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Abstract. Many iterative parallel-in-time algorithms have been shown to be highly efficient for
diffusion-dominated partial differential equations (PDEs), but are inefficient or even divergent when
applied to advection-dominated PDEs. We consider the application of the multigrid reduction-in-time
(MGRIT) algorithm to linear advection PDEs. The key to efficient time integration with this method
is using a coarse-grid operator that provides a sufficiently accurate approximation to the the so-called
ideal coarse-grid operator. For certain classes of semi-Lagrangian discretizations, we present a novel
semi-Lagrangian-based coarse-grid operator that leads to fast and scalable multilevel time integration
of linear advection PDEs. The coarse-grid operator is composed of a semi-Lagrangian discretization
followed by a correction term, with the correction designed so that the leading-order truncation
error of the composite operator is approximately equal to that of the ideal coarse-grid operator.
Parallel results show substantial speed-ups over sequential time integration for variable-wave-speed
advection problems in one and two spatial dimensions, and using high-order discretizations up to
order five. The proposed approach establishes the first practical method that provides small and
scalable MGRIT iteration counts for advection problems.
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1. Introduction. Traditionally, the solutions of initial-value partial differential
equation (PDE) problems are approximated numerically via the sequential process of
time-stepping, an approach motivated by the temporally causal nature of the solution
itself. However, there also exist many time-parallel methods for simulating these
PDEs, and these can often yield reductions in wall-clock time relative to time-stepping.
A history and broad survey of the field of parallel-in-time methods can be found
in the review [19], with the later review [32] providing a summary of more recent
developments.

Presently, parallel-in-time methods are not widely used for large-scale PDE sim-
ulations, with the traditional technique of time-stepping remaining the standard. As
supercomputer architectures continue to use more and more cores, parallel-in-time
methods are likely to become essential for circumventing sequential time-stepping
bottlenecks. However, one issue likely to limit their practicability is a lack of robust-
ness for hyperbolic PDEs, or more broadly for advection-dominated problems. In
particular, this is true for the multigrid reduction-in-time (MGRIT) algorithm [15],
which is the algorithm that we focus on in this work.

MGRIT enables time-parallelism by applying local time-stepping in parallel across
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a sequence of temporally coarsened grids combined with a global coarse-grid correc-
tion on a coarsest grid. The well-known time-parallel Parareal algorithm [28] can
be interpreted as a special case of MGRIT that uses only two levels and a specific
choice for the relaxation scheme [21], and thus our work also applies to Parareal.
MGRIT is iterative, and its convergence properties hinge on how well the coarse-grid
problem approximates the fine-grid problem. The default technique for developing
the coarse-grid problem is to rediscretize the fine-grid PDE on the coarsened mesh,
and this tends to work excellently for diffusion-dominated problems [28, 1, 15, 17, 16].
Conversely, it is well-documented that convergence tends to be substantially worse for
advection-dominated PDEs when using rediscretization, or closely related techniques
[7, 8, 12, 22, 18, 23, 25, 24, 31, 34, 35, 41, 11, 10, 27].

Unsurprisingly, it has also been observed that MGRIT convergence may dete-
riorate substantially when transitioning from the diffusion-dominated regime of an
advection-diffusion problem to the advection-dominated regime [41, 24, 35, 34]. In
fact, this observation served as the motivation for an idea that was explored in [36],
with some preliminary numerical experiments showing that MGRIT convergence of
certain advection discretizations can be improved substantially by adding judiciously
chosen amounts of numerical dissipation on the fine grid.

While we focus on multigrid-in-time methods in this paper, we note that some
other parallel-in-time methods have shown potential for solving advection-dominated
or wave-related problems. Some examples include using reduction-based algebraic
multigrid on the space-time system [37], block-circulant preconditioning techniques
applied to the space-time system [29], and direct solution techniques based on diago-
nalizing in the time direction [20].

In this paper, we develop a novel coarse-grid operator leading to the fast MGRIT
solution of linear advection problems, building on our earlier work [10] of optimizing
coarse-grid operators for constant-wave-speed advection problems. In that work, we
showed that it is possible to achieve fast MGRIT convergence on advection problems
when using a carefully chosen coarse-grid operator. The coarse-grid operator proposed
here is based on a semi-Lagrangian discretization, and is applied to certain classes
of semi-Lagrangian discretizations on the fine grid; unlike the coarse-grid operators
in [10], the coarse-grid operator is practically computable, and not limited only to
constant-wave-speed problems. Employing a semi-Lagrangian coarse-grid operator
was tested in [35]; however, solver convergence was not robust with respect to the
strength of advection in the advection-diffusion test problem considered. In fact, we
will show even for the case of constant-wave-speed advection that simply employing
a coarse-grid semi-Lagrangian operator does not result in effective convergence.

Our semi-Lagrangian coarse-grid operator is designed to provide a more accurate
approximation to the ideal coarse-grid operator than basic rediscretization, using a
truncation error approach to more faithfully match the coarse operator to the ideal
coarse operator. Our motivation stems in part from the realization that MGRIT
convergence issues for advection-dominated problems are in some sense analogous to
the well-known issues that plague the multigrid solution of steady state advection-
dominated problems [3, 4, 46, 42, 43, 2]. In particular, the idea of increasing the
order of accuracy of the coarse-grid operator for steady state advection relative to
the fine-grid operator, as first proposed in [46] and pointed out to us by the author,
is a key insight and inspiration for our work. Developing such a coarse-grid operator
in the MGRIT context involves additional stability challenges due to the coarsening
being in only one coordinate direction rather than in all directions uniformly. The
link between slow multigrid convergence in the case of steady state advection in multi-
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dimensional space, as analyzed in [46], and slow multigrid convergence in the case of
space-time hyperbolic problems with MGRIT, is investigated in detail in [27, Chap.
3].

This manuscript focuses on the MGRIT solution of semi-Lagrangian discretiza-
tions of advection problems; however, we stress that the principles developed here
can be extended to the MGRIT solution of classical method-of-lines discretizations of
hyperbolic problems, which is a subject of our on-going research. Finally, we remark
that this manuscript is based on the PhD thesis [27, Chap. 4], and as such, we refer
the interested reader there for further details on this work.

The remainder of this manuscript is organized as follows. Section 2 describes the
semi-Lagrangian discretizations we consider, followed by an algorithmic description of
MGRIT and motivating examples. Section 3 presents the proposed coarse-grid opera-
tor. Section 4 generalizes the coarse-grid operator from one to two spatial dimensions.
Section 5 presents parallel results. Concluding remarks are given in Section 6.

2. Preliminaries.

2.1. Semi-Lagrangian discretization of the one-dimensional advection
equation. We consider semi-Lagrangian discretizations of one-dimensional, variable-
wave-speed advection problems of the form

∂u

∂t
+ α(x, t)

∂u

∂x
= 0, (x, t) ∈ Ω× (0, T ], u(x, 0) = u0(x),(2.1)

for spatial domain Ω ⊂ R, and solution u subject to periodic boundary conditions
on ∂Ω. Specifically, our numerical tests for this one-dimensional problem will use the
initial condition u0(x) = sin4(πx), and the spatial domain Ω = (−1, 1). The MGRIT
coarse-grid operators we propose for the multigrid solution of these problems rely on
a detailed understanding of semi-Lagrangian methods, which we now describe. We
consider semi-Lagrangian discretizations of (2.1) that are based on finite differences,
assume a sufficient degree of smoothness of the solution, and assume a readily com-
putable wave-speed α(x, t) for any x and t is available. The reader is directed to [14]
and [13, Sec. 7] for more detailed descriptions of semi-Lagrangian methods.

Consider discretizing the spatial domain Ω with a set of nx equidistant nodes
x = (x1, . . . , xnx)>, xi+1 = xi+h. Furthermore, discretize the time interval t ∈ [0, T ]
with an equidistant mesh of nt + 1 nodes 0 = t0 < · · · < tnt = T , tn+1 = tn + δt.
Given the vector un ≈ u(x, tn), which represents the approximate solution of (2.1)
at time tn at spatial mesh points x, the semi-Lagrangian method advances this to a
new approximation un+1 ≈ u(x, tn+1) at tn+1 as we now describe.

The Lagrangian formulation of the PDE (2.1) is

d

dt
ξ(t) = α(ξ(t), t),

d

dt
u(ξ(t), t) = 0,(2.2)

in which the curves (x, t) = (ξ(t), t) are the characteristics of the PDE. On some
characteristic ξi(t), the evolution equation—the latter equation in (2.2)—states that
the PDE solution is constant. Since the solution at the mesh point (x, t) = (xi, tn+1)
is desired, one forces the characteristic ξi(t) to pass through this point, such that the
solution at this point is simply the solution at the foot of the characteristic at t = tn
(see Figure 1). To this end, define the local characteristic ξ

(tn,δt)
i (t) to be that which

passes through the arrival point (x, t) = (xi, tn+1). Then, the associated departure
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ξ
(tn,δt)
i (tn) x

(tn,δt)
i

xi

tn

tn+1

ξ
(tn,δt)
i (t)

hε
(tn,δt)
i

x

t

Fig. 1. A local characteristic ξ
(tn,δt)
i (t) for t ∈ [tn, tn+1] of the variable-wave-speed problem

(2.1). By definition, the characteristic passes through the arrival point (x, t) = (xi, tn+1). The
departure point (or foot) of the characteristic is its location at time t = tn. The departure point
is decomposed into the sum of its east-neighboring mesh point and its distance from this point (see
(2.4)).

point (x, t) =
(
ξ
(tn,δt)
i (tn), tn

)
is given by the solution of the final-value problem

d

dt
ξ
(tn,δt)
i (t) = α

(
ξ
(tn,δt)
i (t), t

)
, t ∈ [tn, tn+1), ξ

(tn,δt)
i (tn+1) = xi,(2.3)

at t = tn. For general wave-speed functions α, the initial-time solution of (2.3) cannot
be found exactly, and thus needs to be approximated in some way. In this paper, we
approximate this departure point on the fine grid by integrating backwards using a
single explicit Runge-Kutta (ERK) step of size δt.1 Suppose that the ERK method
has a global accuracy of order r, such that each departure point is located with an
accuracy of O(δtr+1) (e.g., forward Euler has r = 1). In particular, we will consider
ERK schemes with r = 1, 3, and 5, with the Butcher tableaux for the specific schemes
available from [27, App. A.1].

Upon (approximately) locating the departure point ξ
(tn,δt)
i (t), it will not, in gen-

eral, coincide with a mesh point, yet the PDE approximation un is only available at
mesh points. To resolve this, an interpolating polynomial of at most degree p ∈ N is
fit through the entries of un at the p+ 1 mesh nodes nearest to the departure point.
Specifically, the departure point is decomposed as

ξ
(tn,δt)
i (tn) ≡ x(tn,δt)i − hε(tn,δt)i , ε

(tn,δt)
i ∈ [0, 1),(2.4)

in which x
(tn,δt)
i is the mesh node immediately east of the departure point ξ

(tn,δt)
i (tn),

and ε
(tn,δt)
i is its (mesh-normalized) distance from this point; see Figure 1 for a

schematic example. The p + 1 interpolation nodes are thus
{
x
(tn,δt)
i + hj

}r(p)
j=−`(p),

with `(p) and r(p)—the west and east extents of the stencil, respectively—chosen so
that the set of interpolation nodes represent the p+ 1 nearest neighbors of the depar-
ture point.2 When p is odd, this results in `(p) = p+1

2 and r(p) = p−1
2 = `(p) − 1.

1On coarser levels in our multigrid-in-time hierarchy, we will explore several alternative possibili-
ties rather than simply redeploying the ERK method with a coarse time step, which is not sufficiently
accurate.

2For interpolating polynomials of degree p ≥ 1, both the west and east neighboring mesh points
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When p is even, the stencil has a one-point bias, such that `(p) and r(p) depend on

whether ε
(tn,δt)
i is larger than one half (we ignore this dependence in our notation).

