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Abstract. In this paper, we study optimal control problems of semilinear elliptic and parabolic
equations. A tracking cost functional, quadratic in the control and state variables, is considered. No
control constraints are imposed. We prove that the corresponding state equations are well posed for
controls in L2. However, it is well known that in the L2 framework the mappings involved in the
control problem are not Frechet differentiable in general, which makes any analysis of the optimality
conditions challenging. Nevertheless, we prove that every L2 optimal control belongs to L\infty , and
consequently standard optimality conditions are available.
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1. Introduction. In this paper, we study the optimal control problem

inf
u\in L2(Q)

J(u) :=
1

2

\int 
Q

[(yu  - yd)
2 + \alpha u2] dxdt,(P)

where \alpha > 0 and yu is the solution of the semilinear parabolic equation\Biggl\{ 
\partial y

\partial t
+Ay+ f(y) = u in Q=\Omega \times (0, T ),

y= 0 on \Sigma =\Gamma \times (0, T ), y(x,0) = y0(x) in \Omega .
(1.1)

Here, A denotes an elliptic operator in the bounded domain \Omega \subset \BbbR n, n \geq 2, whose
boundary is denoted by \Gamma , T \in (0,\infty ) is fixed, y0 \in L\infty (\Omega ), and f : \BbbR  - \rightarrow \BbbR is a
given function. Additionally, we assume that yd \in Lp(0, T ;Lq(\Omega )) with p, q \in [2,\infty ]
and 1

p +
n
2q < 1 is a given function. Assumptions on the nonlinear term f in the state

equation will be established later. Let us emphasize that we do not impose an upper
bound on n nor a growth condition on f .

In many papers, the authors assume box control constraints in the formulation
of the problem (P); see, for instance, [8, 11, 14, 18], [23, Chapter 5]. That is be-
cause bounded controls u lead to solutions yu of (1.1) that are functions of L\infty (Q).
This boundedness of the state is crucial to derive first and second order optimality
conditions for local or global minimizers. Indeed, the C1 or C2 differentiability of
the superposition operator y \rightarrow f(y) for highly nonlinear functions f requires the

*
Received by the editors March 24, 2022; accepted for publication (in revised form) November

18, 2022; published electronically May 10, 2023.
https://doi.org/10.1137/22M1486418
Funding: The first author was supported by MCIN/AEI/10.13039/501100011033 under re-

search project PID2020-114837GB-I00. The second author was partially supported by the German
Research Foundation (DFG) under project grant Wa 3626/3-2.

\dagger 
Departmento de Matem\'atica Aplicada y Ciencias de la Computaci\'on, ETSI Industriales y de

Telecomunicaci\'on, Universidad de Cantabria, 39005 Santander, Spain (eduardo.casas@unican.es).
\ddagger 
Institut f\"ur Mathematik, Universit\"at W\"urzburg, 97074 W\"urzburg, Germany (daniel.wachsmuth@

mathematik.uni-wuerzburg.de).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1095

D
ow

nl
oa

de
d 

05
/1

0/
23

 to
 1

54
.5

9.
12

4.
23

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/22M1486418
mailto:eduardo.casas@unican.es
mailto:daniel.wachsmuth@mathematik.uni-wuerzburg.de
mailto:daniel.wachsmuth@mathematik.uni-wuerzburg.de


1096 EDUARDO CASAS AND DANIEL WACHSMUTH

boundedness of y. Moreover, as far as we know, the well posedness of the state equa-
tion (1.1) has not been studied for controls u\in L2(Q). In some recent papers (see [6,
9, 12]), the existence of global minimizers to (P) in L\infty (Q) has been proven in the
absence of control constraints or for unbounded control sets with the restriction n\leq 3
on the dimension. The novelties of our paper with respect to these previous results
are the following: first we prove that the state equation (1.1) is well posed for L2(Q)
controls, and the associated control problem (P) has at least one global minimizer
\=u in L2(Q); second we prove that any local minimizer of (P) in the L2(Q) sense is
an element of L\infty (Q). Usually, this regularity follows from the optimality conditions
satisfied by \=u, but we cannot get such conditions due to the lack of differentiability
of the mapping y \rightarrow f(y), since the boundedness of the state \=y corresponding to \=u
cannot be deduced for L2(Q) controls. Therefore, our approach is necessarily different
from the one used in the previous papers.

In the second part of the paper, we will prove similar results for a Neumann
boundary control problem of a semilinear elliptic equation. The approach used for
a Neumann boundary control can be applied to the case of a distributed control
problem; see Remark 3.5. Classical results on existence of optimal controls subject to
box constraints can be found in [23, section 4.4]. The reader is referred to [10] for the
proof of existence of an optimal control in L\infty (\Omega ) for distributed control problems
of arbitrary space dimension without box constraints. However, in [10] the analysis
of the state equation for the controls in L2(\Omega ) is not performed and, consequently,
the existence of minimizers in L2(\Omega ) is not proven, which are ultimately functions of
L\infty (\Omega ).

The plan of this paper is as follows. In section 2 we investigate (P). First, we
analyze the well posedness of the state equation (1.1); see section 2.1, Theorem 2.1,
where for every control u\in L2(Q) the existence and uniqueness of a solution inW (0, T )
is established. We also provide an example showing that the state associated with a
control of L2(Q) does not need to be a bounded function if n> 1; see section 2.2. In
section 2.3, we prove that (P) has at least one global minimizer \=u in L2(Q). Then,
we demonstrate that any local or global minimizer of (P) is an element of L\infty (Q) in
section 2.4. In the last section of the paper, the same study is applied to a Neumann
boundary control problem for a semilinear elliptic equation in dimension n> 2.

2. Optimal distributed control of a semilinear parabolic equation.

2.1. Analysis of the state equation. We make the following assumptions on
(1.1), which are assumed to hold throughout the section.

(A1) We assume that \Omega is a bounded domain in \BbbR n, n \geq 2, with boundary
denoted by \Gamma , and A denotes a second order elliptic operator in \Omega of the form

Ay= - 
n\sum 

i,j=1

\partial xj
(aij(x)\partial xi

y) + a0(x)

with coefficients aij , a0 \in L\infty (\Omega ) satisfying for some \Lambda A > 0

\Lambda A| \xi | 2 \leq 
n\sum 

i,j=1

aij(x)\xi i\xi j \forall \xi \in \BbbR n and a0(x)\geq 0 for a.e. x\in \Omega .

(A2) f :\BbbR  - \rightarrow \BbbR is a function of class C1 satisfying that

f(0) = 0 and \exists \Lambda f \geq 0 such that f \prime (s)\geq  - \Lambda f \forall s\in \BbbR .(2.1)
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EXISTENCE OF SOLUTIONS TO CONTROL PROBLEMS 1097

(A3) \alpha > 0, y0 \in L\infty (\Omega ), yd \in Lp(0, T ;Lq(\Omega )) with p, q \in [2,\infty ] and 1
p + n

2q < 1.
For convenience, we work with the norm \| y\| H1

0 (\Omega ) := \| \nabla y\| L2(\Omega ). As usual, we

denote W (0, T ) = L2(0, T ;H1
0 (\Omega )) \cap H1(0, T ;H - 1(\Omega )). Then, we have the following

existence and uniqueness result for a solution to (1.1).

Theorem 2.1. For every u \in L2(Q), (1.1) has a unique solution yu \in W (0, T ).
Moreover, f(y) \in L2(Q), and there exists a constant C depending on \| y0\| L\infty (\Omega ) but
independent of u such that

\| yu\| W (0,T ) + \| f(yu)\| L2(Q) \leq C(\| u\| L2(Q) + \| y0\| L\infty (\Omega )).(2.2)

In addition, if uk \rightharpoonup u in L2(Q), then yuk
\rightharpoonup yu in W (0, T ) and f(yuk

) \rightharpoonup f(y) in
L2(Q) hold.

