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Abstract

Recently, the saturation problem of 0-1 matrices gained a lot of attention. This
problem can be regarded as a saturation problem of ordered bipartite graphs. Moti-
vated by this, we initiate the study of the saturation problem of ordered and cyclically
ordered graphs.

We prove that dichotomy holds also in these two cases, i.e., for a (cyclically)
ordered graph its saturation function is either bounded or linear. We also determine
the order of magnitude for large classes of (cyclically) ordered graphs, giving infi-
nite many examples exhibiting both possible behaviours, answering a problem of
Pálvölgyi. In particular, in the ordered case we define a natural subclass of ordered
matchings, the class of linked matchings, and we start their systematic study, con-
centrating on linked matchings with at most three links and prove that many of
them have bounded saturation function.

In both the ordered and cyclically ordered case we also consider the semisatura-
tion problem, where dichotomy holds as well and we can even fully characterize the
graphs that have bounded semisaturation function.
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1 Introduction

Extremal problems are among the most studied topics in combinatorics. We are usually
interested in determining or estimating the maximum density (this is called the extremal
function) of combinatorial objects avoiding a given substructure that we call the forbidden
substructure. The most important case is the case of graphs where density means the
number of edges. The earliest example is the classic problem of determining the maximum
number of edges in a graph without a triangle by Mantel or more generally without a
complete graph on k vertices by Turán. Since then extremal problems are very popular
and have a huge literature. Here we have no space to discuss these results in more detail,
in the rest we only concentrate on the saturation problem.

In a saturation problem, instead of the maximum density of an avoiding structure, we
are interested in estimating the minimum density of an avoiding structure such that ex-
tending it in an arbitrary way it introduces the forbidden substructure. Another common
variant of saturation problems is the so-called semisaturation1 problem [13], in which we
are interested in the smallest density of a (not necessarily avoiding) structure such that
extending it in an arbitrary way it introduces a new copy of the forbidden substructure. In
case of graphs, e.g., a saturation problem is to determine the minimum number of edges
of a graph which does not contain a triangle but adding an arbitrary edge introduces a
triangle. Further, it is a semisaturation problem to determine the minimum number of
edges of a graph (which may contain a triangle) such that adding an arbitrary edge creates
a new triangle. Erdős, Hajnal and Moon were the first to investigate such functions [9],
determining the minimal numbers when the forbidden structure is a complete graph on k
vertices. For a survey of saturation problems of graphs see [6].

Besides graphs there are many further settings where in addition to the extremal prob-
lems the saturation problems are also investigated, such as set systems and 0-1 matrices
among others [7, 8, 10, 11, 15, 19]. The case of 0-1 matrices leads us to the case of ordered
graphs, our aim is to investigate their saturation functions.

1.1 Saturation functions

Before proceeding further we define the notions that interest us. An ordered (resp.
cyclically ordered) graph is a graph whose vertex set is linearly (resp. cyclically) ordered. A

1Semisaturation is also sometimes called strong saturation or oversaturation.

2



matching is a graph in which every vertex has a degree one. The interval chromatic number
of a (cyclically) ordered graph G is the minimum number of intervals the (cyclically)
ordered vertex set of G can be partitioned into so that no two vertices belonging to the
same interval are adjacent in H. The graphs we deal with are simple, i.e., have no parallel
nor loop edges. When we say that we add an edge e to some graph G we always assume
that e is not an edge of G.

For a non-empty graph G let sat(n,G) be the minimum number of edges in a graph
H on n vertices, with the property that it does not contain G as a subgraph but adding
an arbitrary edge to H creates a copy of G. For an ordered (resp. cyclically ordered) non-
empty graph G let sat<(n,G) (resp. sat�(n,G)) be the number of edges in an ordered
(resp. cyclically ordered) graph H on vertex set of size n and minimum number of edges,
with the property that it does not contain G as an ordered (resp. cyclically ordered)
subgraph but adding an arbitrary edge to H creates a copy of G. The case of 0-1 matrices
is also relevant for us, we define it equivalently on ordered bipartite graphs. For an ordered
non-empty graph G with interval chromatic number 2 let sat0-1(n,G) be the number of
edges in an ordered bipartite graph H on n + n vertices with all edges between the first
n and the last n vertices2 and with minimum number of edges, with the property that it
does not contain G as an ordered subgraph but adding an arbitrary edge to H between
its two parts creates a copy of G3. Note that we may have defined similarly the bipartite
version of the unordered graph saturation, but as we won’t discuss it in detail, this is
omitted.

We say that H is saturating G if H avoids G but adding an arbitrary edge introduces
a copy of G. In all cases we refer to G as the forbidden graph and H as the minimal
saturated host graph.

When we do not require that the host graph H avoids G, instead we only require that
adding a new edge to H creates a new copy of G, we get the semisaturation problem. The
number of edges in minimal semisaturated graphs in the above settings give the functions
ssat(n,G), ssat<(n,G), ssat�(n,G) and ssat0-1(n,G).

As a warm-up to these notions, notice that for the complete graph Kk on k vertices
by definition sat(n,Kk) = sat<(n,Kk) = sat�(n,Kk) and similarly the semisaturation
functions are the same. As it was shown already in [9] that sat(n,Kk) = ssat(n,Kk) =

2i.e., H has interval chromatic number 2 and can be split into two intervals of size n.
3By taking the incidence matrices of G and H we get the equivalent setting of forbidding a 0-1 matrix

in an n by n 0-1 matrix. This setting is the one used usually when considering this problem.
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n(k−2)−
(
k−1
2

)
, this determines the saturation number forKk in the ordered and cyclically

ordered case as well.
As saturation functions make sense and so are defined only for non-empty graphs we

always assume from now on that the forbidden graph is non-empty.

1.2 A brief history

Kászonyi and Tuza [18] showed the following dichotomy: for an (unordered) graph G,
sat(n,G) = O(1) if and only if G has an isolated edge and we have sat(n,G) = Θ(n)

otherwise4.
Already in the paper of Erdős, Hajnal and Moon [9] the respective question when the

forbidden and host graphs are both bipartite was asked. A variant of this for which the
extremal problem has a long history is when the two parts of vertices are ordered. As
mentioned before, this case is usually phrased using forbidden 0-1 matrices.

Studying the extremal problem for forbidden submatrices in 0-1 matrices has a long
history (see [22] for an introduction), however, the saturation problem was first investi-
gated only recently by Brualdi and Cao [4]. Their initial results were quickly followed by
the more systematic study of Fulek and Keszegh [12] who proved dichotomy in this setting
too: sat0-1(n,G) is either O(1) or Θ(n). Characterizing which graphs (equivalently, 0-1
matrices) belong to which class turned out to be much harder. While many families of
matrices belonging to Θ(n) were found, for O(1) they could only find one example, which
was a bipartite matching on 5 edges (equivalently, a 5 by 5 permutation 0-1 matrix).
Soon afterwards Geneson [14] and Berendsohn [1] found infinite many permutation ma-
trices belonging to the class O(1) and then very recently Berendsohn [2] gave a complete
characterization of permutation matrices belonging to the class O(1): in the bipartite or-
dered graph setting it can be phrased the following way: a bipartite matching graph G

has linear saturation function if and only if it is decomposable into two subgraphs such
that each part of the vertices of G is split into two intervals by these subgraphs5, see
Figure 1 for an example of how such a decomposition may look like. Despite this sub-
stantial progress, a complete characterization for non-permutation matrices is still widely

4They showed this in the case when we can forbid a set of graphs but assumed that one of them has
no isolated vertices. However, for one forbidden graph G the proof can be easily modified also to the case
when G has isolated vertices.

5The part of the statement that decomposable graphs have linear saturation function is true even for
non-matching graphs and was shown already in [12].
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unknown. In contrast to this, already in [12] it was shown with a relatively simple proof
that the semisaturation function of 0-1 matrices shows the same dichotomy, and in this
case the characterization is also given.

Figure 1: The two types of valid decompositions of bipartite matchings into two parts.