Locating departure points for all arrival points (x, t) = (x, tn+1), then carrying
out this piecewise polynomial interpolation constitutes a single time-step of the semi-
Lagrangian discretization. We denote the linear time-stepping operator corresponding

to this semi-Lagrangian method as Φ(tn,δt) = S(tn,δt)p,r ∈ Rnx×nx .
By tracking characteristics (with a sufficient level of accuracy), this discretiza-

tion ensures the physical domain of dependence lies within the numerical domain of
dependence. Generally speaking, this is why semi-Lagrangian discretizations are typ-
ically free of a CFL constraint. However, ensuring that characteristics are tracked
with sufficient accuracy can in certain circumstances lead to the imposition of a CFL-
like constraint, although it is typically looser than that imposed by Eulerian schemes

[26, 38]. For sufficiently smooth solutions of (2.1), S(tn,δt)p,r has a global convergence

rate of the form O
(
δtr + hp+1

δt

)
, with the first term arising from approximately locat-

ing departure points, and the second from the polynomial interpolation at them [14,
Sec. 6.1.2]. Thus, while stability can be maintained with large time steps, they likely
lead to a reduction in accuracy of the method. Nonetheless, the time-step size can
be chosen based on accuracy requirements rather than stability requirements, unlike
CFL-constrained Eulerian schemes for which stability is often the key factor in de-
termining the time-step size. For example, this is why semi-Lagrangian methods see
frequent use in numerical weather prediction [30, 40, 44]. In any event, we attempt
to balance temporal and spatial errors by using δt ≈ h and r = p, which is common
in the literature when developing semi-Lagrangian discretizations [33, 26, 6, 5].

2.2. Algorithmic description of MGRIT. We now provide a brief algorith-
mic description of MGRIT as it applies to linear problems. Consider the following
fully discrete, one-step problem

un+1 = Φ(tn,δt)un + gn+1, n = 0, 1, . . . , nt − 1,(2.5)

in which un denotes the approximate spatial solution of some time-dependent PDE
at time t = tn, and the initial condition u0 is given. The vector gn contains solution-
independent information, and Φ(tn,δt) is the (linear) time-stepping operator. Of
course, (2.5) may be solved straightforwardly with sequential time-stepping—solving
for u1 given u0, then solving for u2 given u1, and so on, but this process is inherently
sequential. In contrast, MGRIT solves (2.5) for all unknowns un, n = 1, . . . nt, at
once in parallel using multigrid reduction techniques, as we now detail.

Suppose that the underlying time grid in (2.5) is equispaced with tn+1 = tn + δt.
Then, let a coarsening factor m ∈ N induce a coarse grid defined by taking every mth
time point from the fine grid. Define F-points as those appearing exclusively on the
fine grid, and all other points as C-points. Given an approximate solution of (2.5),
define a C-relaxation of (2.5) as updating C-point values to have zero residuals—this
is achieved by time-stepping to each C-point from the F-point immediately before
it. Further, define an F-relaxation of (2.5) as updating F-point values to have zero
residuals—this is achieved by sequentially time-stepping from each C-point across the
m− 1 F-points immediately after it.

appear in the interpolation stencil of the departure point. Therefore, the choice made in (2.4) to

write the departure point in terms of its east neighbor x
(tn,δt)
i is arbitrary in the sense that it could

also have been written in terms of its west neighbor.
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Given an approximate solution of (2.5), a two-level MGRIT iteration proceeds by
pre-relaxation, coarse-grid correction, and post-relaxation. The typical pre-relaxation
scheme is FCF: An F-relaxation followed by a C-relaxation followed by a further F-
relaxation. However, a single F-relaxation can also be used, as is often the case in the
Parareal literature [21]. In this work, we exclusively use FCF-relaxation, since we find
it often results in more robust convergence for the advection problems we consider—
in some cases, it can even mean the difference between a quickly converging solver
and a divergent solver. Post-relaxation is simply an F-relaxation. Note that the
pre- and post-relaxation sweeps are highly parallelizable. The coarse-grid problem is
derived from the C-point Schur complement of the residual equation of (2.5). More
specifically, one computes an approximate error at C-points by solving the following
problem containing fewer time points:

em(n+1) = Φ(tmn,mδt)emn + rm(n+1), n = 0, 1, . . . , (nt − 1)/m,(2.6)

in which rm(n+1) is the algebraic residual of (2.5) at the C-point t = tm(n+1).

Here Φ(tmn,mδt) is the coarse-grid time-stepping operator, and it should approxi-
mate the ideal coarse-grid time-stepping operator defined by stepping across the
coarse time interval t ∈ [tmn, tmn + mδt] using the fine-grid operators: Φ(tmn,mδt) ≈
m−1∏
k=0

Φ(tmn+k,δt) =: Φ
(tmn,mδt)
ideal . Upon solving (2.6), the approximate coarse-grid error

is interpolated to the fine grid via injection—i.e., added to existing C-point values.
Equation (2.6) may be solved by sequential time-stepping, resulting in a two-level
method. Alternatively, since (2.6) has the same structure as (2.5), its solution may
be approximated in parallel by applying the MGRIT algorithm recursively, resulting
in a multilevel method.

In the event that Φ(tmn,mδt) = Φ
(tmn,mδt)
ideal , (2.6) is exactly the C-point Schur

complement of the residual equation associated with (2.5) and MGRIT converges in a
single iteration. However, stepping across the coarse time interval t ∈ [tmn, tmn+mδt]

with Φ
(tmn,mδt)
ideal is just as expensive as stepping across this interval on the fine grid,

and thus no parallel speed-up can be achieved. Therefore, stepping with Φ(tmn,mδt)

should be less expensive than the ideal coarse-grid operator. Crucially, however, fast
convergence of the method generally requires that the coarse-grid operator accurately
approximates (in a certain sense) its ideal counterpart [12, 39, 10].

Our numerical tests will use the open-source MGRIT implementation provided
by XBraid [45]. In our tests, the initial MGRIT iterate will be taken as a vector with
entries uniformly random between zero and one. The metric that we use to report
convergence is the number of MGRIT iterations required to reduce the space-time
residual by at least 10 orders of magnitude in the two-norm from its initial value.

2.3. Motivating examples. As mentioned previously, a rediscretized coarse-
grid operator often yields fast convergence for diffusion-dominated problems, but
tends to be a poor choice for advection-dominated problems [27, 10]. We now demon-
strate that a rediscretized coarse-grid semi-Lagrangian operator is indeed also a poor
choice for our model problem. To do so, we consider PDE (2.1) with constant wave-
speed α = 1, and examine the convergence factor of two-level MGRIT. Specifically,
for fixed coarsening factor m, we consider the function

ρ(c) = max
ω∈[−π,π)

|λ(ω; c)|m |λ
m(ω; c)− µ(ω; c)|

1− |µ(ω; c)|
,(2.7)
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Fig. 2. Convergence factor for two-level MGRIT to solve semi-Lagrangian discretizations of
the constant-wave-speed advection problem (2.1) using a rediscretized semi-Lagrangian coarse-grid
operator. Left: semi-Lagrangian discretization order p = 1; right: p = 3. For a fixed coarsening
factor m, solid lines show the Fourier analysis estimate of the asymptotic convergence factor (2.7).
Solid markers show convergence factors measured on the final iteration of numerical experiments.

in which c = δt/h is the (fine-grid) CFL number. For fixed c, the quantities λ(ω; c)
and µ(ω; c) in (2.7) are the Fourier symbols of the fine- and coarse-grid time stepping
operators, respectively, as functions of spatial Fourier frequency ω. For fixed c, (2.7) is
the Fourier analysis estimate of the asymptotic convergence factor of two-level MGRIT
as nt → ∞ [27, Chap. 3]. Provided the number of iterations is not so large that the
initial condition has been sequentially propagated across much of the time-domain
via the fine-grid relaxation scheme—the practically relevant case for MGRIT—, (2.7)
provides a useful estimate of the MGRIT convergence factor for finite nt.

For semi-Lagrangian orders p = 1, 3, (2.7) is plotted in Figure 2 for c ∈ [0.5, 1].3

For a given c, to numerically evaluate the maximum in (2.7) over ω we use 512
equispaced points in [−π, π). In Figure 2 for each m, there is a significant interval
of CFL numbers for which ρ > 1, indicating that the residual norm grows from one
iteration to the next (that is, at least in iterations for which (2.7) is a valid estimate).
Moreover, the size of interval for which ρ > 1 appears to grow with m. We conclude
that simply rediscretizing the fine-grid semi-Lagrangian scheme on the coarse grid
does not result in a robust MGRIT solver for our model problem. We do not provide
analogous plots for even polynomial degrees p = 2, 4 because the convergence factor
(2.7) is larger than one for almost all c in these cases.

To demonstrate that (2.7) is an accurate estimate of the true convergence factor,
overlaid on the plots in Figure 2 are experimentally measured convergence factors
taken from the final MGRIT iteration in numerical experiments. The tests use a
space-time domain with nx×nt = 27×215 points. Note also that analogous numerical
experiments for variable-wave-speed problems indicate that rediscretization is a poor
choice for those problems too.

3. Coarse-grid operator in one spatial dimension. From Figure 2, it is
clear that, in general, rediscretizing the semi-Lagrangian operator on the coarse grid
does not yield robust MGRIT convergence. Despite this, the idea of using a semi-

3Specifically for the constant-wave-speed problem, by symmetry of the fine- and coarse-grid
operators used here when p is odd, the corresponding plots for CFL numbers c ∈ [0, 0.5] are a
reflection of those for c ∈ [0.5, 1] in Figure 2 about c = 0.5. Similarly, the corresponding plots for
c ∈ [k, k + 1] with k ∈ N are identical to those for c ∈ [0, 1].
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Lagrangian discretization on time-coarsened grids remains appealing because the dis-
cretization is stable for all time-step sizes. Furthermore, in [10], we argued both for
stability, and in terms of approximating the ideal coarse-grid operator, that a coarse-
grid operator for an advection-dominated problem should be semi-Lagrangian-like in
nature, in the sense that its numerical domain of dependence should track the char-
acteristic curves. For these reasons, we seek a coarse-grid operator that is based on a
semi-Lagrangian discretization, but that provides a better approximation to the ideal
coarse-grid operator than the semi-Lagrangian discretization does. There are many
possible metrics one could use to characterize the difference between a coarse-grid
operator and its ideal counterpart. Here, we use the concept of local truncation error,
which is defined as the amount by which the exact PDE solution fails to satisfy the
discrete scheme after one time step. Accordingly, we begin in the following section
with estimates for the truncation error of the fine-grid semi-Lagrangian discretization,
and the associated ideal coarse-grid operator.

Throughout the rest of the paper, the matrix Dp+1 ∈ Rnx×nx is defined such that
h−(p+1)Dp+1 represents a finite-difference rule for approximating the p+1st derivative

of periodic grid functions. Let v =
(
v(x1), . . . , v(xnx)

)> ∈ Rnx denote a vector of
a periodic function v(x) evaluated on the spatial mesh. Then, if the finite-difference
rule is of order s ∈ N and v is at least p+ 1 + s times continuously differentiable(

Dp+1

hp+1
v

)
i

=
dp+1v

dxp+1

∣∣∣∣
xi

+O(hs), i ∈ {1, . . . , nx}.(3.1)

The order s is not particularly important for our purposes so we do not specify it,
but note that numerical tests in later sections use finite-difference approximations
with s = 2. Since the mesh points are equispaced, the matrix Dp+1 is circulant.
Finally, note that while the entries of Dp+1 are independent of h, its action is not:
Dp+1v = O(hp+1) if v is independent of h.

3.1. Truncation error estimates for exact departure points. For simplic-

ity, consider an idealized semi-Lagrangian discretization S(tn,δt)p,r that locates departure
points exactly, which we will denote by writing r =∞. Furthermore, the following er-
ror estimates (Lemma 3.1, Corollary 3.2, and Lemma 3.3) assume that the wave-speed
function may depend on time but is independent of space. Discussion on spatially
varying wave-speed functions is given after Lemma 3.3. Note that [14, p. 170] con-
siders a simpler but related type of error estimate to Lemma 3.1 when α is constant.

