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Abstract

We show that for pairs (Q,R) and (S, T ) of disjoint subsets of vertices of a graph G, if G is
sufficiently large, then there exists a vertex v in V (G)−(Q∪R∪S∪T ) such that there are two ways
to reduce G by a vertex-minor operation that removes v while preserving the connectivity between
Q and R and the connectivity between S and T . Our theorem implies an analogous theorem of
Chen and Whittle (2014) for matroids restricted to binary matroids.

1 Introduction

Oum [7] proved a vertex-minor analog of Tutte’s Linking Theorem on matroids [11]. Roughly speaking,
the theorem of Oum says that for every pair of disjoint sets Q, R of vertices of a graph G, there are
at least two ways to reduce G by a vertex-minor operation while keeping the ‘connectivity’ between Q
and R, where this connectivity will be defined using the rank function of matrices. We prove that if
the graph is large, for any two pairs (Q,R) and (S, T ) of disjoint sets of vertices, there exist two ways
to reduce the graph by a vertex-minor operation while preserving the connectivity between Q and R,
and the connectivity between S and T .

To state the main theorem precisely, we introduce a few concepts. A graph is simple if it has
neither loops nor parallel edges. In this paper, all graphs are finite and simple. For a vertex v of a
graph G, the local complementation at v is an operation that, for each pair x, y of distinct neighbors
of v, adds an edge xy if x and y are non-adjacent in G and removes an edge xy otherwise. Let G∗v be
the graph obtained from G by applying the local complementation at v. A graph H is a vertex-minor
of G if it can be obtained from G by applying a sequence of local complementations and deletions
of vertices. For an edge uv of a graph G, let G ∧ uv = G ∗ u ∗ v ∗ u. We remark that the pivoting
operation is well defined since G ∗ u ∗ v ∗ u = G ∗ v ∗ u ∗ v. The operation obtaining G ∧ uv from G
is called pivoting uv. A graph H is a pivot-minor of G if it can be obtained from G by applying a
sequence of pivoting edges and deleting vertices.

For a graph G, the cut-rank function ρG is a function that maps a set X of vertices of G to the
rank of an X × (V (G) − X) matrix1 over GF(2) whose (i, j)-entry is 1 if i and j are adjacent and
0 otherwise. For disjoint sets S, T of vertices of G, the connectivity between S and T , denoted by
κG(S, T ), is defined by

min
S⊆X⊆V (G)−T

ρG(X).

Now we are ready to state the analog of Tutte’s Linking Theorem for vertex-minors as reformulated
by Geelen, Kwon, McCarty, and Wollan [4, Theorem 4.1].

∗Supported by the Institute for Basic Science (IBS-R029-C1).
1For two sets A and B, an A × B-matrix denotes an |A| × |B| matrix whose rows and columns are indexed by the

elements of A and B respectively.
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Theorem 1.1 (Oum [7]). Let G be a graph and Q, R be disjoint subsets of V (G). Let κG(Q,R) = k
and F = V (G)− (Q ∪R). For each vertex v of F , at least two of the following hold:

(i) κG\v(Q,R) = k.

(ii) κG∗v\v(Q,R) = k.

(iii) κG∧uv\v(Q,R) = k for each neighbor u of v.

Theorem 1.1 is about preserving the rank-connectivity of one pair of vertex sets while taking
vertex-minors. Here is our main theorem which considers two pairs of vertex sets.

Theorem 1.2. Let G be a graph and Q, R, S, and T be subsets of V (G) such that Q∩R = S∩T = ∅.
Let κG(Q,R) = k, κG(S, T ) = ℓ, and F = V (G) − (Q ∪ R ∪ S ∪ T ). If |F | ≥ (2ℓ + 1)22k, then there
exists a vertex v in F such that at least two of the following hold:

(i) κG\v(Q,R) = k and κG\v(S, T ) = ℓ.

(ii) κG∗v\v(Q,R) = k and κG∗v\v(S, T ) = ℓ.

(iii) κG∧uv\v(Q,R) = k and κG∧uv\v(S, T ) = ℓ for each neighbor u of v.

Since at least two of (i), (ii), and (iii) hold, we deduce that (i) or (iii) holds. Thus, we have the
following corollary for pivot-minors.

Corollary 1.3. Let G be a graph and Q, R, S, and T be subsets of V (G) such that Q∩R = S∩T = ∅.
Let κG(Q,R) = k, κG(S, T ) = ℓ, and F = V (G) − (Q ∪ R ∪ S ∪ T ). If |F | ≥ (2ℓ + 1)22k, then there
exists a vertex v in F such that at least one of the following holds:

(i) κG\v(Q,R) = k and κG\v(S, T ) = ℓ.

(ii) κG∧uv\v(Q,R) = k and κG∧uv\v(S, T ) = ℓ for each neighbor u of v.

Our proof is inspired by the proof of the following theorem of Chen and Whittle [2] who proved
the analog for matroids, which was conjectured by Geelen, and proved for representable matroids by
Huynh and van Zwam [6].

