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Abstract. We introduce novel polyhedral approximation hierarchies for the

cone of nonnegative forms on the unit sphere in Rn and for its (dual) cone of
moments. We prove computable quantitative bounds on the speed of con-

vergence of such hierarchies. We also introduce a novel optimization-free

algorithm for building converging sequences of lower bounds for polynomial
minimization problems on spheres. Finally some computational results are

discussed, showcasing our implementation of these hierarchies in the program-

ming language Julia.

1. Introduction

One of the most basic problems of modern optimization is trying to find the
minimum value α∗ of a multivariate polynomial f(x) over a compact set S ⊆ Rn.
Its importance stems from at least two sources: because it serves as a rich model
for non-convex global optimization problems and because it has a wealth of ap-
plications to which entire books have been devoted [L, L2, HKL, BPT]. A possible
approach for solving such problems, pioneered by Shor, Parrilo and Lasserre pro-
poses reformulating them as optimization problems over the cone PS of polynomials
of the same degree as f which are nonnegative on the set S, obtaining α∗ as

α∗ = sup {λ ∈ R : f(x)− λ ∈ PS} .
The success of this approach depends on having a description of PS suitable for
optimization. Although exact descriptions of the cone PS are known for a few sets S,
(see [BGP,BSV,BSV2,BSV3]) the most common and practically successful strategy
has been the construction of inner (resp. outer) approximation hierarchies for PS
(see for instance [P,L,L2,DIdW,MCW,AM]). An inner (resp. outer) approximation
hierarchy is a collection of convex cones (Cj)j∈N which are contained in PS (resp.

contain PS) and converge to PS in the sense that the equality
⋃∞
j=0 Cj = PS holds

(resp.
⋂∞
j=0 Cj = PS holds). If the cones Cj form a converging hierarchy then the

real numbers

αj := sup {λ : f(x)− λ ∈ Cj}
converge to α∗ as j → ∞ and can be much easier to compute than α∗ if the Cj
are chosen to be highly structured convex sets such as polyhedra, spectrahedra or
their projections.

The purpose of this article is to introduce several new polyhedral converging
hierarchies for approximating the cones P2k of forms of degree 2k in the variables
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2 SERGIO CRISTANCHO AND MAURICIO VELASCO

x1, . . . , xn which are nonnegative on the unit sphere S ⊆ Rn and to give quantitative
bounds on their rates of convergence. We call them harmonic hierarchies because
they are closely related with harmonic analysis on spheres (or equivalently with the
representation theory of the group SO(n)).

In order to describe our results precisely we need two preliminary concepts:
cubature rules and polynomial averaging operators and thus begin by briefly recalling
their definitions. Let R := R[x1, . . . , xn] be the ring of polynomials with real
coefficients, let Rk ⊆ R be the subspace of homogeneous polynomials of degree k
and let µ be the (n − 1)-dimensional area measure on the sphere S ⊆ Rn. Recall
that a cubature rule of algebraic degree 2t for µ is a pair (X,W ) where X ⊆ S is
a finite set and W : X → R>0 is a nonnegative function for which the following
equality holds

∀f ∈ R2t

(∫
S

f(y)dµ(y) =
∑
x∈X

W (x)f(x)

)
.

If g(t) is a univariate polynomial which is nonnegative on the interval [−1, 1], we
define its polynomial averaging operator Γg : R→ R by the convolution formula

Γg(f)(x) :=

∫
S

g (〈x, y〉) f(y)dµ(y)

Our first result shows that the interplay of cubature rules and averaging operators
can be used to construct polyhedra inside P2k,

Theorem 1.1. Let h(t) = a0 +a2t
2 + · · ·+a2st

2s be an even univariate polynomial
which is nonnegative on [−1, 1] and let k be a positive integer. Define the linear

map Γ̂h : R2k → R2k by the formula

Γ̂h(f) =

s∑
j=0

a2j

∫
S
〈x, y〉2jf(y)dµ(y)

‖x‖2(j−k)
.

If Q is the set of polynomials in R2k that have nonnegative values at all points X
of a cubature rule (X,W ) of algebraic degree 2(s + k), then the set A := Γ̂h(Q) is
a polyhedral cone in R2k and the inclusion A ⊆ P2k ⊆ Q holds.

The previous theorem is a convenient method to produce polyhedra inside P2k

because, as observed by Blekherman [B], the averaging maps Γ̂h can be diagonalized
explicitly, allowing their efficient computation. This property occurs because the
maps Γh are SO(n)-equivariant and thus become diagonal in the harmonic basis.
More precisely, recall that every homogeneous polynomial f ∈ R2k can be written
uniquely in its harmonic expansion as

f = ‖x‖2kf0 + ‖x‖2(k−1)f2 + ‖x‖2(k−2)f4 + · · ·+ f2k

where the f2j are homogeneous harmonic polynomials of degree 2j (see Section 3 for

details). Using this decomposition, the operators Γ̂h take the following particularly
simple form,

Lemma 1.2. Let h(t) =
∑n
j=0 λ2jg2j(t) be the unique expression of h(t) as linear

combination of Gegenbauer polynomials (suitably normalized as in Definition 3.3).
If

f = ‖x‖2kf0 + ‖x‖2(k−1)f2 + ‖x‖2(k−2)f4 + · · ·+ f2k
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is the unique harmonic expansion for f ∈ R2k then the equality

Γ̂h(f) = λ0‖x‖2kf0 + λ2‖x‖2(k−1)f2 + λ4‖x‖2(k−2)f4 + · · ·+ λ2kf2k

holds.

We can now introduce the main construction of this article

Construction 1.3 (Linear Harmonic Hierarchies). Given:

(1) Cubature rules (X2t,W2t) for µ of algebraic degree 2t for every integer t
and

(2) A sequence of univariate polynomials (hs(t))s∈N which are nonnegative on
the interval [−1, 1].

define the linear harmonic hierarchy determined by (1) and (2) in degree 2k as the

sequence of polyhedra (As)s∈N given by As := Γ̂hs
(Qs) where ds := deg(hs),

Qs :=
{
F ∈ R2k : ∀x ∈ X2(k+ds) (F (x) ≥ 0)

}
,

and Γ̂hs : R2k → R2k denotes the averaging operator determined by the polynomial
hs, defined in Theorem 1.1.

Our main result gives quantitative convergence bounds for harmonic hierarchies.
Such bounds are expressed in terms of the Frobenius threshold of a polynomial h(t)

in degree 2k, defined as the Frobenius norm of the operator Γ̂−1h − I : Rk → Rk or,
using the notation of Lemma 1.2, as the quantity

τ2k(h) :=

√√√√ 2k∑
j=0

dim(H2j)

(
1

λ2j
− 1

)2

.

where dim(Hj) denotes the dimension of the space of harmonic polynomials of
degree j in Rn.

Theorem 1.4. The Harmonic Hierarchies introduced in Construction 1.3 have the
following properties:

(1) The sets (As)s∈N are polyhedral cones satisfying As ⊆ P2k ⊆ R2k for every
integer s.

(2) Assume Γ̂hs
: R2k → R2k is invertible. If f ∈ R2k satisfies the inequality

min
x∈X2(k+ds)

f(x) >
τ2k(hs)√
µ(S)

‖f‖2

then f ∈ As.
(3) If lims→∞ τ2k(hs) = 0 then every strictly positive polynomial in R2k is

contained in some As and in particular the hierachy is convergent in the
sense that the following equality holds

P2k =

∞⋃
s=0

As.

