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A FRAMEWORK FOR MINIMAL HEREDITARY CLASSES OF GRAPHS OF
UNBOUNDED CLIQUE-WIDTH
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Abstract. We create a framework for hereditary graph classes % built on a two-dimensional grid of
vertices and edge sets defined by a triple 6 = {«x, 3,7y} of objects that define edges between consecu-
tive columns, edges between non-consecutive columns (called bonds), and edges within columns. This
framework captures a large family of minimal hereditary classes of graphs of unbounded clique-width,
some previously identified and many new ones, although we do not claim this includes all such classes.
We show that a graph class G° has unbounded clique-width if and only if a certain parameter N? is
unbounded. We further show that G° is minimal of unbounded clique-width (and, indeed, minimal of
unbounded linear clique-width) if another parameter MP? is bounded, and also & has defined recurrence
characteristics. Both the parameters N?% and MP are properties of a triple 8 = («, 3,7v), and measure
the number of distinct neighbourhoods in certain auxiliary graphs. Throughout our work, we introduce
new methods to the study of clique-width, including the use of Ramsey theory in arguments related to
unboundedness, and explicit (linear) clique-width expressions for subclasses of minimal classes of un-
bounded clique-width.

Key words. hereditary graph classes, clique-width, linear clique-width

MSC codes. 05C75, 05C85

1. Introduction. Until 4 years ago only a couple of examples of minimal hered-
itary classes of unbounded clique-width had been identified, see Lozin [11]. How-
ever, more recently many more such classes have been identified, in Atminas, Brig-
nall, Lozin and Stacho [2], Collins, Foniok, Korpelainen, Lozin and Zamaraev [5],
Dawar and Sankaran [8] and most recently the current authors demonstrated an un-
countably infinite family of minimal hereditary classes of unbounded clique-width
in [3].

This paper brings together all but one of these examples into a single consistent
framework. The framework consists of hereditary graph classes constructed by tak-
ing the finite induced subgraphs of an infinite graph P® whose vertices form a two-
dimensional array and whose edges are defined by three objects, collectively de-
noted as a triple 8 = («, 3,v). Though we defer full definitions until Section 2, the
components of the triple define edges between consecutive columns (x), between
non-consecutive columns (3 ‘bonds’), and within columns (y) as follows.

(a) o is an infinite word from the alphabet {0, 1,2,3}. The four types of x-edge
sets between consecutive columns can be described as a matching (0), the
complement of a matching (1), a chain (2) and the complement of a chain (3),
(illustrated in Figure 1).

(b) P is a symmetric subset of pairs of natural numbers (x,y). If (x,y) € p then
every vertex in column x is adjacent to every vertex in column y.

*SUPPORTED BY EPSRC DTP.
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(c) v is an infinite binary word. If the j-th letter of v is 0 then vertices in column
j form an independent set and if it is 1 they form a clique.

We show that these hereditary graph classes G° have unbounded clique-width if and
only if a parameter N° measuring the number of distinct neighbourhoods between
any two rows of the grid, is unbounded — see Theorem 3.16. We denote A as the set
of 5-triples for which G° has unbounded clique-width.

Furthermore, we define a subset A in C A such that if 8 € Ay in the hereditary
graph class G° is minimal both of unbounded clique-width and of unbounded linear
clique-width (Definitions in Section 2.3 and result Theorem 4.11). Referring to 8* =
S[a,a+b] as a factor of & being a subset of & defining all edges between vertices in
columns a,a+1,...,a+ b, these ‘'minimal’ é-triples are characterised by:

(a) b €A,

(b) & is N°-bounded recurrent (i.e. any factor 6* of § repeats an infinite number of
times, and the subgraphs induced on the columns between two consecutive
disjoint copies of 5* (the d-factor ‘gap’) have bounded N?® (always true for
almost periodic 9)), and

(c) a bound on a parameter MP defined by the bond set 3, which is a measure
of the number of distinct neighbourhoods between intervals of a single row.

All but one hereditary graph classes previously shown to be minimal of unbounded
clique-width fit this grid framework i.e. they are defined by a 6-triple in Ai,. Thisis
demonstrated in Table 1 which shows their corresponding 6 = («, 3,y) values from
the framework. The only minimal class so far discovered not in the table is power
graphs [8], a class built on a single path rather than a two dimensional grid.

Name 104 B (x,yeN) Y
Bipartite permutation [11] 2> 0 0>
Unit interval [11] 200 0 1%
Bichain [2] (23)® (2x,2x +2y + 1) 0>
Split permutation [2] (23)* (2x,y):y>2x+1 (01)*
x €{0,1}[5] periodic 0 0%
ac{0,1,2,3}[3] recurrent ! 0 0%

TABLE 1
Hereditary graph classes proven to be minimal of unbounded clique-width

The viewpoint provided by our framework offers a fuller understanding of the land-
scape of (the uncountably many known) minimal hereditary classes of unbounded
clique-width. This landscape is in stark contrast to the situation for downwards-
closed sets of graphs under different orderings and with respect to other parameters.
For example, planar graphs are the unique minimal minor-closed class of graphs

LA set of minimal classes I defined by an infinite word o which is recurrent over the alphabet {0, 1,2, 3}
and for which the ‘gap’ factors have a bounded number of non-zero letters (including all almost periodic
x)
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of unbounded treewidth (see Robertson and Seymour [13]), and circle graphs are
the unique minimal vertex-minor-closed class of unbounded rank-width (or, equiv-
alently, clique-width) — see Geelen, Kwon, McCarty and Wollan [10]. Nevertheless,
clique-width is more compatible with hereditary classes of graphs than treewidth: if
H is an induced subgraph of G, then the clique-width of H is at most the clique-width
of G, but the same does not hold in general for treewidth.

Our focus on the minimal classes of unbounded clique-width is due to the following
fact: any graph property expressible in MSO; logic has a linear time algorithm on
graphs with bounded clique-width, see Courcelle, Makowsky and Rotics [7]. As
it happens, any proper subclass of a minimal class from our framework also has
bounded linear clique-width. However, beyond our framework there do exist classes
that have bounded clique-width but unbounded linear clique-width, see [1] and [4].

After introducing the necessary definitions in Section 2, the rest of this paper is or-
ganised as follows.

We set out in Section 3 our proof determining which hereditary classes §° have un-
bounded clique-width. Proving a class has unbounded clique-width is done from
first principles, using a new method, by identifying a lower bound for the number
of labels required for a clique-width expression for an n x n square graph, using dis-
tinguished coloured vertex sets and showing such sets always exist for big enough n
using Ramsey theory. For those classes which have bounded clique-width, we prove
this by providing a general clique-width expression for any graph in the class, using
a bounded number of labels.

In Section 4 we prove that the class G° is minimal of unbounded clique-width if
5 € Anin. To do this we introduce an entirely new method of 'veins and slices’,
partitioning the vertices of an arbitrary graph in a proper subclass of §® into sections
we call “panels’ using vertex colouring. We then create a recursive linear clique-
width expression to construct these panels in sequence, allowing recycling of labels
each time a new panel is constructed, so that an arbitrary graph can be constructed
with a bounded number of labels.

Previous papers on minimal hereditary graph classes of unbounded clique-width
have focused mainly on bipartite graphs. The introduction of 3-bonds and y-cliques
has significantly broadened the scope of proven minimal classes.

In Section 5 we provide some examples of new hereditary graph classes that are
minimal of unbounded clique-width revealed by this approach. Finally, in Section 6,
we discuss where the investigation of minimal classes of unbounded clique-width
might go next.

2. Preliminaries.

2.1. Graphs - General. A graph G = (V, E) is a pair of sets, vertices V = V(G)
and edges E = E(G) C V(G) x V(G). Unless otherwise stated, all graphs in this paper
are simple, i.e. undirected, without loops or multiple edges.

If vertex u is adjacent to vertex v we write u ~ v and if u is not adjacent to v we write
u ¥ v. We denote N(v) as the neighbourhood of a vertex v, that is, the set of vertices

3
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adjacent to v. A set of vertices is independent if no two of its elements are adjacent and
is a clique if all the vertices are pairwise adjacent. We denote a clique with r vertices
as K™ and an independent set of r vertices as K™. A graph is bipartite if its vertices
can be partitioned into two independent sets, V1 and V,, and is complete bipartite if, in
addition, each vertex of V; is adjacent to each vertex of V.

We will use the notation H < G to denote graph H is an induced subgraph of graph
G, meaning V(H) C V(G) and two vertices of V(H) are adjacent in H if and only if
they are adjacent in G. We will denote the subgraph of G = (V, E) induced by the
set of vertices U C V by G[U]. If graph G does not contain an induced subgraph
isomorphic to H we say that G is H-free.

A class of graphs C is hereditary if it is closed under taking induced subgraphs, that
is G € € implies H € C for every induced subgraph H of G. It is well known that for
any hereditary class C there exists a unique (but not necessarily finite) set of minimal
forbidden graphs {H;, H, ...} such that € = Free(H;, Hy,...) (i.e. any graph G € Cis
Hi-free fori =1,2,...). We will use the notation € C G to denote that C is a hereditary
subclass of hereditary graph class § (C C G for a proper subclass).

An embedding of graph H in graph G is an injective map ¢ : V(H) — V(G) such
that the subgraph of G induced by the vertices ¢(V(H)) is isomorphic to H. In other
words, vw € E(H) if and only if $(v)$(w) € E(G). If H is an induced subgraph of G
then this can be witnessed by one or more embeddings.