Proof. For every integer k \geq \| y0\| L\infty (\Omega ) we set fk(s) = f(Pk(s)) with Pk(s) =
min\{ max\{  - k, s\} ,+k\} . By a standard application of Schauder's fixed point theorem
we infer the existence of a function yk \in W (0, T ) satisfying\Biggl\{ 

\partial yk
\partial t

+Ayk + fk(yk) = u in Q,

yk = 0 on \Sigma , yk(0, x) = y0(x) in \Omega ;
(2.3)

see, for instance, [7] or [23, Theorem 5.5]. Moreover, testing (2.3) with e - 2\Lambda fsyk(s)
and integrating with respect to s, we infer for every t\in (0, T ]

1

2
e - 2\Lambda f t\| yk(t)\| 2L2(\Omega ) +\Lambda f

\int t

0

e - 2\Lambda fs\| yk(s)\| 2L2(\Omega ) ds+ e - 2\Lambda fT\Lambda A\| yk\| 2L2(0,t;H1
0 (\Omega ))

+

\int t

0

\int 
\Omega 

e - 2\Lambda fsfk(yk)yk dxds

\leq 
\int t

0

\int 
\Omega 

e - 2\Lambda fsuyk dxds+
1

2
\| y0\| 2L2(\Omega )

\leq C\Omega \| u\| L2(0,t;L2(\Omega ))\| yk\| L2(0,t;H1
0 (\Omega )) +

1

2
\| y0\| 2L2(\Omega )

\leq C2
\Omega 

2\Lambda A
e2\Lambda fT \| u\| 2L2(0,t;L2(\Omega )) +

\Lambda A

2
e - 2\Lambda fT \| yk\| 2L2(0,t;H1

0 (\Omega )) +
1

2
\| y0\| 2L2(\Omega ).

With (2.1) and the mean value theorem, we get that fk(yk)yk \geq  - \Lambda fy
2
k. Inserting

this lower bound into the inequality above, we obtain that the sum of the second and
fourth integrals of the left-hand side is nonnegative, i.e.,

\Lambda f

\int t

0

e - 2\Lambda fs\| yk(s)\| 2L2(\Omega ) ds+

\int t

0

\int 
\Omega 

e - 2\Lambda fsfk(yk)yk dxds\geq 0.

This leads to

\| yk\| L\infty (0,T ;L2(\Omega )) + \| yk\| L2(0,T ;H1
0 (\Omega )) \leq C1

\Bigl( 
\| u\| L2(Q) + \| y0\| L2(\Omega )

\Bigr) 
,(2.4)

where C1 is independent of u and y0. Now, we prove that \{ fk(yk)\} \infty k=1 is bounded in
L2(Q). To this end, we test (2.3) with fk(yk) and integrate in Q\int T

0

\biggl\langle 
\partial yk
\partial t

, fk(yk)

\biggr\rangle 
dt - \Lambda fC\| yk\| 2L2(0,T ;H1

0 (\Omega )) + \| fk(yk)\| 2L2(Q)

\leq 1

2
\| u\| 2L2(Q) +

1

2
\| fk(yk)\| 2L2(Q),(2.5)
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1098 EDUARDO CASAS AND DANIEL WACHSMUTH

where \langle \cdot , \cdot \rangle denotes the duality between H - 1(\Omega ) and H1
0 (\Omega ). We define the function

Fk(\rho ) =
\int \rho 

0
fk(s)ds for \rho \in \BbbR . Then, we have\int T

0

\biggl\langle 
\partial yk
\partial t

, fk(yk)

\biggr\rangle 
dt=

\int T

0

d

dt

\int 
\Omega 

Fk(yk)dxdt=

\int 
\Omega 

Fk(yk(T ))dx - 
\int 
\Omega 

Fk(y0)dx.

By the mean value theorem we get a function \theta :\BbbR  - \rightarrow [0,1] such that for \rho > 0

Fk(\rho ) =

\int \rho 

0

fk(s)ds=

\int \rho 

0

f \prime 
\bigl( 
\theta (s)Pk(s)

\bigr) 
Pk(s)ds\geq  - \Lambda f

\int \rho 

0

sds= - \Lambda f
\rho 2

2
.

We establish the same inequality for \rho < 0:

Fk(\rho ) =

\int \rho 

0

fk(s)ds= - 
\int 0

\rho 

f \prime 
\bigl( 
\theta (s)Pk(s)

\bigr) 
Pk(s)ds\geq \Lambda f

\int 0

\rho 

sds= - \Lambda f
\rho 2

2
.

Moreover, since k\geq \| y0\| L\infty (Q) we have

| Fk(y0(x))| \leq 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int y0(x)

0

f(s)ds

\bigm| \bigm| \bigm| \bigm| \bigm| \leq \| y0\| L\infty (Q)max\{ | f(s)| : | s| \leq \| y0\| L\infty (Q)\} 

=Cf,y0
\| y0\| L\infty (Q).

From the last two estimates we infer\int T

0

\biggl\langle 
\partial yk
\partial t

, fk(yk)

\biggr\rangle 
dt\geq  - \Lambda f

2
\| yk(T )\| 2L2(\Omega )  - Cf,y0\| y0\| L\infty (\Omega ).

Using this fact in (2.5) we obtain with (2.4)

\| fk(yk)\| L2(Q) \leq C2

\Bigl( 
\| u\| L2(Q) + \| y0\| L\infty (\Omega )

\Bigr) 
.

Hence, from (2.3), (2.4), and this estimate we deduce that \{ yk\} \infty k=1 is bounded in
W (0, T ). Therefore, we can take a subsequence, denoted in the same way, such that
yk \rightharpoonup y in W (0, T ), yk(x, t) \rightarrow y(x, t) for almost all (x, t) \in Q, and fk(yk)\rightharpoonup f(y) in
L2(Q). Then, we can pass to the limit in (2.3) and deduce that y= yu is a solution of
(1.1). Moreover, (2.2) follows from the estimates established for yk. The uniqueness
is obtained in the standard way. Indeed, if y1 and y2 are two solutions of (1.1) such
that f(yi) \in L2(Q) for i = 1,2, then we test (1.1) with e - 2\Lambda f t(y2  - y1) and, arguing
as above, we deduce that y2  - y1 = 0. Finally, the convergence property stated in the
theorem follows easily from the estimate (2.2).

Let us remark that the crucial part of the proof was to establish the uniform
boundedness of \{ fk(yk)\} \infty k=1 in L2(Q), which was used to establish the boundedness
of \{ yk\} \infty k=1 in W (0, T ). Here, the assumptions (A2) on f were essential.

Now, we prove some extra Lp(Q) regularity of the solution yu. First we state the
following lemma.

Lemma 2.2. The following properties are satisfied:

I. The space L2(0, T ;H1
0 (\Omega )) \cap L\infty (0, T ;L2(\Omega )) is continuously embedded in

Lp(Q) with p= 2(n+2)
n .

II. If u\in L2(Q) and y0 \in H1
0 (\Omega )\cap L\infty (\Omega ), then yu \in H1(Q) holds.

III. Let 1
\sigma + n

2\gamma < 1 with \sigma ,\gamma \in [2,\infty ], and y0 \in L\infty (\Omega ) be given. Then there exists
a constant C independent of y0 such that for all u \in L\sigma (0, T ;L\gamma (\Omega )) it holds
that

\| yu\| L\infty (Q) \leq C
\bigl( 
\| u\| L\sigma (0,T ;L\gamma (\Omega )) + \| y0\| L\infty (\Omega )

\bigr) 
.(2.6)
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EXISTENCE OF SOLUTIONS TO CONTROL PROBLEMS 1099

Proof. I. It is enough to apply the Gagliardo--Nirenberg inequality (see, e.g., [19,

p. 125]) with p= 2(n+2)
n , a= 2

p , r= q= 2, and m= 0 to get

\| y\| Lp(\Omega ) \leq C1\| \nabla y\| 
2
p

L2(\Omega )\| y\| 
1 - 2

p

L2(\Omega ).

Integrating this inequality on (0, T ) implies the claim.
II. Since f(yu) \in L2(Q) by Theorem 2.1, the H1(Q) regularity follows from the

classical results for linear parabolic equations; see, for instance, [21, section III.2].
III. By the change of variables \phi = e - \Lambda f tyu, (1.1) is transformed in\Biggl\{ 

\partial \phi 

\partial t
+A\phi + \^f(t, \phi ) = e - \Lambda f tu in Q=\Omega \times (0, T ),

\phi = 0 on \Sigma =\Gamma \times (0, T ), \phi (x,0) = y0(x) in \Omega ,

where \^f : [0, T ] \times \BbbR  - \rightarrow \BbbR is given by \^f(t, s) = \Lambda fs + e - \Lambda f tf(e\Lambda f ts). We note that

(2.1) implies \partial \^f
\partial s (t, s) = \Lambda f + f \prime (e\Lambda f ts)\geq 0 and \^f(t,0) = 0.