Lemma 3.1 (Semi-Lagrangian truncation error for r = ∞). Let Dp+1 be as in
(3.1). Suppose that the solution u(x, t) of (2.1) is at least p+1+s times continuously
differentiable with respect to x, and that the wave-speed in (2.1) is independent of
space, α(x, t) ≡ α(t). Define u(t) ∈ Rnx as the vector composed of the PDE solution

sampled in space at the mesh points x and at time t, and let S(tn,δt)p,∞ be the semi-
Lagrangian discretization of (2.1) that locates departure points exactly at time tn.
Then, the local truncation error of this discretization can be expressed as

u(tn+1)− S(tn,δt)p,∞ u(tn) = (−h)p+1 diag
(
fp+1

(
ε(tn,δt)

))Dp+1

hp+1
u(tn+1) +O(hp+2),

(3.2)

in which ε(tn,δt) :=
(
ε
(tn,δt)
1 , . . . , ε

(tn,δt)
nx

)> ∈ Rnx , and ε
(tn,δt)
i is defined in (2.4). The
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function fp+1 in (3.2) is the following degree p+ 1 polynomial

fp+1(z) :=
1

(p+ 1)!

r(p)∏
q=−`(p)

(q + z).(3.3)

Note that since u(tn+1) is independent of h, the vector
Dp+1

hp+1 u(tn+1) in (3.2) is inde-
pendent of h to leading order (see (3.1)).

Proof. Since S(tn,δt)p,∞ exactly locates departure points of (2.1), the only truncation

error resulting from applying the ith row of S(tn,δt)p,∞ to u(x, tn) is the error from the

polynomial interpolation at the departure point ξ
(tn,δt)
i (tn) = x

(tn,δt)
i −hε(tn,δt)i . Since

u is at least p + 1 times continuously differentiable with respect to x, the standard
error estimate from polynomial interpolation theory can be applied (see, e.g., [9,
Thm. 3.1.1]). Since the interpolation nodes are separated by distance h, applying
this estimate at the ith departure point at time tn yields

u
(
ξ
(tn,δt)
i (tn), tn

)
−
(
S(tn,δt)p,∞ u(tn)

)
i

=
1

(p+ 1)!

r(p)∏
q=−`(p)

[(
x
(tn,δt)
i − hε(tn,δt)i

)
−
(
x
(tn,δt)
i + hq

)] ∂p+1u

∂xp+1

∣∣∣∣(
ζ
(tn,δt)
i ,tn

)(3.4)

= (−h)p+1fp+1

(
ε
(tn,δt)
i

) ∂p+1u

∂xp+1

∣∣∣∣(
ζ
(tn,δt)
i ,tn

) ,(3.5)

for some unknown point ζ
(tn,δt)
i ∈

(
x
(tn,δt)
i − h`(p), x(tn,δt)i + hr(p)

)
. Since ζ

(tn,δt)
i

and ξ
(tn,δt)
i (tn) are a distance of O(h) apart, write ζ

(tn,δt)
i = ξ

(tn,δt)
i (tn) +hζ̂

(tn,δt)
i for

some other unknown quantity ζ̂
(tn,δt)
i . Then, by Taylor expansion,

∂p+1u

∂xp+1

∣∣∣∣(
ζ
(tn,δt)
i ,tn

) =
∂p+1u

∂xp+1

∣∣∣∣(
ξ
(tn,δt)
i (tn)+hζ̂

(tn,δt)
i ,tn

) =
∂p+1u

∂xp+1

∣∣∣∣(
ξ
(tn,δt)
i (tn),tn

) +O(h).

(3.6)

Next, observe that differentiating the advection problem (2.1) p+1 times with respect
to x yields when α(x, t) ≡ α(t)

∂

∂t

∂p+1u

∂xp+1
+ α(t)

∂

∂x

∂p+1u

∂xp+1
= 0.(3.7)

Thus, ∂p+1u
∂xp+1 is constant along characteristics of the advection problem (2.1), from

which it follows that ∂p+1u
∂xp+1

∣∣∣(
ξ
(tn,δt)
i (tn),tn

) = ∂p+1u
∂xp+1

∣∣∣
(xi,tn+1)

. Applying this in (3.6)

and substituting the result along with u
(
ξ
(tn,δt)
i (tn), tn

)
= u(xi, tn+1) into (3.5) gives

u(xi, tn+1)−
(
S(tn,δt)p,∞ u(tn)

)
i

= (−h)p+1fp+1

(
ε
(tn,δt)
i

) ∂p+1u

∂xp+1

∣∣∣∣
(xi,tn+1)

+O(hp+2).

(3.8)

Finally, substituting into this equation ∂p+1u
∂xp+1

∣∣∣
(xi,tn+1)

=
(
Dp+1

hp+1 u(tn+1)
)
i
+O(hs) (see

(3.1)) gives the ith row of the claimed result (3.2).
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Corollary 3.2 (Ideal coarse-grid semi-Lagrangian truncation error for r =∞).
Suppose the assumptions of Lemma 3.1 hold. Then, the ideal coarse-grid opera-

tor defined by time-stepping across t ∈ [tn, tn + mδt] with the m fine-grid operators

S(tn+kδt,δt)p,∞ , k = 0, 1, . . . ,m− 1, has a local truncation error given by

u(tn+m)−

[
m−1∏
k=0

S(tn+kδt,δt)p,∞

]
u(tn)

= (−h)p+1 diag

(
m−1∑
k=0

fp+1

(
ε(tn+kδt,δt)

))Dp+1

hp+1
u(tn+m) +O(hp+2).

(3.9)

Proof. Applying S(tn+1,δt)
p,∞ to both sides of (3.2) gives

S(tn+1,δt)
p,∞ u(tn+1)−

[
S(tn+1,δt)
p,∞ S(tn,δt)p,∞

]
u(tn)

= (−h)p+1S(tn+1,δt)
p,∞ diag

(
fp+1

(
ε(tn,δt)

))Dp+1

hp+1
u(tn+1) +O(hp+2),

(3.10)

= (−h)p+1 diag
(
fp+1

(
ε(tn,δt)

))Dp+1

hp+1

(
S(tn+1,δt)
p,∞ u(tn+1)

)
+O(hp+2).(3.11)

To arrive at (3.11), we have used the fact that when the wave-speed is independent of

space S(tn+1,δt)
p,∞ commutes with diag

(
fp+1

(
ε(tn,δt)

))
and Dp+1. When the wave-speed

is independent of space, characteristics are parallel for all time t, and thus departure
points of neighboring local characteristics are equally separated by a distance h, from

which it follows that ε(tn,δt) is constant. Therefore diag
(
fp+1

(
ε(tn,δt)

))
is a con-

stant diagonal matrix and thus commutes with all other matrices. Furthermore, since

neighboring departure points are equispaced, the semi-Lagrangian matrix S(tn+1,δt)
p,∞ is

circulant, and therefore commutes with the circulant matrix Dp+1.
Moving on, from (3.2) one has

S(tn+1,δt)
p,∞ u(tn+1)

= u(tn+2)− (−h)p+1 diag
(
fp+1

(
ε(tn+1,δt)

))Dp+1

hp+1
u(tn+2) +O(hp+2).

(3.12)

Substituting this into (3.11) and keeping only terms up to size O(hp+1) gives

u(x, tn+2)−
[
S(tn+1,δt)
p,∞ S(tn,δt)p,∞

]
u(tn) = O(hp+2) +

(−h)p+1 diag
(
fp+1

(
ε(tn,δt)

)
+ fp+1

(
ε(tn+1,δt)

))Dp+1

hp+1
u(tn+2).

(3.13)

Inductively repeating the above process on (3.13) with the remaining m− 2 fine-grid

operators S(tn+kδt,δt)p,∞ , k = 2, . . . ,m− 1, one arrives at the result (3.9).

Having developed an asymptotic expansion for the ideal coarse-grid operator, we
now relate this to the coarse-grid semi-Lagrangian operator.

Lemma 3.3 (Perturbed coarse-grid semi-Lagrangian operators). Suppose the as-

sumptions of Lemma 3.1 hold. Let S(tn,mδt)p,∞ be the coarse-grid semi-Lagrangian dis-
cretization of (2.1) that locates departure points exactly. Then, this operator can be
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expressed as a perturbation of the ideal coarse-grid operator
∏m−1
k=0 S

(tn+kδt,δt)
p,∞ in the

following three ways:[
m−1∏
k=0

S(tn+kδt,δt)p,∞

]
u(tn)

= S(tn,mδt)p,∞ u(tn) + diag
(
ϕ

(tn,mδt)
p+1

)
Dp+1u(tn+m) +O(hp+2),

(3.14)

=
[
I + diag

(
ϕ

(tn,mδt)
p+1

)
Dp+1

]
S(tn,mδt)p,∞ u(tn) +O(hp+2),(3.15)

=
[
I − diag

(
ϕ

(tn,mδt)
p+1

)
Dp+1

]−1
S(tn,mδt)p,∞ u(tn) +O(hp+2),(3.16)

with the vector ϕ
(tn,mδt)
p+1 ∈ Rnx defined by

ϕ
(tn,mδt)
p+1 := (−1)p+1

(
fp+1

(
ε(tn,mδt)

)
−
m−1∑
k=0

fp+1

(
ε(tn+kδt,δt)

))
.(3.17)

Proof. From the truncation error of the fine-grid semi-Lagrangian discretization

S(tn,δt)p,∞ given in (3.2), it can immediately be seen that the truncation of the coarse-grid

semi-Lagrangian discretization S(tn,mδt)p,∞ is

u(tn+m)− S(tn,mδt)p,∞ u(x, tn)

= (−h)p+1 diag
(
fp+1

(
ε(tn,mδt)

))Dp+1

hp+1
u(tn+m) +O(hp+2).

(3.18)

Equation (3.14) follows by subtracting the truncation error (3.18) from that of the
ideal coarse-grid operator’s in (3.9), and then rearranging the resulting equation for
the ideal coarse-grid operator. Equation (3.15) follows by substituting u(tn+m) =

S(tn,mδt)p,∞ u(x, tn) +O(hp+1), as is given by (3.18), into (3.14). Finally, (3.16) follows

from the geometric expansion
[
I−diag

(
ϕ

(tn,mδt)
p+1

)
Dp+1

]−1
= I+diag

(
ϕ

(tn,mδt)
p+1

)
Dp+1

+
(

diag
(
ϕ

(tn,mδt)
p+1

)
Dp+1

)2
+ . . ., and, so,

[
I − diag

(
ϕ

(tn,mδt)
p+1

)
Dp+1

]−1
v

=
[
I + diag

(
ϕ

(tn,mδt)
p+1

)]
v +O(h2(p+1)) for sufficiently smooth v.

Remark 3.4 (Estimates for spatially varying wave-speed functions). The esti-
mates in Lemma 3.1, Corollary 3.2, and Lemma 3.3 were derived for PDE (2.1) with
α(x, t) ≡ α(t). In particular, the proof of Lemma 3.1 does not generalize to the

spatially variable case because then ∂p+1u
∂xp+1 is no longer constant along characteristics

of (2.1). Furthermore, the commutativity of S(tn+1,δt)
p,∞ with diag

(
fp+1

(
ε(tn,δt)

))
and

Dp+1 used in the proof of Corollary 3.2 no longer holds. However, in what follows be-
low, we find numerically that the MGRIT method that is derived from the estimates
in Lemma 3.3 also works effectively for the case that α depends on x and p is odd.
For odd p, we conjecture based on numerical evidence reported in Supplementary
Materials Section SM1, that the estimates for the spatially independent wave-speed
case hold for the spatially variable case up to terms of size O(hp+1δt), while for even
p, we do not believe that all of the estimates extend analogously.

3.2. Coarse-grid operator for exact departure points. The significance
of Lemma 3.3 is that it provides several asymptotic relationships between the ideal
coarse-grid operator and the coarse-grid semi-Lagrangian operator. Specifically, con-
sidering (3.14), when the wave-speed function does not vary in space, the coarse-grid
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semi-Lagrangian operator serves as an O(hp+1) approximation to the ideal coarse-grid
operator, recalling that Dp+1u(tn+m) = O(hp+1) (see (3.1)). However, the operators
appearing in (3.15) and (3.16) serve as O(hp+2) approximations to the ideal coarse-
grid operator when the wave-speed does not vary in space.

