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Abstract. We create a framework for hereditary graph classes Gδ built on a two-dimensional grid of6
vertices and edge sets defined by a triple δ = {α,β,γ} of objects that define edges between consecu-7
tive columns, edges between non-consecutive columns (called bonds), and edges within columns. This8
framework captures a large family of minimal hereditary classes of graphs of unbounded clique-width,9
some previously identified and many new ones, although we do not claim this includes all such classes.10
We show that a graph class Gδ has unbounded clique-width if and only if a certain parameter Nδ is11
unbounded. We further show that Gδ is minimal of unbounded clique-width (and, indeed, minimal of12
unbounded linear clique-width) if another parameter Mβ is bounded, and also δ has defined recurrence13
characteristics. Both the parameters Nδ and Mβ are properties of a triple δ = (α,β,γ), and measure14
the number of distinct neighbourhoods in certain auxiliary graphs. Throughout our work, we introduce15
new methods to the study of clique-width, including the use of Ramsey theory in arguments related to16
unboundedness, and explicit (linear) clique-width expressions for subclasses of minimal classes of un-17
bounded clique-width.18
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1. Introduction. Until 4 years ago only a couple of examples of minimal hered-21
itary classes of unbounded clique-width had been identified, see Lozin [11]. How-22
ever, more recently many more such classes have been identified, in Atminas, Brig-23
nall, Lozin and Stacho [2], Collins, Foniok, Korpelainen, Lozin and Zamaraev [5],24
Dawar and Sankaran [8] and most recently the current authors demonstrated an un-25
countably infinite family of minimal hereditary classes of unbounded clique-width26
in [3].27

This paper brings together all but one of these examples into a single consistent28
framework. The framework consists of hereditary graph classes constructed by tak-29
ing the finite induced subgraphs of an infinite graph Pδ whose vertices form a two-30
dimensional array and whose edges are defined by three objects, collectively de-31
noted as a triple δ = (α,β,γ). Though we defer full definitions until Section 2, the32
components of the triple define edges between consecutive columns (α), between33
non-consecutive columns (β ‘bonds’), and within columns (γ) as follows.34

(a) α is an infinite word from the alphabet {0, 1, 2, 3}. The four types of α-edge35
sets between consecutive columns can be described as a matching (0), the36
complement of a matching (1), a chain (2) and the complement of a chain (3),37
(illustrated in Figure 1).38

(b) β is a symmetric subset of pairs of natural numbers (x,y). If (x,y) ∈ β then39
every vertex in column x is adjacent to every vertex in column y.40
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(c) γ is an infinite binary word. If the j-th letter of γ is 0 then vertices in column41
j form an independent set and if it is 1 they form a clique.42

We show that these hereditary graph classes Gδ have unbounded clique-width if and43
only if a parameter Nδ measuring the number of distinct neighbourhoods between44
any two rows of the grid, is unbounded – see Theorem 3.16. We denote ∆ as the set45
of δ-triples for which Gδ has unbounded clique-width.46

Furthermore, we define a subset ∆min ⊂ ∆ such that if δ ∈ ∆min the hereditary47
graph class Gδ is minimal both of unbounded clique-width and of unbounded linear48
clique-width (Definitions in Section 2.3 and result Theorem 4.11). Referring to δ∗ =49
δ[a,a+b] as a factor of δ being a subset of δ defining all edges between vertices in50
columns a,a+ 1, . . . ,a+ b, these ’minimal’ δ-triples are characterised by:51

(a) δ ∈ ∆,52
(b) δ is Nδ-bounded recurrent (i.e. any factor δ∗ of δ repeats an infinite number of53

times, and the subgraphs induced on the columns between two consecutive54
disjoint copies of δ∗ (the δ-factor ‘gap’) have bounded Nδ (always true for55
almost periodic δ)), and56

(c) a bound on a parameter Mβ defined by the bond set β, which is a measure57
of the number of distinct neighbourhoods between intervals of a single row.58

All but one hereditary graph classes previously shown to be minimal of unbounded59
clique-width fit this grid framework i.e. they are defined by a δ-triple in∆min. This is60
demonstrated in Table 1 which shows their corresponding δ = (α,β,γ) values from61
the framework. The only minimal class so far discovered not in the table is power62
graphs [8], a class built on a single path rather than a two dimensional grid.63

Name α β (x,y ∈ N) γ

Bipartite permutation [11] 2∞ ∅ 0∞
Unit interval [11] 2∞ ∅ 1∞
Bichain [2] (23)∞ (2x, 2x+ 2y+ 1) 0∞
Split permutation [2] (23)∞ (2x,y) : y > 2x+ 1 (01)∞
α ∈ {0, 1} [5] periodic ∅ 0∞
α ∈ {0, 1, 2, 3} [3] recurrent 1 ∅ 0∞

TABLE 1
Hereditary graph classes proven to be minimal of unbounded clique-width

The viewpoint provided by our framework offers a fuller understanding of the land-64
scape of (the uncountably many known) minimal hereditary classes of unbounded65
clique-width. This landscape is in stark contrast to the situation for downwards-66
closed sets of graphs under different orderings and with respect to other parameters.67
For example, planar graphs are the unique minimal minor-closed class of graphs68

1A set of minimal classes Γ defined by an infinite word α which is recurrent over the alphabet {0, 1, 2, 3}
and for which the ’gap’ factors have a bounded number of non-zero letters (including all almost periodic
α)
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of unbounded treewidth (see Robertson and Seymour [13]), and circle graphs are69
the unique minimal vertex-minor-closed class of unbounded rank-width (or, equiv-70
alently, clique-width) – see Geelen, Kwon, McCarty and Wollan [10]. Nevertheless,71
clique-width is more compatible with hereditary classes of graphs than treewidth: if72
H is an induced subgraph ofG, then the clique-width ofH is at most the clique-width73
of G, but the same does not hold in general for treewidth.74

Our focus on the minimal classes of unbounded clique-width is due to the following75
fact: any graph property expressible in MSO1 logic has a linear time algorithm on76
graphs with bounded clique-width, see Courcelle, Makowsky and Rotics [7]. As77
it happens, any proper subclass of a minimal class from our framework also has78
bounded linear clique-width. However, beyond our framework there do exist classes79
that have bounded clique-width but unbounded linear clique-width, see [1] and [4].80

After introducing the necessary definitions in Section 2, the rest of this paper is or-81
ganised as follows.82

We set out in Section 3 our proof determining which hereditary classes Gδ have un-83
bounded clique-width. Proving a class has unbounded clique-width is done from84
first principles, using a new method, by identifying a lower bound for the number85
of labels required for a clique-width expression for an n×n square graph, using dis-86
tinguished coloured vertex sets and showing such sets always exist for big enough n87
using Ramsey theory. For those classes which have bounded clique-width, we prove88
this by providing a general clique-width expression for any graph in the class, using89
a bounded number of labels.90

In Section 4 we prove that the class Gδ is minimal of unbounded clique-width if91
δ ∈ ∆min. To do this we introduce an entirely new method of ’veins and slices’,92
partitioning the vertices of an arbitrary graph in a proper subclass of Gδ into sections93
we call ’panels’ using vertex colouring. We then create a recursive linear clique-94
width expression to construct these panels in sequence, allowing recycling of labels95
each time a new panel is constructed, so that an arbitrary graph can be constructed96
with a bounded number of labels.97

Previous papers on minimal hereditary graph classes of unbounded clique-width98
have focused mainly on bipartite graphs. The introduction of β-bonds and γ-cliques99
has significantly broadened the scope of proven minimal classes.100

In Section 5 we provide some examples of new hereditary graph classes that are101
minimal of unbounded clique-width revealed by this approach. Finally, in Section 6,102
we discuss where the investigation of minimal classes of unbounded clique-width103
might go next.104

2. Preliminaries.105

2.1. Graphs - General. A graph G = (V ,E) is a pair of sets, vertices V = V(G)106
and edges E = E(G) ⊆ V(G)×V(G). Unless otherwise stated, all graphs in this paper107
are simple, i.e. undirected, without loops or multiple edges.108

If vertex u is adjacent to vertex vwe write u ∼ v and if u is not adjacent to vwe write109
u 6∼ v. We denote N(v) as the neighbourhood of a vertex v, that is, the set of vertices110
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adjacent to v. A set of vertices is independent if no two of its elements are adjacent and111
is a clique if all the vertices are pairwise adjacent. We denote a clique with r vertices112
as Kr and an independent set of r vertices as Kr. A graph is bipartite if its vertices113
can be partitioned into two independent sets, V1 and V2, and is complete bipartite if, in114
addition, each vertex of V1 is adjacent to each vertex of V2.115

We will use the notation H 6 G to denote graph H is an induced subgraph of graph116
G, meaning V(H) ⊆ V(G) and two vertices of V(H) are adjacent in H if and only if117
they are adjacent in G. We will denote the subgraph of G = (V ,E) induced by the118
set of vertices U ⊆ V by G[U]. If graph G does not contain an induced subgraph119
isomorphic to Hwe say that G is H-free.120

A class of graphs C is hereditary if it is closed under taking induced subgraphs, that121
is G ∈ C implies H ∈ C for every induced subgraph H of G. It is well known that for122
any hereditary class C there exists a unique (but not necessarily finite) set of minimal123
forbidden graphs {H1,H2, . . . } such that C = Free(H1,H2, . . . ) (i.e. any graph G ∈ C is124
Hi-free for i = 1, 2, . . . ). We will use the notation C ⊆ G to denote that C is a hereditary125
subclass of hereditary graph class G (C ( G for a proper subclass).126

An embedding of graph H in graph G is an injective map φ : V(H) → V(G) such127
that the subgraph of G induced by the vertices φ(V(H)) is isomorphic to H. In other128
words, vw ∈ E(H) if and only if φ(v)φ(w) ∈ E(G). If H is an induced subgraph of G129
then this can be witnessed by one or more embeddings.130

Given a graph G = (V ,E) and a subset of vertices U ⊆ V , two vertices of U will131
be called V \ U-similar if they have the same neighbourhood in V \ U. Thus V \ U-132
similarity is an equivalence relation. The number of such equivalence classes of U133
in G will be denoted µ(G,U). A special case is when all the equivalence classes are134
singletons when we call U a distinguished vertex set.135

A distinguished pairing {U,W} of size r of a graphG = (V ,E) is a pair of vertex subsets136
U = {ui} ⊆ V and W = {wi} ⊆ V \ U with |U| = |W| = r such that the vertices in137
U have pairwise different neighbourhoods in W (but not necessarily vice-versa). A138
distinguished pairing is matched if the vertices of U and W can be paired (ui,wi) so139
that ui ∼ wi for each i, and is unmatched if the vertices of U and W can be paired140
(ui,wi) so that ui 6∼ wi for each i. Clearly the set U of a distinguished pairing {U,W}141
is a distinguished vertex set of G[U ∪W] which gives us the following:142