Theorem 1.4 (Chen and Whittle [2]). Let M be a matroid and Q, R, S, and T be subsets of E(M)
such that Q ∩ R = S ∩ T = ∅. Let κG(Q,R) = k, κG(S, T ) = ℓ, and F = E(M) − (Q ∪ R ∪ S ∪ T ).
If |F | ≥ (2ℓ+ 1)22k+1, then there exists an element e of E(M) such that at least one of the following
holds:

(i) κM\e(Q,R) = k and κM\e(S, T ) = ℓ.

(ii) κM/e(Q,R) = k and κM/e(S, T ) = ℓ.

In fact, Corollary 1.3 implies Theorem 1.4 restricted to binary matroids by using a relation between
pivot-minors of bipartite graphs and minors of matroids [7]. One of the key differences between our
proof and the proof of Chen and Whittle is that we use a new way of measuring the local connectivity,
⊓̃(S, T ) = 1

2(ρG(S) + ρG(T ) − ρG(S ∪ T )). The purpose of having 1
2 in the previous definition is to

ensure that ⊓̃G[S, V (G)− S] = ρG(S).
Our theorem is motivated by the following conjecture for pivot-minors. A pivot-minor H of a graph

G is proper if |V (H)| < |V (G)|. A graph G is an intertwine of graphs H1 and H2 for pivot-minors if
it contains both H1 and H2 as pivot-minors and no proper pivot-minor of G contains both H1 and H2

as pivot-minors.

Conjecture 1.5 (Intertwining conjecture for pivot-minors). For graphs G1 and G2, there are only
finitely many intertwines of G1 and G2 for pivot-minors.
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Figure 1: G and G ∧ uv.

Together with Theorem 1.1, Conjecture 1.5 implies Corollary 1.3 without an explicit function.
Suppose that G is a graph and Q, R, S, and T are subsets of V (G) such that Q ∩ R = S ∩ T = ∅,
κG(Q,R) = k, and κG(S, T ) = ℓ. By Theorem 1.1, G has pivot-minors G1 and G2 such that V (G1) =
Q ∪ R, V (G2) = S ∪ T , ρG1(Q) = k, and ρG2(S) = ℓ. If Conjecture 1.5 holds, then there exists
an integer n such that every intertwine of G1 and G2 for pivot-minors has at most n vertices. If
|V (G)| > n, then G is not an intertwine of G1 and G2 for pivot-minors. Hence, there exists a proper
pivot-minor H of G having both G1 and G2 as pivot-minors. Let v be a vertex in V (G)−V (H). Then
it is easy to see that (i) or (ii) of Corollary 1.3 holds.

The following conjecture of Oum [8] implies the intertwining conjecture for pivot-minors.

Conjecture 1.6 (Well-quasi-ordering conjecture for pivot-minors). For every infinite sequence G1,
G2, . . . of graphs, there exist i < j such that Gi is isomorphic to a pivot-minor of Gj .

Although the analog of Conjecture 1.6 for vertex-minors is still open, Geelen and Oum [5] proved
the analog of Conjecture 1.5 for vertex-minors.

This paper is organized as follows. In Section 2, we introduce concepts of vertex-minors and pivot-
minors, and review several inequalities for cut-rank functions. In Section 3, we present simple lemmas
on the cut-rank function. In Section 4, we prove Theorem 1.2.

2 Preliminaries

For a graph G and a vertex v of G, let NG(v) be the set of vertices adjacent to v in G. For a graph G
and a subset X of V (G), let G[X] be the induced subgraph of G on X. For two sets A and B, let
A△B = (A−B) ∪ (B −A).

Vertex-minors and pivot-minors Note that for a graph G and a vertex v of G, the local com-
plementation at v replaces G[NG(v)] with its complement. A graph H is locally equivalent to a graph
G if H can be obtained from G by applying a sequence of local complementations. Recall that a
graph H is a vertex-minor of a graph G if H can be obtained from G by applying a sequence of local
complementations and deletions of vertices.

For an edge uv of a graph G, let G∧uv = G∗u∗v ∗u. Then G∧uv is obtained from G by pivoting
uv. Alternatively, pivoting uv can be understood as an operation that removes an edge xy if x, y are
non-adjacent and adds an edge xy otherwise for every pair (x, y) ∈ (X1×X2)∪ (X2×X3)∪ (X3×X1)
where X1 is the set of common neighbors of u and v, X2 is the set of neighbors of u that are non-
neighbors of v, andX3 is the set of neighbors of v that are non-neighbors of u and then swaps the labels
of u and v, see Oum [7] and Figure 1. The graph G∧uv is well defined since G∗u∗v∗u = G∗v∗u∗v [7,
Corollary 2.2]. A graph H is a pivot-minor of a graph G if H can be obtained from G by a sequence
of pivoting and deleting vertices.

Lemma 2.1 (Oum [7]). Let G be a graph and v be a vertex of G. If x and y are neighbors of v in G,
then (G ∧ vx) \ v is locally equivalent to (G ∧ vy) \ v.