In Corollary 2.3 below we give an explicit cubature formula of algebraic degree 2t
on S ⊆ Rn supported on 2(t+1)n−1 points for every positive integer t which allows
us to build harmonic hierarchies for any sequence of polynomials (hs)s∈N. The
following Corollary describes the quantitative behavior of such hierarchies for two
different choices of the sequence (hs)s. The delicate convergence estimates involved
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are contained in work of Blekherman [B] and Fang-Fawzi [FF] further discussed in
Section 4.2.

Corollary 1.5. The following statements hold:

(1) If hs(t) := t2s∫
S
y2sdµ(y)

, then for every integer k the following inequality holds:

1 + n
2

s
+O

(
1
s2

)
≤ τ2k(hs) ≤ D2k

k2 + kn
2

s
+O

(
1
s2

)
,

where D2k = maxj=0,...,k dim(H2j).

(2) If hs(t) = qs(t)
2 =

∑2s
j=0 λjgj(t), where qs(t) =

∑s
j=0 ηjgj(t) is the solution

to

ρ∗2k,s = min
qs,λ0=1

k∑
j=0

(1− λ2j),

then for every integer k the following inequality holds:

τ2k(hs) ≤
√
D2kk

2n2O
(

1
s2

)
.

In particular the harmonic hierarchies (As)s∈N determined by both sequences (hs)s∈N
converge to P2k as s→∞ in either case.

As the previous result shows, the choice of the polynomials (hs)s∈N has a sig-
nificant effect on the quality of approximation of As ⊆ P2k. In Section 4.2 we
contribute to this central issue by proving (see Theorem 4.8) that the problem of
finding an optimal kernel h (in the sense that τ2k(h) is minimal, among all valid
h of degree 2s) is a convex optimization problem over a spectrahedron and thus
amenable to computation.

Furthermore in Section 4.1 we introduce a novel optimization-free algorithm
for polynomial minimization on the sphere which arises naturally from minimizing
polynomials via Harmonic Hierarchies.

In Section 4.3 we adopt a dual point of view and define harmonic hierarchies for
moments. More precisely, by Tchakaloff’s Theorem the cone P ∗2k ⊆ R∗2k dual to
P2k captures the moments of degree 2k of all Borel measures on the sphere S in
the sense that P ∗2k consists precisely of those linear operators ` : R2k → R which
satisfy

∀f ∈ R2k

(
`(f) =

∫
S

f(y)dν(y)

)
for some Borel measure ν on S. Our final Theorem provides harmonic hierarchies
for moments, that is a sequence of polyhedra (A∗s)s∈N ⊆ R∗2k giving a converging
hierarchy of outer approximations for the cone P ∗2k of moments.

Construction 1.6 (Outer Harmonic Hierarchies for Moments). Given:

(1) Cubature rules (X2t,W2t) for µ of algebraic degree 2t for every integer t
and

(2) A sequence of univariate polynomials (hs(t))s∈N which are nonnegative on
the interval [−1, 1],

define the harmonic hierarchy for moments determined by (1) and (2) in degree 2k
as the sequence of polyhedra (A∗s)s∈N where A∗s ⊆ R∗2k is defined as the convex hull
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of the set of operators

Ly :=

〈
k∑
j=0

λ
(s)
2j ‖x‖

2(k−j)φ2jy (x), •

〉

for y ∈ X2(k+ds) where the λ
(s)
2j are the coefficients of hs in its Gegenbauer expansion

(as in Lemma 1.2) and φ2jy (x) is the homogeneous polynomial which represents

the evaluation at y (see Theorem 3.2 for explicit formulas for φ2jy (x) in terms of
Gegenbauer polynomials).

Our next result summarizes the basic properties of harmonic hierarchies for
moments.

Theorem 1.7. The following statements hold:

(1) The sets (A∗s)s∈N are polyhedral cones satisfying R∗2k ⊇ A∗s ⊇ P ∗2k. Further-
more A∗s is the dual cone to As.

(2) If lims→∞ τ2k(hs) = 0 then the hiererachy (A∗s)s∈N converges to P ∗2k in the
sense that the following equality holds

∞⋂
s=0

A∗s = P ∗2k.

Finally in Section 5 we introduce our Julia package for Harmonic Hierarchies
(available at github) and show some simple computational results obtained with
it. We showcase our “optimization-free” algorithm for polynomial minimization on
the sphere via harmonic hierarchies and verify that its practical behavior is similar
to what our theory predicts. Applications of Theorem 1.7 and the extension of our
package for solving problems expressible via the method of moments will be the
object of upcoming subsequent work.

1.1. Relationship with previous work. The notion that cubature rules should
play a useful role in polynomial optimization appears in [MPSV, PV] where the
authors propose constructing upper bounds for the minimum value α∗ of a poly-
nomial by evaluating it at the nodes of a cubature rule. It is shown in [MPSV]
that this “optimization-free” approach is at least as good as the SDP approach
proposed in [L2] for polynomial optimization (see Remark 2.4 for details). In the
language of this article, their work proposes an outer hierarchy of approximation
for P2k via the polyhedra Qs defined in Construction 1.3. By contrast, our work
provides inner approximations for P2k providing lower bounds on the minima of
polynomials as well as a novel optimization-free approach (see Section 4.1). Lower
bounds on α∗ are typically harder to obtain and more valuable since they involve
proving a statement with a universal quantifier.

The results of Fang and Fawzi in [FF] are the best estimates that are currently
available on the speed of convergence of the sum-of-squares hierachy for polynomial
optimization on the sphere. In this article we show that the exact same bounds
apply to our linear approximation hierarchies and provide novel quantitative con-
vergence bounds which depend on more readily computable quantities. It would be
interesting to extend harmonic hierarchies to other spaces such as the hypercube,
the ball and the simplex for which we have natural measures and explicit formulas
for the reproducing kernel leveraging the ideas of Slot-Laurent [SL] and Slot [S].

github
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In [E] Ergür constructs random polyhedral approximation hierarchies for the
cone of nonnegative polynomials. More precisely, the author builds a family of
random polytopes which approximates the cone of nonnegative polynomials lying in
a given subspace E within a specified scaling constant with high probability (see [E,
Corollary 6.5] for precise statements). Remarkably, the author shows that the
number of facets in such approximations depends explicitly on the dimension of
the subspace and can be much better for sparse nonnegative polynomials than
for abitrary nonnegative polynomials. While our approximation hierarchies are
deterministic and explicit they do not take into account the sparsity structure of
our target polynomials. Developing an extension of harmonic hierarchies which can
incorporate sparsity is an interesting open problem.

Acknowledgments. We wish to thank Greg Blekherman for many stimulating
conversations which motivated us to pursue this work. We thank Alex Towsend
for pointing us to recent ideas on Gaussian quadrature computation and their high
quality implementations. We thank Monique Laurent, Lucas Slot and Alperen
Ergür for various references and useful feedback on earlier versions of the results
contained in this article.