The study of ordered graphs and their extremal problems is partially motivated by
their connection to problems in combinatorial geometry, see, e.g., [3] which deals with
the cyclic case and its relation to the number of unit distances among n points in convex
position. The connection is based on the fact that in the cyclic case the vertices can be
naturally represented by points in convex position and the edges by straight segments.
For the extremal function there is a strong connection between the case of ordered graphs
and 0-1 matrices. Namely, the order of magnitude of the extremal function for the ordered
case and for the 0-1 matrix case can be apart from each other only by at most an O(log n)

multiplicative factor [20].

1.3 Our results

Despite all the work on the extremal function of the different variants of ordered
graphs, the saturation function was only regarded for the 0-1 matrix case so far. Following
up the proposal of Pálvölgyi [21], in this paper we initiate the study of the other two
variants, the ordered and cyclically ordered cases, which from a graph theoretic point of
view may be even more natural than the 0-1 matrix case.

Motivated by previous results on dichotomy we prove that dichotomy holds also in
these two cases and we also give infinite many examples for both classes in both cases. The
proofs of this in the three ordered settings are similar but also have significant differences.
In particular, for the saturation function one cannot argue that the ordered and ordered
bipartite cases are only O(log n) apart (unlike for the extremal function). Indeed, it turns
out that if G has interval chromatic number at most two then sat<(n,G) = Θ(n), so
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bipartite ordered graphs all have linear saturation function in the ordered case, in contrast
to their more interesting behaviour in the ordered bipartite case.

In saturation problems it is a primary problem to characterize which objects have
bounded saturation functions, in some cases it is non-trivial even to find one which has
bounded or non-bounded saturation function. For example, in the case of forbidding posets
in the Boolean poset it was shown that the chains have bounded saturation functions
[15]. In case we forbid induced posets then it turns out that every poset has a bounded
saturation function [19]. In case of 0-1 matrices, as mentioned already, it was non-trivial to
find even one matrix with bounded saturation function [12]. This motivated Pálvölgyi [21]
to ask the problem to find at least one ordered graph with bounded saturation function.
We answer this question by finding an infinite class of ordered (resp. cyclically ordered)
graphs with bounded saturation function.

We have seen that in the 0-1 matrix case non-decomposable permutation matrices are
the prime examples having bounded saturation function [2]. When regarded as graphs, per-
mutation matrices correspond to matchings. This motivates us to concentrate on match-
ings in the ordered case, specifically the ones with interval chromatic number at least
three, as we have mentioned that any ordered graph with interval chromatic number at
most two has linear saturation function.6 We define a natural subclass of them which we
call linked matchings and we start their systematic study. For linked matchings with at
most three links and at most one minedge inside each link edge (for exact definitions see
later) we determine their saturation function. Most of these small cases have very specific
proofs7. Generalizing one of these cases we get an infinite family of ordered graphs with
bounded saturation function. However, in general, we are not yet able to characterize the
linked matchings that have linear saturation function.

In both the ordered and cyclically ordered case we also consider the semisaturation
functions. Similar to the 0-1 matrix case, dichotomy again holds and even the character-
ization is relatively simple.

The paper is structured as follows. Section 2 contains our results about saturation
of ordered graphs. First we prove dichotomy then give several examples of graph classes

6Matchings is usually a natural class to consider in such situations, see also, e.g., the case of ordered
graph ramsey theory where they usually concentrate on ordered matchings [5].

7In some cases it was surprisingly hard to find constructions to show that the saturation function is
bounded. It is worth to compare this with the ordered bipartite case, where also for a while there was
only one known such graph.
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with linear saturation function. Then we define the notion of a witness, which we use
to show in Section 2.1 an infinite family of linked matchings with bounded saturation
function, including a treatment of linked matchings with at most three links. Section
3 contains our results about saturation of cyclically ordered graphs. Most importantly,
we prove dichotomy then give infinite many examples for both possible behaviours of
the saturation function. In Section 4 we solve the semisaturation problem. In Section 5
we compare our knowledge of the three settings (bipartite ordered, ordered, cyclically
ordered) and conclude the paper with a list of open problems.

2 Saturation of ordered graphs

Before phrasing and proving our results, let us fix some conventions we will use
throughout the paper. Without loss of generality, we identify the vertices of an ordered
graph on n vertices with the positive integers 1, 2, . . . , n so that the order of the vertices
is the same as the order of the corresponding positive integers. We imagine the vertices
lying on a horizontal line placed from left to right according to their underlying order.

We can refer to edges by their two endvertices, e.g., e = uv is an edge, where we
always assume u < v. We write l(e) = u and r(e) = v for the left and right endvertices,
respectively, of the edge e = uv. Moreover, for a vertex v the vertices v − 1 and v + 1

are called the left and right neighbor of v, respectively. We say that a vertex w 6= u, v is
between the vertices u and v if u < w < v and outside uv otherwise. We say that an edge
uv is covered by another edge u′v′ if u′ ≤ u < v ≤ v′. We say that an edge uv is strictly
covered by another edge u′v′ if u′ < u < v < v′.

The following two types of edges ofG turn out to have an important role in determining
if G has bounded saturation function:

Definition 1. An edge uv of G is a minedge if there is no vertex between u and v and
both u and v have degree one, i.e., it is an isolated edge connecting neighboring vertices.

An edge uv of G is a superedge if there exists an edge xy such that u < x < y < v,
i.e., uv strictly covers xy.

Definition 2. A graph G is separable if it can be split into non-empty edge-disjoint graphs
G1 and G2 such that for all edges u1v1 of G1 and u2v2 of G2 we have u1 < v1 < u2 < v2.

A graph G is nested if it can be split into non-empty edge-disjoint graphs G1 and G2

such that for all edges u1v1 of G1 and u2v2 of G2 we have u1 < u2 < v2 < v1, i.e., the
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edges of G2 are strictly covered by the edges of G1. See Figure 2 for examples.

Figure 2: A separable and a nested graph.

Note that in a nested graph G the outer graph (i.e., G1) must have interval chromatic
number two.

We first show the dichotomy of the function sat<:

Theorem 3. Given an ordered graph G, we either have sat<(n,G) = O(1) or sat<(n,G) =

Θ(n).

Proof. Let Hn be the host graph saturating G on n vertices with sat<(n,G) edges. If G
has no isolated vertices then if there exists an n0 such that Hn0 contains two adjacent
isolated vertices, then we can multiply these vertices to get host graphs of size n > n0 with
the same number of edges, showing that sat<(n,G) ≤ sat<(n0, G) = O(1) for n ≥ n0.
If G contains isolated vertices then instead of two we require |V (G)| many consecutive
isolated vertices and get to the same conclusion.

Thus either sat<(n,G) = O(1) or there are no two (resp. |V (G)| many) consecutive
isolated vertices in the host graphs, which implies sat<(n,G) = Ω(n).

We are left to prove that sat<(n,G) = O(n) always holds. For that take an arbitrary
edge uv, u < v, of G s.t. there is no other edge u′v′ such that u ≤ u′ < v′ ≤ v. Denote the
number of vertices preceding u by a, the number of vertices between u and v by b, and
the number of vertices succeeding v by c (in particular a+ b+ c+ 2 = |V (G)|).

For n > |V (G)| let Hn be a graph on n vertices such that its first a and last c vertices
are connected with every vertex and we also add all the edges ij with at most b−1 vertices
between i and j. Hn has O(n) edges. We claim that it is a host graph saturating G.

First, H avoids G. Assume on the contrary. Take a copy of G contained in H and let
i and j be the vertices playing the roles of u and v in this copy of G, respectively (the
vertex set of H is [n]). If i ≤ a then we cannot find in H the a vertices preceding u in
G. If j ≥ n− c+ 1 then we cannot find in H the c vertices succeeding v in G. Finally, if
j − i < b then we cannot find in H the b vertices between u and v in G. All cases lead to
a contradiction.

8



Second, adding an arbitrary edge ij to H we have that i > a, j < n − c + 1 and
j − i ≤ b and so we can take i, j, the first a vertices, the last c vertices and b vertices
between i and j in H to find a copy of G in H + uv.