Based on (3.15), we propose the following explicit coarse-grid operator

Φ(tn,mδt) = F (tn,mδt)
p+1 S(tn,mδt)p,∞ , F (tn,mδt)

p+1 := I + diag
(
ϕ

(tn,mδt)
p+1

)
Dp+1.(3.19)

Based on (3.16) we propose the following implicit-explicit coarse-grid operator

Φ(tn,mδt) = B(tn,mδt)p+1 S(tn,mδt)p,∞ , B(tn,mδt)p+1 :=
[
I − diag

(
ϕ

(tn,mδt)
p+1

)
Dp+1

]−1
.(3.20)

Based on Remark 3.4, we explore using these coarse-grid operators also for problems
in which the wave-speed varies in space, even though this introduces further error
terms in (3.15) and (3.16) that we conjecture are of size O(hp+1δt) (at least when p is

odd). The F (tn,mδt)
p+1 and B(tn,mδt)p+1 notation is used to represent forward and backward

Euler steps, respectively. Herein, we will typically refer to (3.19) and (3.20) as the
‘forward Euler’ and ‘backward Euler’ coarse-grid operators, respectively. In our tests,
Dp+1 will be taken as a periodic, finite-difference approximation with second-order
accuracy.

The motivation for this nomenclature is that the coarse-grid operators can be
interpreted as particular coarse-grid discretizations of a certain PDE. For simplicity,

suppose that the wave-speed is constant α(x, t) ≡ α, then the vector ϕ
(tn,mδt)
p+1 ∈ Rnx

given by (3.17) will be constant and independent of tn, so, let us denote its entries by

ϕ
(mδt)
p+1 ∈ R. In this case, the PDE that (3.19) and (3.20) discretize on the coarse grid

is

∂u

∂t
+ α

∂u

∂x
= ϕ

(mδt)
p+1

hp+1

mδt

∂up+1

∂xp+1
.(3.21)

More specifically, they use a mixed discretization of (3.21), in which the coarse-grid

semi-Lagrangian method S(mδt)p,∞ deals with the advection term, and then the method
of lines is applied to solve the rest of the equation. In doing so, the right-hand side
of (3.21) is discretized in space using the matrix Dp+1, and the time derivative on
the left-hand side is discretized using forward and backward Euler steps in (3.19) and
(3.20), respectively. See [27, Sec. 4.2.3] for further details.

An insightful numerical test case for the proposed coarse-grid operators (3.19) and
(3.20) is when α is constant, since then departure points can be located exactly—an
assumption made in deriving the truncation error estimates. We now provide some
general commentary on the results of our numerical tests for constant α to help
motivate the direction of the remainder of this paper.

Case 1: Odd p, forward Euler operator (3.19). For sufficiently small m (e.g., m =
2 or m = 4), we often obtain a quickly converging MGRIT solver, while for larger
m the solver often diverges. In fact, we are able to rigorously prove for the case

of constant α that the operator F (tn,mδt)
p+1 in (3.19) is unstable, in the sense that∥∥F (tn,mδt)

p+1

∥∥
2
> 1, for sufficiently large m (details on this can be found in [27, Sec.

4.2.4]). Note that stability of the coarse-grid operator is a necessary but not sufficient
condition for MGRIT convergence. It is likely that the instability of this operator
is correlated with the poor performance we observe in our numerical tests for larger



SEMI-LAGRANGIAN MGRIT COARSE-GRID OPERATORS 13

values of m. Since this instability arises even for moderate values of m, we do not
believe this operator can be useful in practice.

Case 2: Odd p, backward Euler operator (3.20). Generally speaking, we find this
coarse-grid operator yields robust and fast MGRIT convergence. We are able to

rigorously prove for the case of constant α that the operator B(tn,mδt)p+1 in (3.20) is

unconditionally stable, in the sense that
∥∥B(tn,mδt)p+1

∥∥
2
≤ 1 for all problem parameters

(details can be found in [27, Sec. 4.2.4]).

When p is odd, the stability properties of F (tn,mδt)
p+1 and B(tn,mδt)p+1 can be under-

stood intuitively from the perspective that these operators resemble forward and back-

ward Euler time discretizations, respectively, of a dissipative PDE ∂v
∂t = κ

(mδt)
p+1

∂p+1v
∂xp+1 ,

with κ
(mδt)
p+1 a constant. When p = 1 this dissipative PDE is the heat equation, for

which it is well-known that forward Euler has poor stability properties, while back-
ward Euler has excellent stability properties.

Case 3: Even p. Our tests indicate that the coarse-grid operators do not yield
robust MGRIT convergence. We do not yet have a full understanding of why this is
the case, and addressing this remains ongoing work. We speculate that this failure
is at least in part due to MGRIT being able to more easily correct dissipative errors
compared with dispersive errors (see the analysis of [34]). In addition, for even p,
the nodes in the interpolation stencil change as a function of the mesh-normalized
distance ε to the east neighbor of the departure point (as explained in Section 2.1),
and our proposed coarse-grid operator does not account for this.

Given the above discussion, throughout the remainder of this manuscript we focus
on the backward Euler coarse-grid operator (3.20) and consider only semi-Lagrangian
discretizations using interpolating polynomials of odd degrees p. As an initial demon-
stration of the improvement that the modified coarse-grid operator (3.20) offers over
the standard semi-Lagrangian coarse-grid operator, in Figure 3 we recreate the con-
vergence factor plots from Figure 2 for the constant-wave-speed advection problem.

Remarkably, the plots in Figure 3 show that the proposed coarse-grid operator
leads to a convergent MGRIT solver for all CFL numbers, at least when α is constant.

Fig. 3. Convergence factor for two-level MGRIT to solve semi-Lagrangian discretizations of the
constant-wave-speed advection problem (2.1) with the proposed backward Euler coarse-grid operator
(3.20). Left: semi-Lagrangian discretization order is p = 1; right: p = 3. For a fixed coarsening
factor m, solid lines show the Fourier analysis estimate of the asymptotic convergence factor (2.7) as
a function of the CFL number c = δt/h. Solid markers show experimentally measured convergence
factors.
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Moreover, convergence is fast for many CFL numbers; however, it does show a some-
what strong dependence on the CFL number and coarsening factor. For a given m,
the convergence rate shown in Figure 3 tends to deteriorate going from p = 1 to p = 3,
as is particularly obvious by contrasting the peaks of the p = 1 and p = 3 curves (note
the two different vertical scales). Interestingly, in our prior work [10] on optimizing
coarse-grid operators for explicit Eulerian discretizations of constant-wave-speed ad-
vection, convergence improved with increasing discretization order. The reversal of
this trend here and the non-uniformity of convergence with respect to CFL number
perhaps hint that there exist better coarse-grid operators than (3.20), but we leave
this to future research. In any event, for constant-wave-speed problems, the proposed
backward Euler coarse-grid operator results in a robustly converging MGRIT solver
for odd polynomial degrees that is fast for the majority of CFL numbers.

A potential concern with the backward Euler operator (3.20) is that applying it
requires performing a linear solve, a task which is considerably more computationally
expensive than applying an explicit semi-Lagrangian update. Our numerical experi-
ments in the following section will demonstrate, however, that this linear solve may
be carried out approximately with a small number of GMRES iterations. In fact, the
numerical tests used to generate the data points overlaid in Figure 3 used only 10
GMRES iterations to approximately solve these linear systems.

3.3. Coarse-grid operator for inexact departure points. We now move
to the more practical case of developing a coarse-grid operator for when the fine-
and coarse-grid semi-Lagrangian methods do not exactly locate departure points.
Recall from Section 2.1 that on the fine grid, the semi-Lagrangian method estimates
departure points by a single step of an ERK method. The question is now how they
should be located on the coarse grid. To answer this, we consider a heuristic strategy,
since incorporating inexact departure point locations into the truncation estimates
from Lemma 3.1 is not straightforward.

The immediately obvious way to compute coarse-grid departure points is to re-
deploy the ERK scheme that was used on the fine grid but with the coarse-grid
time-step, i.e., rediscretize the ERK scheme. However, for larger values of m, this
can be expected to produce highly inaccurate departure points, at least for variable
wave-speeds. Numerical tests for variable-wave-speed problems (not shown here for
brevity) confirm that this strategy does not lead to robust MGRIT convergence. A
second option (see [27, Sec 4.3.2] for details) is to increase the accuracy of this coarse-
grid ERK integration by taking many small steps, such as m steps using the fine-grid
time-step δt, for example. The obvious downside of this strategy is that it is expensive,
since it uses fine-grid resolution to determine coarse-grid quantities.

Based on the above discussion, for the fine-grid semi-Lagrangian discretization

S(tn,δt)p,r we propose the following backward Euler coarse-grid operator

Φ(tn,mδt) = B(tn,mδt)p+1 S(tn,mδt)p,r∗ .(3.22)

Here r∗ signifies that the coarse-grid semi-Lagrangian operator S(tn,mδt)p,r∗ should locate
departure points with an accuracy that is in some sense comparable to that of the

fine-grid operator S(tn,δt)p,r , see Section 3.3.1. The backward Euler matrix B(tn,mδt)p+1 is
still defined as it was in (3.20). In Section 3.3.1, a scalable strategy is presented for
estimating coarse-grid departure points by reusing the departure point calculations
from the fine grid. However, since this discussion is detailed, we first present numerical
experiments that use this strategy for the coarse-grid operator (3.22).
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α = (3.23) α = (3.24) α = (3.25)

m m m

p, r nx × nt 4 8 16 4 8 16 4 8 16

1, 1

28 × 210 14 12 11 12 10 11 11 11 12

210 × 212 14 12 11 12 11 11 12 12 12

212 × 214 14 12 11 14 11 11 13 13 13

3, 3

28 × 210 22 17 15 15 13 12 13 15 15

210 × 212 22 17 15 16 14 13 16 16 16

212 × 214 22 17 15 21 15 14 19 19 19

5, 5

28 × 210 30 22 18 18 15 14 15 18 16

210 × 212 31 23 20 18 16 15 18 19 20

212 × 214 31 23 20 27 18 15 23 24 24
Table 1

Number of two-level MGRIT iterations to reach convergence. The wave-speed α(x, t) of the
advection problem (2.1) is indicated in the top row of the table. The fine-grid semi-Lagrangian

discretization is S(tn,δt)p,r , and the coarse-grid operator is the dissipatively corrected semi-Lagrangian

operator (3.22). The coarse-grid semi-Lagrangian operators S(tn,mδt)p,r∗ estimate departure points
using the linear interpolation and backtracking strategy from Section 3.3.1.

In the numerical tests, the fine-grid time-step is chosen as δt = 0.85h, and the
following wave-speed functions are considered

α(x, t) = 1,(3.23)

α(x, t) = cos(2πt),(3.24)

α(x, t) = cos(2πt) cos(2πx).(3.25)

Plots of the functions (3.24) and (3.25), and the corresponding PDE solutions are
given in Supplementary Figures SM3 and SM4, respectively. The number of MGRIT
iterations required to reach convergence on these problems is given in Table 1. The

solution of coarse-grid linear systems involving the matrix B(tn,mδt)p+1 is approximated
using 10 GMRES iterations with a zero initial guess. Fewer than 10 GMRES iterations
can be used without impacting the results, but the focus of these particular tests is
to determine the MGRIT convergence rate, independent of the cost of solving the
coarse-grid linear systems. Note also for reasons relating to using GMRES inside
MGRIT, we use a linear version of MGRIT, which we have implemented in XBraid
(by default, XBraid uses the FAS framework); see Section SM2 for details.

Generally speaking, the convergence rates in Table 1 are fast for the two-level so-
lution of hyperbolic problems. A general trend among these results is the convergence
rate deteriorating with increasing discretization order, consistent with Figure 3. For
the constant-wave-speed case, the iteration counts in Table 1 are essentially constant
as the space-time mesh is refined. For the variable-wave-speed cases, there is some
growth in iteration counts for the two high-order discretizations; at the same time,
the iterations for these variable-wave-speed problems are typically smaller than those
for the constant-wave-speed problem.

