Intertwining connectivities for vertex-minors and pivot-minors

Duksang Lee ${ }^{* 2,1}$ and Sang-il Oum ${ }^{* 1,2}$
${ }^{1}$ Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, South Korea
${ }^{2}$ Department of Mathematical Sciences, KAIST, Daejeon, South Korea
Email: duksang@kaist.ac.kr, sangil@ibs.re.kr

September 7, 2022

Abstract

We show that for pairs (Q, R) and (S, T) of disjoint subsets of vertices of a graph G, if G is sufficiently large, then there exists a vertex v in $V(G)-(Q \cup R \cup S \cup T)$ such that there are two ways to reduce G by a vertex-minor operation that removes v while preserving the connectivity between Q and R and the connectivity between S and T. Our theorem implies an analogous theorem of Chen and Whittle (2014) for matroids restricted to binary matroids.

1 Introduction

Oum [7] proved a vertex-minor analog of Tutte's Linking Theorem on matroids [11]. Roughly speaking, the theorem of Oum says that for every pair of disjoint sets Q, R of vertices of a graph G, there are at least two ways to reduce G by a vertex-minor operation while keeping the 'connectivity' between Q and R, where this connectivity will be defined using the rank function of matrices. We prove that if the graph is large, for any two pairs (Q, R) and (S, T) of disjoint sets of vertices, there exist two ways to reduce the graph by a vertex-minor operation while preserving the connectivity between Q and R, and the connectivity between S and T.

To state the main theorem precisely, we introduce a few concepts. A graph is simple if it has neither loops nor parallel edges. In this paper, all graphs are finite and simple. For a vertex v of a graph G, the local complementation at v is an operation that, for each pair x, y of distinct neighbors of v, adds an edge $x y$ if x and y are non-adjacent in G and removes an edge $x y$ otherwise. Let $G * v$ be the graph obtained from G by applying the local complementation at v. A graph H is a vertex-minor of G if it can be obtained from G by applying a sequence of local complementations and deletions of vertices. For an edge $u v$ of a graph G, let $G \wedge u v=G * u * v * u$. We remark that the pivoting operation is well defined since $G * u * v * u=G * v * u * v$. The operation obtaining $G \wedge u v$ from G is called pivoting uv. A graph H is a pivot-minor of G if it can be obtained from G by applying a sequence of pivoting edges and deleting vertices.

For a graph G, the cut-rank function ρ_{G} is a function that maps a set X of vertices of G to the rank of an $X \times(V(G)-X)$ matrix 1 over $\mathrm{GF}(2)$ whose (i, j)-entry is 1 if i and j are adjacent and 0 otherwise. For disjoint sets S, T of vertices of G, the connectivity between S and T, denoted by $\kappa_{G}(S, T)$, is defined by

$$
\min _{S \subseteq X \subseteq V(G)-T} \rho_{G}(X) .
$$

Now we are ready to state the analog of Tutte's Linking Theorem for vertex-minors as reformulated by Geelen, Kwon, McCarty, and Wollan [4, Theorem 4.1].

[^0]Theorem 1.1 (Oum [7]). Let G be a graph and Q, R be disjoint subsets of $V(G)$. Let $\kappa_{G}(Q, R)=k$ and $F=V(G)-(Q \cup R)$. For each vertex v of F, at least two of the following hold:
(i) $\kappa_{G \backslash v}(Q, R)=k$.
(ii) $\kappa_{G * v \backslash v}(Q, R)=k$.
(iii) $\kappa_{G \wedge u v \backslash v}(Q, R)=k$ for each neighbor u of v.

Theorem 1.1 is about preserving the rank-connectivity of one pair of vertex sets while taking vertex-minors. Here is our main theorem which considers two pairs of vertex sets.

Theorem 1.2. Let G be a graph and Q, R, S, and T be subsets of $V(G)$ such that $Q \cap R=S \cap T=\emptyset$. Let $\kappa_{G}(Q, R)=k, \kappa_{G}(S, T)=\ell$, and $F=V(G)-(Q \cup R \cup S \cup T)$. If $|F| \geq(2 \ell+1) 2^{2 k}$, then there exists a vertex v in F such that at least two of the following hold:
(i) $\kappa_{G \backslash v}(Q, R)=k$ and $\kappa_{G \backslash v}(S, T)=\ell$.
(ii) $\kappa_{G * v \backslash v}(Q, R)=k$ and $\kappa_{G * v \backslash v}(S, T)=\ell$.
(iii) $\kappa_{G \wedge u v \backslash v}(Q, R)=k$ and $\kappa_{G \wedge u v \backslash v}(S, T)=\ell$ for each neighbor u of v.

Since at least two of (i), (ii), and (iii) hold, we deduce that (i) or (iii) holds. Thus, we have the following corollary for pivot-minors.

Corollary 1.3. Let G be a graph and Q, R, S, and T be subsets of $V(G)$ such that $Q \cap R=S \cap T=\emptyset$. Let $\kappa_{G}(Q, R)=k, \kappa_{G}(S, T)=\ell$, and $F=V(G)-(Q \cup R \cup S \cup T)$. If $|F| \geq(2 \ell+1) 2^{2 k}$, then there exists a vertex v in F such that at least one of the following holds:
(i) $\kappa_{G \backslash v}(Q, R)=k$ and $\kappa_{G \backslash v}(S, T)=\ell$.
(ii) $\kappa_{G \wedge u v \backslash v}(Q, R)=k$ and $\kappa_{G \wedge u v \backslash v}(S, T)=\ell$ for each neighbor u of v.

Our proof is inspired by the proof of the following theorem of Chen and Whittle [2] who proved the analog for matroids, which was conjectured by Geelen, and proved for representable matroids by Huynh and van Zwam [6].

Theorem 1.4 (Chen and Whittle [2]). Let M be a matroid and Q, R, S, and T be subsets of $E(M)$ such that $Q \cap R=S \cap T=\emptyset$. Let $\kappa_{G}(Q, R)=k, \kappa_{G}(S, T)=\ell$, and $F=E(M)-(Q \cup R \cup S \cup T)$. If $|F| \geq(2 \ell+1) 2^{2 k+1}$, then there exists an element e of $E(M)$ such that at least one of the following holds:
(i) $\kappa_{M \backslash e}(Q, R)=k$ and $\kappa_{M \backslash e}(S, T)=\ell$.
(ii) $\kappa_{M / e}(Q, R)=k$ and $\kappa_{M / e}(S, T)=\ell$.

In fact, Corollary 1.3 implies Theorem 1.4 restricted to binary matroids by using a relation between pivot-minors of bipartite graphs and minors of matroids [7]. One of the key differences between our proof and the proof of Chen and Whittle is that we use a new way of measuring the local connectivity, $\tilde{\Pi}(S, T)=\frac{1}{2}\left(\rho_{G}(S)+\rho_{G}(T)-\rho_{G}(S \cup T)\right)$. The purpose of having $\frac{1}{2}$ in the previous definition is to ensure that $\tilde{\Pi}_{G}[S, V(G)-S]=\rho_{G}(S)$.