We set \beta = \| u\| L\sigma (0,T ;L\gamma (\Omega )) + \| y0\| L\infty (\Omega ). We assume that \beta > 0; otherwise \phi = 0
and (2.6) holds. We also set \phi \beta = 1

\beta \phi , u\beta = 1
\beta u, and y0\beta = 1

\beta y0. Then, \phi \beta satisfies the
equation \left\{   

\partial \phi \beta 
\partial t

+A\phi \beta +
1

\beta 
\^f(t, \phi ) = e - \Lambda f tu\beta in Q=\Omega \times (0, T ),

\phi \beta = 0 on \Sigma =\Gamma \times (0, T ), \phi \beta (x,0) = y0\beta (x) in \Omega .

Let k\geq 1 be given. Define \phi \beta ,k = \phi \beta  - Pk(\phi \beta ). Testing the above equation with \phi \beta ,k,

integrating in (0, t) with t\in (0, T ), and using that
\partial \phi \beta 

\partial t \phi \beta ,k =
\partial \phi \beta ,k

\partial t \phi \beta ,k, \nabla \phi \beta \cdot \nabla \phi \beta ,k =
| \nabla \phi \beta ,k| 2, and \^f(t, \phi (x, t))\phi \beta ,k(x, t)\geq 0, we infer

1

2
\| \phi \beta ,k(t)\| 2L2(\Omega ) +\Lambda A\| \phi \beta ,k\| 2L2(0,t;H1

0 (\Omega )) \leq 
\int t

0

\int 
\Omega 

e - \Lambda fsu\beta \phi \beta ,k dxds.

The proof now follows the lines of the one of [15, Theorem III.7.1] to deduce the
existence of a constant C > 0 independent of (u, y0) such that \| \phi \beta \| L\infty (Q) \leq C.
Therefore, we have

\| \phi \| L\infty (Q) = \beta \| \phi \beta \| L\infty (Q) \leq C(\| u\| L\sigma (0,T ;L\gamma (\Omega )) + \| y0\| L\infty (\Omega )),

which implies (2.6).

Theorem 2.3. Let u \in Lr(Q) and y0 \in L\infty (\Omega ) be given such with r \in [2,1 + n
2 ].

Then the solution yu of (1.1) belongs to Lq(Q), where q has to be chosen as follows:

1. if r < 1 + n
2 , then

q= r
n+ 2

n+ 2 - 2r
\geq r

n+ 2

n
,(2.7)

2. if r= 1+ n
2 , then q <+\infty is arbitrary.

In particular, there exists C =C(q, r)> 0 independent of u and y0 such that

\| yu\| Lq(Q) \leq C(\| u\| Lr(Q) + \| y0\| L\infty (\Omega )).(2.8)
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1100 EDUARDO CASAS AND DANIEL WACHSMUTH

Proof. For r < 1 + n
2 we set p= rn

n+2 - 2r . Due to the assumptions on r, it follows
that n\geq 3 and p\geq r n

n - 2 \geq r \geq 2. In the critical case r = 1+ n
2 , we can choose p\geq 2

arbitrarily. Then in both cases, we have p\geq 2 and p satisfies

1

r
+
p - 1

p

n

n+ 2
\leq 1.(2.9)

In addition, (2.7) yields q= pn+2
n .

Throughout the proof we abbreviate y := yu.
1. Estimates for regular y. Let us assume for the moment that yt \in L2(Q) and

y \in L\infty (Q). Then, we have that | y| p - 2y \in H1(Q)\cap L\infty (Q). Note that\int 
\Omega 

n\sum 
i,j=1

aij\partial xi
y\partial xj

(| y| p - 2y)dx=

\int 
\Omega 

(p - 1)

n\sum 
i,j=1

aij\partial xi
y\partial xj

y \cdot | y| p - 2 dx

=

\int 
\Omega 

4(p - 1)

p2

n\sum 
i,j=1

aij\partial xi(| y| p/2)\partial xj (| y| p/2)dx

\geq 4(p - 1)

p2
\Lambda A

\int 
\Omega 

| \nabla (| y| 
p
2 )| 2 dx.

Taking | y| p - 2y as a test function in the weak formulation of (1.1), integrating on
(0, t)\times \Omega , and using the above inequality results in

1

p
(\| y(t)\| pLp(\Omega )  - \| y0\| pLp(\Omega )) +

4(p - 1)

p2
\Lambda A

\int t

0

\int 
\Omega 

| \nabla (| y| 
p
2 )| 2 dxds

+

\int t

0

\int 
\Omega 

f(y)y| y| p - 2 dxds\leq 
\int t

0

\int 
\Omega 

uy| y| p - 2 dxds.

Since f(y)y\geq  - \Lambda fy
2, we obtain

1

p
\| y(t)\| pLp(\Omega ) +

4(p - 1)

p2
\Lambda A

\int t

0

\int 
\Omega 

| \nabla (| y| 
p
2 )| 2 dxds

\leq 
\int 
Q

| u| \cdot | y| p - 1 dxds+
1

p
\| y0\| pLp(\Omega ) +\Lambda f

\int t

0

\| y(t)\| pLp(\Omega ) ds.

By the Gronwall inequality, we obtain

\| y\| pL\infty (0,T ;Lp(\Omega )) + \| \nabla (| y| 
p
2 )\| 2L2(Q) \leq C1

\biggl( \int 
Q

| u| \cdot | y| p - 1 dxds+ \| y0\| pLp(\Omega )

\biggr) 
,

which is an estimate of | y| 
p
2 in L\infty (0, T ;L2(\Omega )) \cap L2(0, T ;H1(\Omega )). Using Lemma

2.2, property I, this space embeds continuously into L
2(n+2)

n (Q), which implies y \in 
Lpn+2

n (Q) =Lq(Q) together with the corresponding estimate

\| y\| pLq(Q) \leq C2

\biggl( \int 
Q

| u| \cdot | y| p - 1 dxds+ \| y0\| pLp(\Omega )

\biggr) 
.

Due to the property (2.9), we can apply H\"older and Young inequalities, and we get

\| y\| pLq(Q) \leq C3(\| u\| pLr(Q) + \| y0\| pLp(\Omega )),

which is the claim. In the critical case r= 1+ n
2 , we can chose p and thus q arbitrarily

large. In any case, the constant C in the inequality (2.8) depends on p and q.
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EXISTENCE OF SOLUTIONS TO CONTROL PROBLEMS 1101

2. General case. Given u\in Lr(Q) we set uk = Pk(u). For y0 \in L\infty (\Omega ), we take a
sequence \{ \^y0k\} \infty k=1 \subset H1

0 (\Omega ) such that \^y0k(x) \rightarrow y0(x) for almost every x \in \Omega . Now,
we define y0k = PM0

(\^yk) with M0 = \| y0\| L\infty (\Omega ). We still have that \{ y0k\} \infty k=1 \subset H1
0 (\Omega )

and \| y0k\| L\infty (\Omega ) \leq \| y0\| L\infty (\Omega ). Then, the solution yk of (1.1) associated with (uk, y0k)
is an element of H1(Q) \cap L\infty (Q); see Lemma 2.2. From Theorem 2.1 we infer that
yk \rightharpoonup y in W (0, T ). Moreover, every function yk satisfies the inequality (2.8) with yk
in the left-hand side and uk and y0k on the right. Now, it is easy to pass to the limit
in this inequality and to deduce that y satisfies (2.8) as well.

The reader is referred to [22] for other Lp estimates in the case of linear equations,
which were proven using semigroup theory.

Remark 2.4. The regularity y0 \in L\infty (\Omega ) was used in the proof to be able to
perform the approximation procedure in the second part, as the existence of L\infty (Q)
solutions for the nonlinear equation requires this regularity of y0. The estimates
themselves only used Lp-norms of y0, p <\infty .

2.2. Example. Let us show by means of a small counterexample that the solu-
tion of (1.1) is not necessarily an element of L\infty (Q) if the control u is just an element
of L2(Q). Actually, we prove something more general: for n\geq 2 and smooth domain
\Omega the space L2(0, T ;H2(\Omega )\cap H1

0 (\Omega ))\cap H1(0, T ;L2(\Omega )) is not contained in L\infty (Q).
For r, s > 0, let Qr,s :=Br(0)\times [1 - s,1+ s]\subset \BbbR n+1, where Br(0) is the open ball

of radius r. Let us choose \phi \in C\infty 
c (\BbbR n+1) such that 0\leq \phi (x, t)\leq 1, \phi = 1 on Q1,1, and

\phi = 0 on \BbbR n+1 \setminus Q2,2. We set Q=\Omega \times (0, T ) =B2(0)\times (0,2) and define the function
y in Q by

y(x, t) :=

\infty \sum 
k=1

k - 1\phi (2kx,22k(t - 1)).

