy

γN
αN
≤ 4 +

√
2

8
.
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Proof. This results is a direct consequence of Lemma 1 in [BCPS10]. �

Remark 2. A direct computation shows that D(a, 0, t) = 0 for all a, t ∈ R. Moreover, if
a = a0 :=

√
mγNr0 then R(a0, 0, t) = r0 for all t ∈ R. Consequently, the points (a0, 0, T ) for

all T ∈ R satisfies the two systems of equations in three variables (I) and (II). We will call
these solutions the trivial solutions of (I) and (II).

3. Existence of periodic solutions

In this section we state and prove the main theoretical result of this document.

Theorem 3. Let N > 1 and m, r0 > 0 fixed. Then there exists b̂ > 0, and a pair of functions
T, a :]− b̂, b̂[→ R, with

T (0) =
π

2

√
r3

0

mαN
, and a(0) =

√
mγNr0,

such that R(a(b), b, t) = r(t) and D(a(b), b, t) = d(t) are 4T -periodic functions. Moreover, the
points (a(b), b, T (b)) solve the system (I).

Proof. For fixed m, r0, let R(a, b, t) = r(t), D(a, b, t) = d(t) be the solutions of (3). By Lemma
1 if for some a, b and T we have

Rt(a, b, T ) = 0, and Dt(a, b, T ) = 0, (6)

then r(t) is even respect to T -axis whereas d(t) is an odd function and both are 4T -periodic.
Let ζ(t) = (a0, 0, t), t ∈ R. From Remark 2 it follows directly that

Rt(ζ(t)) = 0, and Dt(ζ(t)) = 0, ∀t ∈ R.

In order to study possible bifurcations points in the system (6), we search a particular value
t = T0 such that the set of vectors{

∇Rt(ζ(T0)),∇Dt(ζ(T0))
}
,

are linearly dependent. To this end, since D(a, b, t) satisfies the initial value problem

Dtt = −mD
2
g(R,D), D(0) = 0, Ḋ(0) = b, (7)

from the existence and uniqueness theorem of ordinary differential equations we deduce that
D(a, 0, t) = 0 for all (t, a). From here,

D(a, b, t) = bD̂(a, b, t), ∀(a, b, t) (8)

and

Dt(a, b, t) = bD̂t(a, b, t), ∀(a, b, t) (9)

for some appropriate function D̂. Moreover, direct computations shows that

Dt(ζ(t)) = Da(ζ(t)) = 0, Db(ζ(t)) = D̂(ζ(t)), ∀t ∈ R.

Dbt(ζ(t)) = D̂t(ζ(t)), ∀t ∈ R.
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Taking the partial derivative with respect to b on both sides in (7), the function Db(ζ(t))
satisfies the initial value problem

ẍ+
mαN
r3

0

x = 0, x(0) = 0, ẋ(0) = 1.

Therefore,

Db(ζ(t)) =
(mαN

r3
0

)−1/2
sin
[(mαN

r3
0

)1/2
t
]
, (10)

and

Dbt(ζ(t)) = D̂t(ζ(t)) = cos
[(mαN

r3
0

)1/2
t
]
.

in consequence,

Dt(ζ(T0)) = 0, if T0 =
π

2

√
r3

0

mαN
.

This shows that ∇Dt(ζ(T0)) = 0. The previous computations, suggest to study the solutions
of the system

Rt(a, b, T ) = 0, and D̂t(a, b, T ) = 0,

around the point (a0, 0, T0).

Firstly, we need to compute Ra(ζ(t)), Rat(ζ(t)) and Rb(ζ(t)). For this purpose, let us recall
that

Rtt = F (a,R,D), R(0) = r0, Rt(0) = 0.

In consequence, taking the partial derivative with respect to a on both sides, direct computa-
tions shows that the function u(t) = Ra(ζ(t)) satisfies the equation

ü = Fa(a0, 0, r0) + FR(a0, 0, r0)u,

where

FR(a,R,D) = −3
a2

R4
− 2m [f(R,D) +RfR(R,D)] ,

Fa(a,R,D) =
2a

R3
.