Given a graph G = (V,E) and a subset of vertices U C V, two vertices of U will
be called V '\ U-similar if they have the same neighbourhood in V \ U. Thus V \ U-
similarity is an equivalence relation. The number of such equivalence classes of U
in G will be denoted p(G, U). A special case is when all the equivalence classes are
singletons when we call U a distinguished vertex set.

A distinguished pairing {U, W} of size v of a graph G = (V, E) is a pair of vertex subsets
U={u} € Vand W = {w;} C V\ U with |U] = [W| = r such that the vertices in
U have pairwise different neighbourhoods in W (but not necessarily vice-versa). A
distinguished pairing is matched if the vertices of U and W can be paired (ui, wi) so
that u; ~ w; for each i, and is unmatched if the vertices of U and W can be paired
(uy, wy) so that uy # w; for each i. Clearly the set U of a distinguished pairing {U, W}
is a distinguished vertex set of G[U U W] which gives us the following:

PROPOSITION 2.1. If {U, W} is a distinguished pairing of size v in graph G then u(G[U U
wl,u) =r.

2.2. G® hereditary graph classes. The graph classes we consider are all formed
by taking the set of finite induced subgraphs of an infinite graph defined on a grid
of vertices. We start by defining an infinite empty graph P with vertices

V(P) = {Vi,j 11,j € N}

We use Cartesian coordinates throughout this paper. Hence, we think of P as an
infinite two-dimensional array in which v; ; represents the vertex in the i-th column
(counting from the left) and the j-th row (counting from the bottom). Hence vertex
v1,1 is in the bottom left corner of the grid and the grid extends infinitely upwards
and to the right. The i-th column of P is the set C; = {v;; : j € N}, and the j-th row of

4
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Pis the set Rj = {vi; : i € N}. Likewise, the collection of vertices in columns 1 to j is
denoted Cy; ;.

We will add edges to P using a triple 6 of objects that define the edges between con-
secutive columns, edges between non-consecutive columns and edges within each
column.

We refer to a (finite or infinite) sequence of letters chosen from a finite alphabet as
a word. We denote by w; the i-th letter of the word w. A factor of w is a contigu-
ous subword wy;;; being the sequence of letters from the i-th to the j-th letter of
w. If a is a letter from the alphabet we will denote a* as the infinite word aaa...,
and if a; ... an is a finite sequence of letters from the alphabet then we will denote
(aj...an)™ as the infinite word consisting of the infinite repetition of this factor.

The length of a word (or factor) is the number of letters the word contains.

An infinite word w is recurrent if each of its factors occurs in it infinitely many times.
We say that w is almost periodic (sometimes called uniformly recurrent or minimal) if
for each factor wy; 5 of w there exists a constant £(wy; 5;) such that every factor of w
of length at least £(wy;;)) contains wy; ;) as a factor. Finally, w is periodic if there is
a positive integer p such that wy = wy,, for all k. Clearly, every periodic word is
almost periodic, and every almost periodic word is recurrent.

A bond-set B is a symmetric subset of {(x,y) € N?,[x —y| > 1}. Foraset Q C N
we write 3o to mean the subset of 3-bonds {(x,y) € B : x,y € Q}. For instance,
B[i,ﬂ = {(XIU) € B i< X,y < ]}

Let o be an infinite word over the alphabet {0,1, 2,3}, 3 be a bond set and y be an
infinite binary word. We refer to the three objects combined as a d-triple, denoted

o= ((X, B/y)

We define an infinite graph P° with vertices V() and with edges defined by § as
follows:

(a) o-edges between consecutive columns determined by the letters of the word
«. Foreachi=1,2,..., the edges between C; and Ci; are:
(@) {(vij, vit15) 1) € N}if a5 = 0 (i.e. a matching);
(i) {(vij,vit1x) 1 #kj, k € N}if &3 =1 (i.e. the bipartite complement 2 of
a matching);
(i) {(vij, visrx) :j 2k, k € N} if oy = 2;
(iv) {(vij, visrx) 17 < kj, k € N}if oy = 3 (i.e. the bipartite complement of
a2).
(b) B-edges defined by the bond-set 3 such that v; x ~ vj for all x,y € N when
(i,j) € B (i.e. a complete bipartite graph between C; and C;), and
(c) v-edges defined by the letters of the binary word y such that for any j, k € N
we have vi; ~ vy if and only if y; = 1 (i.e. C; forms a clique if y; = 1 and
an independent set if y; = 0).

The hereditary graph class G° is the set of all finite induced subgraphs of P°.

2The bipartite complement G of a bipartite graph G has the same independent vertex sets V; and V, as G
where vertices vi € V; and v, € V; are adjacent in G ifand only if they are not adjacent in G.

5
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Any graph G € §® can be witnessed by an embedding ¢(G) into the infinite graph
P®. To simplify the presentation we will associate G with a particular embedding
in P° depending on the context. We will be especially interested in the induced
subgraphs of G that occur in consecutive columns: in particular, an «;-link is the
induced subgraph of G on the vertices of G N Cj;;41], and will be denoted by Gy; 5. 1].
More generally, an induced subgraph of G on the vertices of GNCjj i) will be denoted

Gk

For k > 2 we denote the triple 85 x—1) = ([j,j+k—2); Bjj,j+k—11;Y[j,j+k—11) as a k-
factor of §. Thus for a graph G € §° with a particular embedding in P°, the induced
subgraph G ;1] has edges defined by the k-factor o 5, 1—1]-

We say that two k-factors 8y x4x] and 8y 4k are the same if

(i) forallie [0,k —1], xyi = xy4+i, and
(ii) foralli,j € [0,k], (x+1,x+]j) € Bifand only if (y +1,y +j) € B, and
(iii) foralli € [0, k], Yx+i = Yy+i-

We say that a 6-triple is recurrent if every k-factor occurs in it infinitely many times.
We say that 8 is almost periodic if for each k-factor &j; ) of & there exists a constant
L(85,k) such that every factor of & of length £(8; ;) contains 85 ) as a factor.

A couple set P is a subset of N such that if x,y € P then |[x—y| > 2. Such a set is used to
identify sets of links that have no a-edges between them. We say that a pair (x,y) of
elements of P is 3-dense if both (x,y + 1) and (x + 1,y) are in 3 and they are (3-sparse
when neither of these bonds is in f3.

We say the bond-set f3 is sparse in P if every pair from P is (3-sparse and is not sparse
in P if there are no 3-sparse pairs in P. Likewise, [ is dense in P if every pair from P is
B-dense and is not dense in P if there are no (3-dense pairs in P. Clearly it is possible
for two elements from P to be neither (3-sparse nor 3-dense (i.e. when only one of
the required bonds is in 3). These ideas are used to identify matched and unmatched
distinguished pairings (see Lemmas 3.7 and 3.8).

2.3. Clique-width and linear clique-width. Clique-width is a graph width pa-
rameter introduced by Courcelle, Engelfriet and Rozenberg in the 1990s [6]. The
clique-width of a graph is denoted cwd(G) and is defined as the minimum number
of labels needed to construct G by means of the following four graph operations:

(a) creation of a new vertex v with label i (denoted i(v)),

(b) adding an edge between every vertex labelled i and every vertex labelled j
for distinct i and j (denoted 1 5),

(c) giving all vertices labelled i the label j (denoted p;_;), and

(d) taking the disjoint union of two previously-constructed labelled graphs G
and H, one of which may be empty (denoted G @ H).

The linear cliqgue-width of a graph G denoted lew(G) is the minimum number of labels
required to construct G by means of four operations, being (a), (b), (c) above plus
’(d) taking the disjoint union of two previously-constructed labelled graphs G and
H, one of which is a single labelled vertex v (denoted G @ v) or no vertex (denoted
Go).
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Every graph can be defined by an algebraic expression T using the four operations
above, which we will refer to as a (linear) clique-width expression. This expression is
called a k-expression if it uses k different labels.

Alternatively, any clique-width expression T defining G can be represented as a
rooted binary tree, tree(T), whose leaves correspond to the operations of vertex cre-
ation, the internal nodes correspond to the @©-operation, and the root is associated
with G. The operations 1 and p are assigned in the appropriate sequence along the
respective edges of tree(T). The tree is binary since each @-operation brings together
at most two previously constructed graphs. Also, it can be observed that an @-vertex
represents a subgraph of G but not usually an induced subgraph since there may still
be edges to be created by 1 operations.

In the case of a linear clique-width expression the tree becomes a caterpillar tree, that
is, a tree that becomes a path after the removal of the leaves.

Clearly from the definition, lew(G) > cwd(G). Hence, a graph class of unbounded
clique-width is also a class of unbounded linear clique-width. Likewise, a class with
bounded linear clique-width is also a class of bounded clique-width.

A hereditary class of graphs C is minimal of unbounded clique-width or just minimal
if every proper subclass D C € has bounded clique-width. In other words, if € =
Free(Hi, Hy,...) then it is minimal if any proper subclass D formed by adding just
one more forbidden graph has bounded clique-width. Thus, if € has unbounded
clique-width but € N Free(H) has bounded linear clique-width for any non-trivial
graph H, then € is minimal of unbounded clique-width and minimal of unbounded
linear clique-width.

3. G° graph classes with unbounded clique-width. Using a neighbourhood pa-
rameter N® derived from a graph induced on any two rows of the graph P°, we show
that G® has unbounded clique-width if and only if N® is unbounded (Theorem 3.16).

3.1. The two-row graph and N°. We show that the boundedness of clique-width
for a graph class G° is determined by the adjacencies between the first two rows of
P? (it could, in fact, be any two rows), using the following graph:

A two-row graph T®(Q) = (V, E) is the subgraph of P® induced on the vertices V =
R1(Q) UR2(Q) where Ri(Q) ={vi1:1 € Q}and Ry(Q) = {vj : j € Q} for finite subset
QCN.