Our theorem is motivated by the following conjecture for pivot-minors. A pivot-minor H of a graph G is proper if $|V(H)|<|V(G)|$. A graph G is an intertwine of graphs H_{1} and H_{2} for pivot-minors if it contains both H_{1} and H_{2} as pivot-minors and no proper pivot-minor of G contains both H_{1} and H_{2} as pivot-minors.

Conjecture 1.5 (Intertwining conjecture for pivot-minors). For graphs G_{1} and G_{2}, there are only finitely many intertwines of G_{1} and G_{2} for pivot-minors.

Figure 1: G and $G \wedge u v$.
Together with Theorem 1.1, Conjecture 1.5 implies Corollary 1.3 without an explicit function. Suppose that G is a graph and Q, R, S, and T are subsets of $V(G)$ such that $Q \cap R=S \cap T=\emptyset$, $\kappa_{G}(Q, R)=k$, and $\kappa_{G}(S, T)=\ell$. By Theorem 1.1, G has pivot-minors G_{1} and G_{2} such that $V\left(G_{1}\right)=$ $Q \cup R, V\left(G_{2}\right)=S \cup T, \rho_{G_{1}}(Q)=k$, and $\rho_{G_{2}}(S)=\ell$. If Conjecture 1.5 holds, then there exists an integer n such that every intertwine of G_{1} and G_{2} for pivot-minors has at most n vertices. If $|V(G)|>n$, then G is not an intertwine of G_{1} and G_{2} for pivot-minors. Hence, there exists a proper pivot-minor H of G having both G_{1} and G_{2} as pivot-minors. Let v be a vertex in $V(G)-V(H)$. Then it is easy to see that (i) or (ii) of Corollary 1.3 holds.

The following conjecture of Oum [8] implies the intertwining conjecture for pivot-minors.
Conjecture 1.6 (Well-quasi-ordering conjecture for pivot-minors). For every infinite sequence G_{1}, G_{2}, \ldots of graphs, there exist $i<j$ such that G_{i} is isomorphic to a pivot-minor of G_{j}.

Although the analog of Conjecture 1.6 for vertex-minors is still open, Geelen and Oum [5] proved the analog of Conjecture 1.5 for vertex-minors.

This paper is organized as follows. In Section 2, we introduce concepts of vertex-minors and pivotminors, and review several inequalities for cut-rank functions. In Section 3, we present simple lemmas on the cut-rank function. In Section 4, we prove Theorem 1.2.

2 Preliminaries

For a graph G and a vertex v of G, let $N_{G}(v)$ be the set of vertices adjacent to v in G. For a graph G and a subset X of $V(G)$, let $G[X]$ be the induced subgraph of G on X. For two sets A and B, let $A \triangle B=(A-B) \cup(B-A)$.

Vertex-minors and pivot-minors Note that for a graph G and a vertex v of G, the local complementation at v replaces $G\left[N_{G}(v)\right]$ with its complement. A graph H is locally equivalent to a graph G if H can be obtained from G by applying a sequence of local complementations. Recall that a graph H is a vertex-minor of a graph G if H can be obtained from G by applying a sequence of local complementations and deletions of vertices.

For an edge $u v$ of a graph G, let $G \wedge u v=G * u * v * u$. Then $G \wedge u v$ is obtained from G by pivoting $u v$. Alternatively, pivoting $u v$ can be understood as an operation that removes an edge $x y$ if x, y are non-adjacent and adds an edge $x y$ otherwise for every pair $(x, y) \in\left(X_{1} \times X_{2}\right) \cup\left(X_{2} \times X_{3}\right) \cup\left(X_{3} \times X_{1}\right)$ where X_{1} is the set of common neighbors of u and v, X_{2} is the set of neighbors of u that are nonneighbors of v, and X_{3} is the set of neighbors of v that are non-neighbors of u and then swaps the labels of u and v, see Oum [7] and Figure 1. The graph $G \wedge u v$ is well defined since $G * u * v * u=G * v * u * v[7$, Corollary 2.2]. A graph H is a pivot-minor of a graph G if H can be obtained from G by a sequence of pivoting and deleting vertices.

Lemma 2.1 (Oum [7]). Let G be a graph and v be a vertex of G. If x and y are neighbors of v in G, then $(G \wedge v x) \backslash v$ is locally equivalent to $(G \wedge v y) \backslash v$.

For a vertex v of G with a neighbor u, we write G / v to denote $G \wedge u v \backslash v$. If v has no neighbor in G, then we let G / v denote $G \backslash v$. Then the graph G / v is well-defined up to local equivalence by Lemma 2.1. The following lemma can be easily deduced from isotropic systems [1], and Geelen and Oum provide an elementary graph-theoretic proof.

Lemma 2.2 (Geelen and Oum [5, Lemma 3.1]). Let G be a graph and v and w be vertices of G. Then the following hold:
(1) If $v \neq w$ and $v w \notin E(G)$, then $(G * w) \backslash v,(G * w * v) \backslash v$, and $(G * w) / v$ are locally equivalent to $G \backslash v, G * v \backslash v$, and G / v respectively.
(2) If $v \neq w$ and $v w \in E(G)$, then $(G * w) \backslash v,(G * w * v) \backslash v$, and $(G * w) / v$ are locally equivalent to $G \backslash v, G / v$, and $(G * v) \backslash v$ respectively.
(3) If $v=w$, then $(G * w) \backslash v,(G * w * v) \backslash v$, and $(G * w) / v$ are locally equivalent to $G * v \backslash v, G \backslash v$, and G / v respectively.

From Lemma 2.2, we can deduce the following lemma easily.
Lemma 2.3. Let H be a vertex-minor of a graph G and v be a vertex of H. Let $H_{1}=H \backslash v$, $H_{2}=H * v \backslash v$, and $H_{3}=H / v$ and let $G_{1}=G \backslash v, G_{2}=G * v \backslash v$, and $G_{3}=G / v$. Then there exists a permutation $\sigma:\{1,2,3\} \rightarrow\{1,2,3\}$ such that H_{i} is a vertex-minor of $G_{\sigma(i)}$ for each $i \in\{1,2,3\}$.