Note that for (x, t) \not = (0,1) only finitely many summands are nonzero. The derivatives
of (x, t) \mapsto \rightarrow \phi (2kx,22k(t  - 1)) are supported on Q21 - k,21 - 2k \setminus Q2 - k,2 - 2k , hence the
supports of the derivatives of the terms in the sum are disjoint. Due to this fact, and
using the coordinate transform (\^x, \^t) = (2kx,22k(t - 1)), we deduce

\| \partial ty\| 2L2(Q) = \| \partial ty\| 2L2(\BbbR n+1) =

\infty \sum 
k=1

k - 22k(2 - n)\| \partial t\phi \| 2L2(\BbbR n+1) <+\infty 

and similarly

\| \partial xi
\partial xj

y\| 2L2(Q) = \| \partial xi
\partial xj

y\| 2L2(\BbbR n+1) =

\infty \sum 
k=1

k - 22k(2 - n)\| \partial xi
\partial xj

\phi \| 2L2(\BbbR n+1) <+\infty .

Since y vanishes in Q \setminus Q1,1, it follows y \in L2(0, T ;H2(\Omega )\cap H1
0 (\Omega ))\cap H1(0, T ;L2(\Omega ))

and y(x,0) = 0. For m\in \BbbN , let (x, t)\in Q2 - m,2 - 2m . Then

y(x, t)\geq 
m\sum 

k=1

k - 1\phi (2kx,22k(t - 1)) =

m\sum 
k=1

k - 1.

Clearly, Q2 - m,2 - 2m has positive measure, and y \not \in L\infty (Q). Now, setting u= \partial y
\partial t  - \Delta y,

we infer that y is the unique solution of\Biggl\{ 
\partial y

\partial t
 - \Delta y= u in Q,

y= 0 on \Sigma , y(x,0) = 0 in \Omega .
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1102 EDUARDO CASAS AND DANIEL WACHSMUTH

Moreover, since L2(0, T ;H2(\Omega ) \cap H1
0 (\Omega )) \cap H1(0, T ;L2(\Omega )) \subset C([0, T ];H1

0 (\Omega )) and
H1

0 (\Omega )\subset L6(\Omega ) if n\leq 3, for f(y) = y3 we have that

\| f(y)\| L2(Q) \leq C\| y\| 2C([0,T ];H1
0 (\Omega ))\| y\| L2(0,T ;H1

0 (\Omega )) <\infty .

Therefore, u= \partial y
\partial t  - \Delta y+ f(y)\in L2(Q) for n= 2 or 3, and y \not \in L\infty (Q) solves (1.1).

2.3. Existence of solutions in \bfitL 2(\bfitQ ). In this section, we prove the existence
of at least one solution to (P). Below we will prove that any local solution of (P)
belongs to L\infty (Q). Here, local solutions are intended in the sense of L2(Q). Let us
start proving the existence of optimal controls in L2(Q). The proof is standard, and
we only give a brief sketch.

Theorem 2.5. Problem (P) admits a global solution.

Proof. Due to the structure of the cost functional J , a minimizing sequence
\{ uk\} \infty k=1 is bounded in L2(Q), and hence we can assume (after passing to a sub-
sequence if necessary) that uk \rightharpoonup \=u in L2(Q). Due to Theorem 2.1, we can pass to the
limit in the state equation. Using the weak sequentially lower semicontinuity of the
cost functional J , we can prove that \=u is a global solution of (P).

2.4. Local solutions are in \bfitL \infty (\bfitQ ). In order to prove that local solutions of
(P) are in L\infty (Q), we employ the following auxiliary problems, which are localized
and contain box constraints parametrized by M . Let a local minimizer \=u of (P) be
given. Let \rho > 0 be such that J(\=u)\leq J(u) for all u with \| u - \=u\| L2(Q) \leq \rho . We define
the following problem:

minJ(u) +
1

2
\| u - \=u\| 2L2(Q)PM

subject to \| u - \=u\| L2(Q) \leq \rho , | u(x, t)| \leq M f.a.a. (x, t)\in Q.
Similar to Theorem 2.5, we obtain solvability of (PM ).

Lemma 2.6. Let \{ uM\} M>0 be a family of solutions of (PM ). Then uM \rightarrow \=u in
L2(Q) for M \rightarrow \infty .

Proof. Let Mk \rightarrow \infty and set uk := uMk
. We can assume (after passing to a

subsequence if necessary) that uk \rightharpoonup u\ast in L2(Q). Let us define the truncation \=uk =
PMk

(\=u). Then \=uk \rightarrow \=u in L2(Q). Hence, \=uk is a feasible control for problem (PMk
) for

k large enough and, consequently, J(uk)+
1
2\| uk  - \=u\| 2L2(Q) \leq J(\=uk)+

1
2\| \=uk  - \=u\| 2L2(Q).

Due to the weak lower semicontinuity of J on L2(Q), we can pass to the limit in this
inequality to obtain J(u\ast )+ 1

2\| u
\ast  - \=u\| 2L2(Q) \leq J(\=u). Since \| u\ast  - \=u\| L2(Q) \leq \rho , it follows

\=u = u\ast by the optimality of \=u in the ball B\rho (\=u). By the properties of limit inferior
and superior, we have

J(\=u) = lim
k\rightarrow \infty 

\biggl( 
J(\=uk) +

1

2
\| \=uk  - \=u\| 2L2(Q)

\biggr) 
\geq limsup

k\rightarrow \infty 

\biggl( 
J(uk) +

1

2
\| uk  - \=u\| 2L2(Q)

\biggr) 
\geq lim inf

k\rightarrow \infty 
J(uk) + limsup

k\rightarrow \infty 

1

2
\| uk  - \=u\| 2L2(Q)

\geq J(\=u) + limsup
k\rightarrow \infty 

1

2
\| uk  - \=u\| 2L2(Q)

\geq J(\=u) + lim inf
k\rightarrow \infty 

1

2
\| uk  - \=u\| 2L2(Q) \geq J(\=u).
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EXISTENCE OF SOLUTIONS TO CONTROL PROBLEMS 1103

Hence \| uk  - \=u\| 2L2(Q) \rightarrow 0. Since the limit is independent of the chosen subsequence,
the claim follows.

From this lemma we infer the existence of M0 such that \| uM  - \=u\| L2(Q) < \rho for
all M >M0. Hence, uM is a local minimizer of J(u) + 1

2\| u - \=u\| 2L2(Q) on the set of

controls of u \in L2(Q) such that | u| \leq M . Since the set of feasible controls for (PM )
is bounded in L\infty (Q), then a classical proof [23, Chapter 5] establishes the following
optimality conditions for the local minimizers.

Theorem 2.7. Let uM be a local minimizer of (PM ) for M >M0. Then, there
exists \varphi M \in H1(Q)\cap L\infty (Q) satisfying\left\{    - \partial \varphi M

\partial t
+A\ast \varphi M + f \prime (yM )\varphi M = yM  - yd in Q,

\varphi M = 0 on \Sigma , \varphi M (x,T ) = 0 in \Omega ,
(2.10) \int 

Q

(\varphi M + \alpha uM + uM  - \=u)(v - uM )dxdt\geq 0 \forall v \in L2(Q) : | v| \leq M,(2.11)

where yM is the state associated with uM and

A\ast \varphi = - 
n\sum 

i,j=1

\partial xj
(aji(x)\partial xi

\varphi ) + a0(x)\varphi .

From (2.10) and due to yd \in Lp(0, T ;Lq(\Omega )) with p, q \in [2,\infty ] and 1
p + n

2q < 1,

the boundedness of \varphi M follows from [15, Theorem III.7.1]. The H1(Q) regularity is
classical; see [21, section III.2].

Theorem 2.8. Let \=u be a local minimizer of (P). Then \=u\in L\infty (Q) holds.