(11)

From here, direct computations shows that

f(r0, 0) =
γN
2r3

0

, and fR(r0, 0) =
−3γN

2r4
0

,

with γN given in (5). Therefore, u(t) satisfies the initial value problem, but a2
0 = mr0γN ,

therefore
ü+ w2u = 2w/r0, u(0) = 0, u̇(0) = 0,

with w2 = mγN/r
3
0, where the solution is given by

Ra(ζ(t)) =
2

wr0
(1− cos(ωt)),

implying that

Rat(ζ(t)) =
2

r0
sin(ωt).
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In the same fashion, the function v(t) = Rb(ζ(t)) satisfies the differential equation

v̈ = FD(a0, r0, 0)Db(ζ(t)) + FR(a0, r0, 0)v.

Since r(0) = r0 and ṙ(0) = 0, the function v(t) is the solution of the initial value problem

v̈ + w2v = 0, v(0) = 0, v̇(0) = 0.

In consequence,
Rb(ζ(t)) = 0, and Rbt(ζ(t)) = 0, ∀t.

Finally, it follows directly that

Rtt(ζ(t)) = F (r0, 0, a0) =
a2

0

r3
0

− mγN
r2

0

= 0 ∀t.

In brief, the previous calculation provide for ∇Rt at ζ(T0) that

∇Rt
(
ζ(T0)

)
=
( 2

r0
sin(ωT0), 0, 0

)
, (12)

where ωT0 = (π
√
γN/αN )/2. From Proposition 2 it follows that ωT0 6= pπ for every positive

integer p implying that∇Rt(ζ(T0)) does not vanish. Finally, we use the relation (9) to compute

∇D̂t(ζ(T0)). Notice that,

Dbt(ζ(t)) = D̂t(ζ(t)), and Dba(ζ(t)) = D̂a(ζ(t)).

Then, from (10) we have

D̂t(ζ(T0)) = −1, and D̂a(ζ(T0)) = 0.

Moreover

∇D̂t(ζ(t)) =
(
Dtba(ζ(t)),

1

2
Dbbt(ζ(t)), Dbtt(ζ(t))

)
. (13)

To sum up, from expressions (12) and (13) we obtain

Λ := ∇Rt(ζ(T0))×∇D̂(ζ(T0)) =
(
0,−2Dbtt(ζ(T0))r−1

0 sin(ωT0), Dbbt(ζ(T0))r−1
0 sin(ωT0)

)
.

Since,

Dbtt(ζ(t)) = D̂tt(ζ(t)) = −
(mαN

r3
0

)1/2
sin
[(mαN

r3
0

)1/2
t
]
,

we have Dbtt(ζ(T0/2)) = −π/2T0. This shows that the second component of Λ is different

from zero. Then, by the Implicit Function Theorem, there exists b̂ > 0, and a unique pair of
functions T, a :]− b̂, b̂[→ R, such that

b→ T (b), b→ a(b),

for b ∈]− b̂, b̂[, with T (0) = T0 and a(0) = a0, such that

Rt(λ(b)) = 0, D̂t(λ(b)) = 0,

with
λ :]− b̂,b̂

[
−→ R3

b −→ λ(s) = (a(b), b, T (b)).
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Therefore, for each b ∈]− b̂, b̂[ it follows

Rt(λ(b)) = 0, and Dt(λ(b)) = bD̂t(λ(b)) = 0.