Proof. Since H is a vertex-minor of G, there exist a sequence u_{1}, \ldots, u_{m} of vertices of G and a subset X of $V(G)$ such that $H=G * u_{1} * \cdots * u_{m} \backslash X$. We proceed by induction on m. If $m=0$, then $H=G \backslash X$. Obviously, $H_{i}=G_{i} \backslash X$ for each $i \in\{1,2\}$. We claim that $H_{3}=G_{3} \backslash X$. If there is a neighbor w of v in G which is not in X, then $H_{3}=H \wedge v w \backslash v=(G \wedge v w \backslash v) \backslash X=G_{3} \backslash X$. If $N_{G}(v) \subseteq X$, then $H_{3}=H \backslash v=G \backslash X \backslash v$. Since X contains all the neighbors of v, it is easy to check that $G_{3} \backslash X=((G \wedge u v) \backslash v) \backslash X=G \backslash X \backslash v=H_{3}$.

Therefore we may assume that $m \neq 0$. Let $H^{\prime}=G * u_{1}$. Then $H=H^{\prime} * u_{2} * \cdots * u_{m} \backslash X$, $H_{1}^{\prime}=H^{\prime} \backslash v, H_{2}^{\prime}=H^{\prime} * v \backslash v$, and $H_{3}^{\prime}=H^{\prime} / v$. By the induction hypothesis, there is a permutation $\sigma_{1}:\{1,2,3\} \rightarrow\{1,2,3\}$ such that H_{i} is a vertex-minor of $H_{\sigma_{1}(i)}^{\prime}$ for each $i \in\{1,2,3\}$. By Lemma 2.2, there is a permutation $\sigma_{2}:\{1,2,3\} \rightarrow\{1,2,3\}$ such that H_{j}^{\prime} is locally equivalent to $G_{\sigma_{2}(j)}$ for each $j \in\{1,2,3\}$. Let $\sigma=\sigma_{2} \circ \sigma_{1}$. Then H_{i} is a vertex-minor of $G_{\sigma(i)}$ for each $i \in\{1,2,3\}$.

Cut-rank function and connectivity For a finite set V, a $V \times V$-matrix A, and subsets X and Y of V, let $A[X, Y]$ be the $X \times Y$-submatrix of A. For a graph G, let A_{G} be the adjacency matrix of G over the binary field $\mathrm{GF}(2)$. The cut-rank $\rho_{G}(X)$ of $X \subseteq V(G)$ is defined by

$$
\rho_{G}(X)=\operatorname{rank}\left(A_{G}[X, V(G)-X]\right) .
$$

It is obvious to check that $\rho_{G}(X)=\rho_{G}(V(G)-X)$.
The following lemmas give some properties of the cut-rank function.
Lemma 2.4 (see Oum [7, Proposition 2.6]). If a graph G^{\prime} is locally equivalent to a graph G, then $\rho_{G}(X)=\rho_{G^{\prime}}(X)$ for each $X \subseteq V(G)$.
Lemma 2.5 (see Oum [7, Corollary 4.2]). Let G be a graph and let X, Y be subsets of $V(G)$. Then

$$
\rho_{G}(X)+\rho_{G}(Y) \geq \rho_{G}(X \cap Y)+\rho_{G}(X \cup Y)
$$

Lemma 2.6 (Oum [9, Lemma 2.3]). Let G be a graph and v be a vertex of G. Let X and Y be subsets of $V(G)-\{v\}$. Then the following hold:

$$
\begin{align*}
& \rho_{G \backslash v}(X)+\rho_{G}(Y \cup\{v\}) \geq \rho_{G \backslash v}(X \cap Y)+\rho_{G}(X \cup Y \cup\{v\}) . \tag{S1}\\
& \rho_{G \backslash v}(X)+\rho_{G}(Y) \geq \rho_{G}(X \cap Y)+\rho_{G \backslash v}(X \cup Y) .
\end{align*}
$$

Lemma 2.7. Let G be a graph and v be a vertex of G. For a subset X of $V(G)-\{v\}$, we have
(i) $\rho_{G \backslash v}(X)+1 \geq \rho_{G}(X) \geq \rho_{G \backslash v}(X)$.
(ii) $\rho_{G \backslash v}(X)+1 \geq \rho_{G}(X \cup\{v\}) \geq \rho_{G \backslash v}(X)$.

Proof. Observe that removing a row or a column of a matrix decreases the rank by at most 1 and never increases the rank.

Let G be a graph and S, T be disjoint subsets of $V(G)$. The connectivity between S and T in G, denoted by $\kappa_{G}(S, T)$, is defined by $\min _{S \subseteq X \subseteq V(G)-T} \rho_{G}(X)$.

Lemma 2.8. Let H be a vertex-minor of a graph G and S and T be disjoint subsets of $V(H)$. Then $\kappa_{H}(S, T) \leq \kappa_{G}(S, T)$.

Proof. The conclusion follows from Lemma 2.4 and (i) of Lemma 2.7.
Lemma 2.9 (Oum and Seymour [10, Lemma 1]). Let G be a graph and X_{1}, X_{2}, Y_{1}, and Y_{2} be subsets of $V(G)$ such that $X_{1} \cap X_{2}=Y_{1} \cap Y_{2}=\emptyset$. Then, we have

$$
\kappa_{G}\left(X_{1}, X_{2}\right)+\kappa_{G}\left(Y_{1}, Y_{2}\right) \geq \kappa_{G}\left(X_{1} \cap Y_{1}, X_{2} \cup Y_{2}\right)+\kappa_{G}\left(X_{1} \cup Y_{1}, X_{2} \cap Y_{2}\right) .
$$

The following corollaries are easy consequences of Theorem 1.1.
Corollary 2.10. Let G be a graph and Q, R, S, and T be subsets of $V(G)$ such that $Q \cap R=S \cap T=\emptyset$. Let $F=V(G)-(Q \cup R \cup S \cup T), k=\kappa_{G}(Q, R)$, and $\ell=\kappa_{G}(S, T)$. For every vertex v of F, at least one of the following holds:
(i) $\kappa_{G \backslash v}(Q, R)=k$ and $\kappa_{G \backslash v}(S, T)=\ell$.
(ii) $\kappa_{G * v \backslash v}(Q, R)=k$ and $\kappa_{G * v \backslash v}(S, T)=\ell$.
(iii) $\kappa_{G \wedge u v \backslash v}(Q, R)=k$ and $\kappa_{G \wedge u v \backslash v}(S, T)=\ell$ for each neighbor u of v.

Proof. By Theorem 1.1, at least two graphs H_{1}, H_{2} among $G \backslash v, G * v \backslash v$, and G / v have the property that $\kappa_{H_{1}}(Q, R)=\kappa_{H_{2}}(Q, R)=k$. Again by Theorem 1.1, at least one graph H of H_{1} or H_{2} satisfies the property that $\kappa_{H}(S, T)=\ell$.

Corollary 2.11. Let G be a graph and Q, R, S, and T be subsets of $V(G)$ such that $Q \cap R=S \cap T=\emptyset$. Let F be a subset of $V(G)-(Q \cup R \cup S \cup T), k=\kappa_{G}(Q, R)$, and $\ell=\kappa_{G}(S, T)$. Then there exists a vertex-minor H of G such that $V(H)=V(G)-F, \kappa_{H}(Q, R)=k$, and $\kappa_{H}(S, T)=\ell$.