Although we are mostly concerned about the order of magnitude of the saturation
function, it is worth to note that actually when sat<(n,G) = O(1) then there exists a
number n0 such that sat<(n,G) = sat<(n0, G) for n ≥ n0. This follows from the fact that
for big enough n we necessarily have many consecutive isolated vertices in a host with
sat<(n,G) edges and adding or removing an isolated vertex from these gives us another
saturated host.8

Observation 4. If G is a single edge then sat<(n,G) = 0.

Proof. The graph on n vertices and no edges is a suitable host graph saturating G.

Claim 5. If G contains no minedge then sat<(n,G) = Θ(n).

Proof. In a host graph H on n vertices saturating G we cannot have two adjacent isolated
vertices, as otherwise we could connect these edges without introducing a copy of G (as
this edge must play the role of a minedge, but G has no minedge). This implies that
sat<(n,G) = Ω(n) which together with Theorem 3 finishes the proof.

The next theorem is somewhat similar to the result from [12] mentioned in the intro-
duction saying that decomposable 0-1 matrices have a linear saturation function, compare
Figure 1 and Figure 2.

Theorem 6. If the ordered graph G is separable or nested then sat<(n,G) = Θ(n).

Proof. We start with the case when G is separable. Let G1 and G2 be the graphs that
show that G is separable. Let H be a host graph on n vertices saturating G that has
sat<(n,G) edges. If H contains no isolated vertex then it has Ω(n) edges, as required.
Otherwise, take an isolated vertex x of H and connect it to the first vertex of H. This
must introduce a copy of G in which this edge must play the role of some edge of G1. This
implies that there is a copy of G2 in H to the right from x. Similarly, connecting x to the
last vertex shows that there is a copy of G1 in H to the left from x. These two together
form a copy of G, a contradiction. Thus, H has Ω(n) edges which together with Theorem
3 finishes the proof.

8This reasoning was used already for graphs in [18].
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We continue with the case when G is nested. Let G1 and G2 be the graphs that show
that G is nested. Notice that G1 is a bipartite graph with parts A and B such that
the vertices in A precede the vertices in B (i.e., G has interval chromatic number two).
Let H be a host graph on n vertices saturating G that has sat<(n,G) edges. Adding
an edge to H introduces a copy of G. If H has no two adjacent isolated vertices then
sat<(n,G) = Ω(n) which together with Theorem 3 finishes the proof. Otherwise, let
w′ < w be two consecutive isolated vertices in H. Adding an edge to H introduces a copy
of G. If we add an edge to H between w′ and w, it must play the role of an edge from
G2. If we add an edge to H between the first vertex and w, it must play the role of an
edge from G1. This implies (by going from the leftmost vertex one by one towards w) that
there are two adjacent vertices u, v with u < v < w, such that adding uw we get a copy
of G in which uw plays the role of an edge from G1, while adding vw we get a copy of G
in which vw plays the role of an edge from G2. This implies that in H there is a copy of
G2 between u and w, and a copy of G1 such that the vertices corresponding to A precede
v and the vertices corresponding to B succeed w in H. These together form a copy of G,
a contradiction.

Corollary 7. If G has a minedge (strictly) covered by every other edge of G, then
sat<(n,G) = Θ(n).

Note that covering and strictly covering a minedge is equivalent as there are no other
edges incident to the endvertices of the minedge by definition.

Corollary 8. If the interval-chromatic number of G is two, then sat<(n,G) = Θ(n).

Proof. If G does not contain a minedge then we are done by Claim 5. Otherwise G contains
a minedge. Then this minedge must be strictly covered by every other edge and so by
Corollary 7 we are done.

As mentioned in the introduction, Corollary 8 implies that the graphs that correspond
to permutation matrices all have linear saturation function in the ordered case.

Claim 9. If every neighbor of the first vertex (or the last vertex) in G has degree greater
than one then sat<(n,G) = Θ(n). 9

9We note that Theorem 40 implies that such a G has ssat<(n,G) = Θ(n), from which Claim 9 also
follows.
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Proof. Let H be a host graph saturating G on n vertices that has sat<(n,G) edges. If H
has no isolated vertices then it has Θ(n) vertices, as required. Otherwise, take the first
vertex, v, of H. Connecting v to an isolated vertex u creates a copy of G which uses this
new edge. Thus, v must be the first vertex in this copy of G and u must be the neighbor
of the first vertex. However, the degree of u is one in H and so at most one in this copy
of G, contradicting the assumption of the lemma.

Lemma 10. Let M ⊆ E(G) be the set of all minedges of G, let S ⊆ E(G) be the set
of all superedges of G and let L = {uv ∈ E(G) : deg(u) = 1} 10. If L ⊆ S ∪M then
sat<(n,G) = Θ(n).

Proof. If G is separable then we are done by Claim 6. So we can assume that G is not
separable which implies that every minedge of G is strictly covered by some edge (which
is thus a superedge).

Let H be a host graph saturating G on n vertices that has sat<(n,G) edges. If there
are no two adjacent isolated vertices in H then it has Θ(n) edges, we are done. Otherwise,
take two adjacent isolated vertices u < v of H. Connecting them creates a copy of G,
clearly uv has to be a minedge in this copy of G. Connecting u to the last vertex also
creates a copy of G, in which copy this new edge cannot be a minedge (as it cannot be
strictly covered by some other edge). Connecting u one-by-one to the vertices that are
bigger than u, there is a first (i.e., leftmost) vertex w after u such that adding uw to H
creates a copy of G in which uw is not a minedge. Since the degree of u must be 1 in this
copy of G, uw corresponds to an edge of G which is in L. As it is not a minedge of G, it
has to be a superedge by the assumption of the claim. This implies that there is an edge
xy strictly covered by it, i.e., u < x < y < w. Let w′ be the vertex preceding w. Take the
copy of G that is created when we add the edge uw′ to H. In this copy uw′ must play the
role of a minedge, thus by replacing uw′ with xy we get a copy of G that is already in H,
a contradiction.

Theorem 11. If every edge of G is a minedge or a superedge then sat<(n,G) = Θ(n).

Proof. As L ⊆ E(G) = S ∪M , from Lemma 10 we obtain that sat(n,G) = Θ(n), as
required.

So far our results gave families of ordered graphs that have linear saturation func-
tion. In the next section we will give infinite many graphs that have bounded saturation

10Notice that we can replace L by R = {uv ∈ E(G) : deg(v) = 1} and obtain the same result for R.
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function. The main general tool for proving that an ordered graph has a bounded satura-
tion function is the notion of a witness. Similar to witnesses and explicit witnesses of 0-1
matrices defined in [1], we define the respective notions for ordered graphs:

Definition 12. Given an ordered graph G with no isolated vertices, an ordered graph H
is an explicit witness of G if H saturates G and has two consecutive isolated vertices. H
is a witness of G if H has two consecutive isolated vertices and adding an arbitrary new
edge incident to any of these two isolated vertices creates a copy of G.

If G is an ordered matching then we require only one isolated vertex in the above
definitions.

Witnesses, as their name suggests, witness that a graph has a bounded saturation
function. First, it is trivial by definition that if the saturation function of G is O(1) then
for n big enough a host graph of size n saturating G with sat<(n,G) edges must be an
explicit witness for G.11 Thus bounded saturation function for G implies that G has an
(explicit) witness. Now we prove that the opposite is also true.12

Lemma 13. Let G be an ordered graph without isolated vertices such that there exists an
(explicit) witness of G. Then sat<(n,G) = O(1).

Proof. First we prove that if an ordered graph G has a witness H ′ with two consecutive
isolated vertices then it also has an explicit witness H. Indeed, we can greedily add edges
to H ′ until we get a graph H that saturates G. Due to the definition of a witness, in H
the two isolated vertices are still isolated and thus H indeed is an explicit witness. The
case when G is an ordered matching is analogous, we just need to replace two isolated
vertices with one in the argument.

Thus from now on we can assume that G has an explicit witness H. Take an arbitrary
number n ≥ |V (G)|. If we replace in H two adjacent isolated vertices by an interval I of
n− |V (G)|+ 2 consecutive isolated vertices, the graph Hn we get has n vertices and still
avoids G. Further, the fact that by adding an arbitrary edge to H we get a copy of G
implies that if we add any edge to Hn we obtain a copy of G. In Hn the vertices in I are
isolated and thus Hn has O(1) edges. We can conclude that Hn is saturating G and has
O(1) edges, which implies that sat<(n,G) = O(1), as claimed.