We define the parameter N°(Q) = u(T?(Q), R1(Q)).

LEMMA 3.1. For any fixed j € N, N®([1,n]) is bounded as n — oo if and only if N°([j, n])
is bounded as n — oo.

Proof. It is easy to see that if there exists N such that N®([1,n]) < N forall n € N then
N®([j,n]) < N foralln € N.

On the other hand, if N°([j,n]) < N then N®([j — 1,n]) < 2N + 1 since by adding the
extra column each ‘old” equivalence class could at most be split in two and there is

one new vertex in each row. By induction we have N®([1,n]) < 2/N + ¥ )~ 21 for all
neN. 0

7
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We say N® is unbounded if N°([j, n]) is unbounded as n — oo for some fixed j € N. In
many cases it is simple to check that N? is unbounded - e.g. the following §-triples
have unbounded N?®:

(100/ ®/ OOO)/ (2001 @[ 000)’ (3001 ®/ OOO)/ (Ooo/ QI 100)
In Lemma 3.13 we show that N? is unbounded whenever « contains an infinite num-

ber of 2s or 3s.

3.2. Clique-width expression and colour partition for an n x n square graph.
We denote Hié,j (m,n) as the m(cols) x n(rows) induced subgraph of P® formed from
the rectangular grid of vertices {vy, : x € [i,i+m—1],y € [j,j +n —1]}. See Figure 1.

WA /-%\}\,/‘\
1

N7 Y )

\ i\ \
A \ A
AN NN

\
ANV/D
F1G. 1. Hf,l (9,6) where o« = 01230123 - - - (3 and vy edges not shown)

We can calculate a lower bound for the clique-width of the n x n square graph
Hi 1(n,m) (shortened to H(n,n) when §, j and 1 are clearly implied), by demonstrat-
ing a minimum number of labels needed to construct it using the allowed four graph
operations, as follows.

Let T be a clique-width expression defining H(n,n) and tree(t) the rooted tree rep-
resenting T. The subtree of tree(t) rooted at a node & corresponds to a subgraph
of H(n,n). We can give this node a label, say a, so that &, is the root and H, the
corresponding subgraph of H(n,n).

We denote by @req and Spiue the two children of &, in tree(t). Let us colour the
vertices of Hyeq and Hy1ye red and blue, respectively, and all the other vertices in
H(n,n) white. Let colour(v) denote the colour of a vertex v € H(n,n) as described
above, and label(v) denote the label of vertex v (if any) at node ®,. (If v is white it is
a vertex of H(n,n) not in subgraph H, and therefore it has either been created in a
branch of tree(T) not yet connected to node &, or has not yet been created, in which
case we say label(v) = €).

Our identification of a minimum number of labels needed to construct H(n, n) relies
on the following observation regarding this vertex colour partition.

OBSERVATION 3.2. Suppose ui, Uy, W are three vertices in H(m, ) such that u; and u, are
non-white, uy ~ w but up; ¥ w, and colour(w) # colour(wy). Then w; and w, must have
different labels at node @ .
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This is true because the edge u;w still needs to be created, whilst respecting the non-
adjacency of u, and w. We now focus on sets of blue and sets of nonblue vertices
(Equally, we could have chosen red-nonred). Observation 3.2 leads to the following
key lemma which is the basis of much which follows.

LEMMA 3.3. For graph H(n,n) let U and W be two disjoint vertex sets with induced sub-
graph H = H(n, n)[U U W] such that w(H, U) = r. Then if the vertex colouring described
above gives colour(u) = blue for all u € U and colour(w) # blue for all w € W then the
cliqgue-width expression T requires at least r labels at node ®.

Proof. Choose one representative vertex from each equivalence class in U. For any
two such representatives u; and u, there must exist a w in W such that u; ~ w but
u; ¥ w (or vice versa). By Observation 3.2 u; and u; must have different labels
at node @,. This applies to any pair of representatives 1, u, and hence all r such
vertices must have distinct labels. 0

Note that from Proposition 2.1 a distinguished pairing gives us the sets U and W
required for Lemma 3.3. The following lemmas identify structures in H(n,n) that
give us these distinguished pairings.

We denote by Hp, 417 the oy -link H(n, ) N Cpy 1) where y € [j,j +n —2]. We refer
to a (adjacent or non-adjacent) blue-nonblue pair to mean two vertices, one of which
is coloured blue and one non-blue, such that they are in consecutive columns, where
the blue vertex could be to the left or the right of the nonblue vertex. If we have a set
of such pairs with the blue vertex on the same side (i.e. on the left or right) then we
say the pairs in the set have the same polarity.

LEMMA 3.4. Suppose that Hy, 1) contains a horizontal pair (by, by) of blue vertices and
at least one nonblue vertex ni, ny in each column, but not on the top or bottom row (see
Figure 2).

(a) If «y €1{0,2,3} then Hy 41y contains a non-adjacent blue-nonblue pair.
(b) If oy €{1,2,3} then Hyy ;1) contains an adjacent blue-nonblue pair.

Proof. If oty = 0 then both (by, 1) and (b,, n;) form a non-adjacent blue-nonblue pair
(Figure 2 A). If oy, = 1 then both (b1, 1) and (by, n2) form an adjacent blue-nonblue
pair (Figure 2 B).

If «y € {2,3} and the nonblue vertices n; and n, in each column are either both
above or both below the horizontal blue pair (b;, by) then it can be seen that one of
the pairs (bj, n1) or (by, ny) forms an adjacent blue-nonblue pair and the other forms
a non-adjacent blue-nonblue pair (Figure 2 C). If the nonblue vertices in each column
are either side of the blue pair (one above and one below) then the pairs (bj, 1) and
(bz, 1) will both be adjacent (or non-adjacent) blue-nonblue pairs (See Figure 2 D).
In this case we need to appeal to a 5-th vertex s which will form a non-adjacent (or
adjacent) set with either n; or b, depending on its colour. Thus we always have both
a non-adjacent and adjacent blue-non-blue pair when «,, € {2,3}. 0

LEMMA 3.5. Suppose Hy 1) contains a horizontal blue-nonblue pair of vertices (by, m1),
not the top or bottom row, and at least one nonblue vertex n, in the same column as by.
Then Hpy 1) contains both an adjacent and a non-adjacent blue-nonblue pair of vertices,
irrespective of the value of o, (see Figure 3).

9
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Proof. If oy € {0,2} then the horizontal blue-nonblue pair (by,1n;) is adjacent, and
given a nonblue vertex n, in the same column as b;, we can find a vertex s in the
same column as n; that forms a non-adjacent pairing with either b; or n, depending
on its colour (See Figure 3 A and C). If x, € {1,3} then the horizontal blue-nonblue
pair (by, 1) is non-adjacent, and given a nonblue vertex n, in the same column as
b1, we can find a vertex s in the same column as n; that forms an adjacent pairing
with either b; or n, depending on its colour (See Figure 3 B and D).

LEMMA 3.6. Suppose Hp, 1) contains v > 3 horizontal blue-nonblue pairs of vertices
(bi,ny),i=1,..., 1, with the same polarity (see Figure 4). Then, irrespective of the value of
oy, it contains

(a) a matched distinguished pairing {U, W} of size r — 1 such that colour(u) = blue
forall u € U and colour(w) # blue for allw € W, and
(b) an unmatched distinguished pairing {U’', W'} of size v — 1 such that colour(u’) =

10
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blue for all w' € U’ and colour(w’) # blue for allw' € W'.

Proof. This is easily observable from Figure 4 for r = 3. If we set U = {by, by}, W =
{n1,ny}, W = {by, b3} and W’ = {1, n,} then one of {U, W} and {U’, W'} is a matched
distinguished pairing of size 2 and the other is an unmatched distinguished pairing
of size 2, irrespective of the value of «,. Simple induction establishes this for all
r>3. O

In Lemmas 3.4, 3.5 and 3.6 we identified blue-nonblue pairs within a particular link
Hpy,y+1)- The next two lemmas identify distinguished pairings across link-sets. Let
P C [j,j+n—2] be a couple set (see definition on page 6) of size r with corresponding
oy-links Hpy, y+1) < H(n,n) for eachy € P.

LEMMA 3.7. If 3 is not dense in P and each Hy 1) for y € P has an adjacent blue-nonblue
pair with the same polarity, then we can combine these pairs to form a matched distinguished
pairing {U, W} of size r where the vertices of U are blue and the vertices of W nonblue.

Proof. Suppose s,t € P such that (vs,vsy1) and (v¢,v¢41) are two adjacent blue-
nonblue pairs in different links, with vs,v¢ € U and vs41,vi41 € W. Consider the
two possible 3 bonds (vg,viy1) and (vsi1,vi). If neither of these bonds exist then
v is distinguished from v by both vsy1 and v¢41 (see Figure 5 (i)). If one of these
bonds exists then v; is distinguished from vy by either v or vi1 (see Figure 5 (ii)
and (iii)). Both bonds cannot exist as 3 is not dense in P. Note that the bonds (vs, V)
and (vs1,ve41) are not relevant in distinguishing v, from v, since, if they exist, they
connect blue to blue and nonblue to nonblue.

So any two blue vertices v, v¢ € U are distinguished by the two nonblue vertices
Vsi41, Vi1 € W and hence {U, W} is a matched distinguished pairing of size r. O

LEMMA 3.8. If 8 is not sparse in P and each Hy, 1) has a non-adjacent blue-nonblue pair
with the same polarity, then we can combine these pairs to form an unmatched distinguished
pairing {U, W} of size r where the vertices of U are blue and the vertices of W nonblue.