For a vertex v of G with a neighbor u, we write G/v to denote G ∧ uv \ v. If v has no neighbor
in G, then we let G/v denote G \ v. Then the graph G/v is well-defined up to local equivalence by
Lemma 2.1. The following lemma can be easily deduced from isotropic systems [1], and Geelen and
Oum provide an elementary graph-theoretic proof.
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Lemma 2.2 (Geelen and Oum [5, Lemma 3.1]). Let G be a graph and v and w be vertices of G. Then
the following hold:

(1) If v 6= w and vw /∈ E(G), then (G ∗ w) \ v, (G ∗ w ∗ v) \ v, and (G ∗ w)/v are locally equivalent
to G \ v, G ∗ v \ v, and G/v respectively.

(2) If v 6= w and vw ∈ E(G), then (G ∗ w) \ v, (G ∗ w ∗ v) \ v, and (G ∗ w)/v are locally equivalent
to G \ v, G/v, and (G ∗ v) \ v respectively.

(3) If v = w, then (G ∗w) \ v, (G ∗w ∗ v) \ v, and (G ∗w)/v are locally equivalent to G ∗ v \ v, G \ v,
and G/v respectively.

From Lemma 2.2, we can deduce the following lemma easily.

Lemma 2.3. Let H be a vertex-minor of a graph G and v be a vertex of H. Let H1 = H \ v,
H2 = H ∗ v \ v, and H3 = H/v and let G1 = G \ v, G2 = G ∗ v \ v, and G3 = G/v. Then there exists
a permutation σ : {1, 2, 3} → {1, 2, 3} such that Hi is a vertex-minor of Gσ(i) for each i ∈ {1, 2, 3}.

Proof. Since H is a vertex-minor of G, there exist a sequence u1, . . . , um of vertices of G and a subset
X of V (G) such that H = G ∗ u1 ∗ · · · ∗ um \ X. We proceed by induction on m. If m = 0, then
H = G \ X. Obviously, Hi = Gi \ X for each i ∈ {1, 2}. We claim that H3 = G3 \ X. If there is
a neighbor w of v in G which is not in X, then H3 = H ∧ vw \ v = (G ∧ vw \ v) \X = G3 \X. If
NG(v) ⊆ X, then H3 = H \ v = G \X \ v. Since X contains all the neighbors of v, it is easy to check
that G3 \X = ((G ∧ uv) \ v) \X = G \X \ v = H3.

Therefore we may assume that m 6= 0. Let H ′ = G ∗ u1. Then H = H ′ ∗ u2 ∗ · · · ∗ um \ X,
H ′

1 = H ′ \ v, H ′
2 = H ′ ∗ v \ v, and H ′

3 = H ′/v. By the induction hypothesis, there is a permutation
σ1 : {1, 2, 3} → {1, 2, 3} such that Hi is a vertex-minor of H ′

σ1(i)
for each i ∈ {1, 2, 3}. By Lemma 2.2,

there is a permutation σ2 : {1, 2, 3} → {1, 2, 3} such that H ′
j is locally equivalent to Gσ2(j) for each

j ∈ {1, 2, 3}. Let σ = σ2 ◦ σ1. Then Hi is a vertex-minor of Gσ(i) for each i ∈ {1, 2, 3}.

Cut-rank function and connectivity For a finite set V , a V × V -matrix A, and subsets X and
Y of V , let A[X,Y ] be the X × Y -submatrix of A. For a graph G, let AG be the adjacency matrix
of G over the binary field GF(2). The cut-rank ρG(X) of X ⊆ V (G) is defined by

ρG(X) = rank(AG[X,V (G)−X]).

It is obvious to check that ρG(X) = ρG(V (G) −X).
The following lemmas give some properties of the cut-rank function.

Lemma 2.4 (see Oum [7, Proposition 2.6]). If a graph G′ is locally equivalent to a graph G, then
ρG(X) = ρG′(X) for each X ⊆ V (G).

Lemma 2.5 (see Oum [7, Corollary 4.2]). Let G be a graph and let X, Y be subsets of V (G). Then

ρG(X) + ρG(Y ) ≥ ρG(X ∩ Y ) + ρG(X ∪ Y ).

Lemma 2.6 (Oum [9, Lemma 2.3]). Let G be a graph and v be a vertex of G. Let X and Y be subsets
of V (G)− {v}. Then the following hold:

(S1) ρG\v(X) + ρG(Y ∪ {v}) ≥ ρG\v(X ∩ Y ) + ρG(X ∪ Y ∪ {v}).

(S2) ρG\v(X) + ρG(Y ) ≥ ρG(X ∩ Y ) + ρG\v(X ∪ Y ).

Lemma 2.7. Let G be a graph and v be a vertex of G. For a subset X of V (G)− {v}, we have

(i) ρG\v(X) + 1 ≥ ρG(X) ≥ ρG\v(X).

(ii) ρG\v(X) + 1 ≥ ρG(X ∪ {v}) ≥ ρG\v(X).
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Proof. Observe that removing a row or a column of a matrix decreases the rank by at most 1 and
never increases the rank.

Let G be a graph and S, T be disjoint subsets of V (G). The connectivity between S and T in G,
denoted by κG(S, T ), is defined by minS⊆X⊆V (G)−T ρG(X).