11We implicitly used this fact already in the proof of Theorem 3.
12For simplicity we did not define witnesses for graphs with isolated vertices. Nevertheless, the definition

and Lemma 13 could be easily extended to handle this case as well by requiring more consecutive isolated
vertices.
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Note that we needed two adjacent isolated vertices to guarantee that when an edge
is added inside I then a copy of G is created. However, it is easy to see that if G is a
matching then this is guaranteed already if H has one isolated vertex which we replace
with an interval I of isolated vertices, thus the part of the lemma about matchings follows
as well.

2.1 Saturation of linked matchings

This section is dedicated to the study of the saturation function of linked matchings.
After defining them, first we prove for an infinite family of linked matchings that they
have linear saturation function, then we concentrate on small cases and determine which
linked matchings with at most three links have bounded saturation function. Finally we
generalize some of our constructions to show for an infinite family of linked matchings
that they have bounded saturation function.

Definition 14. Let Lk be the ordered matching on vertex set [2k] and edge set {(2i −
1)(2i) : i = 1, . . . , k}.

Let Γk be the ordered matching on vertex set [2k] and edge set {(1)(3)}∪{(2i)(2i+3) :

i = 1, . . . , k − 2} ∪ {(2k − 2)(2k)}. See Figure 3 for illustrations.

Definition 15. Γ{m1,m2,...,mk} denotes the matching that we obtain from Γk if for every i
we add 2mi new vertices between the endvertices of the ith edge of Γk (when ordered by
their left endvertex) and outside the rest of the edges of Γk and put a copy of Lmi

on these
2mi vertices. Γ{m1,m2,...,mk} is called a linked matching, while the edges of the underlying
Γk are called its link edges.13 See Figure 3 for illustrations.

Note that Lk is separable and thus has linear saturation function by Claim 6 for k ≥ 2.

The next claim follows immediately from Theorem 11:

Claim 16. sat<(n,Γ{m1,m2,...,mk}) = Θ(n) for k > 0 and mi > 0 (1 ≤ i ≤ k).

Claim 17. sat<(n,Γ{m,0,0,...,0}) = sat<(n,Γ{0,,...,0,0,m}) = Θ(n) for m ∈ N.

Proof. Let G = Γ{m,0,0,...,0}, a linked matching with k > 1 link edges and m minedges. If
m = 0 then G does not contain a minedge and thus we are done by Claim 5. Thus from

13We regard these link edges as being ordered according to the order of their left endvertices. Notice
that the non-link edges are all minedges.

13



Figure 3: Examples: Γ4, L3 and Γ{2,1,2}.

now on we assume that m > 0. Let H be a host graph on n vertices saturating G with
sat<(n,G) edges. If H has no two consecutive isolated vertices, then sat<(n,G) = Ω(n),
as required. Otherwise, there are consecutive isolated vertices w′, w in H. Adding the
edge w′w creates a copy of H in which this edge must be a minedge. Adding the edge
connecting w with the first vertex creates a copy of H in which this edge cannot be a
minedge (as in G no minedge is incident to the first vertex of G). Thus, if we connect
one-by-one w to vertices to the left from w there will be a leftmost vertex u such that uw
is a minedge in a copy G′ of G created by adding uw to H.

Since all minedges of G are contained inside the first link edge, the first link of G′ is
an edge xy of H such that x < u. Now adding the edge xw to H creates a copy G′′ of
G. Notice that xw cannot be a minedge in G′′ due to our choice of u. Thus xw is the ith
link edge of G′′ for some i. Now let G′′′ be the graph formed by the first i− 1 link edges
of G′′, the m minedges of G′′ and the first k − i + 1 link edges of G′. This G′′′ is a copy
of G in H, a contradiction. See Figure 4 for an illustration.

u wx y

Figure 4: Proof of Claim 17 for G = Γ{2,0,0}. Edges not in H are drawn dashed. G′ (red)
and G′′ (blue) in H together contain a copy of G (bold) in H.

Corollary 18. sat<(n,Γk) = Θ(n) for k ≥ 2.

Next we concentrate on linked matchings with k ≤ 3 links. First, sat<(n,Γ{m}) = 0

if m = 0 by Observation 4 and Θ(n) otherwise by Claim 16. Second, sat<(n,Γ{m1,m2}) =

14



Θ(n). Indeed, this follows from Claim 17 if at least one of m1,m2 equals to 0 and from
Claim 16 otherwise. The problem becomes much more interesting when k = 3.

The following is again a direct corollary of Claim 16 and Claim 17:

Corollary 19. sat<(n,Γ{m,0,0}) = sat<(n,Γ{0,0,m}) = Θ(n) for m > 0.
sat<(n,Γ{m1,m2,m3}) = Θ(n) for m1,m2,m3 > 0.

For the remaining cases we only consider the subcases when each mi is either 0 or 1

and prove that all of these have bounded saturation function:

Theorem 20. The saturation functions of Γ{0,1,0},Γ{1,0,1},Γ{1,1,0} and Γ{0,1,1} are bounded.

For each of these graphs the hard part was to find a witness H for a graph G. To prove
that they are indeed witnesses involves only some case analysis which could be easily done
even by a computer program, showing first that they avoid G, second that adding any
edge to the isolated vertex of H creates a copy of G. Instead of using a computer, we
do the case analysis explicitly and as efficiently as possible. The following three claims
together imply Theorem 20.

e1 e2 e3

e′1

e′2

f

f ′

e′′2

e′′3
f ′′

a
b

c

v

Figure 5: Γ{0,1,0} and its witness graph H.

Claim 21. sat<(n,Γ{0,1,0}) = O(1).

Proof. LetG = Γ{0,1,0}, its link edges are denoted by e1, e2, e3, in this order and its minedge
is denoted by f . Furthermore let H be the graph drawn on Figure 5 bottom with edges
named according to the figure. We claim that H is a witness for G, which by Lemma 13
implies the statement of the claim.

First we show that H avoids G. Assume on the contrary that there is a copy of G in
H, then there is an edge e = u1u2 ∈ E(H) such that it has the same role as edge e2 in G,
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in particular it is a superedge. Notice that |{v ∈ V (G) : v > l(e2)}| = |{v ∈ V (G) : v <

r(e2)}| = 6 which implies that u1 (resp. u2) has to have at least 6 vertices on its right
(resp. left) side in H. The only edge in H that satisfies this property is the edge b. Then
the minedge f can be mapped to either f ′ or f ′′. If it is mapped to f ′ (resp. f ′′) then e1
(resp. e3) cannot be mapped to an edge of H since there is no vertex between l(b) and
l(f ′) (resp. r(b) and r(f ′′)).

It remains to show that adding an arbitrary edge incident to v in H creates a copy
of G. Let H ′ be the subraph of H with edge set {e′1, e′2, f ′} and H ′′ be the subgraph of
H with edge set {e′′2, e′′3, f ′′}. If we connect v to some w with w > l(f ′′) then H ′ + vw

contains a copy of G. Similarly, if w < r(f ′) then H ′′ + wv contains a copy of G. Finally
if w = l(f ′′) or w = r(f ′) then we can define H∗ to be the subgraph with edge set {a, b, c}
and see that H∗ + vw contains a copy of G, concluding the proof.

Claim 22. sat<(n,Γ{1,0,1}) = O(1).

Proof. Let G = Γ{1,0,1}, its link edges are denoted by e1, e2, e3, in this order and its
minedge covered by e1 (resp. e3) is denoted by f1 (resp. f2). Furthermore let H be the
graph drawn on Figure 6 bottom with vertices named according to the figure. We claim
that H is a witness for G, which by Lemma 13 implies the statement of the claim.