2. Cubature formulas

By a cubature formula of algebraic degree 2t for µ on S ⊆ Rn we mean a pair
(X,W ) where X ⊆ S is a finite set and w : X → R>0 is a function with strictly
positive values which satisfy the equality∫

S

f(y)dµ(y) =
∑
x∈X

W (x)f(x)

for every homogeneous polynomial (i.e., form) f ∈ R2t.
The main invariant of a cubature formula is its size |X|. From Caratheodory’s

Theorem we know that there exist cubature rules of strength 2t of size at most(
2t+n−1

t

)
+ 1 and it is easy to see that no cubature formula of strength 2t and size

less than
(
t+n−1

t

)
can exist, since otherwise the square of a form vanishing at all

points of X would fail to satisfy the equality above (this lower bound is known to
be strict on the sphere if n, t > 2 [T]). Despite a very significant amount of work
(see for instance the surveys [S,C,C2]) and the fact that such formulas could have
a wealth of applications no general formula is known for producing cubature rules
of given weight and (provably) minimal size on the sphere (see [S, pg. 294-303] for
formulas in some special cases).

2.1. An explicit cubature rule for spheres. In this section we give explicit
cubature rules of arbitrary even algebraic degrees on the sphere S ⊆ Rn. We will
use well-known formulas of Gauss-product type [S, pg.40-43] for which we include
a self-contained treatment for the reader’s benefit. Such product formulas can be
combined with recent ideas on fast Gauss-Jacobi quadrature computation [HT] to
produce highly accurate cubature rules very efficiently. Such rules are key compo-
nents in our implementation of harmonic hierarchies (see Section 5).

We denote the points of Rn by pairs (s, ζ) ∈ R× Rn−1. Recall [ABR, Theorem
A.4, pg.242] that if f is an integrable, Borel-measurable function on the sphere
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Sn−1 ⊆ Rn then the following equality holds:

(1)

∫
Sn−1

fdµ =

∫ 1

−1

(
1− s2

)n−3
2

(∫
Sn−2

f
(
s,
√

1− s2ζ
)
dµ(ζ)

)
ds

We will use the product structure of formula (1) to inductively construct explicit
cubature rules on spheres of every dimension and even strength which are invariant
under sign changes. Recall that the group of sign changes in Rn consists of linear
transformations T : Rn → Rn which send (x1, . . . , xn) to (ε1x1, . . . , εnxn) with
εi ∈ {−1, 1} and i = 1, . . . , n. A cubature rule (X,WX) on Sn−1 is invariant
under sign changes if for every x ∈ X and every sign change g we have gx ∈ X
and W (gx) = W (x). An important ingredient of the construction will be the
Gauss-Jacobi quadrature rules on the interval [−1, 1] for a given weight function
w(y) = (1 + y)α(1− y)β so we begin by recalling their definition. If α, β > −1 are
given and X := {x1, . . . , xt} ⊆ [−1, 1] is the set of roots of the Jacobi polynomial

P
(α,β)
t (x) then there exists an explicit function W : X → R+ (see [S2, pg. 352]

or [HT, 1.4] for an explicit formula) such that the equality∫ 1

−1
f(y)w(y)dy =

∑
x∈X

W (x)f(x)

hols for every univariate polynomial f(t) of degree 2t− 1 or less.

Construction 2.1. Suppose that (Y,WY ) is a cubature on Sn−2 and that (Z,WZ)

is a Gaussian quadrature rule for the weight function w(s) = (1−s2)
n−3
2 on [−1, 1].

Define the pair (X,WX) on Sn−1 via the formulas:

X =
{(
z,
√

1− z2y
)

: (z, y) ∈ Z × Y
}

WX

(
z,
√

1− z2y
)

:= WZ(z)WY (y)

The following Theorem summarizes the main properties of this construction

Theorem 2.2. If (Y,WY ) and (Z,WZ) have algebraic degree 2t and (Y,WY ) is
invariant under sign changes then the pair (X,WX) is a cubature rule of algebraic
degree 2t in Sn which is invariant under sign changes. Furthermore |X| = |Z||Y |.

Proof. Since the Jacobi polynomials satisfy the symmetry relation P
(α,β)
t (−z) =

(−1)tP
(β,α)
t (−z) and we are in the α = β case we conclude that the nodes of the

Gaussian cubature (Z,WZ) are closed under multiplication by (−1). Furthermore
the equality WZ(−xj) = WZ(xj) holds because the explicit formula for the Gauss-
ian cubature weights from [S2, pg. 352] depends on the value of the derivative only
through its square. We conclude that (X,WX) is invariant under sign change of the
first component. Furthermore if g is the transformation changing the sign of any
component with index at least two then g(z,

√
1− z2y) = (z,

√
1− z2g(y)). Since Y

is invariant under sign changes we conclude that (z,
√

1− z2g(y)) lies in X and fur-

thermore we know WY (y) = WY (g(y)) which implies that WX(z,
√

1− z2g(y)) =

WX(z,
√

1− z2y) as claimed. Now suppose f(s, ζ) = sa1ζb11 . . . ζ
bn−1

n−1 is a mono-
mial of degree 2t. If a1 or some bi is odd then the integral and the cubature rule
(X,WX) have both value zero because the integrand gets multiplied by minus one
by the sign change of the coordinate which appears with odd exponent. Thus it
suffices to prove the claim for monomials all of whose exponents are even. More
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precisely suppose f(s, ζ) = s2a1ζ2b11 . . . ζ
2bn−1

n−1 with 2a1+2b1+· · ·+2bn−1 = 2t. Now

f(s, ζ
√

1− s2) = s2a1(1− s2)b1+···+bnζ2b11 . . . ζ
2bn−1

n−1 . Since as functions on Sn−1

ζ2b11 . . . ζ
2bn−1

n−1 = ‖(ζ1, . . . , ζn−1)‖2a12 ζ2b11 . . . ζ
2bn−1

n−1

and the right-hand side has degree 2t we can use the cubature rule (Y,WY ) to
conclude that for every s ∈ [−1, 1]∫

Sn−2

f
(
s,
√

1− s2ζ
)
dµ(ζ) = s2a1(1− s2)b1+···+bn

∑
y∈Y

WY (y)y2b11 . . . y2bnn

By integrating with respect to s and using the fact that (Z,WZ) is a Gaussian
cubature rule for polynomials of degree t or less with respect to the weight function(
1− s2

)n−3
2 we conclude that∫ 1

−1

(
1− s2

)n−3
2

(∫
Sn−1

f
(
s,
√

1− s2ζ
)
dµn−1(ζ)

)
ds =

=

∫ 1

−1

(
1− s2

)n−3
2 s2a1(1− s2)b1+···+bn

∑
y∈Y

WY (y)y2b11 . . . y2bnn ds =

=
∑
z∈Z

WZ(z)z2a1(1− z2)b1+···+bn
∑
y∈Y

WY (y)y2b11 . . . y2bnn =

=
∑
y∈Y

∑
z∈Z

WZ(z)WY (y)y2b11 . . . y2bnn z2a1(1− z2)b1+···+bn =

=
∑
y∈Y

∑
z∈Z

WZ(z)WY (y)f
(
z,
√

1− z2y
)

Using Equation (1) we conclude that for every polynomial of degree 2t the equality∫
Sn−1

fdµ =
∑
x∈X

WX(x)f(x)

holds as claimed. �

Using the construction iteratively, starting from the cubature rule on the circle
S ⊆ R2 given by the vertices of a polygon with 2(t+ 1) sides and equal weights we
prove

Corollary 2.3. Construction 2.1 defines a cubature rule of algebraic degree 2t
consisting of 2(t+ 1)n−1 points on the sphere S ⊆ Rn.