PROPOSITION 2.1. If {U,W} is a distinguished pairing of size r in graph G then µ(G[U ∪143
W],U) = r.144

2.2. Gδ hereditary graph classes. The graph classes we consider are all formed145
by taking the set of finite induced subgraphs of an infinite graph defined on a grid146
of vertices. We start by defining an infinite empty graph P with vertices147

V(P) = {vi,j : i, j ∈ N}.148

We use Cartesian coordinates throughout this paper. Hence, we think of P as an149
infinite two-dimensional array in which vi,j represents the vertex in the i-th column150
(counting from the left) and the j-th row (counting from the bottom). Hence vertex151
v1,1 is in the bottom left corner of the grid and the grid extends infinitely upwards152
and to the right. The i-th column of P is the set Ci = {vi,j : j ∈ N}, and the j-th row of153
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P is the set Rj = {vi,j : i ∈ N}. Likewise, the collection of vertices in columns i to j is154
denoted C[i,j].155

We will add edges to P using a triple δ of objects that define the edges between con-156
secutive columns, edges between non-consecutive columns and edges within each157
column.158

We refer to a (finite or infinite) sequence of letters chosen from a finite alphabet as159
a word. We denote by ωi the i-th letter of the word ω. A factor of ω is a contigu-160
ous subword ω[i,j] being the sequence of letters from the i-th to the j-th letter of161
ω. If a is a letter from the alphabet we will denote a∞ as the infinite word aaa . . . ,162
and if a1 . . .an is a finite sequence of letters from the alphabet then we will denote163
(a1 . . .an)∞ as the infinite word consisting of the infinite repetition of this factor.164

The length of a word (or factor) is the number of letters the word contains.165

An infinite wordω is recurrent if each of its factors occurs in it infinitely many times.166
We say that ω is almost periodic (sometimes called uniformly recurrent or minimal) if167
for each factor ω[i,j] of ω there exists a constant L(ω[i,j]) such that every factor of ω168
of length at least L(ω[i,j]) contains ω[i,j] as a factor. Finally, ω is periodic if there is169
a positive integer p such that ωk = ωk+p for all k. Clearly, every periodic word is170
almost periodic, and every almost periodic word is recurrent.171

A bond-set β is a symmetric subset of {(x,y) ∈ N2, |x − y| > 1}. For a set Q ⊆ N172
we write βQ to mean the subset of β-bonds {(x,y) ∈ β : x,y ∈ Q}. For instance,173
β[i,j] = {(x,y) ∈ β : i 6 x,y 6 j}.174

Let α be an infinite word over the alphabet {0, 1, 2, 3}, β be a bond set and γ be an175
infinite binary word. We refer to the three objects combined as a δ-triple, denoted176
δ = (α,β,γ).177

We define an infinite graph Pδ with vertices V(P) and with edges defined by δ as178
follows:179

(a) α-edges between consecutive columns determined by the letters of the word180
α. For each i = 1, 2, . . . , the edges between Ci and Ci+1 are:181

(i) {(vi,j, vi+1,j) : j ∈ N} if αi = 0 (i.e. a matching);182
(ii) {(vi,j, vi+1,k) : j 6= k; j,k ∈ N} if αi = 1 (i.e. the bipartite complement 2 of183

a matching);184
(iii) {(vi,j, vi+1,k) : j > k; j,k ∈ N} if αi = 2;185
(iv) {(vi,j, vi+1,k) : j < k; j,k ∈ N} if αi = 3 (i.e. the bipartite complement of186

a 2).187
(b) β-edges defined by the bond-set β such that vi,x ∼ vj,y for all x,y ∈ N when188

(i, j) ∈ β (i.e. a complete bipartite graph between Ci and Cj), and189
(c) γ-edges defined by the letters of the binary word γ such that for any j,k ∈ N190

we have vi,j ∼ vi,k if and only if γi = 1 (i.e. Ci forms a clique if γi = 1 and191
an independent set if γi = 0).192

The hereditary graph class Gδ is the set of all finite induced subgraphs of Pδ.193

2The bipartite complement Ĝ of a bipartite graphG has the same independent vertex sets V1 and V2 asG
where vertices v1 ∈ V1 and v2 ∈ V2 are adjacent in Ĝ if and only if they are not adjacent inG.
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Any graph G ∈ Gδ can be witnessed by an embedding φ(G) into the infinite graph194
Pδ. To simplify the presentation we will associate G with a particular embedding195
in Pδ depending on the context. We will be especially interested in the induced196
subgraphs of G that occur in consecutive columns: in particular, an αj-link is the197
induced subgraph of G on the vertices of G∩C[j,j+1], and will be denoted by G[j,j+1].198
More generally, an induced subgraph ofG on the vertices ofG∩C[j,k] will be denoted199
G[j,k].200

For k > 2 we denote the triple δ[j,j+k−1] = (α[j,j+k−2];β[j,j+k−1];γ[j,j+k−1]) as a k-201

factor of δ. Thus for a graph G ∈ Gδ with a particular embedding in Pδ, the induced202
subgraph G[j,j+k−1] has edges defined by the k-factor δ[j,j+k−1].203

We say that two k-factors δ[x,x+k] and δ[y,y+k] are the same if204

(i) for all i ∈ [0,k− 1], αx+i = αy+i, and205
(ii) for all i, j ∈ [0,k], (x+ i, x+ j) ∈ β if and only if (y+ i,y+ j) ∈ β, and206

(iii) for all i ∈ [0,k], γx+i = γy+i.207

We say that a δ-triple is recurrent if every k-factor occurs in it infinitely many times.208
We say that δ is almost periodic if for each k-factor δ[j,k] of δ there exists a constant209
L(δ[j,k]) such that every factor of δ of length L(δ[j,k]) contains δ[j,k] as a factor.210

A couple set P is a subset of N such that if x,y ∈ P then |x−y| > 2. Such a set is used to211
identify sets of links that have no α-edges between them. We say that a pair (x,y) of212
elements of P is β-dense if both (x,y+ 1) and (x+ 1,y) are in β and they are β-sparse213
when neither of these bonds is in β.214

We say the bond-set β is sparse in P if every pair from P is β-sparse and is not sparse215
in P if there are no β-sparse pairs in P. Likewise, β is dense in P if every pair from P is216
β-dense and is not dense in P if there are no β-dense pairs in P. Clearly it is possible217
for two elements from P to be neither β-sparse nor β-dense (i.e. when only one of218
the required bonds is in β). These ideas are used to identify matched and unmatched219
distinguished pairings (see Lemmas 3.7 and 3.8).220

2.3. Clique-width and linear clique-width. Clique-width is a graph width pa-221
rameter introduced by Courcelle, Engelfriet and Rozenberg in the 1990s [6]. The222
clique-width of a graph is denoted cwd(G) and is defined as the minimum number223
of labels needed to construct G by means of the following four graph operations:224

(a) creation of a new vertex v with label i (denoted i(v)),225
(b) adding an edge between every vertex labelled i and every vertex labelled j226

for distinct i and j (denoted ηi,j),227
(c) giving all vertices labelled i the label j (denoted ρi→j), and228
(d) taking the disjoint union of two previously-constructed labelled graphs G229

and H, one of which may be empty (denoted G⊕H).230

The linear clique-width of a graphG denoted lcw(G) is the minimum number of labels231
required to construct G by means of four operations, being (a), (b), (c) above plus232
’(d) taking the disjoint union of two previously-constructed labelled graphs G and233
H, one of which is a single labelled vertex v (denoted G ⊕ v) or no vertex (denoted234
G⊕ ∅)’.235
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Every graph can be defined by an algebraic expression τ using the four operations236
above, which we will refer to as a (linear) clique-width expression. This expression is237
called a k-expression if it uses k different labels.238

Alternatively, any clique-width expression τ defining G can be represented as a239
rooted binary tree, tree(τ), whose leaves correspond to the operations of vertex cre-240
ation, the internal nodes correspond to the ⊕-operation, and the root is associated241
with G. The operations η and ρ are assigned in the appropriate sequence along the242
respective edges of tree(τ). The tree is binary since each ⊕-operation brings together243
at most two previously constructed graphs. Also, it can be observed that an⊕-vertex244
represents a subgraph ofG but not usually an induced subgraph since there may still245
be edges to be created by η operations.246

In the case of a linear clique-width expression the tree becomes a caterpillar tree, that247
is, a tree that becomes a path after the removal of the leaves.248

Clearly from the definition, lcw(G) > cwd(G). Hence, a graph class of unbounded249
clique-width is also a class of unbounded linear clique-width. Likewise, a class with250
bounded linear clique-width is also a class of bounded clique-width.251

A hereditary class of graphs C is minimal of unbounded clique-width or just minimal252
if every proper subclass D ( C has bounded clique-width. In other words, if C =253
Free(H1,H2, . . . ) then it is minimal if any proper subclass D formed by adding just254
one more forbidden graph has bounded clique-width. Thus, if C has unbounded255
clique-width but C ∩ Free(H) has bounded linear clique-width for any non-trivial256
graph H, then C is minimal of unbounded clique-width and minimal of unbounded257
linear clique-width.258

3. Gδ graph classes with unbounded clique-width. Using a neighbourhood pa-259
rameter Nδ derived from a graph induced on any two rows of the graph Pδ, we show260
that Gδ has unbounded clique-width if and only if Nδ is unbounded (Theorem 3.16).261

3.1. The two-row graph and Nδ. We show that the boundedness of clique-width262
for a graph class Gδ is determined by the adjacencies between the first two rows of263
Pδ (it could, in fact, be any two rows), using the following graph:264

A two-row graph Tδ(Q) = (V ,E) is the subgraph of Pδ induced on the vertices V =265
R1(Q)∪ R2(Q) where R1(Q) = {vi,1 : i ∈ Q} and R2(Q) = {vj,2 : j ∈ Q} for finite subset266
Q ⊆ N.267

We define the parameter Nδ(Q) = µ(Tδ(Q),R1(Q)).268

LEMMA 3.1. For any fixed j ∈ N, Nδ([1,n]) is bounded as n→∞ if and only if Nδ([j,n])269
is bounded as n→∞.270

Proof. It is easy to see that if there existsN such that Nδ([1,n]) < N for all n ∈ N then271
Nδ([j,n]) < N for all n ∈ N.272