By Lemma 1 we get that for any b ∈]− b̂, b̂[ the functions

r(t) = R(a(b), b, t), and d(t) = D(a(b), b, t),

provides a 4T (b)-periodic solution of the reduced problem (3) with d(t) an odd function,
whereas r(t) = R(a(b), b, t) and d(t) = D(a(b), b, t) are both even respect to the line t =
T (b). �

Due to Remark 1 we have the following result:

Theorem 4. Let N > 1 and m, r0 > 0 fixed. Then there exists b̂ > 0, and a pair of functions
T, a :]− b̂, b̂[→ R, with

T (0) = π

√
r3

0

mαN
, and a(0) =

√
mγNr0,

such that R(a(b), b, t) = r(t) and D(a(b), b, t) = d(t) are a 2T -periodic functions. Moreover,
the points (a(b), b, T (b)) solve the system (II).

4. Branches emanating from the bifurcations

In this section we use analytic continuation to extend the branches emanating form the bifur-
cations points

p0 =

√mγNr0, 0,
π

2

√
r3

0

mαN

 and q0 =

√mγNr0, 0, π

√
r3

0

mαN

 ,

obtained in Theorem 3 and Theorem 4.

Notice that the solutions from p0, q0 are essentially the same, all of them have double sym-
metry. With the purpose of searching for solutions of type (II) that are not of type (I) we
extend the branch starting at the point q0 by applying analytic continuation and a method
similar to the one presented in [BCPS06] to system (II). Taking N = 3, r0 = 2 and m = 1 we
have

q0 =

(√
5

2
+

2√
3
, 0, 4

√
2

17
π

)
≈ (1.91173, 0, 4.31023).

The analytic continuation method give us a table that we labeled DSP because, as explained
above, near the point q0, the solutions satisfy the double symmetry property. We found a
bifurcation point –that we labeled B– along this branch that gave us a new branch with single
symmetric hip-hop solutions. Recall from the introduction that a solution is called single
symmetric if d(t) is even and there is not T 6= 0 such that d(T − t) = d(T + t) for all t. Before
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we address the existence of this bifurcation point B, let us elaborate on some properties of
the DSP branch.

Figure 3 shows the table DSP = {Q1 = q0, Q2, . . . , Q5806 = qf}. It is a list of points in the
a, b, T space that satisfies the conditions

|Rt(Qi)| < 10−4 |F (Qi)| < 10−4 for each Qi ∈ DSP.

For the solutions along the DSP branch the system of particles reaches the maximum vertical
expansion (that is expansion in the z-direction) at the same time that it reaches a maximum
contraction towards the z-axis. In other words, when the particles are at their maximum
height they are also the closest they can be to the z-axis. This is illustrated by the joint graph
of d(t) and r(t) for the points Q210 and Q4225 shown in Figure 2.

r(t)

Q210 d(t)
4.42

t

-1.0
-0.5

0.5

1.0

1.5

2.0
r(t)

Q4225 d(t)
7.28

t

-1

1

2

Figure 2. The graph of the functions d(t) and r(t) for two solutions in the
branch DSP. Since the point Q210 is close to the point q0 then r(t) is almost
constant and the function d(t) does not oscillate much. Recall that the solution
q0, d(t) vanishes and r(t) are constant. Both solutions show that after a quarter
of a period of the function d(t), r(t) reaches a minimum while d(t) reaches a
maximum. For this reason these solutions have an additional symmetry.

The branch DSP ends at the point

qf = (0.259786, 0.780202, 5.80955),

a point with angular moment a near zero, close to a solution that represents a collision, with
three of the bodies colliding at maximum height. The name for the set DSP stands for “double
symmetry points” because each one of these points represent a solution with period 2T with
d and r even with respect to t = T/2, r even with respect to t = T and d odd with respect to
t = T .