Remark 2.4. Having explicit cubature rules gives a useful procedure for estimating
minima of polynomials. As shown in the work of Piazzon et al. [MPSV], by letting

αquad
j := minx∈Xj f(x) be the minimum over the nodes of increasing cubature rules

of algebraic degree j we obtain a sequence which approaches α∗. To see this, recall
from [L2] that the sequence of minima of the semidefinite programs

βt := inf

{∫
f(x)g(x)dµ :

∫
g(x)dµ = 1 and g(x) is SOS of polys. of degree t

}
converges to α∗ and note that if k = deg(f) + t then∫

f(x)g(x)dµ =
∑
z∈Xk

f(z)g(z) ≥ αquad
k

∑
z∈Xk

g(z) = αquad
k

∫
g(z)dµ(z) = αquad

k
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so βt ≥ αquad
k ≥ α∗, the αquad

k converge to the optimum at least as fast as the

βt and in particular αquad
k − α∗ = O(1/k2) by results of De Klerk, Laurent and

Zhao [dKLS].

3. Harmonic analysis on spheres

3.1. Reproducing Kernels for spaces of functions on the sphere. Suppose
that F is a finite-dimensional vector space of continuous real-valued functions on
the sphere S ⊆ Rn and let µ be the (n−1)-dimensional volume measure. The inner
product

〈f, g〉 :=

∫
S

f(y)g(y)dµ(y)

makes F into a Hilbert space. Every point x ∈ S defines a linear evaluation map
evx : F → R which sends a function f to its value f(x) at x. Since F is a Hibert
space the evaluation map is represented by a unique element φx ∈ F, meaning that
∀f ∈ F (f(x) = 〈f, φx〉). The Christoffel-Darboux kernel (or reproducing kernel) of
the Hilbert space F is the function KF : S × S → R given by

KF(x, y) = 〈φx, φy〉 = φx(y) = φy(x).

The following basic Lemma summarizes its main properties:

Lemma 3.1. The following statements hold for every x, y ∈ S:

(1) The function KF(x, y) is symmetric (i.e. KF(x, y) = KF(y, x)) and for
every finite collection x1, . . . , xM of points of S the matrix KF(xi, xj) is
positive semidefinite.

(2) KF(x, y) has the following reproducing property

∀f ∈ F ∀x ∈ S
(
f(x) =

∫
S

KF(x, y)f(y)dµ(y)

)
and furthermore this property specifies KF(x, y) uniquely.

(3) If (ei(x))i is any orthonormal basis for F then KF(x, y) =
∑
j ej(x)ej(y).

In particular the equality
∫
S
K(x, x)dµ(x) = dim(F) holds.

In this Section we will describe some distinguished subspaces of functions on the
sphere and give explicit formulas for their reproducing kernels.

3.2. Harmonic decomposition on spheres. The orthogonal group G := SO(n)
acts on Rn by left multiplication and on the ambient polynomial ring R via the
resulting contragradient action defined by ρ∗(g)(f)(x) := f(g−1(x)). This action
respects multiplication and preserves the graded components Rj of R. The de-
composition of each graded component into SO(n)-irreducible subrepresentations
is well understood (see [H, Theorem 3.1]). For each integer k we have

R2k =

k⊕
j=0

(
‖x‖2(k−j)H2j

)
where H2j ⊆ R2j is the subspace consisting of homogeneous harmonic polynomials

of degree 2j (i.e. forms F of degree 2j satisfying ∆F = 0 where ∆ =
∑n
i=1

∂2

∂x2
i

is
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the laplacian operator). The H2j are pairwise non-isomorphic irreducible represen-
tations of SO(n) and as a result, a homogeneous polynomial f ∈ R2k has a unique
harmonic decomposition

f = ‖x‖2kf0 + ‖x‖2(k−1)f2 + ‖x‖2(k−2)f4 + · · ·+ f2k

with f2j ∈ H2j for j = 0, 1, . . . , k (see [AM, Theorem 5.7] for an elementary proof
of the existence of this decomposition). In particular the following equalities hold

dim(H2j) = dim(R2j)− dim(R2(j−1)) =

(
n+ 2j − 1

2j

)
−
(
n+ 2j − 3

2j − 2

)
.

3.3. Reproducing kernels for spaces of harmonic polynomials. If Hj is the
subspace of homogeneous polynomials of degree j restricted to S and y is any point
of S then the evaluation map evy : Hj → R is fixed by the subgroup Gy ≤ SO(n)

consisting of those rotations which fix y. As a result the harmonic polynomial φ
(j)
y

which represents this evaluation on Hj (i.e. which satisfies 〈f, φ(j)y 〉 = f(y) for ev-
ery f ∈ Hj) is fixed under the action of Gy and satisfies the normalizing property
appearing in Lemma 3.1 part (3). These properties determine the polynomial φjy
uniquely and allow us to obtain an explicit formula in terms of Gegenbauer polyno-
mials, whose definition we now recall. If S ⊆ Rn and n ≥ 3 we let α := n−2

2 and

define the j-th Gegenbauer polynomial C
(α)
j (t) recursively by the formulas

C
(α)
0 (t) = 1 , C

(α)
1 (t) = 2αt and

C
(α)
j (t) =

1

j

[
2t(j + α− 1)C

(α)
j−1(t)− (j + 2α− 2)C

(α)
j−2(t)

]
if j ≥ 3.

The following Theorem gives formulas for the reroducing kernels on the spaces
Hj . We provide a sketch of a proof because the argument is simple and beautiful
(see [M2, Theorem 2.24] for details) and provides a natural motivation for the
definition of Gegenbauer polynomials.

Theorem 3.2. For each y ∈ S and nonnegative integer j there exists a unique
polynomial φjy(x) ∈ R satisfying the following conditions:

(1) φjy is homogeneous of degree j and harmonic.

(2) φjy is fixed by the action of the stabilizer subgroup Gy ⊆ O(n).

(3) φjy(y) =
dim(Hj)
µ(S)

Furthermore φjy represents the evaluation at y on Hj and is given, in terms of
Gengenbauer polynomials, by the formula

φjy(x) =
dim(Hj)

µ(S)C
(α)
j (1)

‖x‖jC(α)
j

(〈
x

‖x‖
, y

〉)
Proof. We will show that there is exactly one polynomial satisfying properties (1),
(2) and (3). Any p ∈ Rj can be written as

p =

j∑
k=0

xknpj−k(x1, . . . , xn−1)

where the pj−k are homogeneous polynomials of degree j − k in the first (n − 1)
variables. Without loss of generality assume y = (0, . . . , 0, 1). Since p is fixed by
Gy the polynomials pj−k are invariant under arbitrary rotations in SO(n− 1) and
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thus must be scalar multiples of even powers of the norm (x21 + · · ·+ x2n−1) and in
particular j − k is even if pj−k 6= 0. Thus we can write

p =

b j2 c∑
k=0

xj−2kn ck
(
x21 + · · ·+ x2n−1

)k
for some scalars ck. The equation ∆p = 0 then yields the recursive relations

2(k + 1)(n+ 2k)ck+1 = −(j − 2k)(j − 2k − 1)ck, for k = 0, 1 . . . , j/2− 1.

The constant c0 is uniquely determined by the normalization property (3) above and
we have shown existence and uniqueness of the polynomial p. Since the polynomial

φ
(j)
y which represents evaluation at y on Hj satisfies properties (1) (2) and (3)

it must coincide with p. The explicit formula (and the definition of Gegenbauer
polynomial) are equivalent to the recursive relations above. �

Motivated by the previous Theorem we define:

Definition 3.3. The normalized Gegenbauer polynomial of degree j on the sphere
S ⊆ Rn is the univariate polynomial given by

gj(t) =
dim(Hj)

µ(S)C
(α)
j (1)

C
(α)
j (t)

where α = n−2
2 and C

(α)
j (t) is the Gegenbauer polynomial defined at the beginning

of this Section.