Proof. We proceed by induction on $|F|$. We may assume that $|F| \geq 1$. Let v be a vertex of F. By Corollary 2.10, there is a graph $G_{1} \in\{G \backslash v, G * v \backslash v, G / v\}$ such that $\kappa_{G_{1}}(Q, R)=k$ and $\kappa_{G_{1}}(S, T)=\ell$. By the induction hypothesis, there is a vertex-minor H of G_{1} such that $V(H)=V\left(G_{1}\right)-(F-\{v\})=$ $V(G)-F, \kappa_{H}(Q, R)=\kappa_{G_{1}}(Q, R)=k$, and $\kappa_{H}(S, T)=\kappa_{G_{1}}(S, T)=\ell$. Therefore, the conclusion follows since H is a vertex-minor of G.

The following lemma is the analog of [3, Lemma 4.7].
Lemma 2.12. Let G be a graph and S and T be disjoint subsets of $V(G)$. Then there exist $S_{1} \subseteq S$ and $T_{1} \subseteq T$ such that $\left|S_{1}\right|=\left|T_{1}\right|=\kappa_{G}\left(S_{1}, T_{1}\right)=\kappa_{G}(S, T)$.

Proof. By Lemma 2.9, there exists a matroid M_{1} on $V(G)-T$ whose rank function is $\kappa_{G}(X, T)$ for each subset X of $V(G)-T$. Let S_{1} be a maximal independent set of M_{1} contained in S. Then we have $\left|S_{1}\right|=\kappa_{G}\left(S_{1}, T\right)=\kappa_{G}(S, T)$. By Lemma 2.9, there is a matroid M_{2} on $V(G)-S_{1}$ whose rank function is $\kappa_{G}\left(X, S_{1}\right)$ for every subset X of $V(G)-S_{1}$. Let T_{1} be a maximal independent set of M_{2} contained in T. Then $\left|T_{1}\right|=\kappa_{G}\left(T_{1}, S_{1}\right)=\kappa_{G}\left(T, S_{1}\right)$ and so we finish the proof.

3 Lemmas on the cut-rank function.

In this section, we present simple lemmas on the cut-rank function. A subset X of $V(G)$ is an (S,T)-separating set of order k in G if $S \subseteq X \subseteq V(G)-T$ and $\rho_{G}(X)=k$.

For a graph G and disjoint subsets S, T of $V(G)$, let $\tilde{\Pi}_{G}[S, T]=\frac{1}{2}\left(\rho_{G}(S)+\rho_{G}(T)-\rho_{G}(S \cup T)\right)$.
Lemma 3.1. Let G be a graph and S and T be disjoint subsets of $V(G)$. If A and B are (S, T) separating sets of order $k:=\kappa_{G}(S, T)$ in G, then both $A \cap B$ and $A \cup B$ are (S, T)-separating sets of order k in G.

Proof. Since both $A \cap B$ and $A \cup B$ are (S, T)-separating sets, $\rho_{G}(A \cap B) \geq k$ and $\rho_{G}(A \cup B) \geq k$. By Lemma 2.5,

$$
2 k=\rho_{G}(A)+\rho_{G}(B) \geq \rho_{G}(A \cup B)+\rho_{G}(A \cap B) \geq 2 k
$$

and therefore $\rho_{G}(A \cup B)=\rho_{G}(A \cap B)=k$.
Lemma 3.2. Let G be a graph and S and T be disjoint subsets of $V(G)$ such that $\rho_{G}(S)=\kappa_{G}(S, T)$. Let U be a subset of S. Let v be a vertex in $V(G)-(S \cup T)$. If $\kappa_{G \backslash v}(U, T)<\kappa_{G}(U, T)$, then $\kappa_{G \backslash v}(S, T)<\kappa_{G}(S, T)$.
Proof. Let $k=\rho_{G}(S)=\kappa_{G}(S, T)$. Suppose that $\kappa_{G \backslash v}(S, T)=k$. Let X be a (U, T)-separating set in $G \backslash v$. By (S2) of Lemma 2.6,

$$
\rho_{G \backslash v}(X)+\rho_{G}(S) \geq \rho_{G}(X \cap S)+\rho_{G \backslash v}(X \cup S)
$$

and since $X \cup S$ is (S, T)-separating in $G \backslash v$, we have $\rho_{G \backslash v}(X \cup S) \geq k=\rho_{G}(S)$. Hence, we deduce that $\rho_{G \backslash v}(X) \geq \rho_{G}(X \cap S) \geq \kappa_{G}(U, T)$. So $\kappa_{G \backslash v}(U, T) \geq \kappa_{G}(U, T)$, contradicting the assumption.

Lemma 3.3. Let G be a graph and X_{2} and Y be disjoint subsets of $V(G)$. Let X_{1} be a subset of X_{2}. Then $\tilde{\Pi}_{G}\left[X_{1}, Y\right] \leq \tilde{\Pi}_{G}\left[X_{2}, Y\right]$.

Proof. Since $X_{1} \subseteq X_{2}$, by Lemma 2.5, we have

$$
\begin{aligned}
\rho_{G}\left(X_{2}\right)+\rho_{G}\left(X_{1} \cup Y\right) & \geq \rho_{G}\left(X_{2} \cup\left(X_{1} \cup Y\right)\right)+\rho_{G}\left(X_{2} \cap\left(X_{1} \cup Y\right)\right) \\
& =\rho_{G}\left(X_{2} \cup Y\right)+\rho_{G}\left(X_{1}\right) .
\end{aligned}
$$

Hence, $2 \tilde{\Pi}_{G}\left(X_{1}, Y\right)=\rho_{G}\left(X_{1}\right)+\rho_{G}(Y)-\rho_{G}\left(X_{1} \cup Y\right) \leq \rho_{G}\left(X_{2}\right)+\rho_{G}(Y)-\rho_{G}\left(X_{2} \cup Y\right)=2 \tilde{\Pi}_{G}\left(X_{2}, Y\right)$.
Lemma 3.4. Let G be a graph and Q and R be disjoint subsets of $V(G)$ such that $\rho_{G}(Q)=\kappa_{G}(Q, R)$. Let v be a vertex of $V(G)-(Q \cup R)$ such that $\kappa_{G \backslash v}(Q, R)<\kappa_{G}(Q, R)$. Then the following hold:
(Q1) $\rho_{G}(Q \cup\{v\}) \geq \rho_{G}(Q)$.
(Q2) If $\rho_{G \backslash v}(Q)=\rho_{G}(Q)$, then $\rho_{G}(Q \cup\{v\})=\rho_{G}(Q)+1$.
Proof. (Q1) holds clearly since $\rho_{G}(Q)=\kappa_{G}(Q, R)$.
To prove (Q2), let $k=\kappa_{G}(Q, R)$. Since $\kappa_{G \backslash v}(Q, R)<k$, there is a subset X of $V(G)$ such that $Q \subseteq X \subseteq V(G)-(R \cup\{v\})$ and $\rho_{G \backslash v}(X) \leq k-1$. Then $\rho_{G \backslash v}(X)<k \leq \rho_{G}(X \cup\{v\})$ because $Q \subseteq X \cup\{v\} \subseteq V(G)-R$ and by (S1) of Lemma 2.6, we have that

$$
\rho_{G \backslash v}(X)+\rho_{G}(Q \cup\{v\}) \geq \rho_{G \backslash v}(Q)+\rho_{G}(X \cup\{v\})>\rho_{G \backslash v}(Q)+\rho_{G \backslash v}(X) .
$$