On the other hand, if Nδ([j,n]) < N then Nδ([j− 1,n]) < 2N+ 1 since by adding the273
extra column each ’old’ equivalence class could at most be split in two and there is274

one new vertex in each row. By induction we have Nδ([1,n]) < 2jN+
∑j−1
i=0 2i for all275

n ∈ N.276
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We say Nδ is unbounded if Nδ([j,n]) is unbounded as n→∞ for some fixed j ∈ N. In277
many cases it is simple to check that Nδ is unbounded – e.g. the following δ-triples278
have unbounded Nδ:279

(1∞, ∅, 0∞), (2∞, ∅, 0∞), (3∞, ∅, 0∞), (0∞, ∅, 1∞)280

In Lemma 3.13 we show that Nδ is unbounded whenever α contains an infinite num-281
ber of 2s or 3s.282

3.2. Clique-width expression and colour partition for an n × n square graph.283
We denoteHδi,j(m,n) as them(cols)×n(rows) induced subgraph of Pδ formed from284
the rectangular grid of vertices {vx,y : x ∈ [i, i+m−1],y ∈ [j, j+n−1]}. See Figure 1.285

FIG. 1. Hδ1,1(9, 6) where α = 01230123 · · · (β and γ edges not shown)

We can calculate a lower bound for the clique-width of the n × n square graph286
Hδj,1(n,n) (shortened to H(n,n) when δ, j and 1 are clearly implied), by demonstrat-287
ing a minimum number of labels needed to construct it using the allowed four graph288
operations, as follows.289

Let τ be a clique-width expression defining H(n,n) and tree(τ) the rooted tree rep-290
resenting τ. The subtree of tree(τ) rooted at a node ⊕ corresponds to a subgraph291
of H(n,n). We can give this node a label, say a, so that ⊕a is the root and Ha the292
corresponding subgraph of H(n,n).293

We denote by ⊕red and ⊕blue the two children of ⊕a in tree(τ). Let us colour the294
vertices of Hred and Hblue red and blue, respectively, and all the other vertices in295
H(n,n) white. Let colour(v) denote the colour of a vertex v ∈ H(n,n) as described296
above, and label(v) denote the label of vertex v (if any) at node ⊕a. (If v is white it is297
a vertex of H(n,n) not in subgraph Ha and therefore it has either been created in a298
branch of tree(τ) not yet connected to node⊕a, or has not yet been created, in which299
case we say label(v) = ε).300

Our identification of a minimum number of labels needed to construct H(n,n) relies301
on the following observation regarding this vertex colour partition.302

OBSERVATION 3.2. Suppose u1, u2,w are three vertices inH(n,n) such that u1 and u2 are303
non-white, u1 ∼ w but u2 6∼ w, and colour(w) 6= colour(u1). Then u1 and u2 must have304
different labels at node ⊕a.305
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This is true because the edge u1w still needs to be created, whilst respecting the non-306
adjacency of u2 and w. We now focus on sets of blue and sets of nonblue vertices307
(Equally, we could have chosen red-nonred). Observation 3.2 leads to the following308
key lemma which is the basis of much which follows.309

LEMMA 3.3. For graph H(n,n) let U and W be two disjoint vertex sets with induced sub-310
graph H = H(n,n)[U ∪W] such that µ(H,U) = r. Then if the vertex colouring described311
above gives colour(u) = blue for all u ∈ U and colour(w) 6= blue for all w ∈ W then the312
clique-width expression τ requires at least r labels at node ⊕a.313

Proof. Choose one representative vertex from each equivalence class in U. For any314
two such representatives u1 and u2 there must exist a w in W such that u1 ∼ w but315
u2 6∼ w (or vice versa). By Observation 3.2 u1 and u2 must have different labels316
at node ⊕a. This applies to any pair of representatives u1,u2 and hence all r such317
vertices must have distinct labels.318

Note that from Proposition 2.1 a distinguished pairing gives us the sets U and W319
required for Lemma 3.3. The following lemmas identify structures in H(n,n) that320
give us these distinguished pairings.321

We denote byH[y,y+1] the αy-linkH(n,n)∩C[y,y+1] where y ∈ [j, j+n− 2]. We refer322
to a (adjacent or non-adjacent) blue-nonblue pair to mean two vertices, one of which323
is coloured blue and one non-blue, such that they are in consecutive columns, where324
the blue vertex could be to the left or the right of the nonblue vertex. If we have a set325
of such pairs with the blue vertex on the same side (i.e. on the left or right) then we326
say the pairs in the set have the same polarity.327

LEMMA 3.4. Suppose that H[y,y+1] contains a horizontal pair (b1,b2) of blue vertices and328
at least one nonblue vertex n1, n2 in each column, but not on the top or bottom row (see329
Figure 2).330

(a) If αy ∈ {0, 2, 3} then H[y,y+1] contains a non-adjacent blue-nonblue pair.331
(b) If αy ∈ {1, 2, 3} then H[y,y+1] contains an adjacent blue-nonblue pair.332

Proof. If αy = 0 then both (b1,n1) and (b2,n2) form a non-adjacent blue-nonblue pair333
(Figure 2 A). If αy = 1 then both (b1,n1) and (b2,n2) form an adjacent blue-nonblue334
pair (Figure 2 B).335

If αy ∈ {2, 3} and the nonblue vertices n1 and n2 in each column are either both336
above or both below the horizontal blue pair (b1,b2) then it can be seen that one of337
the pairs (b1,n1) or (b2,n2) forms an adjacent blue-nonblue pair and the other forms338
a non-adjacent blue-nonblue pair (Figure 2 C). If the nonblue vertices in each column339
are either side of the blue pair (one above and one below) then the pairs (b1,n1) and340
(b2,n2) will both be adjacent (or non-adjacent) blue-nonblue pairs (See Figure 2 D).341
In this case we need to appeal to a 5-th vertex s which will form a non-adjacent (or342
adjacent) set with either n1 or b2 depending on its colour. Thus we always have both343
a non-adjacent and adjacent blue-non-blue pair when αy ∈ {2, 3}.344

LEMMA 3.5. Suppose H[y,y+1] contains a horizontal blue-nonblue pair of vertices (b1,n1),345
not the top or bottom row, and at least one nonblue vertex n2 in the same column as b1.346
Then H[y,y+1] contains both an adjacent and a non-adjacent blue-nonblue pair of vertices,347
irrespective of the value of αy (see Figure 3).348
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FIG. 2. Horizontal blue-blue pair inH[y,y+1] (nonblue vertices in yellow)
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A. 0-link B. 1-link C. 2-link D. 3-link

FIG. 3. Horizontal blue-nonblue pair inH[y,y+1] (nonblue vertices in yellow)

Proof. If αy ∈ {0, 2} then the horizontal blue-nonblue pair (b1,n1) is adjacent, and349
given a nonblue vertex n2 in the same column as b1, we can find a vertex s in the350
same column as n1 that forms a non-adjacent pairing with either b1 or n2 depending351
on its colour (See Figure 3 A and C). If αy ∈ {1, 3} then the horizontal blue-nonblue352
pair (b1,n1) is non-adjacent, and given a nonblue vertex n2 in the same column as353
b1, we can find a vertex s in the same column as n1 that forms an adjacent pairing354
with either b1 or n2 depending on its colour (See Figure 3 B and D).355

LEMMA 3.6. Suppose H[y,y+1] contains r > 3 horizontal blue-nonblue pairs of vertices356
(bi,ni), i = 1, . . . , r, with the same polarity (see Figure 4). Then, irrespective of the value of357
αy, it contains358

(a) a matched distinguished pairing {U,W} of size r − 1 such that colour(u) = blue359
for all u ∈ U and colour(w) 6= blue for all w ∈W, and360

(b) an unmatched distinguished pairing {U′,W′} of size r − 1 such that colour(u′) =361
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FIG. 4. 3 horizontal blue-nonblue pairs inH[y,y+1] (nonblue vertices in yellow)

blue for all u′ ∈ U′ and colour(w′) 6= blue for all w′ ∈W′.362

Proof. This is easily observable from Figure 4 for r = 3. If we set U = {b1,b2}, W =363
{n1,n2}, U′ = {b2,b3} and W′ = {n1,n2} then one of {U,W} and {U′,W′} is a matched364
distinguished pairing of size 2 and the other is an unmatched distinguished pairing365
of size 2, irrespective of the value of αy. Simple induction establishes this for all366
r > 3.367

In Lemmas 3.4, 3.5 and 3.6 we identified blue-nonblue pairs within a particular link368
H[y,y+1]. The next two lemmas identify distinguished pairings across link-sets. Let369
P ⊂ [j, j+n−2] be a couple set (see definition on page 6) of size rwith corresponding370
αy-links H[y,y+1] 6 H(n,n) for each y ∈ P.371

LEMMA 3.7. If β is not dense in P and eachH[y,y+1] for y ∈ P has an adjacent blue-nonblue372
pair with the same polarity, then we can combine these pairs to form a matched distinguished373
pairing {U,W} of size r where the vertices of U are blue and the vertices ofW nonblue.374

Proof. Suppose s, t ∈ P such that (vs, vs+1) and (vt, vt+1) are two adjacent blue-375
nonblue pairs in different links, with vs, vt ∈ U and vs+1, vt+1 ∈ W. Consider the376
two possible β bonds (vs, vt+1) and (vs+1, vt). If neither of these bonds exist then377
vs is distinguished from vt by both vs+1 and vt+1 (see Figure 5 (i)). If one of these378
bonds exists then vs is distinguished from vt by either vs+1 or vt+1 (see Figure 5 (ii)379
and (iii)). Both bonds cannot exist as β is not dense in P. Note that the bonds (vs, vt)380
and (vs+1, vt+1) are not relevant in distinguishing vs from vt since, if they exist, they381
connect blue to blue and nonblue to nonblue.382

So any two blue vertices vs, vt ∈ U are distinguished by the two nonblue vertices383
vs+1, vt+1 ∈W and hence {U,W} is a matched distinguished pairing of size r.384

LEMMA 3.8. If β is not sparse in P and each H[y,y+1] has a non-adjacent blue-nonblue pair385
with the same polarity, then we can combine these pairs to form an unmatched distinguished386
pairing {U,W} of size r where the vertices of U are blue and the vertices ofW nonblue.387

Proof. This is very similar to the proof of Lemma 3.7 and is demonstrated in Figure388
6.389
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FIG. 5. Adjacent blue-nonblue vertex pairs, β not dense (nonblue vertices in yellow)
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FIG. 6. Non-adjacent blue-nonblue vertex pairs, β not sparse (nonblue vertices in yellow)

3.3. Two colour partition cases to consider. Having identified structures that390
give us a lower bound on labels required for a clique-width expression for H(n,n),391
we now apply this knowledge to the following subtree of tree(τ).392