3.3.1. An application of reproducing kernels. As an application of the reproducing
kernels for Hj we obtain a well-known sharp bound relating the L∞ and the L2

norm of an arbitrary harmonic polynomial which will be used for obtaining easily
computable bounds for Harmonic Hierarchies.

Lemma 3.4. If f ∈ Hj then the following inequality holds

‖f‖∞ ≤

√
dim(Hj)

µ(S)
‖f‖2

Furthermore the equality holds if f(x) = φ
(j)
y (x).

Proof. The reproducing property of φ
(j)
y implies that the equality

f(y) =

∫
S

f(x)φy(x)dµ(x)

holds for f ∈ Hj . By the Cauchy-Schwartz inequality this implies that

|f(y)| ≤ ‖f‖2‖φy‖2
Furthermore, by the reproducing property

‖φy‖2 =

(∫
S

φy(x)2dµ(y)

) 1
2

= φy(y)1/2 =

√
dimHj

µ(S)

proving the inequality. Since φy(y) =
dim(Hj)
µ(S) we see that the equality is achieved

when f(x) = φy(x) as claimed. �
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4. Linear harmonic hierarchies

In this section we prove our main theoretical results, namely Theorem 1.1 which
guarantees the existence of the harmonic hierarchies defined in Construction 2.1
and Theorem 1.4 which gives quantitative bounds on their speed of convergence.
Our first Lemma explains the key connection between representation theory and
convolutions.

Lemma 4.1. For an integer s ≥ 0 define the linear map Γ2s sending a polynomial
f ∈ R to

Γ2s(f)(x) =

∫
S

〈x, y〉2sf(y)dµ(y).

The following statements hold:

(1) The map Γ2s sends R2k into R2s.
(2) The map Γ2s is SO(n)-equivariant and in particular sends the subspace
‖x‖2(k−j)H2j ⊆ R2k into the subspace ‖x‖2(s−j)H2j ⊆ R2s.

(3) The map Γ̂2s,2k(f) := Γ2s(f)/‖x‖2(s−k) is a well-defined linear endomor-
phism of R2k.

Proof. (1) By the multinomial theorem for every polynomial f ∈ R we have

Γ2s(f) =
∑

(a1,...,an):
∑
ai=2s

(
2s

a1, . . . , an

)
xa11 . . . xann

∫
S

ya11 . . . yann f(y)dµ(y)

which is an element of R2s. (2) For any g ∈ O(n) and any f ∈ R2k we have

ρ∗(g)Γ2s(f) = Γ2s(f)(g−1x) =

∫
S

〈g−1(x), y〉2sf(y)dµ(y) =

making the change of variables y = g−1(z) we obtain

=

∫
S

〈g−1(x), g−1(z)〉2sf(g−1(z))dµ(z) =

∫
S

〈x, z〉2sf(g−1(z))dµ(z)

where the second equality follows from the orthogonality of the matrix g. Since the
last term equals Γ2s(ρ

∗(g)(f)) we conclude that Γ2s is a morphism of representations
and therefore it must map the corresponding isotypical components to each other
finishing the proof of (2). Claim (3) is immediate if s < k since the map results
from composing with multiplication by a fixed polynomial. If s ≥ k then by (2)
the subspace Γ2s(R2k) is contained in the multiples of ‖x‖2(s−k) inside R2s proving
that the ratio is well-defined. �

Proof of Theorem 1.1. Since the evaluation at any point evx : R2k → R is a linear
map the set Q, defined by the nonnegativity of finitely many evaluation functions
is a polyhedral cone in R2k. Using the notation of Lemma 4.1 part (3) the map Γ̂h
can be written as Γ̂h =

∑s
j=0 a2jΓ̂2j,2k and is therefore well-defined and linear. As

a result the set A := Γ̂h(Q) is also a polyhedral cone in R2k.
Now suppose f ∈ Q, meaning that f ∈ R2k is nonnegative at all points X of a

cubature rule (X,W ) of algebraic degree 2(s+ k) for µ and we wish to prove that

Γ̂(f) is a nonnegative polynomial. If x is any point in S then

Γ̂h(f)(x) =

∫
S

s∑
j=0

a2j〈x, t〉2jf(y)dµ(y) =

∫
S

s∑
j=0

a2j〈x, t〉2j‖y‖2(s−j)f(y)dµ(y)
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where the last equality holds since y is integrated over S where ‖y‖ = 1. As
a function of y the rightmost integrand is a homogeneous polynomial of degree
2(s+ k) and we can therefore compute the integral using our cubature rule∫

S

s∑
j=0

a2j〈x, t〉2j‖y‖2(s−j)f(y)dµ(y) =
∑
z∈X

W (z)h(〈x, y〉)f(z).

The rightmost quantity is nonnegative since it is a sum of nonnegative terms because
g is nonnegative in the range [−1, 1] of 〈x, y〉, f ∈ Q and the cubature weights are
positive. �

The SO(n)-equivariance of the maps Γ̂h (property (2) of Lemma 4.1) and the fact
that the decomposition of R2k into irreducibles is multiplicity-free already implies
that averaging operators must diagonalize in the harmonic basis. We now prove
Lemma 1.2 which gives an explicit diagonalization.

Proof of Lemma 1.2. If f ∈ R2k is of the form f = ‖x‖2(k−`)f2` for some f2` ∈ H2`

and x ∈ S is a point with f(x) 6= 0, then we have

Γ̂h(f)(x) =

2s∑
j=0

λ2j

∫
S

g2j(〈x, y〉)f2`(y)dµ(y).

By the explicit formula in Theorem 3.2 and definition 3.3 of normalized Gegenbauer
polynomial we know that the equality

g2j(〈x, y〉) = φ(2j)x (y)

holds for all x, y ∈ S and every index j. As a result, the reproducing propery of
φx(y) and the mutual orthogonality of Hj and Ht for t 6= j imply that

2s∑
j=0

λ2j

∫
S

g2j(〈x, y〉)f2`(y)dµ(y) = λ2`f2`(x)

from which we know that Γ̂h(f) = λ2`f since f(x) 6= 0. �

Now let h(t) be an even univariate polynomial which is nonnegative on [−1, 1] of

degree s and assume h(t) =
∑2s
j=0 λ2jg2j(t) be its unique representation in terms

of Gegenbauer polynomials. Recall that the Frobenius threshold of h(t) in degree
2k is given by

τ2k(h) :=

√√√√ 2k∑
j=0

dim(H2j)

(
1

λ2j
− 1

)2

.

The following Lemma shows that the Frobenius threshold of a polynomial con-
trols the distance between its inverse averaging operator and the identity.