First we show that adding an arbitrary edge incident to v in H creates a copy of G.
As both G and H are symmetric, it is enough to check that connecting v to an arbitrary
vertex w to the right from v introduces a copy of G. We have three cases:

Case 1: v < w < v′3. The following map gives a copy of G: e1, e2, e3 are mapped to
v10v

′
4, v
′
3v
′
7 and v′6v′10, respectively, while f1 and f2 are mapped to vw and v′8v′9, respectively.

Case 2: w = v′3. The following map gives a copy of G: e1, e2, e3 are mapped to v7v′1, vw
and v′2v′6, respectively, while f1 and f2 are mapped to v8v9 and v′4v′5, respectively.

Case 3: w > v′3. The following map gives a copy of G: e1, e2, e3 are mapped to v5v10, v9v′1
and vw, respectively, while f1, f2 are mapped to v6v7 and v′2v′3, respectively.

We are left to show that H avoids G. Assume on the contrary that there is a copy of
G in H. We first check if the edges uw such that u < v < w are contained in a copy of G.
These edges are v7v′1, v9v′1, v10v′2, v10v′4. By symmetry it is enough to check only v7v′1 and
v9v
′
1.
Assume first that v9v′1 is in a copy of G. Notice that there is only one non-isolated

vertex between v9 and v′1. So, this edge must be a minedge in this copy as for all non-
minedges of G there are at least two non-isolated vertices between its endvertices. On the
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e1 e2 e3

f1 f2

v′1 v′2 v′3 v′4 v′5 v′6 v′7 v′8 v′9 v′10v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v

Figure 6: Graph Γ{1,0,1} and its witness graph H.

other hand, there is no edge in H that strictly covers v9v′1, so it cannot be a minedge in
this copy, contradiction.

Assume second that v7v′1 is in a copy of G. As v7v′1 is not strictly covered by any edge
in H, it cannot be a minedge in this copy of G, thus it is a link edge of G. Notice that
v8v9 is the only candidate for the minedge contained in this link edge. Since there is no
vertex between v7 and v8, it cannot be e3 in a copy of G. Assume now that v8v9 is e1 in
this copy of G. In that case the only possibility for e2 is the edge v10v′4. Then every edge
that is a candidate for e3 has as a right vertex either v′6 or v′7. However, since there is
no edge between v′4 and v′7, we cannot map f2 to an edge of H, a contradiction. Assume
finally that v7v′1 is e2 in this copy of G. Similar to the previous case, all edges that are
candidates for e1 have as a left vertex either v4 or v5. However, since there is no edge
between v4 and v7, we cannot map f1 to an edge of H, a contradiction.

So far we have shown that no edge uw such that u < v < w can be an edge of a copy
of G in H. As G is not a separable graph, it follows that either every vertex of a copy
of G is left from v or every vertex is right from v. By symmetry we can assume it is left
from v. There are exactly 10 vertices left from v in H and also |V (G)| = 10. it means that
there is a bijection φ between V (G) and {v1, v2, ..., v10}. In particular e3 must be mapped
to an edge between v6 and v10 but there is no such edge in H, a contradiction.

Thus there is no copy of G in H, which finishes the proof.

Claim 23. sat<(n,Γ{1,1,0}) = sat<(n,Γ{0,1,1}) = O(1).

Proof. Let G = Γ{1,1,0}, its link edges are denoted by e1, e2, e3, in this order and its
minedge covered by e1 (resp. e2) is denoted by f1 (resp. f2). Furthermore let H be the
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e1 e2 e3

f1 f2

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v′1 v′2 v′3 v′4 v′5v

Figure 7: Graph Γ{1,1,0} and its witness graph H.

graph drawn on Figure 7 bottom with vertices named according to the figure. We claim
that H is a witness for G, which by Lemma 13 implies the statement of the claim.

First we show that H avoids G. Assume on the contrary that there is a copy G1 of
G in H. In this copy e3 is mapped to some edge uu′ of H. Notice that 7 vertices precede
l(e3) in G, while 9 vertices precede r(e3). Thus u > v7 and u′ > v9 and also we know that
there is at least one vertex between u and u′. The only edges that satisfy these properties
are: v12v′4, v′2v′5, v′3v′5.

Case 1: e3 is mapped to v12v′4. Then e2 must be mapped to one of {v7v′1, v4v′3}. Assume
that e2 is mapped to v7v′1 and then f2 must be mapped to v8v9 or v10v11, however neither
is possible since then e1 cannot be mapped to any of the edges. Now assume e2 is mapped
to v4v′3 which implies that e1 must be mapped to v1v11 but that is again impossible since
there is no room for mapping f2 as there are no two vertices connected by an edge between
v11 and v12 (in fact there is not even a vertex here).

Case 2: e3 is mapped to v′2v′5. Then e2 must be mapped to one of {v4v′3, v12v′4}. Similar
to the previous case e2 cannot be mapped to v4v′3, so e2 must be mapped to v12v′4 but
then again there is no room for mapping f2 as there are no two vertices connected by an
edge between v11 and v2′ .

Case 3: e3 is mapped to v′2v′5. Then e2 must be mapped to v12v′4, and consequently f2
must be mapped to v′1v′2. Then the only vertex between v12 and v′1 is the isolated vertex
v so we cannot map e1 to any edge.

In all cases we arrived to a contradiction. Thus we are left to show that adding an
arbitrary edge incident to v in H creates a copy of H.

Connect v and another vertex w with a new edge. There are four different cases, and
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for each we can find a copy of G in H plus the new edge, finishing the proof.
Case 1: w < v10. The following map gives a copy of G: e1, e2, e3 are mapped to wv, v12v′4

and v′3v′5, respectively, while f1 and f2 are mapped to v10v11 and v′1v′2, respectively.
Case 2: w ∈ {v10, v11}. The following map gives a copy of G: e1, e2, e3 are mapped to

v3v7, v6v12 and wv, respectively, while f1 and f2 are mapped to v4v5 and v8v9, respectively.
Case 3: w ∈ {v12, v′1}. The following map gives a copy of G: e1, e2, e3 are mapped to

v1v11, v4v
′
3 and v′2v′5, respectively, while f1 and f2 are mapped to v2v3 and vw, respectively.

Case 4: w > v′1. The following map gives a copy ofG: e1, e2, e3 are mapped to v3v10, v7v′1
and vw, respectively, while f1 and f2 are mapped to v4v5 and v11v12, respectively.

Figure 8: Graph Γ{0,3,0} and X (Γ{0,3,0}).

We will use the following construction to prove for a large class of graphs that they
have bounded saturation function:

Definition 24. Let G be a graph on n vertices. Assume the first and last vertex of G
both are incident to an isolated edge. Let G′ (resp. G′′) be the graph on n− 2 vertices we
get from G by deleting the endvertices of the edge incident to the first (resp. last) vertex.
Denote by X (G) the graph on 2n− 6 vertices we get by placing a copy of G′ on the first
n − 2 vertices and a copy of G′′ on the last n − 2 vertices. Note that these two copies
overlap on 2 vertices. See Figure 8.

Definition 25. Let A,G1, G2 be three graphs on n0, n1, n2 vertices, respectively. We denote
by G1yAxG2 the family of graphs on n1 + n0 + n2 − 2 vertices that can be obtained
by choosing arbitrarily vertices i, j such that both i and j are at least n1 and at most
n1 + n0− 1 and placing a copy of G1 on the vertex set {1, . . . , n1− 1} ∪ {i}, a copy of G2

on the vertex set {j} ∪ {n1 + n0, . . . , n1 + n0 + n2 − 2} and a copy of A on the vertex set
{n1, . . . , n1 + n0 − 1}. See Figure 9.
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Figure 9: Two possible members of a family Γ{1,0}yΓ{2,2}xΓ{0,1}.

Lemma 26. Let A be an ordered graph and G ∈ Γ3yAxΓ3. If G is not separable and
has no degree zero or degree two vertices, then X (G) avoids G.

Proof. Assume on the contrary that there is a G1 copy of G in X (G). See Figure 10 for
an illustration where certain edges of X (G) are labeled.

Assume first that neither e2 nor e3 is contained in G1. As X (G) \ {e2, e3} is separable
but G is not, G has to be fully contained in the subgraph induced by either the first half
or the second half of the vertices. However, both subgraphs have less than |V (G)| vertices,
a contradiction.