3.3.1. Scalable strategy for estimating coarse-grid departure points.
We now describe the strategy for estimating coarse-grid departure points that was
used to generate the results in Table 1. Recall that in applying the coarse-grid
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Fig. 4. Evolution of a local coarse-grid characteristic of advection problem (2.1) with wave-speed
(3.25) using piecewise linear interpolation and backtracking of fine-grid characteristics obtained with
an ERK method of accuracy r = 1. Note that only a subset of the spatial domain x ∈ Ω = (−1, 1)
is shown to better highlight the detail of the characteristic. The black curve is the exact coarse-grid
characteristic. The green curve is the coarse-grid characteristic approximated with the interpolation

strategy (i.e., the triangle marker at time t = kδt is c
(k)
i from (3.27)). The gold lines are the fine-

grid characteristics that are the nearest neighbors of the approximate coarse-grid characteristic (i.e.,

the left and right circle markers at time t = kδt are, respectively, f
(k)
W and f

(k)
E from (3.27)). These

fine-grid characteristics were determined by a single ERK step of size δt. The red dashed line is the
coarse-grid characteristic approximated by a single ERK step of size mδt = 8δt.

semi-Lagrangian operator S(tn,mδt)p,r∗ , we need to compute the values at time tn of

the local coarse-grid characteristics ξ
(tn,mδt)
i (t) that arrive at (x, t) = (xi, tn + mδt).

When time-stepping across the interval t ∈ [tn, tn + mδt] on the fine grid with

S(tn+kδt,δt)p,r , k = 0, 1, . . . ,m− 1, we map out the trajectories of the fine-grid char-

acteristics ξ
(tn+kδt,δt)
i (t) over the fine-grid subintervals t ∈ [tn + kδt, tn + (k + 1)δt]

(see the gold lines in Figure 4, with the circle markers representing the fine-grid de-
parture points). In computing these fine-grid characteristics using an ERK method
of order r, we in effect map out the vector field that dictates the flow of any local
coarse-grid characteristic across the coarse space-time slab (x, t) ∈ Ω× [tn, tn +mδt]
with fine-grid-scale accuracy. The idea we propose now is to approximately propa-
gate a coarse-grid characteristic through this space-time slab by recycling the fine-grid
characteristic directions to guide its path in an interpolating manner, following the
schematic shown in Figure 4.

For simplicity of notation, let us only consider the first coarse time interval

t ∈ [0,mδt]. Let c
(k)
i , k ∈ {0, 1, . . . ,m − 1}, denote our approximation to the local

coarse-grid characteristic ξ
(0,mδt)
i (t) at time t = kδt, c

(k)
i ≈ ξ(0,mδt)i (kδt). For short-

hand, denote departure points of the local fine-grid characteristics on this interval by

f
(k)
i ≡ ξ(kδt,δt)i (kδt), k ∈ {0, 1, . . . ,m− 1}.

Over the last fine-grid subinterval t ∈ [(m − 1)δt,mδt], the approximate coarse-
grid characteristic is the same as the fine-grid characteristic, since they both arrive
at (x, t) = (xi,mδt), and therefore they intersect the x axis at the same location,

c
(m−1)
i = f

(m−1)
i .(3.26)

Using this as a final-time condition, the remaining intersection points of the coarse-
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grid characteristic can be estimated by carrying out the following interpolating update
in sequence

c
(k)
i =

f
(k)
E − f (k)W

h

(
c
(k+1)
i − xE

)
+ f

(k)
E , for k = m− 2, . . . , 1, 0,(3.27)

where the integers E and W are such that xE and xW are the east- and west-

neighboring mesh points of c
(k+1)
i , respectively. A schematic of this procedure is

shown in Figure 4. Upon completing the iteration (3.27), we have an approxima-

tion for the ith coarse-grid departure point, c
(0)
i ≈ ξ

(0,mδt)
i (0). The update formula

(3.27) is based on piecewise linear nearest neighbor interpolation to estimate c
(k)
i .

The example in Figure 4 shows how this strategy has the potential to approximate
coarse-grid departure points much more accurately than a single mδt-sized step of the
ERK scheme used for fine-grid characteristics.4

Recall that the motivation for the proposed strategy was to estimate coarse-grid
departure points in a way that is less expensive than taking m ERK steps of size
δt. However, since this linear interpolation and backtracking strategy requires taking
m− 1 steps, it cannot, on the first coarse level, be significantly cheaper than using m
steps of an ERK scheme.5 However, supposing that the linear interpolation strategy
yields sufficiently accurate departure points, in the sense that its use does not lead to
a strong deterioration of MGRIT convergence, then it has the significant advantage
over stepping at the fine-grid-scale with an ERK scheme that it becomes cheaper on
coarser levels in a way that makes the cost scalable to multiple levels. That is, say,
for example, we have a three-level method in which we coarsen by m on each level.
The linear interpolation strategy takes O(m) work per coarse time-step to estimate
departure points on the first coarse level, but if it is then applied recursively on
the coarsest level, it requires only O(m) work there to estimate a departure point. In
general, if the strategy is applied recursively throughout a multilevel solver, it requires
only O(m) work to estimate a departure point, independent of the level it occurs on.
In contrast, if an ERK method is to be used to estimate departure points on coarse
levels, by our previous arguments regarding the inaccuracy of taking large time-steps,
it must do so by taking many small time-steps, with size of order the fine-grid time-
step δt. That is, using an ERK method to estimate a coarse-grid departure point on
a coarse level ` ∈ N requires O(m`) work.

Finally, we remark that the linear interpolation and backtracking strategy pro-
posed here is more expensive from a memory perspective, since estimating departure
points on a coarse level requires storing all departure points on the level above it.

3.4. Multilevel setting. In this section, we generalize the two-level, backward
Euler coarse-grid operator (3.22) from the previous section so that it can be applied
within a multilevel MGRIT algorithm. Let ` ∈ N0 be the level index, and assume
that the time-step size on level ` is m`δt. To begin, we introduce the shorthand for

4In fact, if the wave-speed is spatially independent, then the strategy shown in Figure 4 yields
the same estimate for coarse-grid departure points as taking m steps of size δt with the fine-grid
ERK scheme.

5Whether it is cheaper or not depends on the number of stages of the ERK scheme and the cost
of evaluating the wave-speed. Recall that an s-stage ERK scheme requires s evaluations of the wave-
speed per time-step. The linear interpolation strategy requires no evaluations of the wave-speed. In
any event, the number of FLOPs for either strategy scales as O(m).
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the following function on level ` ∈ N,

ϕ
(tn,m

`δt)
p+1 := (−1)p+1

(
fp+1

(
ε(tn,m

`δt)
)
−
m−1∑
k=0

fp+1

(
ε(tn+km

`−1δt,m`−1δt)
))

,(3.28)

which generalizes the function ϕ
(tn,mδt)
p+1 on level ` = 1 defined in (3.17). Note that

ϕ
(tn,m

`δt)
p+1 approximates the coefficient vector appearing in the leading-order term of

the difference between the level ` coarse-grid semi-Lagrangian operator, and the ideal
coarse-grid operator defined by stepping across the same interval m times with the as-

sociated level `−1 semi-Lagrangian operators, S(tn,m
`δt)

p,∞ −
∏m−1
k=0 S

(tn+km
`−1δt,m`−1δt)

p,∞ .
To develop a multilevel operator based on the backward Euler operator (3.22), it

is first instructive to consider a three-level algorithm. Given the backward Euler opera-

tors Φ(tn+kmδt,mδt) = B(tn+kmδt,mδt)p+1 S(tn+kmδt,mδt)p,∞ on level ` = 1 for k ∈ {0, . . . ,m− 1},
consider the associated ideal operator on level ` = 2 and the following sequence of
approximations to it,

Φ
(tn,m

2δt)
ideal =

m−1∏
k=0

Φ(tn+kmδt,mδt) =

m−1∏
k=0

(
B(tn+kmδt,mδt)p+1 S(tn+kmδt,mδt)p,r∗

)
,

(3.29)

≈

(
m−1∏
k=0

B(tn+kmδt,mδt)p+1

)(
m−1∏
k=0

S(tn+kmδt,mδt)p,r∗

)
,(3.30)

≈

(
m−1∏
k=0

B(tn+kmδt,mδt)p+1

)(
B(tn,m

2δt)
p+1 S(tn,m

2δt)
p,r∗

)
,(3.31)

=

(
m−1∏
k=0

[
I − diag

(
ϕ

(tn+kmδt,mδt)
p+1

)
Dp+1

]−1)
×(3.32)

[
I − diag

(
ϕ

(tn,m
2δt)

p+1

)
Dp+1

]−1
S(tn,m

2δt)
p,r∗ ,

≈

[
I − diag

(
m−1∑
k=0

ϕ
(tn+kmδt,mδt)
p+1

)
Dp+1

]−1
×(3.33)

[
I − diag

(
ϕ

(tn,m
2δt)

p+1 Dp+1

)]−1
S(tn,m

2δt)
p,r∗ ,

≈

[
I − diag

(
m−1∑
k=0

ϕ
(tn+kmδt,mδt)
p+1 +ϕ

(tn,m
2δt)

p+1

)
Dp+1

]−1
S(tn,m

2δt)
p,r∗ .(3.34)

The approximation in (3.30) is that the backward Euler and semi-Lagrangian opera-
tors commute. Only in the case of spatially independent wave-speed functions do these
two operators commute (since the diagonal matrices built from the various ϕp+1 vec-
tors are constant, and Dp+1 and the semi-Lagrangian operators are circulant). In any
event, the forthcoming numerical results show this approximation is accurate enough
to obtain fast MGRIT convergence when the wave-speed does depend on space.

In (3.31), m successive mδt-sized semi-Lagrangian steps have been approximated
using our existing two-level approximation. That is, the m steps are replaced by
a single m2δt-sized semi-Lagrangian step followed by a backward Euler step that
approximately corrects for the lowest-order difference between their truncation errors.
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The approximation in (3.33) is pulling the m backward Euler steps under the
inverse, and keeping only the lowest-order terms in their product, recalling Dp+1v =
O(hp+1). This approximation can be understood as a Taylor series interpretation of
the standard rediscretization approach typically employed in MGRIT for backward
Euler discretizations, in which m backward Euler steps are approximated on the coarse
level with a single backward Euler step using a time-step size that is m times larger.

Finally, (3.34) arises from placing the two backward Euler matrices under a single
inverse, taking their product, and then truncating the highest-order term, which is
proportional to Dp+1Dp+1. Notice that (3.34) has the same structure as the operator
(3.22) on level ` = 1 proposed for the two-level algorithm, since it is a semi-Lagrangian
step followed by a backward Euler correction. Based on this, we propose the following
time-stepping operators on level ` > 0 for evolving solutions from tn → tn +m`δt,

Φ(tn,m
`δt) =

[
I − diag

(
σ

(tn,m
`δt)

p+1

)
Dp+1

]−1
S(tn,m

`δt)
p,r∗ , ` ∈ N,(3.35)

in which the coefficient vector is defined recursively by

σ
(tn,m

`δt)
p+1 =


ϕ

(tn,m
`δt)

p+1 , ` = 1,

m−1∑
k=0

σ
(tn+km

`−1δt,m`−1δt)
p+1 +ϕ

(tn,m
`δt)

p+1 , ` > 1.
(3.36)

We now present results of our numerical tests using the coarse-grid operator
(3.35). In these tests, we use a constant coarsening factor of m on all levels, and
continue to coarsen until doing so would result in fewer than two points in time.
To locate departure points on coarse levels, the linear interpolation and backtracking
strategy of Section 3.3.1 is employed recursively. Furthermore, we now slightly change
our strategy for approximately inverting the backward Euler matrix on coarse levels.
Specifically, for each linear system, we iterate GMRES until the norm of the relative
residual decreases below 10−2 or the number of iterations reaches 10.