Lemma 4.2. Assume Γ̂h : R2k → R2k is invertible. For every f ∈ R2k the
following inequalities hold

‖Γ̂−1h (f)− f‖∞ ≤
τ2k(h)√
µ(S)

‖f‖2

and

‖Γ̂−1h (f)− f‖∞ ≥
τ2k(h)√
µ(S)

min
j

‖f2j‖2√
dim(H2j)

.
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Proof. If f ∈ R2k has the harmonic expansion

f = ‖x‖2kf0 + ‖x‖2(k−1)f2 + ‖x‖2(k−2)f4 + · · ·+ f2k,

then Lemma 1.2 implies that for any z ∈ S the equality

(2) Γ−1h (f)(z)− f(z) =

k∑
j=0

(
1

λ2j
− 1

)
f2j(z)

holds. By the Cauchy-Schwartz inequality this quantity is bounded above by√√√√ k∑
j=0

(
1

λ2j
− 1

)2

dim(H2j)

√√√√ k∑
j=0

f22j(z)

dim(H2j)

Since the f2j are harmonic, Lemma 3.4 implies that the inequality

‖f2j‖2∞ ≤
dim(H2j)

µ(S)
‖f2j‖22

holds and therefore (2) is bounded above by√√√√ k∑
j=0

(
1

λ2j
− 1

)2

dim(H2j)

√√√√ k∑
j=0

‖f22j‖22
µ(S)

= τ2k(h)
‖f‖2√
µ(S)

as claimed. For the lower bound note that by (2) the following inequality holds for
every z ∈ S

|Γ−1h (f)− f(z)|2 ≥

 k∑
j=0

√
dim(H2j)

(
1

λ2j
− 1

)
f2j(z)√
dim(H2j)

2

integrating both sides over the sphere and dividing by µ(S) we conclude that

‖Γ−1h (f)− f(z)‖2∞ ≥
1

µ(S)

k∑
j=0

dim(H2j)

(
1

λ2j
− 1

)2 ‖f2j‖22
dim(H2j)

where we have used the fact that the f2j are pairwise orthogonal. We conclude
that

‖Γ−1h (f)− f(z)‖2∞ ≥
τ22k(h)

µ(S)
min
j

‖f2j‖22
dim(H2j)

which taking square roots is equivalent to the claimed lower bound.
�

Proof of Theorem 1.4. (1) Follows immediately from Theorem 1.1 applied to the

given sequence of polynomials (hs)s∈N. Assume Γ̂hs
is invertible and let f ∈ R2k.

For any z ∈ X we have

Γ̂−1hs
(f)(z) = Γ̂−1hs

(f)(z)− f(z) + f(z) ≥ min
z∈X

f(z)− ‖Γ̂−1hs
(f)− f‖∞.

If f satisfies the hypothesis of (2) then the rightmost term is strictly positive and

therefore Γ̂−1hs
(f) ∈ Qs because it is nonnegative at all nodes of the quadrature rule

and therefore f ∈ As as claimed. (3) If f is a strictly positive polynomial on S then
by compactness of the sphere it achieves a strictly positive minimum α∗. By part



HARMONIC HIERARCHIES FOR POLYNOMIAL OPTIMIZATION. 15

(2) the polynomial f belongs to As whenever α∗ > τ2k(hs)
µ(S) ‖f‖2 which happens for

all sufficiently large s since τ2k(hs)→ 0 as s→∞. �

4.1. Optimization-free lower bounds for polynomial minimization. Sup-
pose f ∈ R2k and let α∗ := minx∈S f(x). Assume h(t) is a univariate, even,

nonnegative polynomial of degree 2s with h(0) = 1 and such that Γ̂h : R2k → R2k

is invertible. Assume (X,W ) is a cubature rule of algebraic degree 2(k + s). As
an application of the theory developed so far we will obtain optimization-free lower
bounds β ≤ α∗ via the following steps:

(1) Compute a harmonic decomposition for f

f = ‖x‖2kf0 + ‖x‖2(k−1)f2 + ‖x‖2(k−2)f4 + · · ·+ f2k

(2) Compute the coefficients λ2j of the expansion of h in terms of normalized
Gegenbauer polynomials. By our assumptions λ0 = 1 and that λ2j 6= 0 for
j = 0, . . . , k.

(3) Compute the polynomial F := Γ̂−1g (f) with the formula

F = ‖x‖2kf0 +
1

λ2
‖x‖2(k−1)f2 +

1

λ4
‖x‖2(k−2)f4 + · · ·+ 1

λ2k
f2k

(4) Evaluate F (z) for z ∈ X and let β∗ := minz∈X F (z) be the smallest of
those values.

Lemma 4.3. The inequality β∗ ≤ α∗ holds.

Proof. By construction the polynomial p := F − β∗‖x‖2k is nonnegative at all
cubature nodes X and our cubature rule has algebraic degree 2(k + s). By The-

orem 1.1 we conclude that Γ̂h(p) ∈ A and is in particular a nonnegative polyno-

mial. Since F = Γ̂−1h (f) and Γ̂h(‖x‖2k) = ‖x‖2k because λ0 = 1 we conclude that

Γ̂h(p) = f − β∗‖x‖2k proving that f is bounded below by β∗. �

Remark 4.4. The number β∗ coincides with the optimum value of the linear opti-
mization problem sup {λ : f(x)− λ ∈ A} because the point evaluations at the cu-
bature nodes contain the extreme rays of the polyhedron Q. Since enumerating
the cubature nodes is necessary to formulate the underlying linear optimization
problem our optimization-free algorithm is equally accurate and computationally
less expensive than linear optimization.

4.2. Kernel selection. In this section we address the problem of choosing the
polynomial sequence (hs(t))s∈N so the resulting Harmonic Hierarchy converges
quickly. We begin by proving Corollary 1.5 which illustrates that the chosen se-
quence has indeed a drastic effect on the rate of convergence.

Proof of Corollary 1.5 (1). In [B] Blekherman explicitly calculates the coefficients

of hs(t) = t2s∫
S
y2sdµ(y)

as a linear combination of Gegenbauer polynomials:

λ
(2s)
2j =

s!Γ( 2s+n
2 )

(s− j)!Γ( 2s+2j+n
2 )

,



16 SERGIO CRISTANCHO AND MAURICIO VELASCO

here Γ denotes the usual gamma function. When j = 0, λ
(2s)
0 = 1. For j > 0, the

recursion property of the gamma function gives

λ
(2s)
2j =

s!
s∏
t=1

(t+ n
2 )Γ(n2 )

(s− j)!
s+j∏
t=1

(t+ n
2 )Γ(n2 )

=
s(s− 1) . . . (s− j + 1)

(s+ j + n
2 )(s+ j − 1 + n

2 ) . . . (s+ 1 + n
2 )
.

By factoring s on all terms and separating the product suitably, we can rewrite

λ
(2s)
2j =

1

1 + j+n/2
s

1− 1
s

1 + j−1+n/2
s

. . .
1− j−1

s

1 + 1+n/2
s

.

Let us now consider the logarithm of 1/λ
(2s)
2j

log

(
1

λ
(2s)
2j

)
=

j∑
t=1

log

(
1 +

t+ n
2

s

)
−
j−1∑
t=1

log

(
1− t

s

)
,

a Taylor expansion of the previous terms yields the following

log

(
1

λ
(2s)
2j

)
=

1

s

(
j2 +

jn

2

)
+O

(
1

s2

)
.