Assume second that at least one of e2 and e3, wlog. e2, is contained in G1. In this
case, as G is a graph with no degree-two vertices, e4 cannot be in G1. As X (G) \ {e4}
is separable but G is not, G1 has to be fully contained in the subgraph induced by the
set of vertices either preceding and including r(e3) or succeeding r(e3). However, both
subgraphs have less than |V (G)| vertices, a contradiction.

Theorem 27. Let A be an ordered graph and

G ∈ Γ{0,0,1,0}yAxΓ{0,1,0,0} or G ∈ Γ{0,0,1,0}yAxΓ{0,0,0,0}.

If G is not separable and has no degree zero or degree two vertices, then sat<(n,G) = O(1).

Proof. We first prove the case when G ∈ Γ{0,0,1,0}yAxΓ{0,1,0,0}.
Let H be the graph on Figure 11 bottom, with some of the edges labeled. We prove

that H is a witness for G which implies sat<(n,G) = O(1).
First we show that H avoids G. Assume on the contrary that H contains a copy G1 of

G. Notice first that Γ{0,0,1,0}yAxΓ{0,1,0,0} is a subfamily of Γ3yA′xΓ3 for an appropriate
choice of A′ and that we get H from X (G) by adding the edge set {a, b, c} and the isolated
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Figure 10: Graph G ∈ Γ3yAxΓ3 and X (G).

vertices v and v′. Lemma 26 implies that X (G) avoids G thus G1 must contain at least
one edge from the edge set {a, b, c}.

Case 1: b is not in G1 and a is in G1. As G has no vertex of degree two, e2 cannot be
in G1.

Case 1.1: e1 is in G1. In this case e3 cannot be in G1 since G has no vertex of degree
two. Thus e2 and e3 are not in G1 and using that G is not separable, G1 is completely to
the left from v, but there are less than |V (G)| such vertices, a contradiction.

Case 1.2: e1 is not in G1. In this case b, e1, e2 are not in G1 and using that G is not
separable, either every vertex of G1 is completely to the left from l(e3) or it is completely in
the rest of the vertices, but there are less than |V (G)| vertices on each side, a contradiction.

Case 2: b is not in G1 and c is in G1. Notice that in Case 1 we did not use where
exactly the left endvertex of a and right endvertex of c lies, thus a symmetrical argument
works also in Case 2.

Case 3: b is in G1. Then the other two edges incident to the endvertices of b cannot
be in G1 as G has no vertex of degree two.

Case 3.1: a and c are not in G1. Then using that G is not separable, G1 has to be
in the closed interval defined by l(e1) and r(e4). However, there are less than |V (G)|
vertices in this interval (as |v ∈ V (H) : l(e1) ≤ v ≤ r(e4)| = 13 < 19 = |V (Γ{0,0,1,0})| +
|V (Γ{0,1,0,0})| − 1 ≤ V (G)), a contradiction.

Case 3.2: a is in G1. Since l(a) is the second smallest vertex in H, only g1 or g2 can
be mapped to a, in which case b must play the role of g2 or g3, respectively. Since the
number of vertices in H greater than r(b) is |V (G)| − 8 and the number of vertices in G
greater than r(g2) is |V (G)| − 5, it follows that b cannot play the role of g2. Thus g2 is
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Figure 11: Graph G ∈ Γ{0,0,1,0}yAxΓ{0,1,0,0} and its witness graph H.

mapped to a and g3 is mapped to b. In this case g4 is mapped to e4 or c. In both cases
there is no room to map the endvertices of f , a contradiction.

Case 3.3: a is not in G1 and c is in G1. As G is not separable, G1 lies on the right side
of (and including) the vertex l(e1). As l(b) is the second vertex on this side, b must play
the role of g1 or g2 in G1. Similar to Case 3.2, since the number of vertices in H greater
than r(b) is |V (G)| − 8 and the number of vertices in G greater than r(g2) is |V (G)| − 5,
this is also impossible.

It remains to show that connecting v with an arbitrary vertex w ∈ V (H) creates a
copy of G. Let G′ and G′′ be the subgraphs whose union is X (G) as defined in Definition
24. First, if w < l(e3) then adding wv to H \ {a, b, c} creates a copy of G in which the
first edge of G, g1, is mapped to wv and the rest is mapped to G′′. Similarly, if w > r(e2)

then adding vw to H \ {a, b, c} creates a copy of G in which the last edge of G is mapped
to vw and the rest is mapped to G′. Finally, if w ∈ {l(e3), v′, r(e2)} then the following
mapping gives a copy of G in H: f is mapped to the edge connecting v and w, further,
g1, g2, g3, g4 are mapped to d, a, b, c, respectively, and the remaining edges are mapped to
a subgraph of G′′ in the same way as in the case w < l(e3).

The case when G ∈ Γ{0,0,1,0}yAxΓ{0,0,0,0} (note that Γ{0,0,0,0} = Γ4) can be proved
practically verbatim, except that the witness is the graph on Figure 11 bottom minus the
second (the one covered by e1) and fourth (the one right to the second copy of A) red
minedge.
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Corollary 28. Let A be an ordered graph and

M ∈ Γ{0,0,1,0}yAxΓ{0,1,0,0} or M ∈ Γ{0,0,1,0}yAxΓ{0,0,0,0}.

If M is an ordered matching and it is not separable, then sat<(n,G) = O(1).

Corollary 29.

sat<(n,Γ{0,0,1,m1,m2,...,mk,1,0,0}) = O(1) and sat<(n,Γ{0,0,1,m1,m2,...,mk,0,0,0}) = O(1),

for k ≥ 2 and mi ≥ 0 for all 1 ≤ i ≤ k.

3 Saturation of cyclically ordered graphs

In this section we consider cyclically ordered graphs. We prove dichotomy for their
saturation function as well along with infinitely many examples for both cases (bounded
and linear).

Given a graph C on a cyclically ordered vertex set, for vertices u, v, x we write u <
x < v if starting with u in clockwise direction we first meet x then v. We define the open
interval Iu,v = {x ∈ V (C) : u < x < v}. From now on every graph we consider is cyclically
ordered even if we don’t say it explicitly.

Theorem 30. Given a cyclically ordered graph C, we either have sat�(n,C) = O(1) or
sat�(n,C) = Θ(n).

Proof. The first part of the proof is almost identical to that of Theorem 3. Let Hn be the
host graph saturating C on n vertices with sat�(n,G) edges. If C has no isolated vertices
then if there exists an n0 such that Hn0 contains two adjacent isolated vertices, then we
can multiply these vertices to get host graphs of size n > n0 with the same number of
edges, showing that sat�(n,C) ≤ sat�(n0, C) = O(1) for n ≥ n0. If C contains isolated
vertices then instead of two we require |V (C)| many consecutive isolated vertices and get
to the same conclusion.

Thus either sat�(n,G) = O(1) or there are no two (resp. |V (C)| many) consecutive
isolated vertices in the host graphs, which implies sat�(n,C) = Ω(n).

We are left to prove that sat�(n,C) = O(n) always holds. Assume that C has k
vertices and let s be the minimum length of an interval I of the vertices of C in the cyclic
order such that the vertices of the interval hit every edge of C.
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Let H be the cyclically ordered graph on n vertices in which an interval J , |J | = s−1,
of the vertices is connected to every other vertex and there are no other edges besides
these in H. This H avoids C by the definition of s. Further, H has at most (s−1)n = O(n)

edges. Now we greedily add edges to H until we get a graph H ′ that saturates the property
of avoiding C. We claim that in H ′ every vertex not in J has degree at most 2k − s− 3,
which implies that H ′ has O(n) edges, as required.

Assume on the contrary that there is a vertex v outside J with degree at least 2k−s−2.
The vertices of H outside J ∪ {v} form two intervals. In at least one of these intervals v
has at least d(2k − s− 2− (s− 1))/2e = k − s neighbors. Now on the vertices of J ∪ {v}
and these k − s vertices there is a copy of G where the vertices of J ∪ {v} play the role
of the interval I, a contradiction.