Hence, by Lemma 2.7, $\rho_{G}(Q \cup\{v\})=\rho_{G \backslash v}(Q)+1=\rho_{G}(Q)+1$.

4 Proof of Theorem 1.2

For disjoint subsets S and T of vertices of a graph G, a vertex $v \in V(G)-(S \cup T)$ is (S, T)-flexible if $\kappa_{G \backslash v}(S, T)=\kappa_{G * v \backslash v}(S, T)=\kappa_{G \wedge u v \backslash v}(S, T)=\kappa_{G}(S, T)$ for each $u \in N_{G}(v)$. Note that every isolated vertex is (S, T)-flexible.

Lemma 4.1. Let S, T be disjoint sets of vertices of a graph G. If a vertex v is (S, T)-flexible in G, then it is (S, T)-flexible in every graph locally equivalent to G.

Proof. Let G^{\prime} be a graph locally equivalent to G. Let $k=\kappa_{G}(S, T), G_{1}=G \backslash v, G_{2}=G * v \backslash v$, and $G_{3}=G / v$. Since v is (S, T)-flexible in G, we have $\kappa_{G_{1}}(S, T)=\kappa_{G_{2}}(S, T)=\kappa_{G_{3}}(S, T)=k$. Let $H_{1}=G^{\prime} \backslash v, H_{2}=G^{\prime} * v \backslash v$, and $H_{3}=G^{\prime} / v$. Then by Lemma 2.3, there is a permutation $\sigma:\{1,2,3\} \rightarrow\{1,2,3\}$ such that H_{i} is locally equivalent to $G_{\sigma(i)}$ for each $i \in\{1,2,3\}$. Hence, by Lemma 2.4, we have $\kappa_{H_{i}}(S, T)=\kappa_{G_{\sigma(i)}}(S, T)=k$ for each $i \in\{1,2,3\}$. Therefore, v is (S, T)-flexible in G^{\prime}.

The following lemma finds a nested set of (S, T)-separating sets of order $\kappa_{G}(S, T)$ for disjoint sets S and T of vertices of a graph G.

Lemma 4.2. Let G be a graph and S and T be disjoint subsets of $V(G)$. Let $k=\kappa_{G}(S, T)$ and $F \subseteq V(G)-(S \cup T)$ be a set of n vertices which are not (S, T)-flexible. Then there exist an ordering f_{1}, \ldots, f_{n} of vertices in F and a sequence A_{1}, \ldots, A_{n} of (S, T)-separating sets of order k in G such that the following hold:
(i) $A_{i} \subseteq A_{i+1}$ for each $1 \leq i \leq n-1$.
(ii) $A_{i} \cap F=\left\{f_{1}, \ldots, f_{i}\right\}$ for each $1 \leq i \leq n$.

Proof. We prove by induction on $n=|F|$. We may assume that $n \geq 1$. We first claim that for every $v \in F$, there exists an (S, T)-separating set of order k in G containing v. Since v is not (S, T)-flexible in G, there exists a graph $G^{\prime} \in\{G \backslash v, G * v \backslash v, G / v\}$ such that $\kappa_{G^{\prime}}(S, T)<\kappa_{G}(S, T)$. So there is a subset A of $V(G)-\{v\}$ such that $S \subseteq A \subseteq V(G)-(T \cup\{v\})$ and $\rho_{G^{\prime}}(A) \leq k-1$. There exists a graph H locally equivalent to G such that $H \backslash v=G^{\prime}$. Therefore, since $S \subseteq A \cup\{v\} \subseteq V(G)-T$, by Lemmas 2.4 and 2.7, we have $k \leq \rho_{G}(A \cup\{v\})=\rho_{H}(A \cup\{v\}) \leq \rho_{H \backslash v}(A)+1=\rho_{G^{\prime}}(A)+1 \leq k$ and so $\rho_{G}(A \cup\{v\})=k$. Now it follows that $A \cup\{v\}$ is an (S,T)-separating set of order k in G containing v.

For each $u \in F$, let A_{u} be an (S, T)-separating set of order k in G containing u such that $\left|A_{u}\right|$ is minimum. Let x be a vertex of F such that $\left|A_{x}\right| \leq\left|A_{u}\right|$ for each $u \in F$.

Now we claim that $A_{x} \cap F=\{x\}$. Suppose that there exists an element $y \in\left(A_{x}-\{x\}\right) \cap F$. Then, by Lemma 3.1, both $A_{x} \cap A_{y}$ and $A_{x} \cup A_{y}$ are (S, T)-separating sets of order k in G. Hence, $A_{y} \subseteq A_{x}$ by the choice of A_{y}. Then we have $A_{x}=A_{y}$ because $\left|A_{x}\right| \leq\left|A_{u}\right|$ for every $u \in F$. Since y is not (S, T)-flexible, there exists a graph $G^{\prime \prime} \in\{G \backslash y, G * y \backslash y, G / y\}$ such that $\kappa_{G^{\prime \prime}}(S, T)<\kappa_{G}(S, T)$. By Lemma 2.4, we may assume that $G^{\prime \prime}=G \backslash y$. Then there exists $S \subseteq X \subseteq V(G)-(T \cup\{y\})$ such that $\rho_{G \backslash y}(X)=k-1$. By Lemma 2.7, $\rho_{G}(X)=k$ and $\rho_{G}(X \cup\{y\})=k$. So $X \cup\{y\}$ is an (S,T)-separating set of order k in G containing y. By Lemma 3.1, $A_{y} \cap(X \cup\{y\})$ is an (S, T)-separating set of order k in G. Therefore, by the choice of A_{y}, we have $A_{y} \subseteq X \cup\{y\}$ and so $A_{y}-\{y\} \subseteq X$. By applying (S1) of Lemma 2.6,

$$
\begin{aligned}
2 k-1 & =\rho_{G \backslash y}(X)+\rho_{G}\left(A_{y}\right)=\rho_{G \backslash y}(X)+\rho_{G}\left(\left(A_{y}-\{y\}\right) \cup\{y\}\right) \\
& \geq \rho_{G \backslash y}\left(X \cap\left(A_{y}-\{y\}\right)\right)+\rho_{G}\left(X \cup\left(A_{y}-\{y\}\right) \cup\{y\}\right) \\
& =\rho_{G \backslash y}\left(A_{y}-\{y\}\right)+\rho_{G}(X \cup\{y\}) .
\end{aligned}
$$