Lemma 2.8. Let H be a vertex-minor of a graph G and S and T be disjoint subsets of V (H). Then
κH(S, T ) ≤ κG(S, T ).

Proof. The conclusion follows from Lemma 2.4 and (i) of Lemma 2.7.

Lemma 2.9 (Oum and Seymour [10, Lemma 1]). Let G be a graph and X1, X2, Y1, and Y2 be subsets
of V (G) such that X1 ∩X2 = Y1 ∩ Y2 = ∅. Then, we have

κG(X1,X2) + κG(Y1, Y2) ≥ κG(X1 ∩ Y1,X2 ∪ Y2) + κG(X1 ∪ Y1,X2 ∩ Y2).

The following corollaries are easy consequences of Theorem 1.1.

Corollary 2.10. Let G be a graph and Q, R, S, and T be subsets of V (G) such that Q∩R = S∩T = ∅.
Let F = V (G)− (Q ∪R ∪ S ∪ T ), k = κG(Q,R), and ℓ = κG(S, T ). For every vertex v of F , at least
one of the following holds:

(i) κG\v(Q,R) = k and κG\v(S, T ) = ℓ.

(ii) κG∗v\v(Q,R) = k and κG∗v\v(S, T ) = ℓ.

(iii) κG∧uv\v(Q,R) = k and κG∧uv\v(S, T ) = ℓ for each neighbor u of v.

Proof. By Theorem 1.1, at least two graphs H1, H2 among G\v, G∗v \v, and G/v have the property
that κH1(Q,R) = κH2(Q,R) = k. Again by Theorem 1.1, at least one graph H of H1 or H2 satisfies
the property that κH(S, T ) = ℓ.

Corollary 2.11. Let G be a graph and Q, R, S, and T be subsets of V (G) such that Q∩R = S∩T = ∅.
Let F be a subset of V (G) − (Q ∪ R ∪ S ∪ T ), k = κG(Q,R), and ℓ = κG(S, T ). Then there exists a
vertex-minor H of G such that V (H) = V (G)− F , κH(Q,R) = k, and κH(S, T ) = ℓ.

Proof. We proceed by induction on |F |. We may assume that |F | ≥ 1. Let v be a vertex of F . By
Corollary 2.10, there is a graph G1 ∈ {G\v,G∗v\v,G/v} such that κG1(Q,R) = k and κG1(S, T ) = ℓ.
By the induction hypothesis, there is a vertex-minor H of G1 such that V (H) = V (G1)− (F −{v}) =
V (G) − F , κH(Q,R) = κG1(Q,R) = k, and κH(S, T ) = κG1(S, T ) = ℓ. Therefore, the conclusion
follows since H is a vertex-minor of G.

The following lemma is the analog of [3, Lemma 4.7].

Lemma 2.12. Let G be a graph and S and T be disjoint subsets of V (G). Then there exist S1 ⊆ S
and T1 ⊆ T such that |S1| = |T1| = κG(S1, T1) = κG(S, T ).

Proof. By Lemma 2.9, there exists a matroid M1 on V (G) − T whose rank function is κG(X,T ) for
each subset X of V (G) − T . Let S1 be a maximal independent set of M1 contained in S. Then we
have |S1| = κG(S1, T ) = κG(S, T ). By Lemma 2.9, there is a matroid M2 on V (G) − S1 whose rank
function is κG(X,S1) for every subset X of V (G) − S1. Let T1 be a maximal independent set of M2

contained in T . Then |T1| = κG(T1, S1) = κG(T, S1) and so we finish the proof.
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3 Lemmas on the cut-rank function.

In this section, we present simple lemmas on the cut-rank function. A subset X of V (G) is an
(S, T )-separating set of order k in G if S ⊆ X ⊆ V (G) − T and ρG(X) = k.

For a graph G and disjoint subsets S, T of V (G), let ⊓̃G[S, T ] =
1
2(ρG(S) + ρG(T )− ρG(S ∪ T )).

Lemma 3.1. Let G be a graph and S and T be disjoint subsets of V (G). If A and B are (S, T )-
separating sets of order k := κG(S, T ) in G, then both A ∩ B and A ∪B are (S, T )-separating sets of
order k in G.

Proof. Since both A ∩ B and A ∪ B are (S, T )-separating sets, ρG(A ∩ B) ≥ k and ρG(A ∪ B) ≥ k.
By Lemma 2.5,

2k = ρG(A) + ρG(B) ≥ ρG(A ∪B) + ρG(A ∩B) ≥ 2k

and therefore ρG(A ∪B) = ρG(A ∩B) = k.

Lemma 3.2. Let G be a graph and S and T be disjoint subsets of V (G) such that ρG(S) = κG(S, T ).
Let U be a subset of S. Let v be a vertex in V (G) − (S ∪ T ). If κG\v(U, T ) < κG(U, T ), then
κG\v(S, T ) < κG(S, T ).