Proof. This is very similar to the proof of Lemma 3.7 and is demonstrated in Figure
6. O

11
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3.3. Two colour partition cases to consider. Having identified structures that
give us a lower bound on labels required for a clique-width expression for H(n, n),
we now apply this knowledge to the following subtree of tree(T).

Let &4 be the lowest node in tree(t) such that H, contains all the vertices in rows 2
to (n—1) in some column of H(n, n). We reserve rows 1 and n so that we may apply
Lemmas 3.4 and 3.5.

Thus H(n, n) contains at least one column where vertices in rows 2 to (n—1) are non-
white but no column has entirely blue or red vertices in rows 2 to (n — 1) because
otherwise @&, would not be the lowest node in tree(t) such that H, contains all the
vertices in rows 2 to (n — 1) in some column of H(n,n). Let C, be a non-white
column. Without loss of generality we can assume that the number of blue vertices
in column Cy between rows 2 and (n — 1) is at least (n/2) — 1 otherwise we could
swap red for blue.

Now consider rows 2 to (n — 1). We have two possible cases:

Case 1 Either none of the rows with a blue vertex in column Cy, has blue vertices in
every column to the right of Cy, or none of the rows with a blue vertex in
column Cy has blue vertices in every column to the left of Cy,. Hence, we
have at least [n/2] — 1 rows that have a horizontal blue-nonblue pair with
the same polarity.

Case 2 One row R, has a blue vertex in column Cy and blue vertices in every column
to the right of Cy, and one row Ry has a blue vertex in column Cy and blue
vertices in every column to the left of Cy,. Hence, either on row R, or row
Ry, we must have a horizontal set of consecutive blue vertices of size at least
[n/2] + 1.

To prove unboundedness of clique-width we show that for any r € N we can find an
12
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n € N so that any clique-width expression T for H(n, n) requires at least r labels in
tree(t), whether this is a ‘Case 1’ or ‘Case 2" scenario.

To address both cases we need the following classic result:

THEOREM 3.9 (Ramsey [12] and Diestel [9]). For every v € N, every graph of order at
least 2273 contains either K™ or K* as an induced subgraph.

We handle first Case 1, for all values of 6 = («, 3, 7).

LEMMA 3.10. Forany s = (&, B,v) andanyr € N, if n > 9x 241 and vis a clique-width
expression for H(n, n) that results in Case 1 at node @, then T requires at least r labels to
construct H(n, n).

Proof. In Case 1 we have, without loss of generality, at least [n/2] — 1 horizontal
blue-nonblue vertex pairs but we don’t know which links these fall on.

If there are at least \/n/2 such pairs on the same link then using Lemma 3.6 we have
a matched distinguished pairing {U, W} of size \/n/2 — 1 > r such that colour(u) =
blue for all u € U and colour(w) # blue for allw € W.

If there is no link with y/n/2 such pairs then there must be at least one such pair on
at least /n/2 different links. From Lemma 3.5 each such link contains both an ad-
jacent and non-adjacent blue-nonblue pair. It follows from the pigeonhole principle
that there is a subset of these of size \/1n/2/4 where the adjacent blue-nonblue pairs
have the same polarity and also the non-adjacent blue-nonblue pairs have the same
polarity. We use this subset (Note, the following argument applies whether the blue
vertex is on the left or right for the adjacent and non-adjacent pairs). If we take the
index of the first column in each link in the mentioned subset, and then take every
third one of these, we have a couple set P where |[P| > |/1n/2/12, with corresponding
link set S¢ = {Hp y+1] : y € P}, such that the adjacent blue-nonblue pair in each link
has the same polarity and the non-adjacent blue-nonblue pair in each link has the
same polarity.

Define the graph Gp so that V(Gp) = P and for x,y € V(Gp) we have x ~ y if and
only if they are (3-dense (see definition on page 6). From Theorem 3.9 for any r, as
Pl > /n/2/12 > 22773 then there exists a couple set Q C P such that Gg is either K"
or K.

If Gg is K, it follows that B is not dense in Q, and Si contains a link set of size T
corresponding to the couple set Q where each link has an adjacent blue-nonblue pair
with the same polarity. Applying Lemma 3.7 this gives us a matched distinguished
pairing {U, W} of size r such that colour(u) = blue for all u € U and colour(w) #
blue forallw € W.

If Gg is K7, it follows that {3 is not sparse in Q, and Si contains a link set of size r
corresponding to the couple set Q where each link has a non-adjacent blue-nonblue
pair with the same polarity. Applying Lemma 3.8 this gives us an unmatched dis-
tinguished pairing {U, W} of size r such that colour(u) = blue for all u € U and
colour(w) # blue for allw € W.

In each case we can construct a distinguished pairing {U, W} of size r such that
colour(u) = blue for all u € U and colour(w) # blue for all w € W. Hence, from
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Lemma 3.3 T uses at least r labels to construct H(n, n). O

3.4. When o has an infinite number of 2s or 3s. For Case 2 we must consider
different values for « separately. We denote my3(n) to be the total number of 2s and
3sin X[1,n-1]-

LEMMA 3.11. For any triple & = (e, B,y) and any v € N, if mpz(n) > 3 x 22" and < is
a clique-width expression for H(n,n) that results in Case 2 at node @, then T requires at
least T labels to construct H(m, n).

Proof. Remembering that Cy, is the non-white column, without loss of generality we
can assume that there are at least (mp3(n)/2) 2- or 3-links to the right of Cy, since
otherwise we could reverse the order of the columns. In Case 2 each link has a
horizontal blue-blue vertex pair with at least one nonblue vertex in each column, so
using Lemma 3.4 we have both an adjacent and non-adjacent blue-nonblue pair in
each of these links.

It follows from the pigeonhole principle that there is a subset of size (my3(n)/8)
where the adjacent blue-nonblue pairs have the same polarity and also the non-
adjacent blue-nonblue pairs have the same polarity. We use this subset. If we take
the index of the first column in each link in the mentioned subset, and then take
every third one of these, we have a couple set P where |P| > (mp3(n)/24), with corre-
sponding link set St = {H, 1] : y € P}, such that the adjacent blue-nonblue pair in
each link has the same polarity and the non-adjacent blue-nonblue pair in each link
has the same polarity.

As in the proof of Lemma 3.10, we define a graph Gp so that V(Gp) = P and for
x,Yy € V(Gp) we have x ~ y if and only if they are 3-dense. From Theorem 3.9 for
any 1, as [P| > (mp3(n))/24) > 22773 then there exists a couple set Q C P such that

G is either K" or K™.

We now proceed in an identical way to Lemma 3.10 to show that we can always
construct a distinguished pairing {U, W} of size r such that colour(u) = blue for all
u € U and colour(w) # blue for all w € W. Hence, from Lemma 3.3 T uses at least r
labels to construct H(n, n). 0

COROLLARY 3.12. For any triple & = («, 3,7v) such that « has an infinite number of 2s or
3s the hereditary graph class G® has unbounded clique-width.

Proof. This follows directly from Lemma 3.10 for Case 1 and Lemma 3.11 for Case 2,
since for any r € N we can choose n big enough so thatn > 9 x 24! and mps(n) >
3 x 227 50 that whether we are in Case 1 or Case 2 at node &, we require at least r
labels for any clique-width expression for H(n,n). 0

We are aiming to state our result in terms of unbounded N° so we also require the
following.

LEMMA 3.13. For any triple 8 = («, 3,7y) such that « has an infinite number of 2s or 3s
the parameter N® is unbounded.

Proof. If there is an infinite number of 2s in & we can create a couple set P of any
required size such that &, = 2 for every x € P, so that in the two-row graph (see
Section 3.1) vy 1 # Vx+12 and vxo ~ Vx411 (i.e. we have both an adjacent and non-
adjacent pair in the o, -link).

14
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We now apply the same approach as in Lemmas 3.10 and 3.11, applying Ramsey
theory to the graph Gp defined in the same way as before. Then for any r we can set
[P| > 2273 5o that there exists a couple set Q C P where G is either K" or KT.

If Gq is K7 it follows that f is not dense in Q. So for any x,y € Q, vx11,1 and vy41:1
have different neighbourhoods in R;(Q) since they are distinguished by either v, »
or vy ». Hence, if n is the highest natural number in Q then N(L,m+1) >

If Gq is K™ it follows that 3 is not sparse in Q. So for any x,y € Q, vx;1 and vy ; have
different neighbourhoods in R(Q) since they are distinguished by either vx;1, or
vy412. Hence, N®([1,n+1]) > 1.

Either way, we have N8 ([1,n +1]) > r, but r can be arbitrarily large, so N® is un-
bounded.

A similar argument applies if there is an infinite number of 3s. O

3.5. When o has a finite number of 2s and 3s. If x contains only a finite number
of 2s and 3s then there exists ] € N such that «; € {0,1} for j > J. In Case 2, where
we have a part-row of consecutive blue vertices, we are interested in the adjacencies
of these blue vertices to the nonblue vertices in each column. Although the nonblue
vertices could be in any row, in fact, if « is over the alphabet {0, 1}, the row index of
the nonblue vertices does not alter the blue-nonblue adjacencies.

In Case 2, let Q be the set of column indices of the horizontal set of consecutive blue
vertices in row R, of H(n,n) and let U; = {vi, : i € Q} be this horizontal set of blue
vertices. Let Uy = {u; : j € Q} be the corresponding set of nonblue vertices such that
uj € Cj. We have the following:

LEMMA 3.14. In Case 2, with Uy and U, defined as above, if o is a word over the alphabet
{0,1} then for any i,j € Q, vir ~ w; in P° if and only if viy ~ vjp in the two-row graph
T°(Q).