α = (3.23) α = (3.24) α = (3.25)

m m m

p, r nx × nt 4 8 16 4 8 16 4 8 16

1, 1

28 × 210 14 12 11 12 11 11 11 11 12

210 × 212 14 12 11 12 11 11 12 12 12

212 × 214 14 13 11 14 11 11 14 13 13

3, 3

28 × 210 23 17 15 15 13 12 15 15 15

210 × 212 23 17 15 16 14 13 16 16 16

212 × 214 23 18 16 21 15 13 20 19 19

5, 5

28 × 210 32 22 18 19 16 14 17 19 17

210 × 212 34 24 20 19 16 15 19 19 20

212 × 214 34 24 21 27 18 15 23 24 25
Table 2

Number of MGRIT V-cycles to converge. The PDE is (2.1) with wave-speed α(x, t) indicated

in the top row of the table. The fine-grid operator is S(tn,δt)p,r , and the coarse-grid operator is the
dissipatively corrected operator (3.35). Departure points on coarse levels are located by recursively
applying the strategy from Section 3.3.1. A coarsening factor of m is used on all levels.
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The MGRIT V-cycle iteration counts for these tests are given in Table 2. Notice
that many of the iteration counts are almost identical to those for the two-level tests
given in Table 1. We therefore conclude that the multilevel coarse-grid operator
(3.35) performs as well as one could anticipate given the performance of the two-level
operator that it generalizes. We note that this is novel because it is not uncommon to
see multigrid iterations strongly increase for hyperbolic problems when transitioning
from two to many levels [25, 46, 47, 23]. These promising results also indicate that
our linear interpolation and backtracking strategy of Section 3.3.1 for approximating
coarse-grid departure points does so with a degree of accuracy that does not hamper
multilevel MGRIT convergence, even on much coarser levels.

4. Two spatial dimensions. We now extend the coarse-grid operator from
the previous section to advection problems in two spatial dimensions. Section 4.1
discusses the semi-Lagrangian discretization, the coarse-grid operator is presented in
Section 4.2, and Section 4.3 presents numerical results.

4.1. Semi-Lagrangian discretization. We now consider semi-Lagrangian dis-
cretizations of two-dimensional advection problems of the form

∂u

∂t
+ α(x, y, t)

∂u

∂x
+ β(x, y, t)

∂u

∂y
= 0, (x, y, t) ∈ Ω× (0, T ],(4.1)

with initial condition u(x, y, 0) = u0(x, y), spatial domain Ω ⊂ R2, and solution u
subject to periodic boundary conditions on ∂Ω. Specifically, our numerical tests for
this two-dimensional problem will use the initial condition u(x, y, 0) = sin2

[
π
2 (x −

1)
]

sin2
[
π
2 (y − 1)

]
, and the spatial domain Ω = (−1, 1)2. The semi-Lagrangian dis-

cretizations we consider of (4.1) are a straightforward generalization of those described
in Section 2.1 for the one-dimensional problem.

We define a discrete mesh on Ω as the tensor product of one-dimensional meshes
in the x- and y-directions, respectively, both of which we assume are composed of nx
points equispaced by a distance of h. Let (x, y, t) = (ξ(t), η(t), t) denote a character-
istic of (4.1), then the Lagrangian formulation of (4.1) reads

d

dt
ξ(t) = α(ξ(t), η(t), t),

d

dt
η(t) = β(ξ(t), η(t), t),

d

dt
u(ξ(t), η(t), t) = 0.(4.2)

Define
(
ξ
(tn,δt)
ij (t), η

(tn,δt)
ij (t)

)
as the local characteristic that passes through the arrival

point (x, y, t) =
(
ξ
(tn,δt)
ij (tn+1), η

(tn,δt)
ij (tn+1), tn+1

)
. Then, the associated departure

point (x, y, t) =
(
ξ
(tn,δt)
ij (tn), η

(tn,δt)
ij (tn), tn

)
is given by the solution at time t = tn of

the following final-value problem that holds over t ∈ [tn, tn+1)

d

dt
ξ
(tn,δt)
ij (t) = α

(
ξ
(tn,δt)
ij (t), η

(tn,δt)
ij (t), t

)
, ξ

(tn,δt)
ij (tn+1) = xi,(4.3)

d

dt
η
(tn,δt)
ij (t) = β

(
ξ
(tn,δt)
ij (t), η

(tn,δt)
ij (t), t

)
, η

(tn,δt)
ij (tn+1) = yj .(4.4)

Upon (approximately) locating the departure point of the local characteristic, the
solution is estimated at it via two-dimensional polynomial interpolation through its
nearest neighboring mesh points. Generalizing what we did in the one-dimensional

case, let (x, y) =
(
x
(tn,δt)
ij , y

(tn,δt)
ij

)
be the mesh point immediately to the north-east

of the departure point (x, y) =
(
ξ
(tn,δt)
ij (tn), η

(tn,δt)
ij (tn)

)
. Then, decompose the x-

coordinate of the departure point as ξ
(tn,δt)
ij (tn) ≡ x

(tn,δt)
ij − hε(tn,δt)ij , ε

(tn,δt)
ij ∈ [0, 1),

and the y-coordinate as η
(tn,δt)
ij (tn) ≡ y(tn,δt)ij − hν(tn,δt)ij , ν

(tn,δt)
ij ∈ [0, 1).
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The two-dimensional interpolating polynomial is then constructed through a ten-
sor product of a one-dimensional interpolation in the x-direction and a one-dimensional
interpolation in the y-direction. See [14, pp. 61–62] for further details.

4.2. Coarse-grid operator. We now generalize the one-dimensional consider-
ations of Section 3 to develop a coarse-grid operator for the two-dimensional problem
(4.1). In the following, the matrix Dp+1 ∈ Rnx×nx is defined as in (3.1). Sup-
posing spatial degrees-of-freedom are ordered row-wise lexicographically, applying
h−(p+1) (Inx ⊗Dp+1) or h−(p+1) (Dp+1 ⊗ Inx) to a periodic grid vector gives an ap-
proximation to its p+ 1st partial derivative with respect to x or y, respectively.

Lemma 4.1 (Semi-Lagrangian truncation error for r = ∞). Let Dp+1 be as in
(3.1). Suppose that the solution u(x, y, t) of (4.1) is at least p+1+s times continuously
differentiable with respect to x and y, and that the wave-speed in (4.1) is independent of

space, (α(x, y, t), β(x, y, t)) ≡ (α(t), β(t)). Define u(t) ∈ Rn2
x as the vector composed

of the PDE solution sampled in space at the mesh points and at time t, and let S(tn,δt)p,∞
be the semi-Lagrangian discretization of (4.1) that exactly locates departure points at
time tn. Then, the local truncation error of this discretization can be expressed as

u(tn+1)− S(tn,δt)p,∞ u(tn) = (−h)p+1

[
diag

(
fp+1

(
ε(tn,δt)

)) (Inx ⊗Dp+1)

hp+1

+ diag
(
fp+1

(
ν(tn,δt)

)) (Dp+1 ⊗ Inx)

hp+1

]
u(tn+1) +O(hp+2),

(4.5)

in which the entries of the vectors ε(tn,δt),ν(tn,δt) ∈ Rn2
x associated with the mesh

point (x, y) = (xi, yj) are ε
(tn,δt)
ij , and ν

(tn,δt)
ij , respectively. The polynomial fp+1 is

given in (3.3).
Furthermore, the ideal coarse-grid operator defined by time-stepping across t ∈

[tn, tn +mδt] with the m fine-grid operators S(tn+kδt,δt)p,∞ , k = 0, . . . ,m− 1, has a local
truncation error given by

u(tn+m)−

[
m−1∏
k=0

S(tn+kδt,δt)p,∞

]
u(tn) = (−h)p+1

[
diag

(
m−1∑
k=0

fp+1

(
ε(tn+kδt,δt)

))
×

(Inx ⊗Dp+1)

hp+1
+ diag

(
m−1∑
k=0

fp+1

(
ν(tn+kδt,δt)

)) (Dp+1 ⊗ Inx)

hp+1

]
u(tn+m) +O(hp+2).

(4.6)

Proof. We omit details of these proofs since they follow analogously to those for
the one-dimensional cases given in Lemma 3.1 and Corollary 3.2. The one caveat
is that an error estimate for two-dimensional polynomial interpolation needs to be
applied (the required estimate is given as [27, Lem. 4.11]).

Generalizing the one-dimensional coarse-grid operator from Section 3.2, we pro-

pose the following coarse-grid operator for semi-Lagrangian discretizations S(tn,δt)p,r of
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the two-dimensional advection problem (4.1)

Φ(tn,δt)
p,r∗ =

[
In2

x
− diag

(
fp+1

(
ε(tn,mδt)

)
−
m−1∑
k=0

fp+1

(
ε(tn+kδt,δt)

))
(Inx ⊗Dp+1)

− diag

(
fp+1

(
ν(tn,mδt)

)
−
m−1∑
k=0

fp+1

(
ν(tn+kδt,δt)

))
(Dp+1 ⊗ Inx)

]−1
S(tn,mδt)p,r∗ .

(4.7)

4.3. Numerical results. We now present numerical results for solving the two-
dimensional advection equation (4.1) with the constant wave-speed(

α(x, y, t), β(x, y, t)
)

= (1, 1),(4.8)

as well as the variable wave-speed

(
α(x, y, t), β(x, y, t)

)
=

(
sin2(πy) cos

(
2πt

3.4

)
,− cos2(πx) cos

(
2πt

3.4

))
.(4.9)

Plots of the velocity field and the solution of PDE (4.1) associated with the wave-speed
(4.9) are given in Figures SM6 and SM7, respectively. Note that the PDE solution
associated with (4.9) is periodic in time, with period 3.4.

The numerical tests use a fine-grid time-step size of δt = 0.85h. In Table 3, we
report the number of MGRIT V-cycles to converge using the dissipatively corrected
operator (4.7). On coarse levels ` > 1, we use a straightforward generalization of the

(α, β) = (4.8) (α, β) = (4.9)

m m

p, r n2x × nt 4 8 16 4 8 16

1, 1

(26)2 × 210 14 (50) 12 (45) 11 (27) 12 (68) 11 (44) 12 (27)

(27)2 × 211 14 (86) 12 (81) 11 (46) 12 (157) 12 (80) 11 (46)

(28)2 × 212 14 12 11 12 12 12

(29)2 × 213 14 12 11 14 13 13

3, 3

(26)2 × 210 22 (57) 17 (47) 15 (27) 16 (70) 15 (44) 15 (27)

(27)2 × 211 23 (98) 17 (84) 15 (47) 15 (170) 16 (81) 16 (46)

(28)2 × 212 23 17 15 16 16 17

(29)2 × 213 23 17 16 19 18 17

5, 5

(26)2 × 210 32 (63) 22 (48) 18 (27) 19 (69) 18 (44) 18 (27)

(27)2 × 211 33 (110) 23 (88) 20 (48) 19 (169) 19 (80) 20 (46)

(28)2 × 212 34 24 20 19 21 22

(29)2 × 213 34 24 21 24 23 23
Table 3

Number of MGRIT V-cycles to reach convergence on the two-dimensional advection problem

(4.1), with wave-speed indicated in the top row of the table. The fine-grid discretization is S(tn,δt)p,r ,
and the coarse-grid operator is the dissipatively corrected semi-Lagrangian operator (4.7). For the
two smallest mesh resolutions (n2

x, nt) =
(
(26)2×210, (26)2×211

)
, iterations reported in parenthesis

corresponds to using, instead, the rediscretized semi-Lagrangian operator S(tn,m
`δt)

p,r on coarse levels.
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level ` = 1 operator (4.7) by following the development of the multilevel operator
in Section 3.4 for the one-dimensional case. Solutions of coarse-grid linear systems
are approximated by iterating GMRES until either the relative residual norm is 10−2

or smaller, or the number of iterations reaches 10. The coarse-grid semi-Lagrangian

operators S(tn,m
`δt)

p,r∗ used in (4.7) estimate departure points using a generalization of
the one-dimensional backtracking and linear interpolation strategy from Section 3.3.1;
see Section SM6 for details. Finally, for the two smallest mesh resolutions, Table 3
also includes iteration counts for the naive choice of simply rediscretizing the semi-
Lagrangian discretization; in these rediscretization experiments, departure points on
a coarse-level ` > 0 are estimated accurately using m` ERK steps of size δt.

Iteration counts in Table 3 for the rediscretized coarse-grid operator are large, and
grow strongly as the mesh is refined. Therefore, as for the one-dimensional case, we
conclude that simply rediscretizing the semi-Lagrangian coarse-grid operator does not
lead to a robust MGRIT solver for our two-dimensional model problem. In contrast,
the proposed modified semi-Lagrangian coarse-grid operator (4.7) yields much smaller
iteration counts, that seem nearly constant as the mesh is refined. These sequential
numerical results highlight the potential our proposed coarse-grid operator (4.7) has
for parallel-in-time simulations of advection problems.