Let ⊕a be the lowest node in tree(τ) such that Ha contains all the vertices in rows 2393
to (n− 1) in some column ofH(n,n). We reserve rows 1 and n so that we may apply394
Lemmas 3.4 and 3.5.395

ThusH(n,n) contains at least one column where vertices in rows 2 to (n−1) are non-396
white but no column has entirely blue or red vertices in rows 2 to (n − 1) because397
otherwise ⊕a would not be the lowest node in tree(τ) such that Ha contains all the398
vertices in rows 2 to (n − 1) in some column of H(n,n). Let Cb be a non-white399
column. Without loss of generality we can assume that the number of blue vertices400
in column Cb between rows 2 and (n − 1) is at least (n/2) − 1 otherwise we could401
swap red for blue.402

Now consider rows 2 to (n− 1). We have two possible cases:403

Case 1 Either none of the rows with a blue vertex in column Cb has blue vertices in404
every column to the right of Cb, or none of the rows with a blue vertex in405
column Cb has blue vertices in every column to the left of Cb. Hence, we406
have at least dn/2e − 1 rows that have a horizontal blue-nonblue pair with407
the same polarity.408

Case 2 One row Rr has a blue vertex in columnCb and blue vertices in every column409
to the right of Cb and one row Rl has a blue vertex in column Cb and blue410
vertices in every column to the left of Cb. Hence, either on row Rr or row411
Rl, we must have a horizontal set of consecutive blue vertices of size at least412
dn/2e+ 1.413

To prove unboundedness of clique-width we show that for any r ∈ N we can find an414
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n ∈ N so that any clique-width expression τ for H(n,n) requires at least r labels in415
tree(τ), whether this is a ’Case 1’ or ’Case 2’ scenario.416

To address both cases we need the following classic result:417

THEOREM 3.9 (Ramsey [12] and Diestel [9]). For every r ∈ N, every graph of order at418
least 22r−3 contains either Kr or Kr as an induced subgraph.419

We handle first Case 1, for all values of δ = (α,β,γ).420

LEMMA 3.10. For any δ = (α,β,γ) and any r ∈ N, if n > 9×24r−1 and τ is a clique-width421
expression for H(n,n) that results in Case 1 at node ⊕a, then τ requires at least r labels to422
construct H(n,n).423

Proof. In Case 1 we have, without loss of generality, at least dn/2e − 1 horizontal424
blue-nonblue vertex pairs but we don’t know which links these fall on.425

If there are at least
√
n/2 such pairs on the same link then using Lemma 3.6 we have426

a matched distinguished pairing {U,W} of size
√
n/2 − 1 > r such that colour(u) =427

blue for all u ∈ U and colour(w) 6= blue for all w ∈W.428

If there is no link with
√
n/2 such pairs then there must be at least one such pair on429

at least
√
n/2 different links. From Lemma 3.5 each such link contains both an ad-430

jacent and non-adjacent blue-nonblue pair. It follows from the pigeonhole principle431

that there is a subset of these of size
√
n/2/4 where the adjacent blue-nonblue pairs432

have the same polarity and also the non-adjacent blue-nonblue pairs have the same433
polarity. We use this subset (Note, the following argument applies whether the blue434
vertex is on the left or right for the adjacent and non-adjacent pairs). If we take the435
index of the first column in each link in the mentioned subset, and then take every436

third one of these, we have a couple set P where |P| >
√
n/2/12, with corresponding437

link set SL = {H[y,y+1] : y ∈ P}, such that the adjacent blue-nonblue pair in each link438
has the same polarity and the non-adjacent blue-nonblue pair in each link has the439
same polarity.440

Define the graph GP so that V(GP) = P and for x,y ∈ V(GP) we have x ∼ y if and441
only if they are β-dense (see definition on page 6). From Theorem 3.9 for any r, as442

|P| >
√
n/2/12 > 22r−3 then there exists a couple setQ ⊆ P such that GQ is either Kr443

or Kr.444

If GQ is Kr, it follows that β is not dense in Q, and SL contains a link set of size r445
corresponding to the couple setQwhere each link has an adjacent blue-nonblue pair446
with the same polarity. Applying Lemma 3.7 this gives us a matched distinguished447
pairing {U,W} of size r such that colour(u) = blue for all u ∈ U and colour(w) 6=448
blue for all w ∈W.449

If GQ is Kr, it follows that β is not sparse in Q, and SL contains a link set of size r450
corresponding to the couple set Q where each link has a non-adjacent blue-nonblue451
pair with the same polarity. Applying Lemma 3.8 this gives us an unmatched dis-452
tinguished pairing {U,W} of size r such that colour(u) = blue for all u ∈ U and453
colour(w) 6= blue for all w ∈W.454

In each case we can construct a distinguished pairing {U,W} of size r such that455
colour(u) = blue for all u ∈ U and colour(w) 6= blue for all w ∈ W. Hence, from456
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Lemma 3.3 τ uses at least r labels to construct H(n,n).457

3.4. When α has an infinite number of 2s or 3s. For Case 2 we must consider458
different values for α separately. We denote m23(n) to be the total number of 2s and459
3s in α[1,n−1].460

LEMMA 3.11. For any triple δ = (α,β,γ) and any r ∈ N, if m23(n) > 3 × 22r and τ is461
a clique-width expression for H(n,n) that results in Case 2 at node ⊕a, then τ requires at462
least r labels to construct H(n,n).463

Proof. Remembering that Cb is the non-white column, without loss of generality we464
can assume that there are at least (m23(n)/2) 2- or 3-links to the right of Cb, since465
otherwise we could reverse the order of the columns. In Case 2 each link has a466
horizontal blue-blue vertex pair with at least one nonblue vertex in each column, so467
using Lemma 3.4 we have both an adjacent and non-adjacent blue-nonblue pair in468
each of these links.469

It follows from the pigeonhole principle that there is a subset of size (m23(n)/8)470
where the adjacent blue-nonblue pairs have the same polarity and also the non-471
adjacent blue-nonblue pairs have the same polarity. We use this subset. If we take472
the index of the first column in each link in the mentioned subset, and then take473
every third one of these, we have a couple set P where |P| > (m23(n)/24), with corre-474
sponding link set SL = {H[y,y+1] : y ∈ P}, such that the adjacent blue-nonblue pair in475
each link has the same polarity and the non-adjacent blue-nonblue pair in each link476
has the same polarity.477

As in the proof of Lemma 3.10, we define a graph GP so that V(GP) = P and for478
x,y ∈ V(GP) we have x ∼ y if and only if they are β-dense. From Theorem 3.9 for479
any r, as |P| > (m23(n))/24) > 22r−3 then there exists a couple set Q ⊆ P such that480
GQ is either Kr or Kr.481

We now proceed in an identical way to Lemma 3.10 to show that we can always482
construct a distinguished pairing {U,W} of size r such that colour(u) = blue for all483
u ∈ U and colour(w) 6= blue for all w ∈ W. Hence, from Lemma 3.3 τ uses at least r484
labels to construct H(n,n).485

COROLLARY 3.12. For any triple δ = (α,β,γ) such that α has an infinite number of 2s or486
3s the hereditary graph class Gδ has unbounded clique-width.487

Proof. This follows directly from Lemma 3.10 for Case 1 and Lemma 3.11 for Case 2,488
since for any r ∈ N we can choose n big enough so that n > 9× 24r−1 and m23(n) >489
3 × 22r so that whether we are in Case 1 or Case 2 at node ⊕a we require at least r490
labels for any clique-width expression for H(n,n).491

We are aiming to state our result in terms of unbounded Nδ so we also require the492
following.493

LEMMA 3.13. For any triple δ = (α,β,γ) such that α has an infinite number of 2s or 3s494
the parameter Nδ is unbounded.495

Proof. If there is an infinite number of 2s in α we can create a couple set P of any496
required size such that αx = 2 for every x ∈ P, so that in the two-row graph (see497
Section 3.1) vx,1 6∼ vx+1,2 and vx,2 ∼ vx+1,1 (i.e. we have both an adjacent and non-498
adjacent pair in the αx-link).499
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We now apply the same approach as in Lemmas 3.10 and 3.11, applying Ramsey500
theory to the graph GP defined in the same way as before. Then for any rwe can set501
|P| > 22r−3 so that there exists a couple set Q ⊆ P where GQ is either Kr or Kr.502

If GQ is Kr it follows that β is not dense in Q. So for any x,y ∈ Q, vx+1,1 and vy+1,1503
have different neighbourhoods in R2(Q) since they are distinguished by either vx,2504
or vy,2. Hence, if n is the highest natural number in Q then Nδ([1,n+ 1]) > r.505

If GQ is Kr it follows that β is not sparse in Q. So for any x,y ∈ Q, vx,1 and vy,1 have506
different neighbourhoods in R2(Q) since they are distinguished by either vx+1,2 or507
vy+1,2. Hence, Nδ([1,n+ 1]) > r.508

Either way, we have Nδ([1,n + 1]) > r, but r can be arbitrarily large, so Nδ is un-509
bounded.510

A similar argument applies if there is an infinite number of 3s.511

3.5. When α has a finite number of 2s and 3s. If α contains only a finite number512
of 2s and 3s then there exists J ∈ N such that αj ∈ {0, 1} for j > J. In Case 2, where513
we have a part-row of consecutive blue vertices, we are interested in the adjacencies514
of these blue vertices to the nonblue vertices in each column. Although the nonblue515
vertices could be in any row, in fact, if α is over the alphabet {0, 1}, the row index of516
the nonblue vertices does not alter the blue-nonblue adjacencies.517

In Case 2, let Q be the set of column indices of the horizontal set of consecutive blue518
vertices in row Rr of H(n,n) and let U1 = {vi,r : i ∈ Q} be this horizontal set of blue519
vertices. Let U2 = {uj : j ∈ Q} be the corresponding set of nonblue vertices such that520
uj ∈ Cj. We have the following:521

LEMMA 3.14. In Case 2, with U1 and U2 defined as above, if α is a word over the alphabet522
{0, 1} then for any i, j ∈ Q, vi,r ∼ uj in Pδ if and only if vi,1 ∼ vj,2 in the two-row graph523
Tδ(Q).524

Proof. Considering the vertex sets U1 ∪ U2 of Pδ and R1(Q) ∪ R2(Q) of Tδ(Q) (see525
Section 3.1) we have:526

(a) For i = j both vj,r ∼ uj and vj,1 ∼ vj,2 if and only if γj = 1.527
(b) For |i− j| > 1 both vi,r ∼ uj and vi,1 ∼ vj,2 if and only if (i, j) ∈ β.528
(c) For j = i+ 1 both vi,r ∼ uj and vi,1 ∼ vj,2 if and only if αi = 1.529