Proof. From Lemma 2.6 we know that there exists a numberM0 > 0 and a family
\{ uM\} M>M0

of local minimizers of problems (PM ) such that (2.10)--(2.11) hold and
uM \rightarrow \=u in L2(Q) as M \rightarrow \infty . Denote by yM the state associated with uM . From
(2.10) we deduce that \{ \varphi M\} M>M0

is bounded in W (0, T ). Hence, there exists a
sequence \{ Mk\} \infty k=1 converging to infinity and a function \varphi \in W (0, T ) such that \varphi k =
\varphi Mk

\rightharpoonup \varphi in W (0, T ). Due to the compactness of the embedding W (0, T ) \subset L2(Q)
[16, Theorem 5.1], we have that \varphi k \rightarrow \varphi in L2(Q). Let us denote uk = uMk

and
yk = yMk

. Taking a new subsequence, we can also assume that \varphi k(x, t)\rightarrow \varphi (x, t) and
uk(x, t)\rightarrow \=u(x, t) for almost all (x, t)\in Q.

Now, from (2.11) we infer

uk = PMk

\biggl( 
 - 1

\alpha 
[\varphi k + uk  - \=u]

\biggr) 
.(2.12)

Passing pointwise to the limit in the above identity we deduce that \=u= - 1
\alpha \varphi . We are

going to prove that \varphi \in L\infty (Q). First, (2.10) is split into two equations:\Biggl\{ 
 - \partial \phi k
\partial t

+A\ast \phi k + f \prime (yk)\phi k = yk in Q,

\phi k = 0 on \Sigma , \phi k(x,T ) = 0 in \Omega 
(2.13)

and \Biggl\{ 
 - \partial \psi k

\partial t
+A\ast \psi k + f \prime (yk)\psi k = yd in Q,

\psi k = 0 on \Sigma , \psi k(x,T ) = 0 in \Omega .
(2.14)
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1104 EDUARDO CASAS AND DANIEL WACHSMUTH

Then, we have \varphi k = \phi k  - \psi k, \phi k \rightharpoonup \phi and \psi k \rightharpoonup \psi in W (0, T ), and \varphi = \phi  - \psi . Due to
our assumptions on yd, we know that \{ \psi k\} \infty k=1 is uniformly bounded in L\infty (Q); see
Lemma 2.2, property III. As a consequence, we get that \psi \in L\infty (Q). We are going to
prove that \{ \phi k\} \infty k=1 is also bounded in L\infty (Q). Since \{ uk\} \infty k=1 is bounded in L2(Q),
we infer from Theorem 2.3

\| yk\| 
L

2 n+2
n - 2 (Q)

\leq C
\bigl( 
\| uk\| L2(Q) + \| y0\| L\infty (Q)

\bigr) 
\leq C1 \forall k\geq 1.

If n \leq 5, then the inequality 2n+2
n - 2 > 1 + n

2 holds. Therefore, applying again Lemma
2.2, property III, to (2.13), we deduce the existence of a constant C2 > 0 such that
\| \phi k\| L\infty (Q) \leq C2 for every k\geq 1. This yields \varphi \in L\infty (Q) and \=u\in L\infty (Q) as well.

For n> 5 we can repeat the arguments of Theorem 2.3 for (2.13) and deduce

\| \phi k\| 
L

2
(n+2)2

(n - 2)2 (Q)

\leq C\| yk\| 
L

2 n+2
n - 2 (Q)

\leq CC1 \forall k\geq 1.

This implies that \phi \in L2
(n+2)2

(n - 2)2 (Q) and consequently \=u= - 1
\alpha \varphi \in L2

(n+2)2

(n - 2)2 holds. Using
(2.11) we get

uk = PMk

\biggl( 
 - 1

1 + \alpha 
[\varphi k  - \=u]

\biggr) 
.

This implies

\| uk\| 
L

2
(n+2)2

(n - 2)2 (Q)

\leq 1

1 + \alpha 

\Biggl( 
\| \varphi k\| 

L
2
(n+2)2

(n - 2)2 (Q)

+ \| \=u\| 
L

2
(n+2)2

(n - 2)2 (Q)

\Biggr) 
\leq C3.

A second application of Theorem 2.3 yields

\| yk\| 
L

2
(n+2)3

(n - 2)3 (Q)

\leq C

\biggl( 
\| uk\| 

L
2
(n+2)2

(n - 2)2

+ \| y0\| L\infty (Q)

\biggr) 
\leq C4 =C

\bigl( 
C3 + \| y0\| L\infty (Q)

\bigr) 
\forall k\geq 1.

If 2 (n+2)3

(n - 2)3 > 1+ n
2 , then we argue as before to deduce that \=u= - 1

\alpha \varphi \in L\infty (Q). If not

then we can repeat the arguments and increase the Lp(Q) regularity of yk until we
obtain the desired regularity for \varphi after finitely many steps.

We proved that any local solution of (P) is a function belonging to L\infty (Q). Hence,
the problem (P) is equivalent to the minimization of J on L\infty (Q). It is well known
that the mapping u \mapsto \rightarrow yu from L\infty (Q) to W (0, T ) \cap L\infty (Q) is of class C1. Then, we
can write the necessary optimality conditions satisfied by any local minimizer \=u of
(P) as follows (see [23, Chapter 5]):\left\{   

\partial \=y

\partial t
+A\=y+ f(\=y) = \=u in Q,

\=y= 0 on \Sigma , \=y(x,0) = y0(x) in \Omega ,
(2.15) \left\{    - \partial \=\varphi 

\partial t
+A\ast \=\varphi + f \prime (\=y) \=\varphi = \=y - yd in Q,

\=\varphi = 0 on \Sigma , \=\varphi (x,T ) = 0 in \Omega ,
(2.16)

\=\varphi + \alpha \=u= 0,(2.17)

where \=y \in W (0, T ) \cap L\infty (Q) and \=\varphi \in H1(Q) \cap C\mu ,\mu 2 ( \=Q) for some \mu \in (0,1). The
reader is referred to [15, Theorem III.10.1] for the H\"older regularity of \=\varphi . Then, as
a consequence of (2.17), we deduce that any local solution of (P) also belongs to
H1(Q)\cap C\mu ,\mu 2 ( \=Q).
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EXISTENCE OF SOLUTIONS TO CONTROL PROBLEMS 1105

Remark 2.9. Given a measurable subset \omega \subset \Omega with positive Lebesgue measure, all
the results of this paper are valid if we replace u in (1.1) by u\chi \omega with u\in L2(\omega \times (0, T ))
and \chi \omega being the characteristic function of \omega . The changes in the proofs are obvious.

We also observe that in real-world applications the case u(x, t) =
\sum m

j=1 uj(t)gj(x)

with \{ uj\} mj=1 \subset L2(0, T ) and supp(gi)\cap supp(gj) = \emptyset for i \not = j is very interesting. In
this case, if \{ gj\} mj=1 \subset Lq(\Omega ) for q > n, we deduce from (2.6) that the solution of
(1.1) belongs to L\infty (Q). Consequently, the mapping (u1, . . . , um)\rightarrow y is differentiable
from L2(0, T )m to L\infty (Q)\cap W (0, T ). Hence, it is obvious to prove the existence of an
optimal control and to deduce the optimality system for every local solution \{ \=uj\} mj=1.
Moreover, since the states belong to L\infty (Q), the adjoint states belong to L\infty (Q) as
well. In this context, the optimality condition (2.17) is replaced by\int 

\Omega 

gj(x) \=\varphi (x, t)dx+ \alpha \=uj(t) = 0 for 1\leq j \leq m and almost all t\in (0, T ).

This implies that \{ \=uj\} mj=1 \subset L\infty (0, T ).

3. Optimal Neumann boundary control of a semilinear elliptic equa-
tion. In this section we study the control problem

inf
u\in L2(\Gamma )

J(u) :=
1

2

\int 
\Omega 

(yu  - yd)
2 dx+

\alpha 

2

\int 
\Gamma 

u2 dx,(Pell)

where yu is the solution of the semilinear elliptic equation\biggl\{ 
Ay+ f(\cdot , y) = g in \Omega ,
\partial \nu A

y= u on \Gamma .
(3.1)

Here, \Omega \subset \BbbR n with n > 2 is a bounded domain with Lipschitz boundary \Gamma . A
denotes the same operator as in section 2 and \partial \nu A

y =
\sum n

i,j=1 aij(x)\partial xi
y\nu j(x), where

\nu (x) is the unit outward normal vector to \Gamma at the point x. We make the following
assumptions on (Pell):

(B1) The coefficients of the operator A satisfy the conditions in (A1) with the
additional requirement that a0 \not \equiv 0.