Remark 4.2 (Potential non-robustness for spatially varying wave-speeds). In a
small number of test problems with spatially varying wave-speeds, we have observed
less favorable MGRIT convergence when using the proposed coarse-grid operator.
While we have sometimes also encountered these issues in one dimension, they seem
most pronounced in two dimensions, and they appear related to the time-step size
on some coarse level not being sufficiently small. Recall that we conjectured in Re-
mark 3.4 that in one dimension, the error estimates for spatially independent wave-
speed functions carry over to the spatially variable case up to terms of size O(hp+1δt).
We suspect that the robustness issues we describe above are a consequence of such
additional O(hp+1δt) terms that are not captured by the proposed coarse-grid oper-
ator. In particular, if one coarsens down to δt = O(1) on some coarse level, then
such O(hp+1δt) terms may no longer be small relative to the O(hp+1) terms that are
included in the proposed coarse-grid operator. It remains on-going work to further
investigate and address this issue, potentially by deriving estimates that explicitly in-
clude the O(hp+1δt) terms and then incorporating them into the coarse-grid operator.
Regardless, when δt is sufficiently small on all levels, as is the case for all the reported
results, these issues do not occur.

5. Parallel results. In this section we present parallel strong-scaling results for
MGRIT V-cycles using the coarse-grid operators developed in earlier sections. Since
we want to demonstrate the efficacy of our proposed coarse-grid operator, we consider
tests that use parallelism in time only, and we leave a space-time parallel implementa-
tion to future work. The results were generated on Ruby, a Linux cluster at Lawrence
Livermore National Laboratory consisting of 1,480 compute nodes, with 56 Intel
Xeon CLX-8276L cores per node. The results used the following node configurations:
(number of MPI tasks,number of nodes) = ((1, 1), (4, 2), (16, 2), (64, 3), (256, 10),
(1024, 37)). Tests using four and 16 MPI tasks were run across two nodes since we
observed this was faster than on a single node. The number of nodes used in the
larger tests was chosen to ensure the number of MPI tasks per node did not exceed
28 (the number of physical cores per node).

We consider strong-scaling studies for both the one- and two-dimensional advec-
tion problems (2.1) and (4.1), respectively. The tests use the largest problem sizes
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Fig. 5. Strong parallel scaling using time-only parallelism: Runtimes of MGRIT V-cycles with
an aggressive coarsening factor of m = 16 on the first level followed by m = 4 on all coarser
levels. The semi-Lagrangian discretizations are of orders (p, r) = ((1, 1), (3, 3), (5, 5)). Left: The
one-dimensional PDE (2.1) with wave-speed (3.25), on space-time mesh having nx×nt = 212× 214

points. Right: The two-dimensional PDE (4.1) with wave-speed (4.9), on a space-time mesh having
n2
x × nt = (29)2 × 213 points. Dashed lines represent runtimes of time-stepping on one processor.

Speed-ups obtained using 1024 processors are listed in the legends.

considered previously of nx×nt = 212×214, and n2x×nt = (29)2×213 for the one- and
two-dimensional problems, respectively (see Tables 2 and 3). For the one-dimensional
problem, we have done scaling studies using coarsening factors m = 4, 8, 16, as well
as an aggressive coarsening strategy using m = 16 on the first level and m = 4 on all
other levels. For this problem, the aggressive coarsening strategy yielded the largest
speed-ups, so we report results for this coarsening strategy only. Based on this finding
we have adopted this aggressive coarsening strategy for our two-dimensional tests.

Runtimes as a function of processor count are shown in Figure 5. For the two-
dimensional problem, a minimum of 64 processors is used since runtimes on fewer
processors would have been too large. For both one- and two-dimensional problems,
the cross-over point at which MGRIT is faster than time-stepping is around 64 proces-
sors. Notice that the speed-ups we achieve on 1024 processors for the two-dimensional
problem are roughly a factor of two smaller than for the one-dimensional problem;
this is perhaps unsurprising since half as many points in time are used, thus cutting
the potential for speed-ups roughly in half. Additional one-dimensional tests solving
to discretization error rather than reducing the `2-norm of the space-time residual by
10 orders of magnitude are given in Section SM4.

Making fair comparisons between speed-ups obtained on different problems using
different setups is difficult; however, it is fair to say that when using a similar num-
ber of processors, the speed-ups we obtain here are smaller than those achieved for
MGRIT applied to diffusion-dominated problems, such as the heat equation [15, 17].
This is likely due to the increased complexity of our coarse-grid operator relative to
rediscretization (as is typically used for diffusion-dominated problems), and also the
somewhat higher iteration counts we require to reach convergence. Nonetheless, the
speed-ups we report are quite strong relative to speed-ups reported elsewhere in the
literature for hyperbolic problems, especially since we also consider high-order dis-
cretizations [31, 25]. Furthermore, the speed-ups we obtain for the one-dimensional
problem are somewhat comparable to those in [10] that used optimized coarse-grid op-
erators for constant-wave-speed advection problems; the methods from [10], however,
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are impractical for real computations and do not extend to variable wave-speeds.

6. Conclusions. Robust and efficient parallel-in-time integration of advection-
dominated PDEs using the iterative multigrid-in-time method MGRIT, and the closely
related Parareal method, is notoriously difficult. Rediscretizing the fine-grid problem
on coarse grids often results in MGRIT diverging on advection-dominated PDEs,
despite the same technique typically leading to excellent convergence for diffusion-
dominated problems. To date, no practical coarse-grid operators have been proposed
for these algorithms that are capable of providing speed-up over sequential time-
stepping, even for the simplest case of constant-wave-speed linear advection.

We have considered a specific class of semi-Lagrangian discretizations for lin-
ear advection problems, including those in two spatial dimensions, and with variable
wave-speeds. For these problems, we have proposed a novel modified semi-Lagrangian
coarse-grid operator that, for the first time, leads to fast and robust MGRIT conver-
gence. Parallel results show the coarse-grid operator can provide speed-up over se-
quential time-stepping, including for high-order discretizations. The proposed coarse-
grid operator applies a semi-Lagrangian discretization followed by a correction, de-
signed so that the truncation error of this composition approximately matches that of
the so-called ideal coarse-grid operator. For the problems considered here, the correc-
tion adds dissipation to the coarse-grid semi-Lagrangian discretization via solving a
linear system resembling a backward Euler time discretization of a heat-like equation.

The ideas presented here open many directions for future research, including
adapting our approach to dispersive semi-Lagrangian schemes, since our current ap-
proach is only effective for dissipative semi-Lagrangian schemes. A key component of
our on-going research is the extension of the ideas presented here to enable the ro-
bust MGRIT solution of more classical method-of-lines discretizations of hyperbolic
PDEs; that is, coupling a fine-grid method-of-lines discretization with a coarse-grid
operator that is semi-Lagrangian in nature with a truncation error perturbation. For
constant-wave-speed problems, we have promising initial results for discretizations
considered previously in [10], which use explicit and implicit Runge-Kutta in time,
and finite differences in space. Another direction of future work is to extend these
ideas to nonlinear conservation laws.
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SUPPLEMENTARY MATERIALS: FAST MULTIGRID
REDUCTION-IN-TIME FOR ADVECTION VIA MODIFIED

SEMI-LAGRANGIAN COARSE-GRID OPERATORS

These supplementary materials are organized as follows. Section SM1 presents
supporting numerical evidence for Lemma 3.3 and the claims made in Remark 3.4.
Section SM2 describes an implementation detail relating to the use of GMRES to
inexactly solve coarse-grid linear systems. Section SM3 describes some further de-
tails about the variable-wave-speed test problems we consider in one dimension.
Section SM4 provides some additional parallel strong-scaling results for the one-
dimensional problem. Section SM5 describes some further details about the variable-
wave-speed test problem we consider in two dimensions. Finally, Section SM6 provides
a strategy for estimating coarse-grid departure points in two spatial dimensions.

SM1. Supporting numerical evidence for Lemma 3.3 and claims made
in Remark 3.4. In this section, we provide supporting numerical evidence for
Lemma 3.3 and the claims made in Remark 3.4. To do so, we test numerically to
what extent (if any) the relationships (3.14) and (3.16) hold when the wave-speed
function varies in space. In particular, we consider the following two wave-speed
functions

α(x, t) = cos(2πt),(SM1)

α(x, t) = cos(2πt) cos(2πx),(SM2)

and we integrate from time tn = 0 to time tn +mδt, taking m = 4. To mimic exactly

locating departure points—as the idealized semi-Lagrangian schemes S(tn+kδt,δt)p,∞ and

S(tn,mδt)p,∞ in (3.14) and (3.16) do—we use MATLAB’s ode45 with very tight tolerances
to integrate backwards along local characteristics with high accuracy.

Based on the results in Lemma 3.3, numerically we measure the following quantity
under mesh refinement in h:∥∥∥∥m−1∏

k=0

S(tn+kδt,δt)p,∞ u(tn)− C(tn,mδt)S(tn,mδt)p,∞ u(tn)

∥∥∥∥
∞∥∥∥ϕ(tn,mδt)

p+1

∥∥∥
∞

.(SM3)

Here, C(tn,mδt) is either the identity matrix, or

C(tn,mδt) = B(tn,mδt)p+1 :=
[
I − diag

(
ϕ

(tn,mδt)
p+1

)
Dp+1

]−1
, which can be thought of as a

correction matrix that may map the rediscretized coarse-grid operator S(tn,mδt)p,∞ closer

to the ideal coarse-grid operator
m−1∏
k=0

S(tn+kδt,δt)p,∞ .

First, in Figure SM1 we provide numerical verification of Lemma 3.3. That is, we
plot the quantity (SM3) for the spatially independent wave-speed function (SM1). If
C(tn,mδt) = I, then from (3.14) we expect (SM3) to decay as O(hp+1), which is indeed
what we observe, whether δt = O(h), or δt = O(1). Furthermore, if C(tn,mδt) =

B(tn,mδt)p+1 , then from (3.16) we expect (SM3) to decay as O(hp+2), which is indeed
what we observe, whether δt = O(h), or δt = O(1).

Now, in Figure SM2 we provide numerical evidence for the claims made in Re-
mark 3.4 regarding whether the spatially independent wave-speed estimates extend

SM1
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Fig. SM1. Numerical verification of Lemma 3.3. The quantity (SM3) with spatially indepen-
dent wave-speed (SM1) is plotted under mesh refinement in h. Top: p = 1. Bottom p = 2. Left:
δt = 0.85h. Right: δt = 0.85.

to spatially variable wave-speeds. That is, we test whether the relationships (3.14)
and (3.16) hold when the wave-speed function is given by (SM2). Consider when

C(tn,mδt) = B(tn,mδt)p+1 , so as verify whether the estimate (3.16) holds. For p = 1 (top

row of Figure SM2), we see that (SM3) decays as O(hp+2) if δt = O(h) (top left
panel), but decays as O(hp+1) if δt = O(1) (top right panel). Both of these results
are consistent with estimate (3.16) holding up to terms of size O(hp+1δt), as conjec-
tured in Remark 3.4 when p is odd. However, for the p = 2 case (bottom row of

Figure SM2), we see that when C(tn,mδt) = B(tn,mδt)p+1 , the quantity (SM3) only decays

as O(hp+1), even when δt = O(h). This is why, as stated in Remark 3.4, we do not
believe that all of the estimates generalize to the spatially variable case when p is
even.

SM2. Nonlinearity introduced by GMRES. Using GMRES to inexactly
solve the coarse-grid linear systems introduces nonlinearity to the problem, since the
approximations generated by GMRES depend nonlinearly on the right-hand sides of
the linear systems. Applying GMRES inexactly within the full approximation scheme
(FAS) framework is not straightforward (though possible), because it is important to
ensure that the same GMRES polynomial is used for both the coarse-grid solve and
the construction of the tau-correction term. To avoid this complication, we use a linear
version of MGRIT, which we have implemented in XBraid (by default, XBraid uses the
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Fig. SM2. Supporting numerical evidence for Remark 3.4. The quantity (SM3) with spatially
variable wave-speed (SM2) is plotted under mesh refinement in h. Top: p = 1. Bottom p = 2. Left:
δt = 0.85h. Right: δt = 0.85.