Hence vi,r ∼ uj if and only if vi,1 ∼ vj,2.530

LEMMA 3.15. If δ = (α,β,γ) where α is an infinite word over the alphabet {0, 1, 2, 3} with531
a finite number of 2s and 3s, then the hereditary graph class Gδ has unbounded clique-width532
if and only if Nδ is unbounded.533

Proof. First, we prove that Gδ has unbounded clique-width if Nδ is unbounded.534

As α has a finite number of 2s and 3s there exists a J ∈ N such that αj ∈ {0, 1} if j > J.535

As Nδ is unbounded this means that from Lemma 3.1 for any r ∈ N there exist536
N1,N2 ∈ N such that, setting Q1 = [J+ 1, J+N1] and Q2 = [J+N1 + 1, J+N1 +N2],537
then Nδ(Q1) > r and Nδ(Q2) > r.538
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Denote the n × n graph H′(n,n) = HδJ+1,1(n,n) ∈ Gδ. As described in Section 3.3539
we again consider the two possible cases for a clique-width expression τ forH′(n,n)540
at a node ⊕a which is the lowest node in tree(τ) such that Ha contains a column of541
H′(n,n).542

Case 1 is already covered by Lemma 3.10 for n > 9× 24r−1.543

In Case 2, one row Rr of H′(N1 + N2,N1 + N2) has a blue vertex in column Cb and544
blue vertices in every column to the right of Cb and one row Rl has a blue vertex in545
column Cb and blue vertices in every column to the left of Cb.546

If b 6 J+N1 then consider the graph to the right of Cb. We know every column has547
a blue vertex in row Rr and a non-blue vertex in a row other than Rr. The column548
indices to the right ofCb includesQ2. It follows from Lemma 3.14 that in the columns549
whose indices belong to Q2 the neighbourhoods of the blue set (the mentioned blue550
vertices) to the non-blue set, are identical to the neighbourhoods in graph Tδ(Q2)551
between the vertex sets R1(Q2) and R2(Q2).552

On the other hand if b > J +N1 we can make an identical claim for the graph to the553
left of Cb which now includes the column indices for Q1. It follows from Lemma554
3.14 that the neighbourhoods of the blue set to the non-blue set are identical to the555
neighbourhoods in graph Tδ(Q1) between the vertex sets R1(Q1) and R2(Q1).556

As both Nδ(Q1) = µ(Tδ(Q1),R1(Q1)) > r and Nδ(Q2) = µ(Tδ(Q2),R2(Q2)) > r557
it follows from Lemma 3.3 that any clique-width expression for H′(n,n) with n >558
(N1 +N2) resulting in Case 2 requires at least r labels.559

For any r ∈ N we can choose n big enough so that n > max {9 × 24r−1, (N1 + N2)}560
so that whether we are in Case 1 or Case 2 at node ⊕a we require at least r labels for561
any clique-width expression for H′(n,n). Hence, Gδ has unbounded clique-width if562
Nδ is unbounded.563

Secondly, suppose that Nδ is bounded, so that there exists N ∈ N such that Nδ([J +564
1,n]) = µ(Tδ([J+ 1,n]),R1([J+ 1,n])) < N for all n > J .565

We claim lcwd(Gδ) 6 2J+N+ 2. For we can create a linear clique-width expression566
using no more than 2J + N + 2 labels that constructs any graph in Gδ row by row,567
from bottom to top and from left to right.568

For any graph G ∈ Gδ let it have an embedding in the grid P between columns 1 and569
M > J.570

We will use the following set of 2J+N+ 2 labels:571

• 2 current vertex labels: a1 and a2;572
• J current row labels for first J columns: {cy : y = 1, . . . , J};573
• J previous row labels for first J columns: {py : y = 1, . . . , J};574
• N partition labels: {sy : y = 1, . . . ,N}.575

We allocate a default partition label sy to each column of G[J+1,M] according to the576

R2([J + 1,M])-similar equivalence classes of the vertex set R1([J + 1,M]) in Tδ([J +577
1,M]). There are at most N partition sets {Sy} of R1([J+ 1,M]), and if vertex vi,1 is in578
Sy, 1 6 y 6 N, then the default partition label for vertices in column i is sy. It follows579
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that for two default column labels, sx and sy, vertices in columns with label sy are580
either all adjacent to vertices in columns with label sx or they are all non-adjacent581
(except the special case of vertices in consecutive columns and the same row, which582
will be dealt with separately in our clique-width expression).583

Carry out the following row-by-row linear iterative process to construct each row j,584
starting with row 1.585

(i) Construct the first J vertices in row j, label them c1 to cJ and build any edges586
between them as necessary.587

(ii) Insert required edges from each vertex labelled c1, . . . , cJ to vertices in lower588
rows in columns 1 to J. This is possible because the vertices in lower rows in589
column i (1 6 i 6 J) all have label pi and have the same adjacency with the590
vertices in the current row.591

(iii) Relabel vertices labelled c1, . . . , cJ to p1, . . . ,pJ−1,a2 respectively.592
(iv) Construct and label subsequent vertices in row j (columns J + 1 to M), as593

follows.594
(a) Construct the next vertex in column i and label it a1 (or a2).595
(b) If αi−1 = 0 then insert an edge from the current vertex vi,j (label a1) to596

the previous vertex vi−1,j (label a2).597
(c) Insert edges to vertices that are adjacent as a result of the partition {Sy}598

described above. This is possible because all previously constructed599
vertices with a particular default partition label sy are either all adjacent600
or all non-adjacent to the current vertex.601

(d) Insert edges from the current vertex to vertices labelled pj (1 6 j 6 J)602
as necessary.603

(e) Relabel vertex vi,j−1 to its default partition label sy.604
(f) Create the next vertex in row i and label it a2 (or a1 alternating).605

(v) When the end of the row is reached, repeat for the next row.606

Hence we can construct any graph in the class with at most 2J +N + 2 labels so the607
clique-width of Gδ is bounded if Nδ is bounded.608

Corollary 3.12, Lemma 3.13 and Lemma 3.15 give us the following:609

THEOREM 3.16. For any triple δ = (α,β,γ) the hereditary graph class Gδ has unbounded610
clique-width if and only if Nδ is unbounded.611

We will denote ∆ as the set of all δ-triples for which the class Gδ has unbounded612
clique-width.613

4. Gδ graph classes that are minimal of unbounded clique-width. To show614
that for some δ ∈ ∆ the class Gδ is a minimal class of unbounded clique-width we615
must show that any proper hereditary subclass C has bounded clique-width. If C is616
a hereditary graph class such that C ( Gδ then there must exist a non-trivial finite617
forbidden graph F that is in Gδ but not in C. In turn, this graph Fmust be an induced618
subgraph of some Hδj,1(k,k) for some j and k ∈ N, and thus C ⊆ Free(Hδj,1(k,k)).619

We know that for a minimal class, δmust be recurrent, because if it contains a k-factor620
δ[j,j+k−1] that either does not repeat, or repeats only a finite number of times, then621

Gδ cannot be minimal, as forbidding the induced subgraph Hδj,1(k,k) would leave a622
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proper subclass that still has unbounded clique-width. Therefore, we only consider623
recurrent δ for the remainder of the paper.624

4.1. The bond-graph. To study minimality we use the following graph class. A625
bond-graph Bβ(Q) = (V ,E) for finite Q ⊆ N has vertices V = Q and edges E = βQ.626

Let Bβ = {Bβ(Q) : Q ⊆ N finite}. Note that Bβ is a hereditary subclass of Gδ because627

(a) if Q′ ⊆ Q then Bβ(Q′) is also a bond-graph, and628
(b) Bβ(Q) is an induced subgraph of Pδ since if Q = {y1,y2, . . . ,yn} with y1 <629

y2 < · · · < yn then it can be constructed from Pδ by taking one vertex from630
each column yj in turn such that there is no α or γ edge to previously picked631
vertices.632

We define a parameter (for n > 2)633

Mβ(n) = sup
m<n

µ(Bβ([1,n]), [1,m]).634

The bond-graphs can be characterised as the sub-class of graphs on a single row635
(although missing the α-edges) with the parameter Mβ measuring the number of636
distinct neighbourhoods between intervals of a single row.637

We say that the bond-set β has bounded Mβ if there exists M such that Mβ(n) < M638
for all n ∈ N.639

The following proposition will prove useful later in creating linear clique-width ex-640
pressions.641

PROPOSITION 4.1. Let n,m,m′ ∈ N satisfy m < m′ < n. Then for graph Bβ([1,n]),642
in any partition of [1,m] into [m + 1,n]-similar sets {Si : 1 6 i 6 k} and [1,m′] into643
[m′ + 1,n]-similar sets {S′j : 1 6 j 6 k′} for every ` ∈ [1,k] there exists `′ ∈ [1,k′] such that644
S` ⊆ S′`′ .645

Proof. As two vertices x and y in S` have the same neighbourhood in [m + 1,n] it646
follows they have the same neighbourhood in [m′ + 1,n] since m < m′ so x and y647
must sit in the same [m′ + 1,n]-similar set S′`′ for some `′ ∈ [1,k′].648

PROPOSITION 4.2. For any δ = (α,β,γ) and any n ∈ N,649

Mβ(n) 6 Nδ([1,n]) + 1.650

Proof. In the two-row graph Tδ([1,n]) partition R1([1,n]) into R2([1,n])-similar equiv-651
alence classes {Wi} so that two vertices vx,1 and vy,1 are in the same set Wi if they652
have the same neighbourhood in R2([1,n]). By definition the number of such sets is653
µ(Tδ([1,n]),R1([1,n])) = Nδ([1,n]). For m < n partition [1,m] into s sets {Pi} such654
that Pi = {j : vj,1 ∈Wi}. Then s is no more than the number of sets in {Wi} by defini-655
tion, but no less than µ(Bβ([1,n]), [1,m]) − 1, the number of equivalence classes that656
are [m+ 1,n]-similar (excluding, possibly, vertexm). This holds for allm < n, so657

Mβ(n) − 1 = sup
m<n

µ(Bβ([1,n]), [1,m]) − 1 6 µ(Tδ([1,n]),R1([1,n])) = Nδ([1,n]).