Proof. Considering the vertex sets U; U Uy of P® and R1(Q) U Ry(Q) of T°(Q) (see
Section 3.1) we have:

(a) Fori=jbothvj, ~ujandvj; ~vj,ifand only if y; = 1.
(b) For [i —j| > 1 both vi ~ u; and vi1 ~ vj, if and only if (i,j) € B.
(c) Forj =1i+1bothvi, ~ujandvi; ~vj, if and only if o; = 1.
Hence vi; ~ u; if and only if vi 1 ~ vj 2. o

LEMMA 3.15. If & = («, B,v) where « is an infinite word over the alphabet {0, 1,2, 3} with
a finite number of 2s and 3s, then the hereditary graph class G° has unbounded clique-width
if and only if N® is unbounded.

Proof. First, we prove that G° has unbounded clique-width if N° is unbounded.
As o has a finite number of 2s and 3s there exists a ] € N such that o; € {0,1}if j > J.
As N? is unbounded this means that from Lemma 3.1 for any v € N there exist

N1, Ns € N such that, setting Q1 = [] + 1,] + Nj] and Q2 = [J + Nq + 1,I+ N; + N»],
then N®(Q1) > rand N®(Qy) > 7.
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Denote the n x n graph H'(n,n) = H?HJ (n,n) € G°. As described in Section 3.3
we again consider the two possible cases for a clique-width expression T for H'(n, n)
at a node @, which is the lowest node in tree(t) such that H, contains a column of
H'(n,n).

Case 1 is already covered by Lemma 3.10 forn > 9 x 2471,

In Case 2, one row R, of H (N7 + Ny, Ny + N») has a blue vertex in column Cy and
blue vertices in every column to the right of Cy, and one row Ry has a blue vertex in
column Cy and blue vertices in every column to the left of Cy,.

If b < J + Nj then consider the graph to the right of Cy,. We know every column has
a blue vertex in row R, and a non-blue vertex in a row other than R,.. The column
indices to the right of Cy, includes Q. It follows from Lemma 3.14 that in the columns
whose indices belong to Q> the neighbourhoods of the blue set (the mentioned blue
vertices) to the non-blue set, are identical to the neighbourhoods in graph T°(Q>)
between the vertex sets R1(Q2) and R(Q2).

On the other hand if b > ] + N; we can make an identical claim for the graph to the
left of C, which now includes the column indices for Q;. It follows from Lemma
3.14 that the neighbourhoods of the blue set to the non-blue set are identical to the
neighbourhoods in graph T®(Q1) between the vertex sets R1(Q1) and R»(Q1).

As both N°(Q1) = u(T®(Q1),Ri(Q1)) > rand N°(Q2) = w(T°(Q2),Ra(Q2)) >
it follows from Lemma 3.3 that any clique-width expression for H'(n,n) with n
(N7 + N3) resulting in Case 2 requires at least r labels.

T
=

For any T € N we can choose n big enough so that n > max {9 x 241, (N; 4+ Ny)}
so that whether we are in Case 1 or Case 2 at node ©, we require at least r labels for
any clique-width expression for H'(n,n). Hence, §° has unbounded clique-width if
N® is unbounded.

Secondly, suppose that N° is bounded, so that there exists N € N such that N®([] +
1,n]) = w(T¥(J+1,n]),R(J+1,n])) < Nforalln >J.

We claim lewd(G®) < 2] + N + 2. For we can create a linear clique-width expression
using no more than 2] + N + 2 labels that constructs any graph in §° row by row,
from bottom to top and from left to right.

For any graph G € §° let it have an embedding in the grid P between columns 1 and
M >T.

We will use the following set of 2] + N + 2 labels:

o 2 current vertex labels: a; and a,;

o | current row labels for first | columns: {cy :y =1,..., ]}
e | previous row labels for first | columns: {py :y =1,..., ]}
o N partition labels: {s, :y =1,..., N}

We allocate a default partition label s to each column of Gj1,nm) according to the
R2([J + 1, M])-similar equivalence classes of the vertex set Ry([J + 1, M]) in T®([J +
1, M]). There are at most N partition sets {Sy} of Ry ([] + 1, M]), and if vertex v;; is in
Sy, 1 <y < N, then the default partition label for vertices in column iis s,,. It follows
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that for two default column labels, s, and s, vertices in columns with label s, are
either all adjacent to vertices in columns with label s or they are all non-adjacent
(except the special case of vertices in consecutive columns and the same row, which
will be dealt with separately in our clique-width expression).

Carry out the following row-by-row linear iterative process to construct each row j,
starting with row 1.

(i) Construct the first ] vertices in row j, label them c; to ¢y and build any edges
between them as necessary.

(ii) Insert required edges from each vertex labelled cy, ..., cj to vertices in lower
rows in columns 1 to J. This is possible because the vertices in lower rows in
column i (1 < i < J) all have label p; and have the same adjacency with the
vertices in the current row.

(iii) Relabel vertices labelled cy, ..., cj to py,...,pj—1, a2 respectively.
(iv) Construct and label subsequent vertices in row j (columns | + 1 to M), as
follows.

(a) Construct the next vertex in column 1 and label it a; (or ay).

(b) If ®;—1 = 0 then insert an edge from the current vertex v; ; (label a;) to
the previous vertex vi_1; (label ay).

(c) Insert edges to vertices that are adjacent as a result of the partition {S}
described above. This is possible because all previously constructed
vertices with a particular default partition label s, are either all adjacent
or all non-adjacent to the current vertex.

(d) Insert edges from the current vertex to vertices labelled p; (1 < j < ])
as necessary.

(e) Relabel vertex v; ;1 to its default partition label s,,.

(f) Create the next vertex in row i and label it a; (or a; alternating).

(v) When the end of the row is reached, repeat for the next row.

Hence we can construct any graph in the class with at most 2] + N + 2 labels so the
clique-width of G° is bounded if N° is bounded. |

Corollary 3.12, Lemma 3.13 and Lemma 3.15 give us the following:

THEOREM 3.16. For any triple 8 = («, B,7) the hereditary graph class G° has unbounded
clique-width if and only if N® is unbounded.

We will denote A as the set of all 5-triples for which the class G® has unbounded
clique-width.

4. G° graph classes that are minimal of unbounded clique-width. To show
that for some & € A the class G° is a minimal class of unbounded clique-width we
must show that any proper hereditary subclass € has bounded clique-width. If € is
a hereditary graph class such that ¢ C G° then there must exist a non-trivial finite
forbidden graph F that is in §° but not in €. In turn, this graph F must be an induced
subgraph of some H}, (k, k) for some j and k € N, and thus € C Free(H}, (k, k)).

We know that for a minimal class, d must be recurrent, because if it contains a k-factor
8(5,j+x—1) that either does not repeat, or repeats only a finite number of times, then
G® cannot be minimal, as forbidding the induced subgraph Hf’ 1(k, k) would leave a
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proper subclass that still has unbounded clique-width. Therefore, we only consider
recurrent o for the remainder of the paper.

4.1. The bond-graph. To study minimality we use the following graph class. A
bond-graph BF (Q) = (V, E) for finite Q C N has vertices V = Q and edges E = Bo-

Let B ={BP(Q): Q C N finite}. Note that B® is a hereditary subclass of G because

(a) if Q' C Q then BF(Q’) is also a bond-graph, and

(b) BP(Q) is an induced subgraph of P® since if Q = {y1,Y2,...,yn} with y; <
Yz < --+ < Yn then it can be constructed from P® by taking one vertex from
each column yj in turn such that there is no o or y edge to previously picked
vertices.

We define a parameter (for n > 2)

MP(n) = sup u(BP([1,n]), (1, m]).

m<mn

The bond-graphs can be characterised as the sub-class of graphs on a single row
(although missing the a-edges) with the parameter MP measuring the number of
distinct neighbourhoods between intervals of a single row.

We say that the bond-set 3 has bounded MPB if there exists M such that MP(n) < M
foralln € N.

The following proposition will prove useful later in creating linear clique-width ex-
pressions.

PROPOSITION 4.1. Let n,m,m’ € N satisfy m < m’ < n. Then for graph BP([1,n]),
in any partition of [1, m] into [m + 1,nl-similar sets {S; : 1 < i < k}and [1, m'] into
[m’ + 1, n]-similar sets {S; 11 <j <K} for every € € [1,k] there exists ' € [1,%'] such that
S¢ CS).

Proof. As two vertices x and y in S; have the same neighbourhood in [m + 1,n] it
follows they have the same neighbourhood in [m’ + 1,n] since m < m’ so x and y
must sit in the same [m’ + 1, n]-similar set S}, for some ¢’ € [1,k']. O

PROPOSITION 4.2. Forany d = (&, 3,v) andanyn € N,
MP(n) < N°([1,n]) + 1.

Proof. In the two-row graph T®([1,n]) partition Ry ([1,n]) into Ry([1, n])-similar equiv-
alence classes {W;} so that two vertices v, 1 and v, ; are in the same set W; if they
have the same neighbourhood in R;([1,n]). By definition the number of such sets is
w(T3([1,n]), R1([1,m])) = N®([1,n]). For m < n partition [1, m] into s sets {P;} such
that Py = {j : vj; € W;}. Then s is no more than the number of sets in {W;} by defini-
tion, but no less than w(BP ([1,n]), [1, m]) — 1, the number of equivalence classes that
are [m + 1, nJ-similar (excluding, possibly, vertex m). This holds for all m < n, so

MP(n) =1 = sup w(BP([1,nl), (1, m]) — 1 < w(T°([1,n), Re([1,n])) = N*([1,n]).

m<mn
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4.2. Veins and Slices. We start by considering only graph classes §° for § =
(«, B,7v) in which « is an infinite word from the alphabet {0, 2} and then extend to the
case where « is an infinite word from the alphabet {0, 1, 2, 3}.