Since $\rho_{G}(X \cup\{y\})=k$, we know that $\rho_{G \backslash y}\left(A_{y}-\{y\}\right) \leq k-1$ and so $\rho_{G}\left(A_{y}-\{y\}\right) \leq k$ by Lemma 2.7. Recall that $S \subseteq A_{y}-\{y\} \subseteq V(G)-T$ and $k=\kappa_{G}(S, T)$. Therefore, $\rho_{G}\left(A_{y}-\{y\}\right)=k$. Since $A_{x}=A_{y}$, this is a contradiction to the minimality of A_{x}. Thus $A_{x} \cap F=\{x\}$.

Let $f_{1}=x$ and $A_{1}=A_{x}$. Then $k=\kappa_{G}(S, T) \leq \kappa_{G}\left(A_{1}, T\right) \leq \rho_{G}\left(A_{1}\right)=k$ and therefore we have that $\kappa_{G}\left(A_{1}, T\right)=k$. By Lemmas 2.4 and 3.2, no vertex of $F-\left\{f_{1}\right\}$ is $\left(A_{1}, T\right)$-flexible. Hence, by
the induction hypothesis, there exist an ordering f_{2}, \ldots, f_{n} of elements of $F-\left\{f_{1}\right\}$ and a sequence A_{2}, \ldots, A_{n} of $\left(A_{1}, T\right)$-separating sets of order k in G such that (i) and (ii) hold.

So we finish the proof with the fact that A_{2}, \ldots, A_{n} are also (S, T)-separating sets of order k in G.

Our proof of Theorem 1.2 consists of two parts. In the first part, we will assume that S and T are small and prove the theorem. In the second part, we will show how to reduce the size of S and T. The following lemma will be used at the key step in the first part.

Lemma 4.3. Let G be a graph and Q, R, S, and T be subsets of $V(G)$ such that $Q \cap R=S \cap T=\emptyset$ and $S \cup T \subseteq Q \cup R$. Let $F=V(G)-(Q \cup R) \neq \emptyset$ and $k=\kappa_{G}(Q, R)$ and $\ell=\kappa_{G}(S, T)$. If $\rho_{G}(Q)=\rho_{G}(R)=k$ and no vertex of F is (Q, R)-flexible or (S, T)-flexible, then (1) or (2) holds:
(1) There exists a vertex v of F such that at least two of the following hold:
(i) $\kappa_{G \backslash v}(Q, R)=k$ and $\kappa_{G \backslash v}(S, T)=\ell$.
(ii) $\kappa_{G * v \backslash v}(Q, R)=k$ and $\kappa_{G * v \backslash v}(S, T)=\ell$.
(iii) $\kappa_{G \wedge u v \backslash v}(Q, R)=k$ and $\kappa_{G \wedge u v \backslash v}(S, T)=\ell$ for each $u \in N_{G}(v)$.
(2) There exist disjoint subsets Q^{\prime} and R^{\prime} of $V(G)$ such that the following hold:
(i) $Q \subseteq Q^{\prime}, R \subseteq R^{\prime}$ and $\rho_{G}\left(Q^{\prime}\right)=\rho_{G}\left(R^{\prime}\right)=k$.
(ii) $\tilde{\Pi}_{G}\left[Q^{\prime}, R^{\prime}\right] \geq \tilde{\Pi}_{G}[Q, R]+\frac{1}{2}$.
(iii) $\left|V(G)-\left(Q^{\prime} \cup R^{\prime}\right)\right| \geq\left\lfloor\frac{1}{2}|F|\right\rfloor$.

Proof. Assume that (1) does not hold. Let $n=|F|$. Since no vertex of F is (Q, R)-flexible, by Lemma 4.2, there exists an ordering f_{1}, \ldots, f_{n} of vertices of F such that $Q \cup\left\{f_{1}, \ldots, f_{i}\right\}$ is a (Q, R) seperating set of order k in G for each $i \in\{1, \ldots, n\}$. Let $A_{i}=Q \cup\left\{f_{1}, \ldots, f_{i}\right\}$ for each $1 \leq i \leq n$.

No vertex of F is (S, T)-flexible and so, by Lemma 4.2, there exist a vertex g in F and an (S, T) seperating set C of order ℓ in G such that $C-(Q \cup R)=\{g\}$.

By Theorem 1.1, there are graphs $G_{1}^{\prime}, G_{2}^{\prime} \in\{G \backslash g, G * g \backslash g, G / g\}$ such that $\kappa_{G_{i}^{\prime}}(S, T)=\kappa_{G}(S, T)$ for $i \in\{1,2\}$. Since (1) does not hold, there exists $G^{\prime} \in\left\{G_{1}^{\prime}, G_{2}^{\prime}\right\}$ such that $\kappa_{G^{\prime}}(Q, R)<\kappa_{G}(Q, R)$. Then by Lemma 2.4, we may assume that $G^{\prime}=G \backslash g$.

Since $\kappa_{G \backslash g}(S, T)=\ell$ and $S \subseteq C-\{g\} \subseteq V(G \backslash g)-T$, we have $\ell \leq \rho_{G \backslash g}(C-\{g\}) \leq \rho_{G}(C)=\ell$ and therefore $\rho_{G \backslash g}(C-\{g\})=\rho_{G}(C)$. Since $C-\{g\} \subseteq Q \cup R$, by (S1) of Lemma 2.6,

$$
\begin{aligned}
\rho_{G \backslash g}(Q \cup R)+\rho_{G}(C) & \geq \rho_{G \backslash g}((Q \cup R) \cap C)+\rho_{G}((Q \cup R) \cup C) \\
& =\rho_{G \backslash g}(C-\{g\})+\rho_{G}(Q \cup R \cup\{g\}) .
\end{aligned}
$$

Hence $\rho_{G}(Q \cup R \cup\{g\}) \leq \rho_{G \backslash g}(Q \cup R)$ because $\rho_{G \backslash g}(C-\{g\})=\rho_{G}(C)$. By Lemma 2.7, $\rho_{G \backslash g}(Q \cup R) \leq$ $\rho_{G}(Q \cup R \cup\{g\})$ and therefore $\rho_{G \backslash g}(Q \cup R)=\rho_{G}(Q \cup R \cup\{g\})$.