658
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4.2. Veins and Slices. We start by considering only graph classes Gδ for δ =659
(α,β,γ) in which α is an infinite word from the alphabet {0, 2} and then extend to the660
case where α is an infinite word from the alphabet {0, 1, 2, 3}.661

Consider a specific embedding of a graph G = (V ,E) ∈ C in Pδ, and recall that the662
induced subgraph of G on the vertices V ∩ C[j,j+k−1] is denoted G[j,j+k−1].663

Let α be an infinite word over the alphabet {0, 2}. A vein V of G[j,j+k−1] is a set of664
t 6 k vertices {vs, . . . , vs+t−1} in consecutive columns such that vy ∈ V ∩ Cy for each665
y ∈ {s, . . . , s+ t− 1} and for which vy ∼ vy+1 for all y ∈ {s, . . . , s+ t− 2}.666

We call a vein of length k a full vein and a vein of length < k a part vein. Note that667
as α comes from the alphabet {0, 2}, for a vein {vs, . . . , vs+t−1}, vy+1 is no higher than668
vy for each y ∈ {s, . . . , s + t − 2}. A horizontal row of k vertices in G[j,j+k−1] is a full669
vein.670

As G is Free(Hδj,1(k,k)) we know that no set of vertices of G induces Hδj,1(k,k). We671
consider this in terms of disjoint full veins of G[j,j+k−1]. Note that k rows of vertices672
between column j and column j+ k− 1 are a set of k disjoint full veins and induce a673
graph isomorphic to Hδj,1(k,k). There are other sets of k disjoint full veins that form674

a graph isomorphic to Hδj,1(k,k), but some sets of k full veins do not. Our first task is675
to clarify when a set of k full veins has this property.676

Let {vj, . . . , vj+k−1} be a full vein such that each vertex vx has coordinates (x,ux) in677
P, observing that ux+1 6 ux for x ∈ [j, j+ k− 2]. We construct an upper border to be a678
set of vertical coordinates {wj, . . . ,wj+k−1} using the following procedure:679

(1) Set wj = uj,680
(2) Set x = j+ 1,681
(3) if αx−1 = 2 set wx = ux−1,682
(4) if αx−1 = 0 set wx = wx−1,683
(5) set x = x+ 1,684
(6) if x = j+ k terminate the procedure, otherwise return to step (3).685

Given a full vein V = {vj, . . . , vj+k−1}, define the fat vein Vf = {vx,y ∈ V(G[j,j+k−1]) :686
x ∈ [j, j+ k− 1],y ∈ [ux,wx]} (See examples shown in Figure 7).687

Let V1 and V2 be two full veins. Then we say they are independent if Vf1 ∩ Vf2 = ∅ i.e.688
their corresponding fat veins are disjoint.689

PROPOSITION 4.3. G[j,j+k−1] cannot contain more than (k− 1) independent full veins.690

Proof. We claim that k independent full veins {V1, . . . ,Vk} induce the forbidden graph691
Hδj,1(k,k).692

Remembering vx,y is the vertex in the grid P in the x-th column and y-th row, letwx,y693
be the vertex in the y-th full vein Vy in column x. We claim the mapping φ(wx,y)→694
vx,y is an isomorphism.695

Consider vertices wx,y ∈ Vy and ws,t ∈ Vt for t > y. Then696

(a) If t = y (i.e the vertices are on the same vein) then both wx,y ∼ ws,t and697
vx,y ∼ vs,t if and only if |x− s| = 1 or (x, s) ∈ β,698

(b) If t > y and x = s then both wx,y ∼ ws,t and vx,y ∼ vs,t if and only if γx = 1,699
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(c) If t > y and s = x+ 1 then both wx,y 6∼ ws,t and vx,y 6∼ vs,t,700
(d) If t > y and s = x − 1 then both wx,y ∼ ws,t and vx,y ∼ vs,t if and only if701

αs = 2,702
(e) If t > y and |s − x| > 1 then both wx,y ∼ ws,t and vx,y ∼ vs,t if and only if703

(x, s) ∈ β.704

Hence, wx,y ∼ ws,t if and only if vx,y ∼ vs,t and φ is an isomorphism from k inde-705
pendent full veins to Hδj,1(k,k).706

4.3. Vertex colouring. Our objective is to identify conditions on (recurrent) δ ∈707
∆ that make Gδ a minimal class of unbounded clique-width. For such a δ it is suffi-708
cient to show that any graph G in a proper hereditary subclass C has bounded linear709
clique-width. In order to do this we partition G into manageable sections (which710
we call ”panels”), the divisions between the panels chosen so that they can be built711
separately and then ’stuck’ back together again, using a linear clique-width expres-712
sion requiring only a bounded number of labels. In this section we describe a vertex713
colouring that leads (in Section 4.5) to the construction of these panels.714

As previously observed, for any such subclass C there exist j and k such that C ⊆715
Free(Hδj,1(k,k)). As δ is recurrent, if we let δ∗ = δ[j,j+k−1] be the k-factor that defines716

the forbidden graph Hδj,1(k,k), we can find δ∗ in δ infinitely often, and we use these717
instances of δ∗ to divide our embedded graph G into the required panels.718

Firstly, we construct a maximal set B of independent full veins forG[j,j+k−1], a section719
ofG that by Proposition 4.3 cannot have more than (k−1) independent full veins. We720
start with the lowest full vein (remembering that the rows of the grid P are indexed721
from the bottom) and then keep adding the next lowest independent full vein until722
the process is exhausted.723

Note that the next lowest independent full vein is unique because if we have two full724
veins V1,V2 with vertices {vj, . . . , vj+k−1} and {v′j, . . . , v′j+k−1} respectively then they725
can be combined to give {min(vj, v′j), . . . ,min(vj+k−1, v′j+k−1)} which is a full vein726
with a vertex in each column at least as low as the vertices of V1 and V2.727

Let B contain b < k independent full veins, numbered from the bottom as V1, · · · ,Vb728
such that any other full vein not in B must have a vertex in common with a fat vein729
Vfy corresponding to one of the veins Vy of B.730

Let ux,y be the lowest vertical coordinate and wx,y the highest vertical coordinate of731
vertices in Vfy ∩ Cx. We define S0 = {vx,y ∈ V(G[j,j+k−1]) : x ∈ [j, j+ k− 1],y < ux,1},732
Sb = {vx,y ∈ V(G[j,j+k−1]) : x ∈ [j, j + k − 1],y > wx,b}, and for y = 1, . . . ,b − 1 we733
define:734

Si = {vx,y ∈ V(G[j,j+k−1]) : x ∈ [j, j+ k− 1],wx,i < y < ux,i+1}735

This gives us b+ 1 slices {S0, S1, · · · , Sb}.736

We partition the vertices in the fat veins and the slices into sets which have similar737
neighbourhoods, which will facilitate the division of G into panels. We colour the738
vertices of G[j,j+k−1] so that each slice has green/pink vertices to the left and red739
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vertices to the right of the partition, and each fat vein has blue vertices (if any) to740
the left and yellow vertices to the right. Examples of vertex colourings are shown in741
Figure 7.742

Colour the vertices of each slice Si as follows:743

• Colour any vertices in the left-hand column green. Now colour green any744
remaining vertices in the slice that are connected to one of the green left-745
hand column vertices by a part vein that does not have a vertex in common746
with any of the fat veins corresponding to the full veins in B.747

• Locate the column t of the right-most green vertex in the slice. If there are748
no green vertices set t = s = j. If t > j then choose s in the range j 6 s < t749
such that s is the highest column index for which αs = 2. If there are no750
columns before t for which αs = 2 then set s = j. Colour pink any vertices751
in the slice (not already coloured) in columns j to swhich are below a vertex752
already coloured green.753

• Colour any remaining vertices in the slice red.754

Note that no vertex in the right-hand column can be green because if there was such755
a vertex then this would contradict the fact that there can be no full veins other than756
those which have a vertex in common with one of the fat veins corresponding to the757
full veins in B. Furthermore, no vertex in the right hand column can be pink as this758
would contradict the fact that every pink vertex must lie below a green vertex in the759
same slice.760

Colour the vertices of each fat vein Vfi as follows:761

• Let s be the column as defined above for the slice immediately above the fat762
vein. If s = j colour the whole fat vein yellow. If s > j colour vertices of763
the fat vein in columns j to s blue and the rest of the vertices in the fat vein764
yellow.765

When we create a clique-width expression we are particularly interested in the edges766
between the blue and green/pink vertices to the left and the red and yellow vertices767
to the right.768

PROPOSITION 4.4. Let v be a red vertex in column x and slice Si.769

If u is a blue, green or pink vertex in column x− 1 then770

uv ∈ E(G) if and only if αx−1 = 2 and u ∈ Vfi+1 ∪ Si+1 ∪ · · · ∪ Vfb ∪ Sb.771

Similarly, if u is a blue, green or pink vertex in column x+ 1 then772

uv ∈ E(G) if and only if αx = 2 and u ∈ S0 ∪ Vf1 ∪ S1 ∪ · · · ∪ Vfi ∪ Si.773

Proof. Note that as u and v are in consecutive columns we need only consider α-774
edges.775

If u is green in column x − 1 of Si then red v in column x of Si cannot be adjacent to776
u as this would place red v on a green part-vein which is a contradiction. Likewise,777
if u is green in column x + 1 of Si then red v in column x of Si must be adjacent778
to u since if it was not adjacent to such a green vertex in the same slice then this779
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implies the existence of a green vertex above the red vertex in the same column which780
contradicts the colouring rule to colour pink any vertex in columns j to s below a781
vertex coloured green.782

The other adjacencies are straightforward.783

PROPOSITION 4.5. Let v be a yellow vertex in column x and fat vein Vfi .784

If u is a blue, green or pink vertex in column x− 1 then785

uv ∈ E(G) if and only if αx−1 = 2 and u ∈ Vfi ∪ Si ∪ · · · ∪ Vfb ∪ Sb.786

Similarly, if u is a blue, green or pink vertex in column x+ 1 then787

uv ∈ E(G) if and only if αx = 2 and u ∈ S0 ∪ Vf1 ∪ S1 ∪ · · · ∪ Vfi−1 ∪ Si−1.788

Proof. Note that as u and v are in consecutive columns we need only consider α-789
edges.790

If u is blue in column x − 1 of Vfi then yellow v in column x of Vfi must be adjacent791
to u from the definition of a fat vein. Equally, from the colouring definition for a fat792
vein there cannot be a blue vertex in column x+ 1 of Vfi if there is a yellow vertex in793
column x of Vfi .794

The other adjacencies are straightforward.795

Having established these propositions, as the pink and green vertices in a particular796
slice and column have the same adjacencies to the red and yellow vertices, we now797
combine the green and pink sets and simply refer to them all as green.798

4.4. Extending α to the 4-letter alphabet. Our analysis so far has been based on799
α being a word from the alphabet {0, 2}. We now use the following lemma to extend800
our colouring to the case where α is a word over the 4-letter alphabet {0, 1, 2, 3}.801