Proof. Let k = ρG(S) = κG(S, T ). Suppose that κG\v(S, T ) = k. Let X be a (U, T )-separating set in
G \ v. By (S2) of Lemma 2.6,

ρG\v(X) + ρG(S) ≥ ρG(X ∩ S) + ρG\v(X ∪ S)

and since X ∪ S is (S, T )-separating in G \ v, we have ρG\v(X ∪ S) ≥ k = ρG(S). Hence, we deduce
that ρG\v(X) ≥ ρG(X ∩ S) ≥ κG(U, T ). So κG\v(U, T ) ≥ κG(U, T ), contradicting the assumption.

Lemma 3.3. Let G be a graph and X2 and Y be disjoint subsets of V (G). Let X1 be a subset of X2.
Then ⊓̃G[X1, Y ] ≤ ⊓̃G[X2, Y ].

Proof. Since X1 ⊆ X2, by Lemma 2.5, we have

ρG(X2) + ρG(X1 ∪ Y ) ≥ ρG(X2 ∪ (X1 ∪ Y )) + ρG(X2 ∩ (X1 ∪ Y ))

= ρG(X2 ∪ Y ) + ρG(X1).

Hence, 2⊓̃G(X1, Y ) = ρG(X1)+ρG(Y )−ρG(X1∪Y ) ≤ ρG(X2)+ρG(Y )−ρG(X2∪Y ) = 2⊓̃G(X2, Y ).

Lemma 3.4. Let G be a graph and Q and R be disjoint subsets of V (G) such that ρG(Q) = κG(Q,R).
Let v be a vertex of V (G) − (Q ∪R) such that κG\v(Q,R) < κG(Q,R). Then the following hold:

(Q1) ρG(Q ∪ {v}) ≥ ρG(Q).

(Q2) If ρG\v(Q) = ρG(Q), then ρG(Q ∪ {v}) = ρG(Q) + 1.

Proof. (Q1) holds clearly since ρG(Q) = κG(Q,R).
To prove (Q2), let k = κG(Q,R). Since κG\v(Q,R) < k, there is a subset X of V (G) such that

Q ⊆ X ⊆ V (G) − (R ∪ {v}) and ρG\v(X) ≤ k − 1. Then ρG\v(X) < k ≤ ρG(X ∪ {v}) because
Q ⊆ X ∪ {v} ⊆ V (G)−R and by (S1) of Lemma 2.6, we have that

ρG\v(X) + ρG(Q ∪ {v}) ≥ ρG\v(Q) + ρG(X ∪ {v}) > ρG\v(Q) + ρG\v(X).

Hence, by Lemma 2.7, ρG(Q ∪ {v}) = ρG\v(Q) + 1 = ρG(Q) + 1.
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4 Proof of Theorem 1.2

For disjoint subsets S and T of vertices of a graph G, a vertex v ∈ V (G)− (S ∪ T ) is (S, T )-flexible if
κG\v(S, T ) = κG∗v\v(S, T ) = κG∧uv\v(S, T ) = κG(S, T ) for each u ∈ NG(v). Note that every isolated
vertex is (S, T )-flexible.

Lemma 4.1. Let S, T be disjoint sets of vertices of a graph G. If a vertex v is (S, T )-flexible in G,
then it is (S, T )-flexible in every graph locally equivalent to G.

Proof. Let G′ be a graph locally equivalent to G. Let k = κG(S, T ), G1 = G \ v, G2 = G ∗ v \ v,
and G3 = G/v. Since v is (S, T )-flexible in G, we have κG1(S, T ) = κG2(S, T ) = κG3(S, T ) = k.
Let H1 = G′ \ v, H2 = G′ ∗ v \ v, and H3 = G′/v. Then by Lemma 2.3, there is a permutation
σ : {1, 2, 3} → {1, 2, 3} such that Hi is locally equivalent to Gσ(i) for each i ∈ {1, 2, 3}. Hence, by
Lemma 2.4, we have κHi

(S, T ) = κGσ(i)
(S, T ) = k for each i ∈ {1, 2, 3}. Therefore, v is (S, T )-flexible

in G′.

The following lemma finds a nested set of (S, T )-separating sets of order κG(S, T ) for disjoint sets
S and T of vertices of a graph G.

Lemma 4.2. Let G be a graph and S and T be disjoint subsets of V (G). Let k = κG(S, T ) and
F ⊆ V (G)− (S ∪ T ) be a set of n vertices which are not (S, T )-flexible. Then there exist an ordering
f1, . . . , fn of vertices in F and a sequence A1, . . . , An of (S, T )-separating sets of order k in G such
that the following hold:

(i) Ai ⊆ Ai+1 for each 1 ≤ i ≤ n− 1.

(ii) Ai ∩ F = {f1, . . . , fi} for each 1 ≤ i ≤ n.