(B2) f : \Omega \times \BbbR  - \rightarrow \BbbR is a Carath\'eodory function that is of class C1 with respect
to the second parameter satisfying

f(x,0) = 0 and
\partial f

\partial y
(x, y)\geq 0 for a.a. x\in \Omega \forall y \in \BbbR .(3.2)

In addition, for every M > 0 there is Cf,M > 0 such that | f(x, y)| + | \partial f\partial y (x, y)| \leq Cf,M

for almost all x\in \Omega and all | y| \leq M .
(B3) \alpha > 0, g, yd \in Lp(\Omega ) with p > n

2 .
The condition f(\cdot ,0) = 0 was imposed to shorten the presentation. It can be

replaced by the condition f(\cdot ,0) \in Lp(\Omega ) with p > n
2 . In the analysis, we can then

replace f and g by f(\cdot , y) - f(\cdot ,0) and g - f(\cdot ,0).
Analogously to the control problem analyzed in section 2, here we will prove that

(Pell) is well posed and has at least one global minimizer in L2(\Gamma ). Then, we establish
that any local minimizer of (Pell) in L2(\Gamma ) is actually a function of L\infty (\Gamma ). This
regularity implies the C(\=\Omega ) regularity of the locally optimal states, which allows us
to derive first and second order optimality conditions for (Pell). We recall that, under
the above conditions, for n= 2 and for every u\in L2(\Gamma ) there exists a unique solution
yu \in H1(\Omega )\cap C(\=\Omega ). Therefore, we can differentiate the relation u\rightarrow f(yu) and derive
first order optimality conditions for (Pell). From these conditions we infer as usual
the C(\=\Omega ) regularity of the adjoint state and, consequently, the C(\Gamma ) regularity of the
locally optimal controls. This is why we have selected n> 2 in this section.
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1106 EDUARDO CASAS AND DANIEL WACHSMUTH

3.1. Analysis of the state equation. Associated with A, we define the bilinear
form B :H1(\Omega )\times H1(\Omega ) - \rightarrow \BbbR by

B(y, z) =

\int 
\Omega 

\left(  n\sum 
i,j=1

aij\partial xiy\partial xjz + a0yz

\right)  dx.

From assumption (B1) we get

\exists \Lambda B > 0 such that \Lambda B\| y\| 2H1(\Omega ) \leq B(y, y) \forall y \in H1(\Omega ).(3.3)

In the following, \langle \cdot , \cdot \rangle \Omega and \langle \cdot , \cdot \rangle \Gamma denote the duality pairing between H1(\Omega )\ast and
H1(\Omega ) and H - 1

2 (\Gamma ) and H
1
2 (\Gamma ), respectively. Let us first state the existence result

for weak solutions of the state equation. We will give its proof below.

Theorem 3.1. Given u\in H - 1
2 (\Gamma ) and g \in H1(\Omega )\ast , there exists a unique function

yu \in H1(\Omega ) such that f(\cdot , yu)\in L1(\Omega )\cap H1(\Omega )\ast and

B(yu, z) + \langle f(\cdot , yu), z\rangle \Omega = \langle g, z\rangle \Omega + \langle u, z\rangle \Gamma \forall z \in H1(\Omega ).(3.4)

Furthermore, if uk \rightarrow u in H - 1
2 (\Gamma ), then yuk

\rightarrow yu in H1(\Omega ) and f(\cdot , yuk
)\rightarrow f(\cdot , yu)

in L1(\Omega )\cap H1(\Omega )\ast hold.

According to this result, we call yu \in H1(\Omega ) a weak solution of (3.1) if f(\cdot , yu) \in 
L1(\Omega )\cap H1(\Omega )\ast and (3.4) is satisfied.

If h\in H1(\Omega )\ast and there exists \phi \in L1(\Omega ) such that

\langle h, z\rangle =
\int 
\Omega 

\phi (x)z(x)dx \forall z \in H1(\Omega )\cap L\infty (\Omega ),

we say that h\in L1(\Omega )\cap H1(\Omega )\ast . In this case, we identify h with \phi .
If z \in H1(\Omega ) satisfies hz \in L1(\Omega ) we also have that \langle h, z\rangle \Omega =

\int 
\Omega 
h(x)z(x)dx.

Indeed, define zk = Pk(z) for every integer k \geq 1. Then, zk \in H1(\Omega ) \cap L\infty (\Omega ) and
zk \rightarrow z in H1(\Omega ) holds. Moreover, since hz \in L1(\Omega ), h(x)zk(x)\rightarrow h(x)z(x) for almost
all x \in \Omega , and | h(x)zk(x)| \leq | h(x)z(x)| , Lebesgue's dominated convergence theorem
implies that hzk \rightarrow hz in L1(\Omega ). These arguments yield\int 

\Omega 

h(x)z(x)dx= lim
k\rightarrow \infty 

\int 
\Omega 

h(x)zk(x)dx= lim
k\rightarrow \infty 

\langle h, zk\rangle \Omega = \langle h, z\rangle \Omega .

Lemma 3.2. The following properties are satisfied:

1. If f(\cdot , y)\in H1(\Omega )\ast \cap L1(\Omega ), then f(\cdot , y)y \in L1(\Omega ) holds.
2. If y, z \in H1(\Omega ) and f(\cdot , y), f(\cdot , z) \in H1(\Omega )\ast \cap L1(\Omega ), then the inequality

\langle f(\cdot , y) - f(\cdot , z), y - z\rangle \Omega \geq 0 is fulfilled.

Proof. To prove the first statement, we define yk = Pk(y) for every integer k\geq 1.
Then, we have that yk \rightarrow y in H1(\Omega ), yk(x) \rightarrow y(x) for almost all x \in \Omega , and
\{ yk\} \infty k=1 \subset L\infty (\Omega ). Hence, we also have f(\cdot , yk(x)) \rightarrow f(\cdot , y(x)) for almost all x \in \Omega .
Moreover, (3.2) implies that f(\cdot , s)s \geq 0 for every s \in \BbbR . Therefore, using Fatou's
lemma we get\int 

\Omega 

f(\cdot , y)y dx\leq lim inf
k\rightarrow \infty 

\int 
\Omega 

f(\cdot , yk)yk dx\leq lim inf
k\rightarrow \infty 

\int 
\Omega 

f(\cdot , y)yk dx

= lim
k\rightarrow \infty 

\langle f(\cdot , y), yk\rangle \Omega = \langle f(\cdot , y), y\rangle \Omega <\infty .
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EXISTENCE OF SOLUTIONS TO CONTROL PROBLEMS 1107

Thus, we have that f(\cdot , y)y \in L1(\Omega ). For the second part of the lemma we consider
the projections yk = Pk(y) and zk = Pk(z) and use the monotonicity of f as follows:

\langle f(\cdot , y) - f(\cdot , z), y - z\rangle \Omega = lim
k\rightarrow \infty 

\langle f(\cdot , y) - f(\cdot , z), yk  - zk\rangle \Omega 

= lim
k\rightarrow \infty 

\int 
\Omega 

(f(\cdot , y) - f(\cdot , z))(yk  - zk)dx\geq 0.

Now, we have everything at hand to prove Theorem 3.1.

Proof of Theorem 3.1. For every integer k \geq 1 we define the truncation
fk(x, s) = f(x,Pk(s)). Applying the monotone operator theory or Schauder's fixed
point theorem we infer the existence of a function yk \in H1(\Omega ) such that\biggl\{ 

Ayk + fk(\cdot , yk) = g in \Omega ,
\partial \nu A

yk = u on \Gamma in \Omega ;
(3.5)

see [5, Theorem 3.1, Lemma 3.2] or [13]. Testing this equation with yk and using
fk(\cdot , s)s\geq 0, we infer with (3.3)

\| yk\| H1(\Omega ) \leq C1

\bigl( 
\| g\| H1(\Omega )\ast + \| u\| 

H - 1
2 (\Gamma )

\bigr) 
.