4.1. Bifurcation point along the DSP branch. By the implicit function theorem, we
have that as long as the vectors ∇D(a0, b0, T 0) and ∇Rt(a0, b0, T 0) are linearly independent
for points (a0, b0, T 0) that satisfy

{
Rt(a, b, T ) = 0,

F (a, b, T ) = 0,
(14)
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Figure 3. Points in the space a, b, T found by doing analytic continuation
near the bifurcation point q0 provided by Theorem 3. All these points are
associated with solutions that have double symmetry and for this reason we
have labelled this family of solutions as DSP. We show the bifurcation point B,
and the pointsQ210 andQ4225. We will show later that: (i) we will have another
family of solutions with not double symmetry emanating from the point B, (ii)
the point Q210 will represent a solution where bodies 1, 3 and 5 share the same
trajectory and (iii) bodies 2, 4 and 6 also share the same trajectory. For the
solution represented by the point Q4225, all the six trajectories are different.

then, the solution of the system (14) is given by a smooth curve (not bifurcation points near
that point) near (a0, b0, T 0). We have noticed that at the pointB = (1.34958, 0.727361, 7.05373),
which is one of the points in the set DSP , satisfies that

∇D(B) = (4.58986, 17.2712,−0.727943), ∇Rt(B) = (1.44703, 5.44591,−0.229381),
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r(t)

d(t)

2.905 8.715
t

-2

-1

1

2

Figure 4. This is the graph of the functions d(t) = D(0.259786, 0.780202, t)
and r(t) = R(0.259786, 0.780202, t) which is the solution associated with point
qf = Q5806 located at the end of the branch that starts at the point q0. As
we can see, this solution has double symmetry, both functions have derivatives
vanishing at 0.580955

2 . We can also see how this solution is near a solution with
a collision of 3 bodies near the point (x, y, z) = (0, 0, 1.39) and the collision of
the other 3 bodies near the point (x, y, z) = (0, 0,−1.39).

and

∇D(B)×∇Rt(B) = (0.0026399,−0.000527769, 0.0041234).

The information above provided numerical evidence of the possible existence of a point in the
branch where the gradients ∇D(a, b, T ) and ∇Rt(a, b, T ) are linearly dependent. Therefore
we search for solution of system (14) near B but away from the smooth curve suggested by
the points in the set DSP . Indeed we were able to find a point that satisfy the system (14),
away from the trajectory of the points in DSP but near the point B. After doing analytic
continuation to this new point, we were able to find the collection of points

SSP = {W1,W2, . . . ,W14154},

all of them satisfying |Rt(Wi)| < 10−4 and |F (Wi)| < 10−4. The name SSP stand for
“single symmetry points” because the solutions associated with these points do not satisfy
that Rt(a, b, T/2) = 0 and F (a, b, T/2) = 0. Figure 5 shows how the two branches and the
point B.

Therefore, we have numerically found solution with only one symmetry.

The solutions that correspond to the SSP branch are characterized by the fact that the max-
imum contraction toward the z-axis occurs when the system is still expanding (for the points
before the point of bifurcation) or already contracting (for the points after the point of bifur-
cation) in the vertical direction. This is illustrated in Figure 6.

4.2. On the number of trajectories and choreographic solutions. In theory, the six
bodies of the periodic solutions can follow 6, 3, 2, or one single trajectory. In the last case, when
all the bodies follow the same orbit, the solution is called a choreography. In this subsection,
we show examples of the four cases.
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Figure 5. Points of the two branches SSP and DSP. The branch DSP starts
at q0 while the branch SSP emanated from point that satisfies the system (14)
near B and away from the trajectory DSP. We have highlighted the point
W1257 because this point represent a periodic solution where the bodies 1, 3
and 5 share the same trajectory and the bodies 2, 4 and 6 also share the same
trajectory.

r(t)

W3000

a 1.2, b 0.67, T 5.32

d(t)
5.32

t

-1

1

2 r(t)

W4739=B d(t)

a 1.35, b 0.73, T 7.05

7.05
t

-2

-1

1

2

r(t)