We note that similarly to ordered graphs, when sat�(n,G) = O(1) then there exists a
number n0 such that sat�(n,G) = sat�(n0, G) for n ≥ n0.

We define minedges and superedges for cyclically ordered graphs:

Definition 31. Let C be a cyclically ordered graph, and let uv ∈ E(C). If either Iu,v or
Iv,u is empty and the degree of u and v is one, then uv is a minedge.

Definition 32. Let C be a cyclically ordered graph, and let uv ∈ E(C). If both of Iu,v
and Iv,u induce an edge, then uv is a bisuperedge.

The proofs of the following two statements are analogous to the proofs of Observation
4 and Claim 5 and are left to the reader:

Observation 33. If G is a single edge then sat�(n,G) = 0.

Claim 34. If C contains no minedge then sat�(n,G) = Θ(n).

We now show infinite classes of graphs that have a bounded saturation function.

Definition 35. Let Lk be the cyclically ordered matching on vertex set [2k] and edge set
{(2i− 1)(2i) : i = 1, . . . , k}. 14

Let Xk be the cyclically ordered matching on vertex set [n] with n = 2k+4 vertices and
edge set {(1)(n − 1), (2)(n)} plus a copy of Lk placed on the vertex set {3, 4, . . . , n − 2}.
See Figure 12 for an illustration.

14Notice that we have already defined Lk on linearly ordered vertices, here we extend this linear order
to a cyclic ordering. Hopefully this ambiguity will not lead to confusion.
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Lemma 36. Let C be a cyclically ordered graph that contains L3 as a subgraph such that
sat�(n,C) = O(1). Let Hn be a host graph on n vertices saturating C. Then there exists
n0 s.t. every Hn (n ≥ n0) contains an isolated vertex v and another vertex w such that
adding the edge vw to H we get a copy of C in which vw plays the role of an edge of C
which is not a minedge of C.

Proof. Assume on the contrary that such a pair v, w does not exist. If n0 is big enough
then any host graph Hn (n ≥ n0) saturating C must contain at least two isolated vertices.
Let v be an isolated vertex of Hn. First let w be the first (in clockwise order) isolated
vertex after v. Adding the edge vw to H a copy of C is created, which we denote by C ′.
C ′ contains a copy of L3 which we denote by L′3. No matter if vw is in L′3 or not, there
are always two minedges, m1m2 and m3m4, in L′3, such that starting from v and going
clockwise the vertices come in the following order: m1,m2,m3,m4. Now let C ′′ be a copy
of C created when adding the edge vm3 to C. By the indirect assumption, vm3 has to be
a minedge in C ′′. This implies that the rest of the vertices of C ′′ can be found either in
Iv,m3 or Im3,v. In both cases we can replace vm3 by some edge (either m3m4 or m1m2) to
get a copy of C already in H, a contradiction.

Claim 37. sat�(n, Lk) = Θ(n) for k ≥ 2.

Proof. First we deal with the case k = 2, and assume on the contrary that sat�(n, L2) =

O(1). Thus there exists a host graphH saturating L2 with isolated vertex v. AsH contains
at least one edge, we can choose an edge xy ∈ E(H) such that Iv,y does not contain any
edges. By connecting v and y, by assumption we obtain a copy of L2 in H, which means
that either Iv,y or Iy,v contains an edge. The first case is impossible by our choice of xy.
In the second case this edge and xy together form a copy of L2 in H, a contradiction.

Assume that sat�(n, Lk) = O(1) for some k ≥ 3. Trivially, Lk contains L3, and we can
apply Lemma 36. Thus there exists a host graph H saturating Lk with isolated vertex v
and another vertex w such that by adding the edge vw to H we get a copy of Lk in which
vw plays the role of an edge of Lk which is not a minedge of Lk. However, every edge of
Lk has to be a minedge, thus this is a contradiction.

We are ready to prove a statement similar to Theorem 11:

Theorem 38. If the cyclically ordered graph C contains L3 and every edge of C is a
minedge or a bisuperedge then sat�(n,C) = Θ(n).
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Proof. Let M be the set of minedges and B be the set of bisuperedges of C. If B is empty
then we are done by Claim 37 thus we can assume that B is not empty. Assume on the
contrary that sat�(n,C) = O(1).

Let Hn be a host graph saturating C with sat�(n,C) edges. If n is big enough, Lemma
36 guarantees the existence of vertices v, w in Hn. Wlog. assume that w is the first (in
clockwise order) after v with the property guaranteed by Lemma 36. Then vw is not a
minedge in the copy C ′ of C created when adding vw to Hn. As every edge of C is either
a minedge or a bisuperege, vw must be a bisuperedge and thus there is an edge e in H
on the vertices of the interval Ivw. Let w′ be the counterclockwise neighbor of w (notice
that it cannot be v). By our choice of w, in the copy C ′′ created when adding vw′ to H,
vw′ must be a minedge. Replacing vw′ in C ′′ with the edge e we get a copy of C in H, a
contradiction.

Lk

Lk−1

P2k

v1

v2

v3

v4

v

w1

w2

w3 w4

w5

w6

Figure 12: Graph Xk and the graph Hn.

Finally, we give an infinite class of cyclically ordered graphs with bounded saturation
function (note that sat�(n,X0) = Θ(n) by Claim 34):

Theorem 39. sat�(n,Xk) = O(1) for every k ≥ 1.

Proof. We call a pair of edges v1v2 and v3v4 crossing if v1 < v3 < v2 and v2 < v4 < v1.
Let Hn be the graph as drawn on Figure 12, with some vertices and edge sets labeled.

It has 3k + 3 = O(1) edges.
First we show that H = Hn avoids Xk. Assume on the contrary and let e, f be the

crossing pair of edges of H playing the role of v1v2 and v3v4. Notice that in H there are
only 4 crossing pairs of edges. Also, both e and f must have 2k+ 1 non-isolated edges on
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one of their sides (as this holds for v1v2 and v3v4 in Xk). This does not hold for w1w4 and
w3w6. Thus we must have {e, f} = {w2w4, w3w5}. The endvertices of these two edges split
the vertices into four intervals and a copy of Lk is contained in one of them. First, Iw3,w4

and Iw4,w5 are empty. Moreover, w2w3 contains only Lk−1. Finally, Iw5,w2 contains exactly
2k vertices which is exactly as many as Lk has. However, the vertex w1 is not connected
with any other vertex from the interval which is not the case with Lk. Contradiction.

Next we show that adding any edge incident to the isolated vertices in Iw6w1 creates
a copy of Xk. As there are only constant many vertices outside Iw6w1 , this implies that
greedily adding O(1) edges to Hn we get a graph saturating G and having O(1) edges,
finishing the proof.15

We denote by Mk (resp. M ′
k−1) the set of odd (resp. even) edges of the edges of the

path P2k on 2k vertices of H. Let v be an arbitrary isolated vertex in Iw6w1 and let w be
another arbitrary vertex. We have to check that adding the edge vw to H creates a copy
of Xk. There are three cases:

Case 1: w6 ≤ w ≤ w1. In this case vw together with M ′
k−1 forms Lk, w2w4 and w5w3

play the role of the crossing edges in the copy of Xk.
Case 2: w1 < w < w4. Mk forms Lk, vw and w1w4 play the role of the crossing edges

in the copy of Xk.
Case 3: w4 ≤ w < w6. Lk−1 and w1w2 form Lk, vw and w3w6 play the role of the

crossing edges in the copy of Xk.

4 Semisaturation

In this section we consider the semisaturation problem for (cyclically) ordered graphs.
A graph H is semisaturating G if adding any edge to H creates a new copy of G. Let

ssat<(n,G) (resp. ssat�(n,G)) be the minimum size of a G-semisaturated ordered (resp.
cyclically ordered) graph on n vertices.

As it was the case with 0-1 matrices, the semisaturation problem turns out to be much
easier than the saturation problem. We are able to characterize exactly which (cyclically)
ordered graphs have bounded semisaturation function.