Consider a specific embedding of a graph G = (V,E) € Cin P?, and recall that the
induced subgraph of G on the vertices V N Cy; 51«1 is denoted Gyj 54 x—1)-

Let « be an infinite word over the alphabet {0,2}. A vein V of Gy;;,«_1) is a set of
t < kvertices {vs, ..., Vs4¢—1} in consecutive columns such that v, € VN Cy, for each
ye{s,...,s+t—1}and for whichv, ~ vy, forally €{s,...,s +t —2}.

We call a vein of length k a full vein and a vein of length < k a part vein. Note that
as « comes from the alphabet {0, 2}, for a vein {vs, ..., Vs t_1}, Vy+1 is no higher than
vy foreachy € {s,...,s +t —2}. A horizontal row of k vertices in Gy; ;1«1 is a full
vein.

As Gis Free(Hfll(k,k)) we know that no set of vertices of G induces Hfll(k,k). We
consider this in terms of disjoint full veins of Gj;;x—1). Note that k rows of vertices
between column j and column j + k — 1 are a set of k disjoint full veins and induce a
graph isomorphic to Hfll (k, k). There are other sets of k disjoint full veins that form
a graph isomorphic to Hf,l (k, k), but some sets of k full veins do not. Our first task is
to clarify when a set of k full veins has this property.

Let {vj,...,Vj;x—1} be a full vein such that each vertex v, has coordinates (x, 1) in
P, observing that u,1 < uy for x € [j,j + k — 2]. We construct an upper border to be a
set of vertical coordinates {wj, ..., wjx_1} using the following procedure:

(1) Setw; =,

(2) Setx=j+1,

(3) if o1 =2setwy, =uy 1,

(4) if i1 =0setwy =wy_1,

(5) setx=x+1,

(6) if x =j + k terminate the procedure, otherwise return to step (3).

Given a full vein V = {vj, ..., Vj1i—_1}, define the fat vein v = vxy € V(G j4k-11) :
x € [j,j + k—1l,y € [uy, wy]} (See examples shown in Figure 7).

Let V; and V, be two full veins. Then we say they are independent if Vi N Vi = 0 i.e.
their corresponding fat veins are disjoint.
PROPOSITION 4.3. Gy; j.4x—1) cannot contain more than (k — 1) independent full veins.
Proof. We claim that k independent full veins {Vy, ..., Vi } induce the forbidden graph
H2. (K, k).

3

Remembering v, , is the vertex in the grid P in the x-th column and y-th row, let w, ,
be the vertex in the y-th full vein V, in column x. We claim the mapping ¢(wy ) —
Vx,y is an isomorphism.

Consider vertices wy , € Vy and wg ¢ € Vi for t > y. Then

(@) If t = y (i.e the vertices are on the same vein) then both wy, ~ w;: and
Vyy ~ Vs if and only if [x —s| =1 or (x,s) € B,
(b) If t >y and x = s then both w, , ~w;( and vy, ~vs ¢ if and only if v, =1,
19
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(c) Ift >yand s =x+1then both wy #Wsand vy Vs,

(d) If t > yand s = x — 1 then both w, , ~ w, and vy ~ v, if and only if
s =2,

(e) If t >y and |s — x| > 1 then both W,y ~ ws and vxy, ~ Vs if and only if

(x,s8) € B.

Hence, Wy, ~ wg if and only if vy, ~ Vs and ¢ is an isomorphism from k inde-
pendent full veins to H?, (k, k). O

4.3. Vertex colouring. Our objective is to identify conditions on (recurrent) 6
A that make G® a minimal class of unbounded clique-width. For such a b it is suffi-
cient to show that any graph G in a proper hereditary subclass € has bounded linear
clique-width. In order to do this we partition G into manageable sections (which
we call “panels”), the divisions between the panels chosen so that they can be built
separately and then "stuck’ back together again, using a linear clique-width expres-
sion requiring only a bounded number of labels. In this section we describe a vertex
colouring that leads (in Section 4.5) to the construction of these panels.

As previously observed, for any such subclass C there exist j and k such that € C
Free(Hf’,1 (k,k)). As & is recurrent, if we let * = §; ;,x—1) be the k-factor that defines
the forbidden graph Hfll (k, k), we can find &* in § infinitely often, and we use these
instances of 6* to divide our embedded graph G into the required panels.

Firstly, we construct a maximal set B of independent full veins for Gj ; 1, a section
of G that by Proposition 4.3 cannot have more than (k—1) independent full veins. We
start with the lowest full vein (remembering that the rows of the grid P are indexed
from the bottom) and then keep adding the next lowest independent full vein until
the process is exhausted.

Note that the next lowest independent full vein is unique because if we have two full
veins V1, "V, with vertices {vj, ..., vj;x—1} and {vJ’., ... ,vg +x_1) respectively then they
can be combined to give {min(vj,vg), ... ,min(vj+k_1,vl’. +x_1)} which is a full vein
with a vertex in each column at least as low as the vertices of V; and Vs.

Let B contain b < k independent full veins, numbered from the bottom as V4, - - - , V4,
such that any other full vein not in B must have a vertex in common with a fat vein
V}, corresponding to one of the veins V, of B.

Let u,,y be the lowest vertical coordinate and wy , the highest vertical coordinate of
vertices in Vi N Cy. We define 8y = {vyxy € V(Gyjj4k—1) 1 x € [i,j + k=1L, y < uy1),
8 = {vxy € V(G 4k-1) :x € j,j +k =1,y >wyp}andfory =1,...,b -1 we
define:

Si = {Vx,y S V(G[j,jJrkfl]) X E Dr] +k— 1]/Wx,i <y < ux,i+1}

This gives us b + 1 slices {8g, 81, - - , Sp}-

We partition the vertices in the fat veins and the slices into sets which have similar
neighbourhoods, which will facilitate the division of G into panels. We colour the
vertices of Gyj;,x—1) so that each slice has green/pink vertices to the left and red
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vertices to the right of the partition, and each fat vein has blue vertices (if any) to
the left and yellow vertices to the right. Examples of vertex colourings are shown in
Figure 7.

Colour the vertices of each slice 8; as follows:

e Colour any vertices in the left-hand column green. Now colour green any
remaining vertices in the slice that are connected to one of the green left-
hand column vertices by a part vein that does not have a vertex in common
with any of the fat veins corresponding to the full veins in B.

e Locate the column t of the right-most green vertex in the slice. If there are
no green vertices set t = s =j. If t > j then choose s in the rangej < s < t
such that s is the highest column index for which «s = 2. If there are no
columns before t for which a; = 2 then set s = j. Colour pink any vertices
in the slice (not already coloured) in columns j to s which are below a vertex
already coloured green.

e Colour any remaining vertices in the slice red.

Note that no vertex in the right-hand column can be green because if there was such
a vertex then this would contradict the fact that there can be no full veins other than
those which have a vertex in common with one of the fat veins corresponding to the
full veins in B. Furthermore, no vertex in the right hand column can be pink as this
would contradict the fact that every pink vertex must lie below a green vertex in the
same slice.

Colour the vertices of each fat vein V! as follows:

e Let s be the column as defined above for the slice immediately above the fat
vein. If s = j colour the whole fat vein yellow. If s > j colour vertices of
the fat vein in columns j to s blue and the rest of the vertices in the fat vein
yellow.

When we create a clique-width expression we are particularly interested in the edges
between the blue and green/pink vertices to the left and the red and yellow vertices
to the right.

PROPOSITION 4.4. Let v be a red vertex in column x and slice 8.
Ifu is a blue, green or pink vertex in column x — 1 then

wv € E(G) ifand only if o 1 =2and w € Vi, U8 1 U--- U V] US8p.

Similarly, if w is a blue, green or pink vertex in column x + 1 then
wv € E(G) ifand only if o, =2 and u € SoUVI U8 U---UVIUS;.

Proof. Note that as u and v are in consecutive columns we need only consider «-
edges.

If u is green in column x — 1 of §; then red v in column x of 8; cannot be adjacent to
u as this would place red v on a green part-vein which is a contradiction. Likewise,
if u is green in column x + 1 of 8; then red v in column x of 8; must be adjacent
to u since if it was not adjacent to such a green vertex in the same slice then this
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implies the existence of a green vertex above the red vertex in the same column which
contradicts the colouring rule to colour pink any vertex in columns j to s below a
vertex coloured green.

The other adjacencies are straightforward. 0

PROPOSITION 4.5. Let v be a yellow vertex in column x and fat vein VY.
Ifwis a blue, green or pink vertex in column x — 1 then

wv € E(G) ifand only if oy 1 =2and u € Vi US; U--- UV USp.

Similarly, if wis a blue, green or pink vertex in column x + 1 then
w € E(G) ifand only if oy =2 and u € UV U8 U--- UVI_ [ US8i_1.

Proof. Note that as u and v are in consecutive columns we need only consider o-
edges.

If u is blue in column x — 1 of Vf then yellow v in column x of V{ must be adjacent
to u from the definition of a fat vein. Equally, from the colouring definition for a fat
vein there cannot be a blue vertex in column x + 1 of V{ if there is a yellow vertex in
column x of V¥.