With the previous approximation and yet another Taylor expansion we obtain

1

λ
(2s)
2j

− 1 ≈ e
j2+

jn
2

s − 1 =
j2 + jn

2

s
+O

(
1

s2

)
,

except when j = 0, in which case 1/λ
(2s)
0 − 1 = 0. Now, using the previous analysis

on the Frobenius threshold results in

τ2k(hs) =

√√√√ k∑
j=0

dim(H2j)

(
1

λ
(2s)
2j

− 1

)2

≈

√√√√ k∑
j=1

(
j2 + jn

2

s
+O

(
1

s2

))2

which is bounded above and below in the following way

1 + n
2

s
+O

(
1

s2

)
≤ τ2k(hs) ≤ D2k

k2 + kn
2

s
+O

(
1

s2

)
,

where D2k = maxj=0,...,k dim(H2j). �

The proof of Corollary 1.5 (2) requires a bit more work. Suppose

hs(t) = qs(t)
2 =

2s∑
j=0

λjgj(t),

where qs(t) =
∑s
j=0 ηjgj(t). Since Gegenbauer polynomials form an orthogonal

base (with respecto to the weighted 2-norm), we have that

λ` =

1∫
−1
qs(t)

2g`(t)w(t)dt

dim(H`)2N2
`

C`(1)2µ(S)2
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since
∫ 1

−1 g`(t)
2w(t)dt =

dim(H`)
2N2

`

C`(1)2µ(S)2
whereN` =

∫ 1

−1 C`(t)w(t)dt. Define the Toeplitz

matrix τ [f ] of a polynomial f as the s× s matrix with (i, j)-th coordinate

τ [f ]ij :=

1∫
−1

gi(t)gj(t)f(t)w(t)dt,

and define A` = τ [g`]. Note then that

λ` =
C`(1)2µ(S)2

dim(H`)2N2
`

ηtA`η.(3)

Now, we are interested in minimizing the Frobenius threshold over all qs

τ∗2k,s = min
qs

τ2k(hs) = min
qs

√√√√ k∑
j=0

dim(H2j)

(
1

λ2j
− 1

)2

under the contraint λ0 = 1. We will now attempt to find an upper bound on τ∗2k,s
with the solution to the alternative problem

ρ∗2k,s = min
qs,λ0=1

k∑
j=0

(1− λ2j),

which we will prove can be reformulated as an eigenvalue problem. First, by equa-
tion (3)

k∑
j=0

(1−λ2j) =

k∑
j=0

(
1− C2j(1)2µ(S)2

dim(H2j)2N2
2`

ηtA2jη

)
= k−ηt

 k∑
j=0

C2j(1)2µ(S)2

dim(H2j)2N2
2`

A2j

 η,

thus

ρ∗2k,s = min
qs,λ0=1

k∑
j=0

(1− λ2j) = k − max
η,λ0=1

ηt

 k∑
j=0

C2j(1)2µ(S)2

dim(H2j)2N2
2`

A2j

 η.

This is strictly not an eigenvalue problem since η is not necessarily restricted to
normalized vectors, however we can properly rescale η by noticing that

(A0)i,j =

1∫
−1

gi(t)gj(t)w(t)dt =

{
dim(Hj)

2N2
j

Cj(1)2µ(S)2
i = j,

0 i 6= j,

or put in another way A0 is diagonal with coefficients
dim(Hj)

2

Cj(1)2µ(S)2
for 0 ≤ j ≤ s.

This means that

λ0 =
C0(1)2µ(S)2

dim(H0)2N2
0

ηtA0η =

s∑
j=0

dim(Hj)
2N2

j

Cj(1)2N2
0

η2j = 1,

so the change of basis ej =
dim(Hj)Nj

Cj(1)N0
ηj , which is in fact e = µ(S)

N0

√
A0η, lets us

rewrite the constraint λ0 = 1 as ||e||2 = 1. Consequently, the alternate problem
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becomes an eigenvalue problem

ρ∗2k,s = k − max
e,||e||2=1

et
(
µ(S)

N0

√
A0

)−1 k∑
j=0

C2j(1)2µ(S)2

dim(H2j)2N2
2j

A2j

(µ(S)

N0

√
A0

)−1
e

= k − k max
e,||e||2=1

et

1

k

k∑
j=0

C2j(1)2N2
0

dim(H2j)2N2
2j

A−10 A2j

 e

= k − kλmax(T2k,s)

where

T2k,s =
1

k

k∑
j=0

C2j(1)2N2
0

dim(H2j)2N2
2j

A−10 A2j

and λmax(T2k,s) is its maximum eigenvalue. Hence, the optimal ρ∗2k,s is realized by

any normalized eigenvector e∗ of T2k,s for the eigenvalue λmax(T2k,s). Furthermore,
Fang and Fawzi proved that the choice of λ` corresponding to e∗ converges to 0 as
s→∞ with a rate of 1/s2. More precisely:

Theorem 4.5. (Fang-Fawzi [FF], Proposition 7) The matrix T2k,s satisfies

λmax(T2k,s) ≥ 1− kn2O( 1
s2 ),

thus ρ∗2k,s ≤ k2n2O( 1
s2 ).

To see how this result connects to our original problem, we exhibit the relation
between τ2k,s(hs) and ρ∗2k,s = ρ2k,s(hs) when hs is the optimal kernel obtained by
minimizing ρ2k,s.

Lemma 4.6. If ρ∗2k,s < 1 then τ2k(hs) ≤
√
D2k

ρ∗2k,s

1−ρ∗2k,s
, in particular τ∗2k,s ≤

√
D2k

ρ∗2k,s

1−ρ∗2k,s
.

Proof. First of all, the following inequality holds

τ2k(hs) ≤
√
D2k

√√√√ k∑
j=0

(
1

λ2j
− 1

)2

≤
√
D2k

k∑
j=0

∣∣∣∣ 1

λ2s
− 1

∣∣∣∣ .
Note that for every ` = 0, 1, . . . , k, 1 − λ2` ≤ ρ∗2k,s =

∑k
j=0(1 − λ2j), then λ2` ≥

1− ρ∗2k,s > 0. It follows that

k∑
j=0

∣∣∣∣ 1

λ2s
− 1

∣∣∣∣ =

k∑
j=0

1− λ2s
λ2s

≤ 1

1− ρ∗2k,s

k∑
j=0

(1− λ2j) =
ρ∗2k,s

1− ρ∗2k,s
.

The desired inequality is obtained by putting the previous two together. �

We can now complete the proof of Corollary 1.5 (2).

Proof of Corollary 1.5 (2). Since ρ∗2k,s ≤ k2n2O( 1
s2 ), there exists an S such that

ρ∗2k,s ≤ 1/2 for s ≥ S. Consequently, if s ≥ S the following holds

τ2k(hs) ≤
√
D2k

ρ∗2k,s
1− ρ∗2k,s

≤ 2
√
D2kρ

∗
2k,s ≤ 2

√
D2kk

2n2O( 1
s2 ).

In particular, as s→∞, τ2k(hs) ≤
√
D2kk

2n2O( 1
s2 ). �
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To summarize, we can obtain a polynomial sequence (hs)s such that their cor-
responding Frobenius thresholds converge to 0 with a rate of 1/s2 as s → ∞.
Furthermore, this sequence can be calculated explicitly (and free of optimization)
in terms of the solution to an eigenvalue problem. Specifically, for a fixed s the
coefficients λ` of hs in the basis of normalized Gegenbauer polynomials are given
by

λ` =
C`(1)2N2

0

dim(H`)2N2
`

(e∗)tA−10 A`e
∗,(4)

where e∗ is any normalized eigenvector of T2k,s for its maximum eigenvalue λmax(T2k,s).
We now assume a fixed degree 2s (expressing a limited amount of available

computational resources) and ask whether we can choose an optimal polynomial
g(t) of degree 2s, in the sense of having minimal Frobenius threshold τ2k(g). Our
main result is Theorem 4.8 which shows that this problem is essentially a convex
optimization problem (and thus amenable to standard techniques [B2]).