15We could define witness graphs for cyclically ordered graphs similarly to how we have defined them
for ordered graphs. With this terminology, H would be a witness for Xk.
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Theorem 40. For an ordered graph G, ssat<(n,G) = O(1) if and only if all the following
hold:

1. G contains a minedge,

2. G contains an edge connecting the first vertex with a degree one vertex,

3. G contains an edge connecting the last vertex with a degree one vertex,

and ssat<(n,G) = Θ(n) otherwise.

Proof. Notice that ssat<(n,G) ≤ sat<(n,G) = O(n) by Theorem 3.
Assume first that at least one of the conditions is not satisfied. First, if G has no

minedge then an H semisaturating G cannot have two consecutive isolated vertices, as
otherwise connecting two such vertices could not create a new copy of G. This implies that
ssat<(n,G) ≥ n/4. If the second (resp. third) condition is not satisfied then there is no
isolated vertex in H, possibly besides the first (resp. last) vertex, as otherwise connecting
the first (resp. last) vertex with an isolated vertex could not create a new copy of G. From
this we get ssat<(n,G) ≥ (n− 1)/2.

We assume now that there is a minedge m1m2, an edge u1u2 connecting the first
vertex, u1, with a degree one vertex u2 and an edge v1v2 connecting the last vertex, v2,
with a degree one vertex v1. For simplicity we regard the vertex set of G to be [k] and
thus m1, etc. refer not only to vertices but also they are positive integers (in particular
u1 = 1, v2 = k and m2 = m1 + 1). For n big enough we construct a graph H = Hn

semisaturating G. We denote the set of the first max(u2 +m1− 3, v1− 1) vertices of H by
B1, and the set of the last max(2k − v1 −m2 − 1, k − u2) vertices by B2. We connect all
the vertices in B1 (resp. B2), also we add all edges between B1 and B2 to H and no other
edges. H clearly has O(1) edges, as required. We are left to prove that adding an edge to
H creates a new copy of G. Notice that the only edges that we are able to add must have
at least one vertex outside B1 and B2. Thus we connect such an isolated vertex v with an
arbitrary vertex w. First, if w is among the first m1 − 1 vertices of H then there are at
least u2 − 2 vertices in B1 between w and v. Also, there are at least k − u2 vertices after
v in B2. Thus a new copy of G is created such that wv plays the role of u1u2. Similarly,
if w is among the last k −m2 vertices of H then another copy of G is created such that
vw plays the role of v1v2. Finally, in the remaining case a copy of G is created such that
the edge connecting v and w plays the role of the minedge m1m2.
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Theorem 41. For a cyclically ordered graph C, ssat�(n,C) = O(1) if and only if C
contains a minedge, and ssat�(n,C) = Θ(n) otherwise.

Proof. Notice that ssat�(n,G) ≤ sat�(n,G) = O(n) by Theorem 30.
First, if C has no minedge then an H semisaturating C cannot have two consecutive

isolated vertices, as otherwise connecting two such vertices could not create a new copy
of G. This implies that ssat�(n,G) ≥ n/4.

Now, assume that C has k vertices and it contains a minedge. For n big enough we
construct a graph H = Hn semisaturating G. Take an interval J of the vertices of H of
size 2k − 4 and connect all the vertices of J with each other. H has no other edges, i.e.,
the rest of the vertices are isolated. H clearly has O(1) edges, as required. We are left to
prove that adding an edge to H creates a new copy of G.

A new edge must connect an isolated vertex v and a vertex w in H. As either Iv,w ∩ J
or Iw,v ∩ J has at least k − 2 vertices, adding the edge vw creates a copy of C in H in
which vw plays the role of a minedge.

5 Discussion

It would be interesting to determine the order of magnitude of the saturation function
for further linked matchings. Perhaps it is not out of reach to fully characterize the linked
matchings with bounded saturation function, or at least those which are of the form
Γ{m1,m2,...,mk} with mi ∈ {0, 1}.

Notice that to a linearly ordered graph naturally corresponds a cyclically ordered
graph by extending the linear order of the vertices to a cyclic order (and similarly, for a
bipartite ordered graph corresponds an ordered and in turn a cyclically ordered graph).
In particular, in the cyclic case one can also regard linked matchings. Considering linked
matchings in the cyclic setting did not fit in the scope of this paper, nevertheless, it would
be nice to see how differently they behave compared to the ordered case. To this end, it
is not hard to check that the witnesses for Γ{0,1,0} and Γ{1,0,1} from Section 2.1 also avoid
these graphs cyclically and thus sat�(n,Γ{0,1,0}) = O(1) and sat�(n,Γ{1,0,1}) = O(1). Yet
for example the witness we had for Γ{1,1,0} contains a copy of Γ{1,1,0} in the cyclic setting,
so for this graph we do not know the answer in the cyclic case.

Let us now compare the three ordered variants (ordered bipartite, ordered, cyclically
ordered):
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1. Ordered bipartite vs. ordered. Corollary 8 states that for every ordered bipartite
graph G we have sat<(n,G) = Θ(n), irrespective of what sat0-1(n,G) is.

2. Ordered bipartite vs. cyclic. First, sat0-1(n,X0) = Θ(n) and sat�(n,X0) = Θ(n).
Second, sat0-1(n,X1) = Θ(n) and sat�(n,X1) = O(1). Third, if sat0-1(n,G) = O(1)

then sat�(n,G) = Θ(n). Indeed, in this case G is not decomposable ([12], see the
Introduction) and so in particular G cannot contain a minedge when the vertices
are regarded cyclically and then by Claim 34 we have sat�(n,G) = Θ(n).

3. Ordered vs. cyclic. First, sat<(n,X0) = Θ(n) and sat�(n,X0) = Θ(n). Second,
sat<(n,X1) = Θ(n) and sat�(n,X1) = O(1). Third, sat<(n,Γ{0,1,0}) = O(1) and
sat�(n,Γ{0,1,0}) = O(1). Finally, while we cannot exclude the possibility, we have
no example where the ordered saturation is bounded and the cyclically ordered
saturation is linear.

The missing case in the ordered vs. cyclic case can be phrased this way:

Problem 42. Is it true for every ordered graph G that sat�(n,G) = O(sat<(n,G))?

A graph showing that the answer is false would be a graph with bounded sat< and
linear sat�. The difficulty lies partially in the fact that we do not know that many types
of graphs belonging to any of these two classes.

Notice that sat�(n,G) = sat<(n, {G1, G2, ..., Gk}) where Gi is the graph we get by
‘cutting’ the cyclic order of the vertices after the ith vertex to get a linear order on the
vertices. We can get the graph Gi from G1 by shifting the linear order on the vertices
by i − 1. Thus the above problem can be phrased the following way: is it true that
forbidding every shifted version of a graph G1 cannot increase the order of magnitude of
the saturation function?

We did not regard the case when multiple graphs are forbidden. Most probably many of
our results generalize to this case, yet in general it would be interesting to see if forbidding
multiple graphs can exhibit new behaviours. In particular the following problem (for which
the answer may easily be false) is a good first step also to solve Problem 42:

Problem 43. Is it true for every pair of ordered graphs A,B that sat<(n, {A,B}) =

O(sat<(n,A))?

This is true if we replace the saturation function with the extremal function (even
for multiple forbidden graphs), in all settings (unordered graphs and the three settings
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of ordered graphs). Further, while in the case of graphs it is possible that the extremal
function of a collection of graphs is actually the minimum of the extremal functions of the
members of the collection (this is a well-known open problem of extremal graph theory),
when considering 0-1 matrices, a collection of matrices can have an extremal function
strictly smaller than the extremal function of any of the members of the collection [22]. For
a brief treatment of the saturation problem for a collection of matrices see the Conclusion
of [2] and for an application to saturation problems on the Boolean poset see [17].

We don’t know if an algorithm exists that always stops that decides for a given (cycli-
cally) ordered graph if its saturation function is bounded. For a more detailed discussion
about this computational problem see the Discussion of [12], where it is considered for
0-1 matrices.

Throughout this paper we were interested in vertex-ordered graphs, while we did not
consider the case of edge-ordered graphs. These graphs were regarded in the context of
extremal problems [16, 22], however, nothing is yet known about their saturation function.
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