Let α be an infinite word over the alphabet {0, 1, 2, 3} and α+ be the infinite word802
over the alphabet {0, 2} such that for each x ∈ N,803

α+
x =

{
0 if αx = 0 or 1,
2 if αx = 2 or 3,

804

Denoting δ = (α,β,γ) and δ+ = (α+,β,γ), let G = (V ,E) be a graph in the class Gδ805
with a particular embedding in the vertex grid V(P). We will refer to G+ = (V ,E+)806
as the graph with the same vertex set V as G from the class Gδ

+
.807

LEMMA 4.6. For any subset of vertices U ⊆ V , 2 vertices of U in the same column of V(P)808
are V \U-similar in G if and only if they are V \U-similar in G+.809

Proof. Let u1 and u2 be two vertices in U in the same column x and v be a vertex of810
V \ U in column y. If x = y then v is in the same column as u1 and u2 and is either811
adjacent to both or neither depending on whether there is a γ-clique on column x,812
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which is the same in both G and G+. If |x − y| > 1 then v is adjacent to both u1 and813
u2 if and only if there is a bond (x,y) in β, which is the same in both G and G+.814

If y = x + 1 then the adjacency of v to u1 and u2 is determined by αx in G and α+
x815

in G+. If αx = α+
x (i.e. both 0 or both 2) then the adjacencies are the same in G and816

G+. If αx = 1 and α+
x = 0, then u1 and u2 are both adjacent to v in G if and only if817

they are both non-adjacent to v in G+. If αx = 3 and α+
x = 2, then u1 and u2 are both818

adjacent to v in G if and only if they are both non-adjacent to v in G+.819

Hence u1 and u2 have the same neighbourhood in V \U in G if and only if they have820
the same neighbourhood in V \U in G+.821

LEMMA 4.7. For a graphG ∈ Gδ∩Free(Hδj,1(k,k)) andG+ defined as above, let the vertices822

ofG+
[j,j+k−1] be coloured as per Section 4.3. Then the same colouring applied to the vertices of823

G[j,j+k−1] has the property that a column of G[j,j+k−1] can be partitioned into at most k− 1824
disjoint blue sets and k disjoint green sets, so that any red or yellow vertex is either adjacent825
to all or none of a given green/blue vertex set.826

Proof. As α+ is a word over the alphabet {0, 2} the results of Sections 4.2 and 4.3 can827
be applied, in particular Propositions 4.3, 4.4 and 4.5. It follows that for G+

[j,j+k−1]:828

• there are no more than (k − 1) independent full veins, and consequently at829
most k slices,830

• two blue vertices in the same fat vein and column have the same red/yellow831
neighbourhood, and832

• two green vertices in the same slice and column have the same red/yellow833
neighbourhood.834

Lemma 4.6, with Ub and Ug being the blue and green vertices respectively, and U =835
Ub∪Ug, tells us that these statements also apply toG[j,j+k−1] and the result follows.836

4.5. Panel construction. We construct the panels of G based on our embedding837
of G in Pδ.838

To recap, δ∗ = δ[j,j+k−1] is the k-factor that defines the forbidden graph Hδj,1(k,k)839
and we will use the repeated instances of δ∗ to divide our embedded graph G into840
panels.841

Define t0, t1, . . . , tz where t0 is the index of the column before the first column of the842
embedding of G, tz is the index of the last column of the embedding of G and ti843
(0 < i < z) represents the rightmost letter index of the i-th copy of δ∗ in δ , such that844
ti > k+ ti−1 to ensure the copies are disjoint. Hence, the i-th disjoint copy of δ∗ in δ845
corresponds to columns C[ti−k+1,ti] of Pδ and we denote the induced graph on these846
columns Gi = G[ti−k+1,ti] and denote G+

i as the corresponding graph in G+.847

Colour the vertices of G+
i blue, yellow, green or red as described in Section 4.3 and848

then apply the same colouring to the vertices of Gi. Call these Gi vertex sets Ubi , Uyi ,849
Ugi and Uri respectively. Denote Uw1 as the vertices in G[t0+1,t1−k], and for 1 < i < z850
denote Uwi the set of vertices in G[ti+1,ti+1−k] and colour the vertices in each Uwi851
white.852

We create a sequence of panels, the first panel is P1 = Uw1 ∪U
g
1 ∪Ub1 , and subsequent853

panels given by854
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Pi = U
y
i−1 ∪U

r
i−1 ∪Uwi ∪U

g
i ∪U

b
i .855

These panels create a disjoint partition of the vertices of our embedding of G. The856
following lemma is used to put a bound on the number of labels required in a linear857
clique-width expression to create edges between panels. We denote Pi = ∪is=1Ps.858

LEMMA 4.8. Let (α,β,γ) be a recurrent δ-triple where α is an infinite word over the alpha-859
bet {0, 1, 2, 3}, γ is an infinite binary word and β is a bond set which has bounded Mβ, so860
that Mβ(n) < M for all n ∈ N.861

Then for any graph G = (V ,E) ∈ Gδ ∩ Free(Hδj,1(k,k)) for some j,k ∈ N with vertices V862
partitioned into panels {P1, . . . ,Pz} and 1 6 i 6 z,863

µ(G,V \ Pi) < M+ 2k2.864

Proof. Considering the three sets of vertices Pi \ (Ubi ∪ U
g
i ), U

b
i and Ugi in graph G865

separately, we have:866

(a) the number of distinct neighbourhoods of the vertex set V \ Pi in the vertex867
set Pi \ (Ubi ∪U

g
i ) is bounded byM.868

(b) the number of distinct neighbourhoods of the vertex set V \ Pi in the vertex869
setUbi is bounded by k(k−1), noticing that from Lemma 4.7 two blue vertices870
in the same fat vein and column have the same neighbourhood in V \ Pi.871

(c) the number of distinct neighbourhoods of the vertex set V \ Pi in the vertex872
set Ugi is bounded by k(k − 1), noticing that from Lemma 4.7 two green873
vertices in the same slice and column have the same neighbourhood in V\Pi.874

This covers all vertices of Pi so875

µ(G,V \ Pi) 6M+ k(k− 1) + k(k− 1) < M+ 2k2.876877

4.6. When Gδ is a minimal class of unbounded clique-width. Our strategy for878
proving that an arbitrary graph G in a proper hereditary subclass of Gδ has bounded879
linear clique-width (and hence bounded clique-width) is to define an algorithm to880
create a linear clique-width expression that allows us to recycle labels so that we can881
put a bound on the total number of labels required, however many vertices there are882
in G. We do this by constructing a linear clique-width expression for each panel Pi883
in G in a linear sequence, leaving the labels on each vertex of previously constructed884
panels Pi−1 with an appropriate label to allow edges to be constructed between the885
current panel/vertex and previous panels. To be able to achieve this we require the886
following ingredients:887

(a) δ to be recurrent so we can create the panels,888
(b) a bound on the number of labels required to create each new panel,889
(c) a process of relabelling so that we can leave appropriate labels on each vertex890

of the current panel to enable connecting to previous panels, before moving891
on to the next panel, and892

(d) a bound on the number of labels required to create edges to previously con-893
structed panels.894
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We have (a) by assumption and we deal with (c) and (d) in the proof of Theorem895
4.11. The next two lemmas show how we can restrict δ further, using a new concept896
of ’gap factors’, to ensure (b) is achieved.897

LEMMA 4.9. For any δ and graph G ∈ Gδ and any j1, j2 ∈ N where |j2 − j1| = `− 1898

lcw(G[j1,j2]) 6 2`899

Proof. We construct G[j1,j2] using a row-by-row linear method, starting in the bottom900
left. For each of the ` columns, we create 2 labels: one label c1, . . . , c` for the vertex in901
the current row being constructed, and one label e1, . . . , e` for the vertices in all earlier902
rows.903

For the first row, we insert the (max) ` vertices using the labels c1, . . . , c`, and since904
every vertex has its own label we can insert all necessary edges. Now relabel ci → ei905
for each i.906

Suppose that the first r rows have been constructed, in such a way that every existing907
vertex in column i has label ei. We insert the (max) ` vertices in row r+1 using labels908
c1, . . . , c`. As before, every vertex in this row has its own label, so we can insert all909
edges between vertices within this row. Next, note that any vertex in this row has910
the same relationship with all vertices in rows 1, . . . , r of any column i. Since these911
vertices all have label ei and the vertex in row r + 1 has its own label, we can add912
edges as determined by α, β and γ as necessary. Finally, relabel ci → ei for each i,913
move to the next row and repeat until all rows have been constructed.914

We call a factor of a δ-triple between, and including, some consecutive disjoint pair915
of occurrences of a k-factor δ∗ = δ[j,j+k−1], a δ∗-gap factor. An Nδ-bounded recurrent916
δ-triple is a recurrent triple where, for any factor δ∗ and any δ∗-gap factor δQ, the917
value of Nδ(Q) is bounded by a function of δ∗ only (i.e. it is bounded irrespective918
of the δ∗-gap factor chosen). In particular, from Lemma 3.13, it follows that if δ is919
Nδ-bounded recurrent then there is a bound on the number of 2s and 3s in the α920
component of any δ∗-gap factor.921

If δ is almost periodic, so that for any factor δ∗ of δ every factor of δ of length at922
least L(δ∗) contains δ∗, then each δ∗-gap factor δQ covers a maximum of L(δ∗) + k923
columns. As a consequence of Lemma 4.9, Nδ(Q) is bounded by 2(L(δ∗) + k) (i.e924
a function of δ∗ only) irrespective of the δ∗-gap factor chosen. Hence, every almost925
periodic δ-triple is also Nδ-bounded recurrent.926

In addition, we know there exist Nδ-bounded recurrent δ-triples which are not al-927
most periodic. In [3] a recurrent but not almost periodic binary word ψ was con-928
structed by a process of substitution. If we take δ = (ψ, ∅, 0∞), then we have an929
example of an Nδ-bounded recurrent δ-triple that is not almost periodic .930

LEMMA 4.10. Let δ be an Nδ-bounded recurrent triple with k-factor δ∗ = δ[j,j+k−1]. Then931

for any graph G ∈ Gδ, where V[G] ⊆ CQ where Q is an interval such that δQ is a factor of932
a δ∗-gap factor, there exists a bound on the linear clique-width of G that is a function of δ∗933
only.934

Proof. As δ is an Nδ-bounded recurrent triple there exists a bound N(δ∗) on Nδ(Q),935
where Q is any interval such that δQ is a subset of a δ∗-gap factor. It follows from936
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Lemma 3.13 that there is a bound, say J(δ∗), on the number of 2s and 3s in the α937
factor of any δ∗-gap factor δQ.938