W6000 d(t)

a 1.42, b 0.76, T 8.32

8.32
t

-2

-1

1

2

3

Figure 6. The image on the left shows the graph of the solutions r(t) and d(t)
associated with the point W3000 ∈ SSP. We can see how the maximum of d(t)
is obtained before the minimum of the function r. This means that when the
bodies reaches the maximum vertical distance, they continue to move closer to
the z-axis. The image in the center shows the graph of the solutions r(t) and
d(t) associated with the bifurcation point. These two functions have double
symmetry. The image on the right shows the graphs of the solutions r(t) and
d(t) associated with the point W6000 ∈ SSP. We can see how the maximum of
d(t) is obtained after the minimum of the function r.
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If we label the bodies 1, 2, 3, 4, 5, 6 according to the order of their projections on the x-y plane
in the direction of rotation about the z-axis then the number of trajectories is determined by
which of the starting positions will be reached first by the body number 1. More precisely,

Let 1→ j denote the fact that for some instant of time t > 0 the condition

C(t, k) : r1(t) = rk(0), and ṙ1(t) = ṙk(0),

is met by k = j and that for every 0 < τ < t and all k ∈ {1, 2, ..., 6} the condition C(τ, k) is
false.

Then the number of trajectories are:

Six in the case 1→ 1

One in the case 1→ 2 or 1→ 5.

Two in the case 1→ 3

Three in the case 1→ 4.

4.2.1. Number of orbits for solutions on the branch DSP . For the solutions in the branch
DSP we have that the number of trajectories of the solution depends on θ0 = θ(T ): the angle
of rotation of the solution after half of the common period of the functions r(t) and d(t). Since
for every solution on this branch, the function r is even with respect to t = T/2, then we have
that r(T ) = r(0) = 2. We also have that for any integer k, θ(kT ) = kθ0. Notice that when
the solution is periodic, we can find three integers k, j and l that satisfy the following integer
equation

IE(k, j, l) : kθ0 = j
π

3
+ 2πl. (15)

Recall that d(kT ) = 0 for every integer k and ḋ(kT ) < 0 if k is odd and ḋ(kT ) > 0 if k is
even. Also notice that kθ0 = j π3 + 2πl for some integer k, j and l indicates that the body
starting at (r0, 0, 0) moves, after kT units of time to the initial position of the body starting
at (r0 cos(j π2 ), r0 sin(j π2 ), 0). Each body rotates j π3 radians during their first kT units of time.

For a periodic solution, let us denote k0 smallest positive integer such that IE(k0, j, l) is
satisfied for a pair of integers j and l with j > 0 and k0 + j even. We denote by j0 the smallest
positive integer with j0 +k0 even such that IE(k0, j0, l) is satisfied for some integer l. We have
that if j0 is 1 or 5, then the solution is a choreography, this is, we have only one trajectory
that is share by the six bodies. If j0 is 2 or 4 then, there are two trajectories. If j0 is 3, then
there are three trajectories and if j0 is 6 then, there are 6 trajectories.

As explain above, the angle θ0(T ) plays an important role determining the number of trajec-
tories. Figure 7 shows how the angle θ0 changes for different values of T in the branch DSP .
Since the first point in DSP is near a trivial solution, we can compute the starting value for

these curve. In this particular case, it is
√

1
51

(
4
√

3 + 15
)
π ≈ 2.06.
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1000 3000 5000
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Figure 7. Graph of the points (i, θ0(Ti)) where Ti the third entry of Qi in the
branch DSP = {Q1 = q0, Q2, . . . , Q5806 = qf}. This graph points out the fact
that 5π/3 is in the range of the function θ0.

As pointed out in Figure 7, 5π/3 is in the range of the function θ as a function of T . When
T moves along the smooth curve of points (a, b, T ) extending the points in DSP. The closest
value of θ(T ) to 5π/3 in the branch DSP = {Q1 . . . , Q5806} happens for the solution 5010, we
have that θ(T5009) < 5π/3 < θ(T5010) and θ(T5010)− 5π/3 < 0.00033. The intermediate value
theorem shows that there is choreographic in the family of solution with double symmetry.
Let us explain the orbit of this choreographic, assuming for practical reasons that it is given
by the solution 5010 in the branch DSP. The initial configuration of the six bodies is displayed
in Figure 8

Figure 8. Labelling of the bodies. Initially they form a regular dodecagon.