Proof. We prove by induction on n = |F |. We may assume that n ≥ 1. We first claim that for every
v ∈ F , there exists an (S, T )-separating set of order k in G containing v. Since v is not (S, T )-flexible
in G, there exists a graph G′ ∈ {G \ v,G ∗ v \ v,G/v} such that κG′(S, T ) < κG(S, T ). So there is a
subset A of V (G) − {v} such that S ⊆ A ⊆ V (G) − (T ∪ {v}) and ρG′(A) ≤ k − 1. There exists a
graph H locally equivalent to G such that H \ v = G′. Therefore, since S ⊆ A ∪ {v} ⊆ V (G)− T , by
Lemmas 2.4 and 2.7, we have k ≤ ρG(A∪{v}) = ρH(A∪{v}) ≤ ρH\v(A)+ 1 = ρG′(A)+ 1 ≤ k and so
ρG(A∪ {v}) = k. Now it follows that A∪ {v} is an (S, T )-separating set of order k in G containing v.

For each u ∈ F , let Au be an (S, T )-separating set of order k in G containing u such that |Au| is
minimum. Let x be a vertex of F such that |Ax| ≤ |Au| for each u ∈ F .

Now we claim that Ax∩F = {x}. Suppose that there exists an element y ∈ (Ax−{x})∩F . Then,
by Lemma 3.1, both Ax ∩Ay and Ax ∪Ay are (S, T )-separating sets of order k in G. Hence, Ay ⊆ Ax

by the choice of Ay. Then we have Ax = Ay because |Ax| ≤ |Au| for every u ∈ F . Since y is not
(S, T )-flexible, there exists a graph G′′ ∈ {G \ y,G ∗ y \ y,G/y} such that κG′′(S, T ) < κG(S, T ). By
Lemma 2.4, we may assume that G′′ = G \ y. Then there exists S ⊆ X ⊆ V (G)− (T ∪ {y}) such that
ρG\y(X) = k−1. By Lemma 2.7, ρG(X) = k and ρG(X ∪{y}) = k. So X ∪{y} is an (S, T )-separating
set of order k in G containing y. By Lemma 3.1, Ay ∩ (X ∪ {y}) is an (S, T )-separating set of order k
in G. Therefore, by the choice of Ay, we have Ay ⊆ X ∪ {y} and so Ay − {y} ⊆ X. By applying (S1)
of Lemma 2.6,

2k − 1 = ρG\y(X) + ρG(Ay) = ρG\y(X) + ρG((Ay − {y}) ∪ {y})

≥ ρG\y(X ∩ (Ay − {y})) + ρG(X ∪ (Ay − {y}) ∪ {y})

= ρG\y(Ay − {y}) + ρG(X ∪ {y}).

Since ρG(X ∪{y}) = k, we know that ρG\y(Ay −{y}) ≤ k−1 and so ρG(Ay−{y}) ≤ k by Lemma 2.7.
Recall that S ⊆ Ay−{y} ⊆ V (G)−T and k = κG(S, T ). Therefore, ρG(Ay−{y}) = k. Since Ax = Ay,
this is a contradiction to the minimality of Ax. Thus Ax ∩ F = {x}.

Let f1 = x and A1 = Ax. Then k = κG(S, T ) ≤ κG(A1, T ) ≤ ρG(A1) = k and therefore we have
that κG(A1, T ) = k. By Lemmas 2.4 and 3.2, no vertex of F − {f1} is (A1, T )-flexible. Hence, by
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the induction hypothesis, there exist an ordering f2, . . . , fn of elements of F − {f1} and a sequence
A2, . . . , An of (A1, T )-separating sets of order k in G such that (i) and (ii) hold.

So we finish the proof with the fact that A2, . . . , An are also (S, T )-separating sets of order k
in G.

Our proof of Theorem 1.2 consists of two parts. In the first part, we will assume that S and T are
small and prove the theorem. In the second part, we will show how to reduce the size of S and T .
The following lemma will be used at the key step in the first part.

Lemma 4.3. Let G be a graph and Q, R, S, and T be subsets of V (G) such that Q ∩R = S ∩ T = ∅
and S ∪ T ⊆ Q ∪ R. Let F = V (G) − (Q ∪ R) 6= ∅ and k = κG(Q,R) and ℓ = κG(S, T ). If
ρG(Q) = ρG(R) = k and no vertex of F is (Q,R)-flexible or (S, T )-flexible, then (1) or (2) holds:

(1) There exists a vertex v of F such that at least two of the following hold:

(i) κG\v(Q,R) = k and κG\v(S, T ) = ℓ.

(ii) κG∗v\v(Q,R) = k and κG∗v\v(S, T ) = ℓ.

(iii) κG∧uv\v(Q,R) = k and κG∧uv\v(S, T ) = ℓ for each u ∈ NG(v).

(2) There exist disjoint subsets Q′ and R′ of V (G) such that the following hold:

(i) Q ⊆ Q′, R ⊆ R′ and ρG(Q
′) = ρG(R

′) = k.

(ii) ⊓̃G[Q
′, R′] ≥ ⊓̃G[Q,R] + 1

2 .

(iii) |V (G) − (Q′ ∪R′)| ≥ ⌊12 |F |⌋.