Therefore, we take a subsequence, denoted in the same way, such that yk \rightharpoonup y in
H1(\Omega ), yk \rightarrow y in L2(\Omega ), and yk(x) \rightarrow y(x) for almost all x \in \Omega . This implies that
fk(\cdot , yk(x))\rightarrow f(\cdot , y(x)) for almost all x\in \Omega . By (B2), there exists Cf,1 > 0 such that
| f(x, s)| \leq Cf,1 for almost all x \in \Omega and all | s| \leq 1. Using the weak formulation, we
can derive the bound\int 

\Omega 

| f(\cdot , yk)| dx\leq | \Omega | Cf,1 +

\int 
\Omega 

fk(\cdot , yk)yk dx

= | \Omega | Cf,1 + \langle g, yk\rangle \Omega + \langle u, yk\rangle \Gamma  - B(yk, yk)\leq C2 <\infty \forall k\geq 1,

and \{ fk(\cdot , yk)yk\} \infty k=1 is bounded in L1(\Omega ). Then, from Fatou's lemma we deduce\int 
\Omega 

| f(\cdot , y)| dx\leq lim inf
k\rightarrow \infty 

\int 
\Omega 

| f(\cdot , yk)| dx\leq C2.

Thus, f(\cdot , y)\in L1(\Omega ) holds. Let us prove that \{ fk(\cdot , yk)\} \infty k=1 is equi-integrable. Given
\varepsilon > 0 we select M > 0 such that C2

M < \varepsilon 
2 . Let Cf,M be given by (B2) and take \delta > 0

such that \delta Cf,M < \varepsilon 
2 . Then, for every measurable set E \subset \Omega with | E| < \delta and every

k\geq 1 we have\int 
E

| fk(\cdot , yk)| dx\leq 
1

M

\int 
\Omega 

fk(\cdot , yk)yk dx+Cf,M | E| \leq C2

M
+Cf,M\delta < \varepsilon .

Therefore, from Vitali's theorem we deduce that fk(\cdot , yk) \rightarrow f(\cdot , y) in L1(\Omega ). More-
over, we have

\langle fk(\cdot , yk), z\rangle \Omega =

\int 
\Omega 

fk(\cdot , yk)z dx= \langle g, z\rangle \Omega + \langle u, z\rangle \Gamma  - B(yk, z) \forall z \in H1(\Omega ),

which implies the boundedness of \{ fk(\cdot , yk)\} \infty k=1 in H1(\Omega )\ast . All together this yields
f(\cdot , y) \in H1(\Omega )\ast and fk(\cdot , yk) \rightharpoonup f(\cdot , y) in H1(\Omega )\ast . Further, passing to the limit in
the above identity we obtain that y satisfies (3.4).
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1108 EDUARDO CASAS AND DANIEL WACHSMUTH

Let us prove the uniqueness. If y1 and y2 are solutions of (3.1), subtracting the
identities (3.4) for y2 and y1 and taking z = y2  - y1 we infer with (3.3) and Lemma
3.2, property 2,

\Lambda B\| y2  - y1\| 2H1(\Omega ) \leq B(y2  - y1, y2  - y1) + \langle f(\cdot , y2) - f(\cdot , z1), y2  - y1\rangle \Omega = 0.

Finally, we prove the continuous dependence of yu with respect to u. Let be
\{ uk\} \infty k=1 be a sequence converging strongly to u in H - 1

2 (\Gamma ). Taking u = uk and
z = yuk

in (3.4) we infer with (3.3) and Lemma 3.2, property 2,

\Lambda B\| yuk
\| 2H1(\Omega ) \leq B(yuk

, yuk
) + \langle f(\cdot , yuk

), yuk
\rangle \Omega 

\leq C3

\bigl( 
\| g\| H1(\Omega )\ast + \| uk\| 

H - 1
2 (\Gamma )

\bigr) 
\| yuk

\| H1(\Omega ).

This implies the boundedness of \{ yuk
\} \infty k=1 in H1(\Omega ) and, consequently, the conver-

gence yuk
\rightharpoonup y in H1(\Omega ) for a subsequence, denoted in the same way. Moreover,

using Lemma 3.2, property 1, the above inequality also leads to the uniform bound-
edness of the integral

\int 
\Omega 
f(\cdot , yk)yk dx. Hence, we can argue as above and deduce the

equi-integrability of \{ f(\cdot , yk)\} \infty k=1 and the convergence f(\cdot , yk)\rightarrow f(\cdot , y) in L1(\Omega ) for
a subsequence, again denoted in the same way. We also have that f(\cdot , yk)\rightharpoonup f(\cdot , y) in
H1(\Omega )\ast . Now, it is easy to pass to the limit in the equations satisfied by yuk

and to
deduce that y= yu. From the uniqueness of the solution of (3.4) we get that the whole
sequence \{ yuk

\} \infty k=1 converges weakly to yu in H1(\Omega ). Finally, the strong convergence
follows with (3.3) and Lemma 3.2, property 2,

\Lambda B\| yuk
 - yu\| 2H1(\Omega ) \leq B(yuk

 - yu, yuk
 - yu) + \langle f(\cdot , yuk

) - f(\cdot , yu), yuk
 - yu\rangle \Omega 

= \langle uk  - u, yuk
 - yu\rangle \Gamma \rightarrow 0 as k\rightarrow \infty .

Now, we prove the convergence of f(\cdot , yuk
)\rightarrow f(\cdot , yu) in H1(\Omega )\ast as follows:

\| f(\cdot , yuk
) - f(\cdot , yu)\| H1(\Omega )\ast = sup

\| z\| H1(\Omega )\leq 1

| \langle f(\cdot , yuk
) - f(\cdot , yu), z\rangle \Omega | 

= sup
\| z\| H1(\Omega )\leq 1

| \langle uk  - u, z\rangle \Gamma  - B(yuk
 - yu, z)| 

\leq C
\bigl( 
\| uk  - u\| 

H - 1
2 (\Gamma )

+ \| yuk
 - yu\| H1(\Omega )

\bigr) 
\rightarrow 0 as k\rightarrow \infty .

The proof of the convergence f(\cdot , yuk
)\rightarrow f(\cdot , yu) in L1(\Omega ) follows from Vitali's theorem

as above taking into account again that
\int 
\Omega 
f(\cdot , yuk

)yuk
dx= \langle f(\cdot , yuk

), yuk
\rangle \Omega \leq C \prime for

every k.

The reader is referred to [2] for the study of the Dirichlet problem corresponding
to (3.1). See also [3].

In the next theorem we establish some Lq estimates for the solution of (3.1).

Theorem 3.3. Let u\in Lr(\Gamma ) and g \in Ls(\Omega ) with

r \in 
\biggl[ 
2
n - 1

n
,n - 1

\biggr) 
, s\in 

\biggl[ 
2n

n+ 2
,
n

2

\biggr) 
satisfying

(n - 1)

\biggl( 
1

r
 - 1

n - 1

\biggr) 
= n

\biggl( 
1

s
 - 2

n

\biggr) 
(3.6)
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EXISTENCE OF SOLUTIONS TO CONTROL PROBLEMS 1109

be given. Let q and \~q be defined by

1

q
=

1

r
 - 1

n - 1
,

1

\~q
=

1

s
 - 2

n
.(3.7)

Then yu \in L\~q(\Omega ) and its trace yu| \Gamma \in Lq(\Gamma ) hold. Moreover, there exists a constant
C =C(r, s) independent of g and u such that

\| yu\| L\~q(\Omega ) + \| yu\| Lq(\Gamma ) \leq C
\bigl( 
\| g\| Ls(\Omega ) + \| u\| Lr(\Gamma )

\bigr) 
.

If u \in Ln - 1(\Gamma ) and g \in Ln
2 (\Omega ), then the above estimates are valid for every q and \~q

smaller than \infty .

The conditions in (3.7) show the improvements in the integrability, while (3.6)
enforces some compatibility between all these exponents.

Proof. The proof is similar to the one of Theorem 2.3. We test the weak formula-
tion with | y| p - 2y for suitable p to obtain H1-estimates of | y| p/2. Then the exponents
q and \~q are derived by applying embedding and trace theorems for | y| p/2 \in H1(\Omega ),
respectively. Let us set

1

p
=
n - 1

n - 2

\biggl( 
1

r
 - 1

n - 1

\biggr) 
=

n

n - 2

\biggl( 
1

s
 - 2

n

\biggr) 
,(3.8)

which is well-defined due to (3.6), and p\geq 2 holds due to r\geq 2n - 1
n .