The arrows indicate if the bodies start going up or down. Notice that those bodies that go up,
they do not do it vertically due to the rotation motion that all of them are doing. The point
Q5010 = (a, b, T ) = (0.581691, 0.810807, 6.53465), this means that after T = 6.53465 units of
time, the body 1 will move to the initial position of body 6. Figure 9 shows the rest of the
details of this motion. In this case, in terms of the equation IE(k, j, l) in (15) we have that
k0 = 1, j0 = 5 and l = 5.

In the same way, 5π/3 is in the range of θ0(T ), we can check that π is in the range of this
function. This time the closest value of θ(T ) to π in the branch DSP happens for the solution
represented with the point Q2878, we have that 0 < π − θ0(T2878) < 0.00007. Let us explain
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Figure 9. The first image shows the trajectory of the body 1 in the solution
represented by Q5010 for values of t between 0 and T = 6.53465. The second
image shows the trajectories of bodies 1 and 6 in the same interval of time.
The third image show the trajectories of all 6 bodies in the same interval of
time. This third image is also the trajectory of each one of the bodies between
t = 0 and t = 6T .

the trajectory of this solution, assuming for practical reasons that the solution represented by
Q2878 in the branch DSP satisfies θ0(T ) = π. The point Q2878 = (1.37188, 0.717167, 6.95687),
this means that after T = 6.95687 units of time, the body 1 will move to the initial position
of body 4. The rest of the orbits are explained in Figure 10.

Figure 10. The image on the left shows the trajectory of the body 1 in the
solution represented by Q2878 for values of t between 0 and T2878 = 6.95687
and the second image shows the trajectory in the same interval for the bodies
1 and 4. This second image represents the whole orbit for the first and fourth
body. They share the same orbit. Bodies 2 and 5 share the same trajectory
and the bodies 3 and 6 also share the same orbit. The third image shows the
three trajectories.

The solution represented by Q210 = (1.88461, 0.175173, 4.41712) provides a solution that has
two trajectories. We have that θ0(T210) ≈ 2π

3 . In this case after T210 = 4.41712 the body one
reaches the initial position of body 3 but it does not reach it with the right direction of the
velocity, after 2T units of time, the body 1 reaches the initial position of body 5 with the same
initial velocity as well. For this solution k0 = 2, j0 = 4 and l = 0, see Figure 11.
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Figure 11. The first image shows the trajectory of the body 1 in the solution
represented by Q210 for values of t between 0 and 2T210 where T210 = 4.41712,
the second image shows the trajectory in the same interval for the bodies 1 and
5 and the third image shows the trajectory in the same interval for the bodies
1, 5 and 3. This third image represent the whole orbit for the first, third and
fifth body. They share the same orbit. The bodies 2, 4 and 6 also share the
same trajectory. The fourth image shows the two trajectories.

The solution represented by Q4225 = (0.827163, 0.825182, 7.28011) provides a solution that
has six trajectories. We have that θ0(T4225) ≈ 3π

2 . In this case the body one reaches back its
initial position and velocity after 4T4225 units of time. Moreover, it never reaches the initial
position and velocity of the other five bodies. For this solution k0 = 4, j0 = 6 and l = 0, see
Figure 12.

4.2.2. Number of orbits for solutions on the branch SSP. Before we start this subsection, let
us point out the following:

Proposition 5. Let us assume that a periodic solution of the Hip-Hop problem is given by
the functions (d(t), r(t), θ(t)) satisfying the following condition:

(1) d(t) and r(t) are periodic with period 2T for some T > 0,
(2) d(t) = 0 only for values of t = kT with k an integer,
(3) r(kT ) 6= r((k + 1)T ) for all k an integer,

then, the solution cannot be a choreography.