Proof. Assume that (1) does not hold. Let n = |F |. Since no vertex of F is (Q,R)-flexible, by
Lemma 4.2, there exists an ordering f1, . . . , fn of vertices of F such that Q ∪ {f1, . . . , fi} is a (Q,R)-
seperating set of order k in G for each i ∈ {1, . . . , n}. Let Ai = Q ∪ {f1, . . . , fi} for each 1 ≤ i ≤ n.

No vertex of F is (S, T )-flexible and so, by Lemma 4.2, there exist a vertex g in F and an (S, T )-
seperating set C of order ℓ in G such that C − (Q ∪R) = {g}.

By Theorem 1.1, there are graphs G′
1, G

′
2 ∈ {G \ g,G ∗ g \ g,G/g} such that κG′

i
(S, T ) = κG(S, T )

for i ∈ {1, 2}. Since (1) does not hold, there exists G′ ∈ {G′
1, G

′
2} such that κG′(Q,R) < κG(Q,R).

Then by Lemma 2.4, we may assume that G′ = G \ g.
Since κG\g(S, T ) = ℓ and S ⊆ C − {g} ⊆ V (G \ g) − T , we have ℓ ≤ ρG\g(C − {g}) ≤ ρG(C) = ℓ

and therefore ρG\g(C − {g}) = ρG(C). Since C − {g} ⊆ Q ∪R, by (S1) of Lemma 2.6,

ρG\g(Q ∪R) + ρG(C) ≥ ρG\g((Q ∪R) ∩ C) + ρG((Q ∪R) ∪ C)

= ρG\g(C − {g}) + ρG(Q ∪R ∪ {g}).

Hence ρG(Q∪R∪{g}) ≤ ρG\g(Q∪R) because ρG\g(C−{g}) = ρG(C). By Lemma 2.7, ρG\g(Q∪R) ≤
ρG(Q ∪R ∪ {g}) and therefore ρG\g(Q ∪R) = ρG(Q ∪R ∪ {g}).

Now we claim that ⊓̃G(Q ∪ {g}, R) ≥ ⊓̃G(Q,R) + 1
2 . Observe that it is equivalent to show that

ρG(Q ∪ {g}) + ρG(R)− ρG(Q ∪R ∪ {g}) ≥ ρG(Q) + ρG(R)− ρG(Q ∪R) + 1.

We have ρG(Q∪R) ≥ ρG\g(Q∪R) = ρG(Q∪R∪{g}) and, by (Q1) of Lemma 3.4, ρG(Q∪{g}) ≥ ρG(Q).
Therefore, it is enough to prove that ρG(Q ∪R) ≥ ρG(Q ∪R ∪ {g}) + 1 or ρG(Q ∪ {g}) ≥ ρG(Q) + 1.
Suppose that ρG(Q ∪R) = ρG(Q ∪R ∪ {g}) = ρG\g(Q ∪R). Then, by (S2) of Lemma 2.6, we have

ρG\g(Q) + ρG(Q ∪R) ≥ ρG\g(Q ∪R) + ρG(Q).

So ρG\g(Q) ≥ ρG(Q) and we have ρG\g(Q) = ρG(Q) by Lemma 2.7. Then by (Q2) of Lemma 3.4,
ρG(Q ∪ {g}) = ρG(Q) + 1, proving the claim.

Similarly, we have ⊓̃G(Q,R ∪ {g}) ≥ ⊓̃G(Q,R) + 1
2 . Let i be an integer such that fi = g and let

(Q′, R′) =

{

(Ai, R) if i ≤ ⌊n2 ⌋,

(Q,V (G) −Ai−1) otherwise.
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Then by Lemma 3.3,

⊓̃G(Q
′, R′) ≥ min (⊓̃G(Q ∪ {g}, R), ⊓̃G(Q,R ∪ {g})) ≥ ⊓̃G(Q,R) +

1

2
.

So (ii) holds and (i) and (iii) hold by the construction.

Now we are ready to prove Theorem 1.2 when S and T are small.

Proposition 4.4. Let G be a graph and Q, R, S, and T be subsets of V (G) such that Q∩R = S∩T = ∅
and F = V (G) − (Q ∪ R ∪ S ∪ T ). Let k = κG(Q,R) and ℓ = κG(S, T ). If |S| = |T | = ℓ and
|F | ≥ (2ℓ+ 1)22k, then there is a vertex v ∈ F such that at least two of the following hold:

(1) κG\v(Q,R) = k and κG\v(S, T ) = ℓ.

(2) κG∗v\v(Q,R) = k and κG∗v\v(S, T ) = ℓ.

(3) κG∧uv\v(Q,R) = k and κG∧uv\v(S, T ) = ℓ for every neighbor u of v.

Proof. If F has a vertex which is (S, T )-flexible or (Q,R)-flexible, then our conclusion follows by
Theorem 1.1. So we can assume that no vertex of F is (S, T )-flexible or (Q,R)-flexible. Let n = |F |.

By Lemma 4.2, there exist an ordering f1, . . . , fn of vertices of F and a sequence A1, . . . , An of
(Q,R)-seperating sets of order k in G satisfying the following:

• Ai ⊆ Ai+1 for each 1 ≤ i ≤ n− 1.