We can use the row-by-row linear method from the proof of Lemma 3.15 to show939
that for any graph G ∈ Gδ, with V[G] ⊆ CQ we have lcw(G) 6 2J+N+ 2.940

We are now in a position to define a set of hereditary graph classes Gδ that are mini-941
mal of unbounded clique-width. We will denote ∆min ⊆ ∆ as the set of all δ-triples942
in ∆with the characteristics:943

(a) δ is Nδ-bounded recurrent, and944
(b) the bond set β has bounded Mβ.945

THEOREM 4.11. If δ ∈ ∆min then Gδ is a minimal hereditary class of both unbounded946
linear clique-width and unbounded clique-width.947

Proof. Gδ has unbounded clique-width since δ ∈ ∆. We show that if δ ∈ ∆min then948
every proper hereditary subclass C ( Gδ has bounded linear clique-width. From the949
introduction to this section we know that for such a subclass C there must exist some950
Hδj,1(k,k) for some j and k ∈ N such that C ⊆ Free(Hδj,1(k,k)).951

Using the same column indices {ti} used for panel construction of a graph G ∈ Gδ952
in Section 4.5, let the i-th δ∗-gap factor be denoted δqi

where q1 = [t0 + 1, t1] and953
qi = [ti−1 −k+1, ti] for 1 < i < z. Note that for every i, Pi ⊆ Cqi

. From Lemma 4.10954
we know there exist J and N ∈ N, each a function of δ∗ only, such that the number955
of labels required to construct each panel Pi by the row-by-row linear method for all956
i ∈ N is no more than 2J+N+ 2.957

As the bond-set β has bounded Mβ, let M ∈ N be a constant such that Mβ(n) < M958
for all n ∈ N.959

Although a single panel Pi can be constructed using at most 2J + N + 2 labels, we960
need to be able to recycle labels so that we can construct any number of panels with961
a bounded number of labels. We show that any graph G ∈ Free(Hδj,1(k,k)) can be962
constructed by a linear clique-width expression that only requires a number of labels963
determined by the constantsM, N, J and k.964

For our construction of panel Pi, we will use the following set of 4k2+MN+M+2J+2965
labels:966

• 2 current vertex labels: a1 and a2;967
• J current row labels: {cy : y = 1, . . . , J} for first J columns;968
• J previous row labels: {py : y = 1, . . . , J} for first J columns;969
• MN partition labels: {sx,y : x = 1, . . . ,M,y = 1, . . . ,N}, for vertices in Uyi−1 ∪970
Uri−1 ∪Uwi ;971

• k2 blue current panel labels: {bcx,y : x = 1, . . . ,k,y = 1, . . . ,k}, for vertices972
Vfi,x ∩Ubi ∩ Cy;973

• k2 blue previous panel labels: {bpx,y : x = 1, . . . ,k,y = 1, . . . ,k}, for vertices974
Vfi−1,x ∩Ubi−1 ∩ Cy;975

• k2 green current panel labels: {gcx,y : x = 0, . . . ,k− 1,y = 1, . . . ,k}, for vertices976
Si,x ∩Ugi ∩ Cy;977
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• k2 green previous panel labels: {gpx,y : x = 0, . . . ,k−1,y = 1, . . . ,k}, for vertices978
Si−1,x ∩Ugi−1 ∩ Cy;979

• M bond labels: {my : y = 1, . . . ,M}, for vertices in previous panels for creating980
the β-bond edges between columns.981

We carry out the following iterative process to construct each panel Pi in turn.982

Assume Pi−1 = ∪i−1
s=1Ps has already been constructed such that labels my, bpx,y and983

gpx,y have been assigned to theM+ 2k2 V \Pi−1-similar sets as described in Lemma984
4.8.985

Using the same column indices {ti} used for panel construction (Section 4.5) we as-986
sign a default partition label sx,y to each column of Uyi−1 ∪Uri−1 ∪Uwi as follows:987

(a) Consider the bond-graph Bβ([1, tz]) (Section 4.1). We partition the interval988
Q = [ti−1 − k+ 1, ti − k] into [ti − k+ 1, tz]-similar sets of which there are at989
most M, and use label index x to identify values in Q in the same [ti − k +990
1, tz]-similar set. Consequently, vertices in two columns ofUyi−1∪Uri−1∪Uwi991
that have the same default label x value have the same neighbourhood in992
G[ti−k+1,tz] and hence are in the same V \ Pi-similar set.993

(b) Consider the two-row graph Tδ(Q) (Section 3.1). We partition vertices in994
R1(Q) into R2(Q)-similar sets of which there are at most N. We create a cor-995
responding partition of the interval Q such that vx,1 and vy,1 are in the same996
equivalence class of R1(Q) if and only if x and y are in the same partition set997
of Q. We now use label index y to identify values in the same partition set.998
Consequently, vertices in two columns of Uyi−1 ∪ Uri−1 ∪ Uwi that have the999
same default label y value have the same neighbourhood within GQ.1000

We construct each panel Pi in the row-by-row linear method used for the graph with1001
a finite number of 2s and 3s with bounded Nδ constructed in Lemma 3.15. The cur-1002
rent vertex always has a unique label. Thus, for each row, we use labels c1, . . . , cJ1003
for vertices in the first J columns and then alternate a1 and a2 for the current and1004
previous vertices for the remainder of the row.1005

For each new vertex in the current row we add edges as follows:1006

(a) Insert required edges to the Mβ + 2k2 V \ Pi−1-similar sets – see Lemma1007
4.8. This is possible because vertices within each of these sets are either all1008
adjacent to the current vertex or none of them are.1009

(b) Insert required edges to vertices in the same or lower rows in the current1010
panel. This is possible as these vertices all have labels py, sx,y, bcx,y or1011
gcx,y and, from the construction, vertices with the same y value are either1012
all adjacent to the current vertex or none of them are.1013

Following completion of edges to the current vertex, we relabel the previous vertex1014
as follows:1015

• from cy to py if it is in the first J columns,1016
• from a2 (or a1) to its default partition label sx,y if it is in Uyi−1 ∪ Uri−1 ∪ Uwi1017

but not in the first J columns.1018
• from a2 (or a1) to bcx,y if it is in Vfi,x ∩Ubi , and1019
• from a2 (or a1) to gcx,y if it is in Si,x ∩Ugi .1020
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We repeat for the next row of panel Pi.1021

Once panel Pi is complete, relabel as follows:1022

Relabel vertices in accordance with their V \Pi-similar set, of which there are at most1023
M. Note from Proposition 4.1, that two vertices with the same label my from the1024
previous Pi−1 partition sets will still need the same label in Pi. Two equivalence1025
classes from the Pi−1 partition may merge to form a new equivalence class in the1026
Pi partition. Hence, it is possible to relabel with the same label the old equivalence1027
classes that merge, and then use the sparemy labels for any new equivalence classes1028
that appear. We never need more thanM such labels.1029

Also relabel all vertices with labels bpx,y, gpx,y, py and sx,y with the relevant bond1030
label my of their V \ Pi-similar set. This is possible for the vertices labelled sx,y as1031
the index x signifies their V \ Pi-similar set.1032

Now relabel bcx,y → bpx,y and gcx,y → gpx,y ready for the next panel. For the next1033
panel we can reuse labels a1, a2, cy, py, sx,y, bcx,y and gcx,y as necessary.1034

This process repeated for all panels completes the construction of G.1035

The maximum number of labels required to construct any graphG ∈ Free(Hδj,1(k,k))1036

is 4k2 +MN+M+ 2J+ 2 and hence C has bounded linear clique-width.1037

The conditions for δ to be in ∆min are sufficient for the class Gδ to be minimal. It is1038
fairly easy to see that it is necessary for δ to be bounded recurrent. However, there1039
remains a question regarding the necessity of the bond set β to have bounded Mβ.1040
We have been unable to identify any δ 6∈ ∆min such that Gδ is a minimal class of1041
unbounded clique-width, hence:1042

CONJECTURE 4.12. The hereditary graph class Gδ is minimal of unbounded clique-width if1043
and only if δ ∈ ∆min.1044

5. Examples of new minimal classes. It has already been shown in [3] that there1045
are uncountably many minimal hereditary classes of graphs of unbounded clique-1046
width. However, armed with the new framework we can now identify many other1047
types of minimal classes. Some examples of δ = (α,β,γ) values that yield a minimal1048
class are shown in Table 2.1049

6. Concluding remarks. The ideas of periodicity and recurrence are well estab-1050
lished concepts when applied to symbolic sequences (i.e. words). Application to1051
δ-triples and in particular β-bonds is rather different and needs further investiga-1052
tion.1053

The β-bonds have been defined as generally as possible, allowing a bond between1054
any two non-consecutive columns. The purpose of this was to capture as many min-1055
imal classes in the framework as possible. However, it may be observed that the1056
definition is so general that for any finite graph G it is possible to define β so that G1057
is isomorphic to an induced subgraph of Bβ(Q) and hence Gδ.1058

In these Gδ graph classes we have seen that unboundedness of clique-width is de-1059
termined by the unboundedness of a parameter measuring the number of distinct1060
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Example α β (x,y ∈ N) γ Mβ b’nd

1. 0∞ ∅ 1∞ 1

2. 1∞ (1, x+ 2) 0∞ 2

3. (23)∞ (x, x+ 2) 0∞ 3

4. 0∞ (x,y) : |x− y| 6= 1, x− y ≡ 1 (mod 2) 0∞ 3

5. 1∞ (x,y) : x 6= y, x− y ≡ 0 (mod 2) 1∞ 2

6. 2∞ (x,y) : 1 < |x− y| 6 n (fixed n) 0∞ n

TABLE 2
New minimal hereditary graph classes of unbounded clique-width

neighbourhoods between two-rows. The minimal classes are those which satisfy1061
defined recurrence characteristics and for which there is a bound on a parameter1062
measuring the number of distinct neighbourhoods between vertices in one row.1063

Hence, whilst we have created a framework for many types of minimal classes, there1064
may be further classes ’hidden’ in the β-bonds. Indeed, we believe other types of1065
minimal hereditary classes of unbounded clique-width exist and this is still an open1066
area for research.1067

Acknowledgements. We are grateful to the anonymous referees whose careful re-1068
view of an earlier draft led to several significant improvements.1069
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Example 1 Example 2 Example 3

FIG. 7. Examples of vein and slice colouring – a 222222, a 222000 and a 222000022 factor, with vertices
coloured blue, green, pink, red and yellow as described. The only edges shown are the veins (bold blue), other edges
in the fat veins (blue), part veins that start on the left column but do not reach the right column (green) and related
pink rows.
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