The other adjacencies are straightforward. 0

Having established these propositions, as the pink and green vertices in a particular
slice and column have the same adjacencies to the red and yellow vertices, we now
combine the green and pink sets and simply refer to them all as green.

4.4. Extending « to the 4-letter alphabet. Our analysis so far has been based on
o being a word from the alphabet {0, 2}. We now use the following lemma to extend
our colouring to the case where « is a word over the 4-letter alphabet {0, 1,2, 3}.

Let o be an infinite word over the alphabet {0,1,2,3} and «™ be the infinite word
over the alphabet {0, 2} such that for each x € N,

+ JO0 ifox=0o0rl,
x 2 ifx,=2or3,

Denoting & = (&, B,v) and §© = («*, B,7v), let G = (V, E) be a graph in the class §°
with a particular embedding in the vertex grid V(P). We will refer to G* = (V,ET)
as the graph with the same vertex set V as G from the class G° .

LEMMA 4.6. For any subset of vertices U C V, 2 vertices of U in the same column of V(P)
are V\ U-similar in G if and only if they are V' \ U-similar in G™.

Proof. Let u; and u, be two vertices in U in the same column x and v be a vertex of
V\ Uin column y. If x = y then v is in the same column as u; and u; and is either
adjacent to both or neither depending on whether there is a y-clique on column x,

22

This manuscript is for review purposes only.



844
845
846
847

848
849
850

854

which is the same in both G and G™. If [x — y| > 1 then v is adjacent to both u; and
u; if and only if there is a bond (x,y) in 3, which is the same in both G and G™.

If y = x + 1 then the adjacency of v to u; and u, is determined by o in G and
in G*. If ax = «f (i.e. both 0 or both 2) then the adjacencies are the same in G and
G*. If &y = 1and of = 0, then u; and u, are both adjacent to v in G if and only if
they are both non-adjacent tovin G*. If &, = 3 and o = 2, then u; and u; are both
adjacent to v in G if and only if they are both non-adjacent tovin G™.

Hence u; and u, have the same neighbourhood in V' \ U in G if and only if they have
the same neighbourhood in V\ Uin G™. 0

LEMMA 4.7. Foragraph G € G° ﬁFree(Hi1 (k,k)) and G defined as above, let the vertices
of Gg,j +x_1) be coloured as per Section 4.3. Then the same colouring applied to the vertices of
Gyj,j+x—1) has the property that a column of Gy ;,\—1) can be partitioned into at most k — 1
disjoint blue sets and k disjoint green sets, so that any red or yellow vertex is either adjacent
to all or none of a given green/blue vertex set.

Proof. As o is a word over the alphabet {0, 2} the results of Sections 4.2 and 4.3 can

be applied, in particular Propositions 4.3, 4.4 and 4.5. It follows that for Gf]f,]. k1)

e there are no more than (k — 1) independent full veins, and consequently at
most k slices,

e two blue vertices in the same fat vein and column have the same red/yellow
neighbourhood, and

e two green vertices in the same slice and column have the same red/yellow
neighbourhood.

Lemma 4.6, with U and U9 being the blue and green vertices respectively, and U =
UPuuY, tells us that these statements also apply to Gjj ;1) and the result follows.

4.5. Panel construction. We construct the panels of G based on our embedding
of Gin P°.

To recap, 8* = 8,1 «—1] is the k-factor that defines the forbidden graph Hil(k, k)
and we will use the repeated instances of 5* to divide our embedded graph G into
panels.

Define tg, t1, ..., t, where t; is the index of the column before the first column of the
embedding of G, t, is the index of the last column of the embedding of G and t;
(0 < i < z) represents the rightmost letter index of the i-th copy of ™ in 8 , such that
ti > k + ti_1 to ensure the copies are disjoint. Hence, the i-th disjoint copy of 6* in %
corresponds to columns C¢, i, 1¢,] of P® and we denote the induced graph on these
columns G; = Gy, _k41,,) and denote G as the corresponding graph in G

Colour the vertices of G} blue, yellow, green or red as described in Section 4.3 and
then apply the same colouring to the vertices of G;. Call these G; vertex sets U?, UY,
UY and U} respectively. Denote U} as the vertices in Gy, 11,—x), and for1 <i <z
denote U} the set of vertices in G, 11,¢,,,—k] and colour the vertices in each U}"

white.

We create a sequence of panels, the first panel is P; = U}" U U{ U UP, and subsequent
panels given by
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Pi=UY uul,uuruufuul.

These panels create a disjoint partition of the vertices of our embedding of G. The
following lemma is used to put a bound on the number of labels required in a linear
clique-width expression to create edges between panels. We denote Py = U._, Ps.

LEMMA 4.8. Let («, 3,v) be a recurrent d-triple where o is an infinite word over the alpha-
bet {0,1,2,3}, v is an infinite binary word and B is a bond set which has bounded MP, so
that MP(n) < M foralln € N.

Then for any graph G = (V,E) € §° N Free(Hfll(k,k))for some j, k € N with vertices V
partitioned into panels {Py,..., P, }and 1 <i< z,

w(G, V\P;) < M + 2Kk

Proof. Considering the three sets of vertices P; \ (U U U{), UP and U} in graph G
separately, we have:

(a) the number of distinct neighbourhoods of the vertex set V' \ P; in the vertex
setP; \ (UP UUY) is bounded by M.

(b) the number of distinct neighbourhoods of the vertex set V' \ P; in the vertex
set UP isbounded by k(k—1), noticing that from Lemma 4.7 two blue vertices
in the same fat vein and column have the same neighbourhood in V \ P;.

(c) the number of distinct neighbourhoods of the vertex set V \ IP; in the vertex
set UY is bounded by k(k — 1), noticing that from Lemma 4.7 two green
vertices in the same slice and column have the same neighbourhood in V\P;.

This covers all vertices of P; so

w(G,V\P;) < M+k(k—1) +k(k—1) < M + 2Kk%. O

4.6. When G° is a minimal class of unbounded clique-width. Our strategy for
proving that an arbitrary graph G in a proper hereditary subclass of §® has bounded
linear clique-width (and hence bounded clique-width) is to define an algorithm to
create a linear clique-width expression that allows us to recycle labels so that we can
put a bound on the total number of labels required, however many vertices there are
in G. We do this by constructing a linear clique-width expression for each panel P;
in G in a linear sequence, leaving the labels on each vertex of previously constructed
panels P;_; with an appropriate label to allow edges to be constructed between the
current panel/vertex and previous panels. To be able to achieve this we require the
following ingredients:

(a) & to be recurrent so we can create the panels,

(b) a bound on the number of labels required to create each new panel,

(c) aprocess of relabelling so that we can leave appropriate labels on each vertex
of the current panel to enable connecting to previous panels, before moving
on to the next panel, and

(d) abound on the number of labels required to create edges to previously con-
structed panels.
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We have (a) by assumption and we deal with (c) and (d) in the proof of Theorem
4.11. The next two lemmas show how we can restrict 6 further, using a new concept
of ‘gap factors’, to ensure (b) is achieved.

LEMMA 4.9. For any b and graph G € G% and any j1,j2 € Nwhere [j; —j1| =0 —1
Lew (G, 5,0) < 20

Proof. We construct Gy, j,) using a row-by-row linear method, starting in the bottom
left. For each of the { columns, we create 2 labels: one label ¢4, ..., ¢, for the vertex in
the current row being constructed, and one label ey, ... ., e; for the vertices in all earlier
rows.

For the first row, we insert the (max) £ vertices using the labels c;, ..., c;, and since
every vertex has its own label we can insert all necessary edges. Now relabel ¢; — e;
for each i.

Suppose that the first r rows have been constructed, in such a way that every existing
vertex in column i has label e;. We insert the (max) £ vertices in row r+1 using labels
C1,...,¢¢. As before, every vertex in this row has its own label, so we can insert all
edges between vertices within this row. Next, note that any vertex in this row has
the same relationship with all vertices in rows 1,...,r of any column i. Since these
vertices all have label e; and the vertex in row r + 1 has its own label, we can add
edges as determined by «, 3 and y as necessary. Finally, relabel c; — e; for each i,
move to the next row and repeat until all rows have been constructed. 0

We call a factor of a é-triple between, and including, some consecutive disjoint pair
of occurrences of a k-factor 8* = 8(; ;. k1), a 8*-gap factor. An N°-bounded recurrent
b-triple is a recurrent triple where, for any factor 5* and any *-gap factor 8¢, the
value of N®(Q) is bounded by a function of §* only (i.e. it is bounded irrespective
of the 5*-gap factor chosen). In particular, from Lemma 3.13, it follows that if 5 is
N®-bounded recurrent then there is a bound on the number of 2s and 3s in the «
component of any 6*-gap factor.

If 6 is almost periodic, so that for any factor &* of & every factor of & of length at
least £(6*) contains 6, then each 5*-gap factor g covers a maximum of £(5*) + k
columns. As a consequence of Lemma 4.9, N®(Q) is bounded by 2(£(8*) + k) (i.e
a function of 6* only) irrespective of the 5*-gap factor chosen. Hence, every almost
periodic §-triple is also N®-bounded recurrent.

In addition, we know there exist N°-bounded recurrent §-triples which are not al-
most periodic. In [3] a recurrent but not almost periodic binary word 1} was con-
structed by a process of substitution. If we take & = ({,0,0%), then we have an
example of an N®-bounded recurrent d-triple that is not almost periodic .

LEMMA 4.10. Let & be an N°-bounded recurrent triple with k-factor 8* = 855, —1). Then
for any graph G € G®, where V[G] C Cq where Q is an interval such that 8q is a factor of

a d*-gap factor, there exists a bound on the linear clique-width of G that is a function of &*
only.