Now we claim that $\tilde{\Pi}_{G}(Q \cup\{g\}, R) \geq \tilde{\Pi}_{G}(Q, R)+\frac{1}{2}$. Observe that it is equivalent to show that

$$
\rho_{G}(Q \cup\{g\})+\rho_{G}(R)-\rho_{G}(Q \cup R \cup\{g\}) \geq \rho_{G}(Q)+\rho_{G}(R)-\rho_{G}(Q \cup R)+1 .
$$

We have $\rho_{G}(Q \cup R) \geq \rho_{G \backslash g}(Q \cup R)=\rho_{G}(Q \cup R \cup\{g\})$ and, by $(\mathrm{Q} 1)$ of Lemma 3.4, $\rho_{G}(Q \cup\{g\}) \geq \rho_{G}(Q)$. Therefore, it is enough to prove that $\rho_{G}(Q \cup R) \geq \rho_{G}(Q \cup R \cup\{g\})+1$ or $\rho_{G}(Q \cup\{g\}) \geq \rho_{G}(Q)+1$. Suppose that $\rho_{G}(Q \cup R)=\rho_{G}(Q \cup R \cup\{g\})=\rho_{G \backslash g}(Q \cup R)$. Then, by (S2) of Lemma 2.6, we have

$$
\rho_{G \backslash g}(Q)+\rho_{G}(Q \cup R) \geq \rho_{G \backslash g}(Q \cup R)+\rho_{G}(Q) .
$$

So $\rho_{G \backslash g}(Q) \geq \rho_{G}(Q)$ and we have $\rho_{G \backslash g}(Q)=\rho_{G}(Q)$ by Lemma 2.7. Then by (Q2) of Lemma 3.4, $\rho_{G}(Q \cup\{g\})=\rho_{G}(Q)+1$, proving the claim.

Similarly, we have $\tilde{\Pi}_{G}(Q, R \cup\{g\}) \geq \tilde{\Pi}_{G}(Q, R)+\frac{1}{2}$. Let i be an integer such that $f_{i}=g$ and let

$$
\left(Q^{\prime}, R^{\prime}\right)= \begin{cases}\left(A_{i}, R\right) & \text { if } i \leq\left\lfloor\frac{n}{2}\right\rfloor \\ \left(Q, V(G)-A_{i-1}\right) & \text { otherwise } .\end{cases}
$$

Then by Lemma 3.3,

$$
\tilde{\Pi}_{G}\left(Q^{\prime}, R^{\prime}\right) \geq \min \left(\tilde{\Pi}_{G}(Q \cup\{g\}, R), \tilde{\Pi}_{G}(Q, R \cup\{g\})\right) \geq \tilde{\Pi}_{G}(Q, R)+\frac{1}{2} .
$$

So (ii) holds and (i) and (iii) hold by the construction.
Now we are ready to prove Theorem 1.2 when S and T are small.
Proposition 4.4. Let G be a graph and Q, R, S, and T be subsets of $V(G)$ such that $Q \cap R=S \cap T=\emptyset$ and $F=V(G)-(Q \cup R \cup S \cup T)$. Let $k=\kappa_{G}(Q, R)$ and $\ell=\kappa_{G}(S, T)$. If $|S|=|T|=\ell$ and $|F| \geq(2 \ell+1) 2^{2 k}$, then there is a vertex $v \in F$ such that at least two of the following hold:
(1) $\kappa_{G \backslash v}(Q, R)=k$ and $\kappa_{G \backslash v}(S, T)=\ell$.
(2) $\kappa_{G * v \backslash v}(Q, R)=k$ and $\kappa_{G * v \backslash v}(S, T)=\ell$.
(3) $\kappa_{G \wedge u v \backslash v}(Q, R)=k$ and $\kappa_{G \wedge u v \backslash v}(S, T)=\ell$ for every neighbor u of v.

Proof. If F has a vertex which is (S, T)-flexible or (Q, R)-flexible, then our conclusion follows by Theorem 1.1. So we can assume that no vertex of F is (S, T)-flexible or (Q, R)-flexible. Let $n=|F|$.

By Lemma 4.2, there exist an ordering f_{1}, \ldots, f_{n} of vertices of F and a sequence A_{1}, \ldots, A_{n} of (Q, R)-seperating sets of order k in G satisfying the following:

- $A_{i} \subseteq A_{i+1}$ for each $1 \leq i \leq n-1$.
- $A_{i} \cap F=\left\{f_{1}, \ldots, f_{i}\right\}$ for each $1 \leq i \leq n$.

For each $1 \leq i \leq n$, let $B_{i}=V(G)-A_{i}$. Let $q=2^{2 k}$ and $A_{0}=Q$. For $1 \leq i \leq 2 \ell+1$, let $X_{i}=A_{i q}-A_{(i-1) q}$. Since $|S|=|T|=\ell$, there exists $1 \leq m \leq 2 \ell+1$ such that $X_{m} \cap(S \cup T)=\emptyset$. Let $j=(m-1) q$. Then we have $Q \cup R \cup S \cup T \subseteq A_{j} \cup B_{j+q}$.

Assume that our conclusion fails and so every vertex of F satisfies at most one of (1), (2), and (3). We claim that, for each $1 \leq i \leq 2 k+2$, there exist disjoint subsets Q_{i} and R_{i} of $V(G)$ satisfying the following.
(i) $Q \subseteq Q_{i}, R \subseteq R_{i}$, and $\rho_{G}\left(Q_{i}\right)=\rho_{G}\left(R_{i}\right)=k$.
(ii) $\tilde{\Pi}_{G}\left[Q_{i}, R_{i}\right] \geq \frac{i-1}{2}$.
(iii) $\left|V(G)-\left(Q_{i} \cup R_{i}\right)\right| \geq\left\lfloor 2^{2 k+1-i}\right\rfloor$.