Proof. Let us argue by contradiction. If we have a choreography, then there exist a time T̃
when the body 1 reaches the initial position and velocity of the body 2. By hypothesis (2)

T̃ = kT for some integer k. On the other hand our two conditions on the function r, (period
equal to 2T and r(lT ) 6= r((l + 1)T ) with l an integer) implies that r(lT ) = r(0) if l is even
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Figure 12. The second image shows the trajectory of the body 1 in the so-
lution represented by Q4225 for values of t between 0 and T4225 = 7.28011.
The first image shows the trajectory of the body 1 for values of t between 0
and 2T4225. Notice that even though the ending point of this portion of this
trajectory is the starting position for the fourth body, the velocity is not the
initial velocity of the fourth body. The fourth image shows the trajectory of
the body 1 for values of t between 0 and 3T4225 and the third image shows the
trajectory of the body 1 for values of t between 0 and 4T4225.

and r(lT ) 6= r(0) if l is odd. Since r(kT ) = r0 then k must be even. Since d has period 2T

then ḋ(kT ) = ḋ(0). This is a contradiction because the initial velocity of the body 2 goes in
the “opposite” directions. If body 1 starts going up, the body 2 starts going down. �

One feature of the solutions of the SSP branch (other than the one that corresponds to the
point of bifurcation B) is that any body intersect the plane z = 0 only for values of t = kT
where k is an integer. More importantly, the distance to the z-axis of any of the bodies
changes when t increases changes from t = kT to t = (k + 1)T , this is, r(kT ) 6= r((k + 1)T ).
In particular the condition 1 −→ j never occurs if j is even. Therefore, in the SSP branch the
only possible periodic solutions will have two trajectories with the bodies 1, 3, 5 sharing one
orbit and 2, 4, 6 the other.

In the equation (15) when 1 → 3 we have j = 2 and when 1 → 5 we have j = 4. We set
k = 2q, j = 2p in the condition IE(k, j, l)

IE(k, j, l) : 2qθ0 = 2p
π

3
+ 2πl, (16)

that simplifies to

qθ0 = p
π

3
+ πl, (17)

where q and l are positive integers and p = 1 or p = 2.

Assume p = 1. The closest value of qθ(T ) to π/3 + πl in the branch SSP = {P1 . . . , P14154}
happens at P1257 = (0.886201, 0.557961, 3.61393), with q = l = 13. have that

13θ(T1257)−
(π

3
+ 13π

)
< 0.000102,
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and
13θ(T1258)−

(π
3

+ 13π
)
> −0.000133.

The intermediate value theorem guarantees that there is solution with single symmetry that
has exactly two orbits with the bodies 1, 3, 5 in one and 2, 4, 6 in the other. The first image on
the Figure between the abstract and the Introduction shows both trajectories. For practical
purposes we assume that this solution is given by the solution 1257 in the SSP branch. Figures
13 and 14 explain the trajectories in this particular solution.

Figure 13. Images for the solution given by the point P1257 in SSP . The
second image shows the trajectory of body 1 from t = 0 to t = T1257 = 3.61393.
Notice that the body comes back to the plane z = 0 with a value of r different
from 2. The first image show the trajectory of body. From t = 0 to t = 2T1257.
This time the end position of the body is 2 units away from the z-axis. The
third image shows the trajectory of body 1 from t = 0 to t = 26T1257. We can
see how the trajectory of the body ends at the initial position of body 3.

Figure 14. The first image shows the trajectory of body 1 from t = 26T1257

to t = 52T1257. We can see how the trajectory of the body ends at the initial
position of body 5. This trajectory agrees with the trajectory of body 3 from
t = 0 to t = 26T1257. The third image shows the trajectory of body 1 from
t = 52T1257 to t = 78T1257. The second image shows the trajectory of body 1
from t = 0 to t = 78T1257. This is a closed embedded curve which is also the
trajectory of bodies 3 and 5.
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