Proof. As 8 is an N®-bounded recurrent triple there exists a bound N(8*) on N®(Q),
where Q is any interval such that 0q is a subset of a 6*-gap factor. It follows from
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Lemma 3.13 that there is a bound, say J(6*), on the number of 2s and 3s in the o
factor of any 8*-gap factor 6q.

We can use the row-by-row linear method from the proof of Lemma 3.15 to show
that for any graph G € G% with V[G] C Cq we have lew(G) < 2] + N + 2. O

We are now in a position to define a set of hereditary graph classes G° that are mini-
mal of unbounded clique-width. We will denote Ani, C A as the set of all 5-triples
in A with the characteristics:

(@) & is N®-bounded recurrent, and
(b) the bond set 3 has bounded MF.

THEOREM 4.11. If § € Amin then G® is a minimal hereditary class of both unbounded
linear clique-width and unbounded clique-width.

Proof. G% has unbounded clique-width since 6 € A. We show that if 6 € Anin then
every proper hereditary subclass ¢ C G® has bounded linear clique-width. From the
introduction to this section we know that for such a subclass € there must exist some
Hjé,l(k, k) for some j and k € N such that € C Free(Hjérl(k,k)).

Using the same column indices {t;} used for panel construction of a graph G € §°
in Section 4.5, let the i-th 5*-gap factor be denoted &4, where q; = [to + 1,t;] and
qi = [ti-1 —k+1,ti] for 1 < i < z. Note that for every i, P; C C4,. From Lemma 4.10
we know there exist ] and N € N, each a function of 6* only, such that the number
of labels required to construct each panel P; by the row-by-row linear method for all
i € Nis no more than 2] + N + 2.

As the bond-set § has bounded MPB, let M € N be a constant such that MP (n) < M
foralln € N.

Although a single panel P; can be constructed using at most 2] + N + 2 labels, we
need to be able to recycle labels so that we can construct any number of panels with
a bounded number of labels. We show that any graph G € Free(H]?,l(k, k)) can be
constructed by a linear clique-width expression that only requires a number of labels
determined by the constants M, N, ] and k.

For our construction of panel P;, we will use the following set of 4k24+MN+M+2]+2
labels:

o 2 current vertex labels: a; and ay;

e ] current row labels: {c, :y =1,...,]} for first ] columns;

o | previous row labels: {py :y =1,...,]} for first ] columns;

o MN partition labels: {sx, : x =1,...,M,y =1,..., N}, for vertices in U} ; U
ur_,uuy;

o k? blue current panel labels: {bexy :x =1,...,k,y = 1,...,k}, for vertices
Vi nu?ncCy;

e k2 blue previous panel labels: {(bpxy :x =1,...,k,y = 1,...,k}, for vertices

ViU NCy;

o K2 green current panel labels: {gcxy :x =0,...,k—1,y =1,...,k]}, for vertices
Si,x N U? N Cy,‘
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o K2 green previous panel labels: {gpxy :x =0,...,k—1,y =1,...,k}, for vertices
Sifl,x N U?_l N Cy}

e Mbond labels: {m,, : y =1,..., M}, for vertices in previous panels for creating
the 3-bond edges between columns.

We carry out the following iterative process to construct each panel P; in turn.

Assume P;_ = Uis;llPs has already been constructed such that labels m,;, bp ,, and
gpx,y have been assigned to the M + 2k2 V\ P;_;-similar sets as described in Lemma
4.8.

Using the same column indices {t;} used for panel construction (Section 4.5) we as-
sign a default partition label s, , to each column of UY ; U U!_; UUY as follows:

(a) Consider the bond-graph BP([1,t,]) (Section 4.1). We partition the interval
Q =[ti-1 —k+1,t; — k] into [t; — k + 1, t,]-similar sets of which there are at
most M, and use label index x to identify values in Q in the same [t; — k +
1,t,]-similar set. Consequently, vertices in two columns of UY , UUl_, UuuY
that have the same default label x value have the same neighbourhood in
Glt;—k+1,t,] and hence are in the same V \ P;-similar set.

(b) Consider the two-row graph T®(Q) (Section 3.1). We partition vertices in
R1(Q) into Ry(Q)-similar sets of which there are at most N. We create a cor-
responding partition of the interval Q such thatv, ; and v,; are in the same
equivalence class of Ry (Q) if and only if x and y are in the same partition set
of Q. We now use label index y to identify values in the same partition set.
Consequently, vertices in two columns of UY | U UI_; U U} that have the
same default label y value have the same neighbourhood within Ggq.

We construct each panel P; in the row-by-row linear method used for the graph with
a finite number of 2s and 3s with bounded N® constructed in Lemma 3.15. The cur-
rent vertex always has a unique label. Thus, for each row, we use labels cy, ..., c;
for vertices in the first ] columns and then alternate a; and a; for the current and
previous vertices for the remainder of the row.

For each new vertex in the current row we add edges as follows:

(a) Insert required edges to the MP + 2k? V \ P;_;-similar sets — see Lemma
4.8. This is possible because vertices within each of these sets are either all
adjacent to the current vertex or none of them are.

(b) Insert required edges to vertices in the same or lower rows in the current
panel. This is possible as these vertices all have labels p, sy, bcyy or
gcx,y and, from the construction, vertices with the same y value are either
all adjacent to the current vertex or none of them are.

Following completion of edges to the current vertex, we relabel the previous vertex
as follows:

e from cy to py if it is in the first ] columns,
e from a, (or a) to its default partition label sy, if itisin Uy ; U U, U UY
but not in the first ] columns.
e from a; (or aj) to bey,y if itisin Vi NUP, and
e from a (or a1) to geyy if itisin 8;, NUY.
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1056
1057
1058

1059
1060

We repeat for the next row of panel P;.
Once panel P; is complete, relabel as follows:

Relabel vertices in accordance with their V' \ P;-similar set, of which there are at most
M. Note from Proposition 4.1, that two vertices with the same label m from the
previous Pi_; partition sets will still need the same label in P;. Two equivalence
classes from the P;_; partition may merge to form a new equivalence class in the
IP; partition. Hence, it is possible to relabel with the same label the old equivalence
classes that merge, and then use the spare m,, labels for any new equivalence classes
that appear. We never need more than M such labels.

Also relabel all vertices with labels bpy \, gpx,y, Py and sy, with the relevant bond
label my of their V \ Pi-similar set. This is possible for the vertices labelled s, as
the index x signifies their V \ [P;-similar set.

Now relabel bey , — bpy,y and gcxy — gpx,y ready for the next panel. For the next
panel we can reuse labels ai, as, ¢y, Py, Sx,y, bcxy and gcy,y as necessary.

This process repeated for all panels completes the construction of G.

The maximum number of labels required to construct any graph G € Free(H]{’,1 (k, %))
is 4k + MN 4+ M + 2] + 2 and hence € has bounded linear clique-width. 0

The conditions for § to be in A, are sufficient for the class G° to be minimal. It is
fairly easy to see that it is necessary for o to be bounded recurrent. However, there
remains a question regarding the necessity of the bond set p to have bounded MP.
We have been unable to identify any ¢ Anin such that G® is a minimal class of
unbounded clique-width, hence:

CONJECTURE 4.12. The hereditary graph class G° is minimal of unbounded clique-width if
and only if & € Amin.

5. Examples of new minimal classes. It has already been shown in [3] that there
are uncountably many minimal hereditary classes of graphs of unbounded clique-
width. However, armed with the new framework we can now identify many other
types of minimal classes. Some examples of 6 = («, 3,v) values that yield a minimal
class are shown in Table 2.

6. Concluding remarks. The ideas of periodicity and recurrence are well estab-
lished concepts when applied to symbolic sequences (i.e. words). Application to
d-triples and in particular 3-bonds is rather different and needs further investiga-
tion.

The -bonds have been defined as generally as possible, allowing a bond between
any two non-consecutive columns. The purpose of this was to capture as many min-
imal classes in the framework as possible. However, it may be observed that the
definition is so general that for any finite graph G it is possible to define 3 so that G
is isomorphic to an induced subgraph of B#(Q) and hence G°.

In these §° graph classes we have seen that unboundedness of clique-width is de-
termined by the unboundedness of a parameter measuring the number of distinct
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Example | « B x,yeN) Y MP b'nd
1. 0> 0 1% 1
2. 100 (1,x +2) 0 |2
3. (23)* | (x,x+2) 0% 3
4. 0% xy):x—yl#1L,x—y=1 (mod 2) 0> 3
5. 1°° (x,y) :x#y,x—y =0 (mod 2) 1 2
6. 2 (x,y) : 1 < |x —yl < n (fixedn) (] n
TABLE 2

New minimal hereditary graph classes of unbounded clique-width

neighbourhoods between two-rows. The minimal classes are those which satisfy
defined recurrence characteristics and for which there is a bound on a parameter
measuring the number of distinct neighbourhoods between vertices in one row.

Hence, whilst we have created a framework for many types of minimal classes, there
may be further classes "hidden’ in the 3-bonds. Indeed, we believe other types of
minimal hereditary classes of unbounded clique-width exist and this is still an open
area for research.

Acknowledgements. We are grateful to the anonymous referees whose careful re-
view of an earlier draft led to several significant improvements.
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FIG. 7. Examples of vein and slice colouring — a 222222, a 222000 and a 222000022 factor, with vertices
coloured blue, green, pink, red and yellow as described. The only edges shown are the veins (bold blue), other edges

in the fat veins (blue), part veins that start on the left column but do not reach the right column (green) and related
pink rows.
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