• Ai ∩ F = {f1, . . . , fi} for each 1 ≤ i ≤ n.

For each 1 ≤ i ≤ n, let Bi = V (G) − Ai. Let q = 22k and A0 = Q. For 1 ≤ i ≤ 2ℓ + 1, let
Xi = Aiq −A(i−1)q. Since |S| = |T | = ℓ, there exists 1 ≤ m ≤ 2ℓ+ 1 such that Xm ∩ (S ∪ T ) = ∅. Let
j = (m− 1)q. Then we have Q ∪R ∪ S ∪ T ⊆ Aj ∪Bj+q.

Assume that our conclusion fails and so every vertex of F satisfies at most one of (1), (2), and (3).
We claim that, for each 1 ≤ i ≤ 2k + 2, there exist disjoint subsets Qi and Ri of V (G) satisfying the
following.

(i) Q ⊆ Qi, R ⊆ Ri, and ρG(Qi) = ρG(Ri) = k.

(ii) ⊓̃G[Qi, Ri] ≥
i−1
2 .

(iii) |V (G) − (Qi ∪Ri)| ≥ ⌊22k+1−i⌋.

We proceed by the induction on i. Let Q1 = Aj , R1 = Bj+q, and F1 = V (G) − (Q1 ∪ R1). Then
|F1| = 22k and so (Q1, R1) satisfies the claim. Therefore we may assume that i ≥ 2. By the induction
hypothesis, there exist disjoint subsets Qi−1 and Ri−1 of V (G) satisfying (i), (ii), and (iii) for i − 1.
By Lemmas 2.4 and 3.2, no vertex of V (G)− (Qi−1∪Ri−1) is (Qi−1, Ri−1)-flexible. If there is a vertex
v of V (G)− (Qi−1 ∪Ri−1) satisfying (1) of Lemma 4.3 for two pairs (Qi−1, Ri−1) and (S, T ), then by
Lemmas 2.4 and 3.2, v satisfies at least two of (1), (2), and (3), contradicting our assumption. So we
may assume that V (G)− (Qi−1 ∪Ri−1) has no such vertex. Hence, by Lemma 4.3, there exist disjoint
subsets Qi and Ri of V (G) such that the following hold:

(a) Qi−1 ⊆ Qi, Ri−1 ⊆ Ri and ρG(Qi) = ρG(Ri) = k.

(b) ⊓̃G[Qi, Ri] ≥ ⊓̃G[Qi−1, Ri−1] +
1
2 ≥ i−2

2 + 1
2 = i−1

2 .

(c) |V (G) − (Qi ∪Ri)| ≥ ⌊12 |V (G) − (Qi−1 ∪Ri−1)|⌋ ≥ ⌊12 · 2
2k+2−i⌋ = ⌊22k+1−i⌋.

This proves our claim. Then by (ii) and Lemma 3.3, k + 1
2 ≤ ⊓̃G(Q2k+2, R2k+2) ≤ ⊓̃G(Q2k+2, V (G)−

Q2k+2) = ρG(Q2k+2) = k, which is a contradiction. Therefore our conclusion holds.

Now we are ready to complete the proof of Theorem 1.2.
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Proof of Theorem 1.2. By Lemma 2.12, there exist S1 ⊆ S and T1 ⊆ T such that |S1| = |T1| =
κG(S1, T1) = κG(S, T ). Let X = (S ∪ T ) − (Q ∪ R ∪ S1 ∪ T1). By Corollary 2.11, there is a vertex-
minor H of G such that V (H) = V (G) −X, κH(Q,R) = k, and κH(S1, T1) = ℓ.

For a vertex v of V (H)−(Q∪R∪S1∪T1), let H
v
1 = H\v, Hv

2 = H∗v\v, andHv
3 = H/v and let Gv

1 =
G \ v, Gv

2 = G ∗ v \ v, and Gv
3 = G/v. Then by Lemma 2.3, there exists a permutation σv : {1, 2, 3} →

{1, 2, 3} such that Hv
i is a vertex-minor of Gv

σ(i) for each i ∈ {1, 2, 3}. By Lemma 2.8, κHv
i
(S1, T1) ≤

κGv
σ(i)

(S1, T1) ≤ κGv
σ(i)

(S, T ) ≤ κG(S, T ) = ℓ and κHv
i
(Q,R) ≤ κGv

σ(i)
(Q,R) ≤ κG(Q,R) = k for each

i ∈ {1, 2, 3}.
Since |V (H) − (Q ∪ R ∪ S1 ∪ T1)| = |F | ≥ (2ℓ + 1)22k, by Proposition 4.4, there exist a vertex v

of V (H)− (Q ∪R ∪ S1 ∪ T1) = F and i, j ∈ {1, 2, 3} such that i 6= j and κHv
i
(Q,R) = κHv

j
(Q,R) = k

and κHv
i
(S1, T1) = κHv

j
(S1, T1) = ℓ. Therefore, κGv

σ(i)
(S, T ) = κGv

σ(j)
(S, T ) = ℓ and κGv

σ(i)
(Q,R) =

κGv
σ(j)

(Q,R) = k.
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