Lemma 4.7. The set G2s, consisting of univariate polynomials g(t) of degree ≤ 2s
that are even, nonnegative in [−1, 1] and satisfy g(0) = 1

µ(S) is a semidefinitely

representable set.

Proof. A polynomial h(t) is nonnegative in [−1, 1] iff it can be written as h(t) =
s1(t)+(x+1)b1(t)+(1−x)b2(t) where s1, b1 and b2 are sums of squares of polynomi-
als of degrees at most s,s− 1 and s− 1 respectively. Equivalently such polynomials
are the image of the triples (A,B1, B2) of symmetric positive semidefinite matrices
with s+ 1, s and s rows respectively, under the linear map

π(A,B1, B2) = ~mtA~m+ (x+ 1)~ntB1~n+ (1− x)~ntB2~n

where ~m (resp. ~n) is the vector of monomials (1, t, t2, . . . , ts) (resp. (1, t, t2, . . . , ts−1)).
As a result the set N of polynomials h(t) nonnegative in [−1, 1] of degree ≤ 2s is

semidefinitely representable. If h(t) is any such polynomial then h(t)+h(−t)
2 is its

even part and since this operation is linear in h we conclude that the set W of even
polynomials in N is also an SDr set. The condition that any such polynomial has
a prescribed value at 0 is linear and therefore G2s is the intersection of W with an
affine hyperplane and therefore an SDr set as claimed. �

Theorem 4.8. For all sufficiently large integers s the optimization problem

min
g∈G2s

τ2k(g)

is equivalent to a convex programming problem.

Proof. The coefficients λ2j(g) expressing a polynomial g as a linear combination
of weighted Gegenbauer polynomials are a linear function of g(t) because they can
be computed by integration, using the well-known orthogonality of Gegenbauer
polynomials. Furthermore, the function ( 1

λ − 1)2 is a convex function of λ for
0 < λ < 3/2. We conclude that the Frobenius Threshold τ2k(g) is a convex function
of g in the convex SDr set G′2s consisting of the polynomials G2s such that 0 ≤
λ2j(g) ≤ 3

2 . If any of these inequalities fails then the inequality τ2k(g) ≥ 1
3 holds

so any optima of the problem must lie in the set G′2s for sufficiently large s as
claimed. �
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4.3. Harmonic hierarchies for moment problems. As mentioned in the in-
troduction, Tchakaloff’s Theorem [T] proves that the cone P ∗2k ⊆ R∗2k dual to P2k

consists of the moment operators of degree 2k for all Borel measures on S. More
precisely, the elements of P ∗2k are the linear operators ` : R2k → R which satisfy

∀f ∈ R2k

(
`(f) =

∫
S

f(y)dν(y)

)
for some Borel measure ν on S. It is therefore a problem of much interest to
characterize or to approximate P ∗2k. For every integer s, Construction 1.3 provides
us with polyhedral cones As and Qs in R2k satisfying the inclusions

As ⊆ P2k ⊆ Qs

Their dual convex cones in R∗2k therefore satisfy

A∗s ⊇ P ∗2k ⊇ Q∗s

providing us with an (outer) Harmonic Hierarchy for moments (A∗s)s∈N. The fol-
lowing Theorem provides a description of the cones A∗s and Q∗s amenable to com-
putation. For a point y ∈ S define the operator Ly ∈ R∗2k as

Ly :=

〈
k∑
j=0

λ
(s)
2j ‖x‖

2(k−j)φ2jy (x), •

〉

where the λ
(s)
2j are the coefficients of gs in its Gegenbauer expansion (as in Lemma 1.2)

and φ2jy (x) is the homogeneous polynomial defined in Theorem 3.2.

Theorem 4.9. The following statements hold:

(1) For every positive integer s and ds := deg(gs) we have:
(a) The polyhedral cone Q∗s is the convex hull of the point evaluations at

the cubature nodes Xk+ds .

(b) If Γ̂gs is invertible then the polyhedral cone A∗s is given by

A∗s = Conv ({Ly : y ∈ Xk+ds}) .

(2) If lims→∞ τ2k(gs) = 0 then the hiererachy (A∗s)s∈N and (Q∗s)s∈N converge
to P ∗2k in the sense that the following equalities hold

∞⋂
s=0

A∗s = P ∗2k =

∞⋃
s=0

Q∗s.

Proof. (1a) The cone Qs is defined by nonnegativity of the evaluations at cubature
nodes Xk+ds . (1b) By Theorem 3.2 for every polynomial f ∈ R2k and y ∈ S the

equality Ly(f) = Γ̂gs(f)(y) holds. It follows that f ∈ Conv(Ly : y ∈ Xk+ds)∗ if

and only if Γ̂gs(f) ∈ Qs proving the claim by the bi-duality Theorem of convex
geometry. Part (2) is immediate from Theorem 1.4 and bi-duality. �

Proof of Theorem 1.7. It is immediate from Theorem 4.9. �



HARMONIC HIERARCHIES FOR POLYNOMIAL OPTIMIZATION. 21

5. A Julia package for harmonic hierarchies.

In this Section we show some numerical examples computed with our Julia pack-
age for Harmonic Hierarchies available at github. The package has the following
capabilities:

(1) Computing the Gauss-product cubature rules from Section 2.1 for S ⊆ Rn
and any degree 2s.

(2) Computing the harmonic decomposition of polynomials using the algorithm
of Axler and Ramey [AR].

(3) Computing the upper bound for polynomial minimization problems on
spheres from the work of Martinez et al [MPSV] discussed in Remark 2.4.

(4) Computing our optimization-free lower bound for minimization problems
on spheres (see Section 4.1) using the kernels appearing in Corollary 1.5.

Figures 1 and 2 respectively show upper and lower bounds for the minima of
the Motzkin and Robinson polynomials calculated using our package. The lower
bounds implemented both of the sequences (gs)s∈N of Corollary 1.5 parts (1) and
(2), figures 2a and 2b respectively.

The Motzkin and Robinson polynomials are given by the formulas

m(x1, x2, x3) = x21x
4
2 + x41x

2
2 + x63 − 3x21x

2
2x

2
3,

r(x1, x2, x3, x4) = x21(x1 − x4)2 + x22(x2 − x4)2 + x23(x3 − x4)2

+ 2x1x2x3(x1 + x2 + x3 − 2x4),

respectively. These are well-known nonnegative polynomials with zeroes. The
figures show that the practical behavior of our optimization-free lower bound closely
mirrors the predicted theoretical behavior.

Figure 1. Figure 1 shows the upper bounds calculated for the
Motzkin and Robinson polynomials employing our Julia package’s
implementation of the method described in Remark 2.4. We also
include the plot of a O(−1/s2) in order to compare its behavior to
the theoretical convergence rate.

https://github.com/SergioCS147/HarmonicPolya.git
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(a) Using the pure powers sequence.

(b) Using the Fang-Fawzi sequence.

Figure 2. Figures 2a and 2b show the lower bounds calculated
for the Motzkin and Robinson polynomials employing our Julia
package’s implementation of the squares and Fang-Fawzi sequence
of kernels from Corollary 1.5(1) and (2) respectively. We also in-
clude the plot of O(−1/s) and O(−1/s2) functions respectively in
order to compare the behavior of the obtained lower bounds and
the theoretical convergence rate.
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rera 1 No. 18a 10, Edificio H, Primer Piso, 111711 Bogotá, Colombia
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