We proceed by the induction on i. Let $Q_{1}=A_{j}, R_{1}=B_{j+q}$, and $F_{1}=V(G)-\left(Q_{1} \cup R_{1}\right)$. Then $\left|F_{1}\right|=2^{2 k}$ and so (Q_{1}, R_{1}) satisfies the claim. Therefore we may assume that $i \geq 2$. By the induction hypothesis, there exist disjoint subsets Q_{i-1} and R_{i-1} of $V(G)$ satisfying (i), (ii), and (iii) for $i-1$. By Lemmas 2.4 and 3.2, no vertex of $V(G)-\left(Q_{i-1} \cup R_{i-1}\right)$ is ($\left.Q_{i-1}, R_{i-1}\right)$-flexible. If there is a vertex v of $V(G)-\left(Q_{i-1} \cup R_{i-1}\right)$ satisfying (1) of Lemma 4.3 for two pairs (Q_{i-1}, R_{i-1}) and (S, T), then by Lemmas 2.4 and 3.2, v satisfies at least two of (1), (2), and (3), contradicting our assumption. So we may assume that $V(G)-\left(Q_{i-1} \cup R_{i-1}\right)$ has no such vertex. Hence, by Lemma 4.3, there exist disjoint subsets Q_{i} and R_{i} of $V(G)$ such that the following hold:
(a) $Q_{i-1} \subseteq Q_{i}, R_{i-1} \subseteq R_{i}$ and $\rho_{G}\left(Q_{i}\right)=\rho_{G}\left(R_{i}\right)=k$.
(b) $\tilde{\Pi}_{G}\left[Q_{i}, R_{i}\right] \geq \tilde{\Pi}_{G}\left[Q_{i-1}, R_{i-1}\right]+\frac{1}{2} \geq \frac{i-2}{2}+\frac{1}{2}=\frac{i-1}{2}$.
(c) $\left|V(G)-\left(Q_{i} \cup R_{i}\right)\right| \geq\left\lfloor\frac{1}{2}\left|V(G)-\left(Q_{i-1} \cup R_{i-1}\right)\right|\right\rfloor \geq\left\lfloor\frac{1}{2} \cdot 2^{2 k+2-i}\right\rfloor=\left\lfloor 2^{2 k+1-i}\right\rfloor$.

This proves our claim. Then by (ii) and Lemma 3.3, $k+\frac{1}{2} \leq \tilde{\Pi}_{G}\left(Q_{2 k+2}, R_{2 k+2}\right) \leq \tilde{\Pi}_{G}\left(Q_{2 k+2}, V(G)-\right.$ $\left.Q_{2 k+2}\right)=\rho_{G}\left(Q_{2 k+2}\right)=k$, which is a contradiction. Therefore our conclusion holds.

Now we are ready to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. By Lemma 2.12, there exist $S_{1} \subseteq S$ and $T_{1} \subseteq T$ such that $\left|S_{1}\right|=\left|T_{1}\right|=$ $\kappa_{G}\left(S_{1}, T_{1}\right)=\kappa_{G}(S, T)$. Let $X=(S \cup T)-\left(Q \cup R \cup S_{1} \cup T_{1}\right)$. By Corollary 2.11, there is a vertexminor H of G such that $V(H)=V(G)-X, \kappa_{H}(Q, R)=k$, and $\kappa_{H}\left(S_{1}, T_{1}\right)=\ell$.

For a vertex v of $V(H)-\left(Q \cup R \cup S_{1} \cup T_{1}\right)$, let $H_{1}^{v}=H \backslash v, H_{2}^{v}=H * v \backslash v$, and $H_{3}^{v}=H / v$ and let $G_{1}^{v}=$ $G \backslash v, G_{2}^{v}=G * v \backslash v$, and $G_{3}^{v}=G / v$. Then by Lemma 2.3, there exists a permutation $\sigma_{v}:\{1,2,3\} \rightarrow$ $\{1,2,3\}$ such that H_{i}^{v} is a vertex-minor of $G_{\sigma(i)}^{v}$ for each $i \in\{1,2,3\}$. By Lemma 2.8, $\kappa_{H_{i}^{v}}\left(S_{1}, T_{1}\right) \leq$ $\kappa_{G_{\sigma(i)}^{v}}\left(S_{1}, T_{1}\right) \leq \kappa_{G_{\sigma(i)}^{v}}^{v}(S, T) \leq \kappa_{G}(S, T)=\ell$ and $\kappa_{H_{i}^{v}}(Q, R) \leq \kappa_{G_{\sigma(i)}^{v}}(Q, R) \leq \kappa_{G}(Q, R)=k$ for each $i \in\{1,2,3\}$.

Since $\left|V(H)-\left(Q \cup R \cup S_{1} \cup T_{1}\right)\right|=|F| \geq(2 \ell+1) 2^{2 k}$, by Proposition 4.4, there exist a vertex v of $V(H)-\left(Q \cup R \cup S_{1} \cup T_{1}\right)=F$ and $i, j \in\{1,2,3\}$ such that $i \neq j$ and $\kappa_{H_{i}^{v}}(Q, R)=\kappa_{H_{j}^{v}}(Q, R)=k$ and $\kappa_{H_{i}^{v}}\left(S_{1}, T_{1}\right)=\kappa_{H_{j}^{v}}\left(S_{1}, T_{1}\right)=\ell$. Therefore, $\kappa_{G_{\sigma(i)}^{v}}(S, T)=\kappa_{G_{\sigma(j)}^{v}}(S, T)=\ell$ and $\kappa_{G_{\sigma(i)}^{v}}(Q, R)=$ $\kappa_{G_{\sigma(j)}^{v}}(Q, R)=k$.

Acknowledgements. The authors would like to thank the anonymous reviewers for their careful reviews and suggestions.

References

[1] André Bouchet, Graphic presentations of isotropic systems, J. Combin. Theory Ser. B 45 (1988), no. 1, 58-76. MR 953895
[2] Rong Chen and Geoff Whittle, Intertwining connectivity in matroids, SIAM J. Discrete Math. 28 (2014), no. 3, 1402-1404. MR 3256801
[3] Jim Geelen, Bert Gerards, and Geoff Whittle, Excluding a planar graph from GF (q)-representable matroids, J. Combin. Theory Ser. B 97 (2007), no. 6, 971-998. MR 2354713
[4] Jim Geelen, O-joung Kwon, Rose McCarty, and Paul Wollan, The grid theorem for vertex-minors, J. Combin. Theory Ser. B (2020), https://doi.org/10.1016/j.jctb.2020.08.004.
[5] Jim Geelen and Sang-il Oum, Circle graph obstructions under pivoting, J. Graph Theory 61 (2009), no. 1, 1-11. MR 2514095
[6] Tony Huynh and Stefan H. M. van Zwam, Intertwining connectivities in representable matroids, SIAM J. Discrete Math. 28 (2014), no. 1, 188-196. MR 3163234
[7] Sang-il Oum, Rank-width and vertex-minors, J. Combin. Theory Ser. B 95 (2005), no. 1, 79-100. MR 2156341
\qquad , Rank-width: algorithmic and structural results, Discrete Appl. Math. 231 (2017), 15-24. MR 3695267
[9] \qquad , Rank connectivity and pivot-minors of graphs, submitted, arXiv:2011.03205, 2020.
[10] Sang-il Oum and Paul Seymour, Testing branch-width, J. Combin. Theory Ser. B 97 (2007), no. 3, 385-393. MR 2305892
[11] William T. Tutte, Menger's theorem for matroids, J. Res. Nat. Bur. Standards Sect. B 69B (1965), 49-53. MR 179108

[^0]: *Supported by the Institute for Basic Science (IBS-R029-C1).
 ${ }^{1}$ For two sets A and B, an $A \times B$-matrix denotes an $|A| \times|B|$ matrix whose rows and columns are indexed by the elements of A and B respectively.