We define yk = Pk(yu) for k \geq 1. Then, | yk| p - 2yk \in H1(\Omega ) \cap L\infty (\Omega ) can be used
as a test function in the weak formulation, leading to

B(y, | yk| p - 2yk) +

\int 
\Omega 

f(\cdot , y)| yk| p - 2yk dx=

\int 
\Omega 

g| yk| p - 2yk dx+

\int 
\Gamma 

u| yk| p - 2yk dx.

Using (3.3) we get

B(y, | yk| p - 2yk) =

\int 
\Omega 

n\sum 
i,j=1

aij\partial xiy\partial xj (| yk| p - 2yk) + a0y| yk| p - 2yk dx

\geq 
\int 
\Omega 

(p - 1)

n\sum 
i,j=1

aij\partial xi
yk\partial xj

yk \cdot | yk| p - 2 + a0| yk| p dx

=

\int 
\Omega 

4(p - 1)

p2

n\sum 
i,j=1

aij\partial xi
(| yk| p/2)\partial xj

(| yk| p/2) + a0(| yk| p/2)2 dx

\geq 4(p - 1)

p2
B(| yk| p/2, | yk| p/2)\geq \Lambda B

4(p - 1)

p2
\| | yk| p/2\| 2H1(\Omega ),

where we used 4(p - 1)
p2 \leq 1 for p\geq 2. In addition, we have f(\cdot , y)| yk| p - 2yk \geq 0. Hence,

we arrive at the inequality

\Lambda B
4(p - 1)

p2
\| | yk| p/2\| 2H1(\Omega ) \leq 

\int 
\Omega 

| g| \cdot | yk| p - 1 dx+

\int 
\Gamma 

| u| \cdot | yk| p - 1 dx.

Using the continuity of the embedding H1(\Omega ) \lhook \rightarrow L
2n

n - 2 (\Omega ) and of the trace H1(\Omega ) \lhook \rightarrow 
L

2n - 2
n - 2 (\Gamma ), we infer

\| yk\| p
L

pn
n - 2 (\Omega )

+ \| yk\| p
L

p(n - 1)
n - 2 (\Gamma )

(3.9)

\leq C1

\Lambda B

p2

4(p - 1)

\biggl( \int 
\Omega 

| g| \cdot | yk| p - 1 dx+

\int 
\Gamma 

| u| \cdot | yk| p - 1 dx

\biggr) 
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/1

0/
23

 to
 1

54
.5

9.
12

4.
23

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1110 EDUARDO CASAS AND DANIEL WACHSMUTH

where C1 =C1(n,\Omega ). By definition of p in (3.8), we find1

1

r
+
p - 1

p

n - 2

n - 1
= 1,

1

s
+
p - 1

p

n - 2

n
= 1,

and we can apply the H\"older and Young inequalities to obtain

\| yk\| p
L

pn
n - 2 (\Omega )

+ \| yk\| p
L

p(n - 1)
n - 2 (\Gamma )

\leq C2

\bigl( 
\| g\| pLs(\Omega ) + \| u\| pLr(\Gamma )

\bigr) 
.(3.10)

The exponents in the above inequality satisfy p(n - 1)
n - 2 = q and pn

n - 2 = \~q by construction.
The claim now follows by taking the limit k\rightarrow \infty and Lebesgue's dominated conver-
gence theorem. The last statement of the theorem is an immediate consequence of
the first part.

This theorem is similar to [4, Theorem 18], where L\~q(\Omega )-Ls(\Omega ) estimates are
proven for a problem with a homogeneous Dirichlet boundary condition. Note that
the above proof cannot be used to derive L\infty -estimates of y; see (3.9).

3.2. Analysis of the control problem. By the usual approach of taking a
minimizing sequence, it is immediate to establish the existence of a global minimizer
of problem (Pell) with the help of Theorem 3.1. Observe that the weak convergence
uk \rightharpoonup u in L2(\Gamma ) implies the strong convergence uk \rightarrow u in H - 1

2 (\Gamma ). The goal of this
section is to prove that any local (global) minimizer of (Pell) in the L2(\Gamma ) sense is a
function of L\infty (\Gamma ). For this purpose we follow the steps of section 2.4. Given a local
minimizer \=u, we take \rho > 0 such that J(\=u) \leq J(u) for all u with \| u  - \=u\| L2(\Gamma ) \leq \rho .
Now, we define the control problems:

minJ(u) +
1

2
\| u - \=u\| 2L2(\Gamma )(Pell,M )

subject to \| u  - \=u\| L2(\Gamma ) \leq \rho and | u(x)| \leq M f.a.a. x \in \Gamma . (Pell,M ) has at least one
solution uM . Moreover, arguing as in Lemma 2.6, we get that uM \rightarrow \=u in L2(\Gamma ) as
M \rightarrow \infty . Then, we select M0 > 0 such that \| uM  - \=u\| L2(\Gamma ) <\rho for every M >M0. For
M >M0, the optimality conditions satisfied by uM are written as follows:\left\{   A\ast \varphi M +

\partial f

\partial y
(\cdot , yM )\varphi M = yM  - yd in \Omega ,

\partial \nu A\ast \varphi M = 0 on \Gamma ,
(3.11)

\int 
\Gamma 

(\varphi M + \alpha uM + uM  - \=u)(v - uM )dxdt\geq 0 \forall v \in L2(\Gamma ) : | v| \leq M,(3.12)

where yM is the state associated with uM and \varphi M \in H1(\Omega )\cap L\infty (\Omega ); see [23, Chapter
4]. Observe that yM \in H1(\Omega )\cap L\infty (\Omega ) holds due to the assumption (B3) on g and the
fact that uM \in L\infty (\Gamma ). As a consequence, we also get with (B3) that \varphi M \in L\infty (\Omega ).

Analogously to Theorem 2.8 we have the following result.

Theorem 3.4. Let \=u be a local minimizer of (Pell). Then, \=u\in L\infty (\Gamma ) holds.

The proof of this theorem follows the same arguments used to prove Theorem 2.8
with the obvious changes. The only difference is that we use the estimates established
in Theorem 3.3 instead of the ones provided in Theorem 2.3. First we get Lp(\Omega )
estimates for the states yM and with them we derive Lq(\Gamma ) estimates for the adjoint
state \varphi M .

1The condition here can be written equivalently as 1 - 1
p
= (1 - 1

r
)n - 1
n - 2

= (1 - 1
s
) n
n - 2

.
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EXISTENCE OF SOLUTIONS TO CONTROL PROBLEMS 1111

Once the L\infty (\Gamma ) regularity is proved for any local minimizer of (Pell), using the
differentiability of the mapping G : L\infty (\Gamma )  - \rightarrow H1(\Omega ) \cap L\infty (\Omega ), we can get the first
order optimality conditions satisfied by any local minimizer \=u:\Biggl\{ 

A\=y+ f(\cdot , \=y) = g in \Omega ,

\partial \nu A
\=y= \=u on \Gamma ,

(3.13) \left\{   A\ast \=\varphi +
\partial f

\partial y
(\cdot , \=y) \=\varphi = \=y - yd in \Omega ,

\partial \nu A\ast \=\varphi = 0 on \Gamma ,
(3.14)

\=\varphi | \Gamma + \alpha \=u= 0.(3.15)

The reader is referred to [23, Chapter 4]. We have the regularity \=y \in H1(\Omega )\cap C\mu (\=\Omega )
and \=\varphi \in H1(\Omega ) \cap C\mu (\=\Omega ) for some \mu \in (0,1); see [1, 17, 20] for the H\"older regularity.
Moreover, from (3.15) the H

1
2 (\Gamma )\cap C\mu (\Gamma ) regularity of \=u follows.

Remark 3.5. The arguments used in this section can be applied to the study of
the distributed control problem

inf
u\in L2(\Omega )

J(u) :=
1

2

\int 
\Omega 

[(yu  - yd)
2 + \alpha u2] dx,

where yu is the solution of the state equation\biggl\{ 
Ay+ f(\cdot , y) = u in \Omega ,
y= 0 on \Gamma .

The problem is again well posed in L2(\Omega ) and any local minimizer is a function of
H1(\Omega ) \cap C\mu (\=\Omega ). To establish the L\infty (\Omega ) boundedness of the control, the arguments
relies on the Lp(\Omega ) estimates for the states and adjoint states proved in [4]. The
reader is referred to [10] for the analysis of this problem with L\infty (\Omega ) controls.
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