FAS framework). This has the added benefit of reducing memory and computation
overhead. Note that an FAS implementation of our algorithm would not produce
identical results to the linear implementation used here, since the initial GMRES
residuals (and hence the GMRES polynomials) would be different. The impact of
this difference on convergence, if any, is a topic of future work.

SM3. One-dimensional numerical test problems. In this Section, plots of
the wave-speed functions used in the numerical tests for the one-dimensional advection
problem are shown. In addition, plots of the associated PDE solutions are shown.
Figure SM3 presents the case in which the wave-speed function depends on time only.
Figure SM4 presents the case in which the wave-speed function depends on both space
and time.
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Fig. SM3. Left: Wave-speed function α(x, t) = cos(2πt), as given in (3.24). Right: The
corresponding space-time solution of the one-dimensional advection problem (2.1). Note that the
wave-speed function and PDE solution are shown on the truncated time domain t ∈ [0, 3.4] rather
than the full domain t ∈ [0, 13.6] used in the numerical tests since they are easier to visualize on
this shorter domain.

Fig. SM4. Left: Wave-speed function α(x, t) = cos(2πt) cos(2πx), as given in (3.25). Right:
The corresponding space-time solution of the one-dimensional advection problem (2.1). Note that
the wave-speed function and PDE solution are shown on the truncated time domain t ∈ [0, 3.4] rather
than the full domain t ∈ [0, 13.6] used in the numerical tests since they are easier to visualize on
this shorter domain.
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SM4. One-dimensional strong-scaling tests solving to discretization ac-
curacy. In the left panel of Figure SM5 we reproduce the strong-scaling plot from
the left panel of Figure 5 for the one-dimensional advection problem. As throughout
the rest of the paper, these tests iterate MGRIT until the `2-norm of the space-time
residual is reduced by at least 10 orders of magnitude from its initial value. This re-
quired 13, 19, and 24 MGRIT iterations for (p, r) = ((1, 1), (3, 3), (5, 5)), respectively.
In the right panel of Figure SM5 we show strong-scaling results corresponding to it-
erating MGRIT until the solution at the final time point reaches discretization error
accuracy in the discrete `2-norm. The exact PDE solution needed to measure the
discretization error is given in [27, App. B.4]. For (p, r) = ((1, 1), (3, 3), (5, 5)), the
discretization error at the final time is approximately 0.75, 1.0×10−5, and 8.6×10−10,
respectively, and requires 5, 12, and 25 MGRIT iterations to reach this. Since solving
to discretization error accuracy requires fewer iterations than reducing the residual
norm by 10 orders of magnitude for the 1st- and 3rd-order discretizations (i.e., re-
ducing the residual norm by 10 order of magnitude over solves these problems), the
speed-ups are slightly better.

Fig. SM5. Strong parallel scaling using time-only parallelism: Runtimes of MGRIT V-cycles
with an aggressive coarsening factor of m = 16 on the first level followed by m = 4 on all coarser
levels. The one-dimensional PDE (2.1) uses wave-speed (3.25), and the semi-Lagrangian discretiza-
tions of orders (p, r) = ((1, 1), (3, 3), (5, 5)) use a space-time mesh having nx×nt = 212×214 points.
Left: Fixed space-time residual stopping tolerance of 10−10. Right: Residual stopping tolerance
based on reaching discretization error at the final time point. Dashed lines represent runtimes of
time-stepping on one processor. Speed-ups obtained using 1024 processors are listed in the legends.
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SM5. Two-dimensional numerical test problem. Plots of the velocity field
associated with the variable-wave-speed function (4.9) are show in Figure SM6 for
several different times. In addition, snapshots of the associated PDE solution are
shown for several different times in Figure SM7.

Fig. SM6. Plotted at four different times t = (0, 0.51, 1.02, 1.53) is the velocity field(
α(x, y, t), β(x, y, t)

)
of the two-dimensional advection problem (4.1) for wave-speed given by (4.9).

The four times t = (0, 0.51, 1.02, 1.53) represent 0%, 15%, 30%, and 45% of one period of the
time-periodic velocity field, which has a period of 3.4.
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Fig. SM7. One period of the time-periodic solution of the two-dimensional advection problem
(4.1) with wave-speed given by (4.9). Moving left to right, top to bottom, the solution is shown at
the times t = (0, 0.85, 1.70, 2.55, 3.4), representing 0%, 25%, 50%, and 75% of one period, respec-
tively. Note: These snapshots are taken from a simulation that used a 5th-order discretization with
n2
x = 2562 points in space.

SM6. Estimating coarse-grid departure points in two dimensions via
backtracking and linear interpolation. In this section, we propose a strategy
for approximating coarse-grid departure points in two dimensions by a backtracking
and linear interpolation procedure, generalizing the one-dimensional procedure pro-
posed in Section 3.3.1. In Section SM6.1 we first present the bilinear interpolating
polynomial that is used in this procedure, then Section SM6.2 presents the details of
procedure.

SM6.1. A two-dimensional interpolating polynomial. In one spatial di-
mension, define the linear interpolating polynomial p1d(x; qE, qW) as that which in-
terpolates the two values qE and qW associated with the two mesh points x = xW,
and x = xE, respectively, with xE = xW +h. For example, qE and qW could represent
the evaluation of some function q(x) at x = xE and x = xW. This interpolating
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polynomial can be written as

p1d(x; qE, qW) =
qE − qW

h
(x− xE) + qE, x ∈ [xW, xE].(SM1)

Using the one-dimensional polynomial (SM1) we now construct a two-dimensional
interpolating polynomial. Let p2d(x, y; rNE, rNW, rSE, rSW) denote the bilinear func-
tion that interpolates the four values rNE, rNW, rSE, rSW that are associated with the
four mesh points (x, y) =

(
(xE, yN), (xW, yN), (xE, yS), (xW, yS)

)
, respectively, with

yN = xS + h. In terms of (SM1), this function can be written as

p2d(x, y; rNE, rNW, rSE, rSW)

=
p1d(x; rNE, rNW)− p1d(x; rSE, rSW)

h
(y − yN) + p1d(x; rNE, rNW),

(SM2)

with (x, y) ∈ [xW, xE]× [yS, yN].

SM6.2. Coarse-grid departure point estimation. To begin, it is helpful to
recall the notation used in Section 4 to describe a local characteristic. Recall that the
characteristic

(x(t), y(t)) =
(
ξ
(tn,δt)
ij (t), η

(tn,δt)
ij (t)

)
,(SM3)

is defined over the interval t ∈ [tn, tnδt]. The arrival point of this characteristic is(
ξ
(tn,δt)
ij (tn + δt), η

(tn,δt)
ij (tn + δt)

)
= (xi, yj), and the departure point is its location at

time t = tn.
As in Section 3.3.1, for notational simplicity, suppose that we are working on

the first coarse-grid time interval, t ∈ [0,mδt], but note that the following strategy
can be applied on any coarse-grid time interval t ∈ [tn, tn +mδt]. Consider the local
coarse-grid characteristic

(x(t), y(t)) =
(
ξ
(0,mδt)
ij (t), η

(0,mδt)
ij (t)

)
(SM4)

that arrives at the mesh point (x, y) = (xi, yj) at time t = mδt. Our objective is to

estimate the departure point of this characteristic:
(
ξ
(0,mδt)
ij (0), η

(0,mδt)
ij (0)

)
.

Generalizing our one-dimensional strategy from Section 3.3.1, we propose to es-
timate this departure point by approximately tracking the path of the characteristic
(SM4) backwards from t = mδt → t = 0. More specifically, we do so by using the
local fine-grid characteristic directions that have already been computed on fine-grid
subintervals t ∈ [kδt, (k + 1)δt], k = m− 1, . . . , 0 to guide its path in an interpolating
manner. Let our approximation to the coarse-grid characteristic at time t = kδt be
denoted by (

c
(k)
ij , d

(k)
ij

)
≈
(
ξ
(0,mδt)
ij (kδt), η

(0,mδt)
ij (kδt)

)
.(SM5)

The approximate departure point is therefore denoted by
(
c
(0)
ij , d

(0)
ij

)
.

Since (SM4) arrives at (x, y) = (xi, yj) at time t = mδt, over the last fine-grid
subinterval t ∈ [(m− 1)δt,mδt] it is the same as the local fine-grid characteristic that
also arrives at (x, y) = (xi, yj) at time t = mδt. As such, we use the departure point
of this fine-grid characteristic as a final-time condition to initialize our approximation:(

c
(m−1)
ij , d

(m−1)
ij

)
=
(
ξ
((m−1)δt,δt)
ij ((m− 1)δt), η

((m−1)δt,δt)
ij ((m− 1)δt)

)
.(SM6)
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Given
(
c
(k+1)
ij , d

(k+1)
ij

)
, for a single k ∈ {m − 2, . . . , 0}, we now describe how to

compute
(
c
(k)
ij , d

(k)
ij

)
; that is, how to propagate the coarse-grid characteristic from

t = (k+ 1)δt→ t = kδt. Define (x, y) =
(
(xE, yN), (xW, yN), (xE, yS), (xW, yS)

)
as the

four mesh points that are immediately to the north-east, north-west, south-east, and

south-west, respectively, of (x, y) =
(
c
(k+1)
ij , d

(k+1)
ij

)
. See the schematic in Figure SM8.

Furthermore, denote the four local fine-grid characteristics that arrive at these four
mesh points by

(x(t), y(t)) =
(
ξ
(kδt,δt)
NE (t), η

(kδt,δt)
NE (t)

)
,(SM7)

(x(t), y(t)) =
(
ξ
(kδt,δt)
NW (t), η

(kδt,δt)
NW (t)

)
,(SM8)

(x(t), y(t)) =
(
ξ
(kδt,δt)
SE (t), η

(kδt,δt)
SE (t)

)
,(SM9)

(x(t), y(t)) =
(
ξ
(kδt,δt)
SW (t), η

(kδt,δt)
SW (t)

)
,(SM10)

respectively. Then, to approximate the x-component of the coarse-grid characteristic
at time t = kδt, we simply fit a bilinear function to how the fine-grid characteristics
(SM7)–(SM10) map the x-component of their arrival point into the x-component of
their departure point:

c
(k)
ij = p2d

(
c
(k+1)
ij , d

(k+1)
ij ;

ξ
(kδt,δt)
NE (kδt), ξ

(kδt,δt)
NW (kδt), ξ

(kδt,δt)
SE (kδt), ξ

(kδt,δt)
SW (kδt)

)
.

(SM11)

To estimate the y-component of the coarse-grid characteristic at time t = kδt, we

xW c
(k+1)
ij

xEc
(k)
ij

yS

d
(k+1)
ij

yN

d
(k)
ij

x

y

Fig. SM8. A bird’s eye view of the four local fine-grid characteristics (SM7), (SM8), (SM9),
(SM10) (the solid red, cyan, green, and brown lines, respectively). These characteristics arrive at
time t = (k + 1)δt at the mesh points (small crosses) that are the closest neighbors of the point(
c
(k+1)
ij , d

(k+1)
ij

)
. The departure points of these local fine-grid characteristics at time t = kδt are

marked as small circles. The point
(
c
(k+1)
ij , d

(k+1)
ij

)
(large blue cross) is the approximate location

of the coarse-grid characteristic (SM4) at time t = (k + 1)δt. As described in Section SM6.2, the

unknown point
(
c
(k)
ij , d

(k)
ij

)
(large blue circle) is the approximate location of the coarse-grid charac-

teristic (SM4) at time t = kδt, and is obtained by fitting a bilinear function to the paths of these
neighboring fine-grid characteristics.
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carry out the analogous procedure of fitting a bilinear function to how the fine-grid
characteristics (SM7)–(SM10) map the y-component of their arrival point into the
y-component of their departure point:

d
(k)
ij = p2d

(
c
(k+1)
ij , d

(k+1)
ij ;

η
(kδt,δt)
NE (kδt), η

(kδt,δt)
NW (kδt), η

(kδt,δt)
SE (kδt), η

(kδt,δt)
SW (kδt)

)
.

(SM12)
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