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Abstract. In this paper, for compressible Euler equations in multiple space
dimensions, we prove the break-down of classical solutions with a large class of
initial data by tracking the propagation of radially symmetric expanding wave
including compression. The singularity formation is corresponding to the finite
time shock formation. We also provide some new global sup-norm estimates on
velocity and density functions for classical solutions. The results in this paper
have no restriction on the size of solutions, hence are large data results.
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1. Introduction

The compressible Euler equations in multiple space dimensions (multi-d) satisfy{
ρt +∇ · (ρu) = 0,

(ρu)t +∇ · (ρu⊗ u) +∇p = 0,
(1.1)

where x ∈ Rd, d = 1, 2, 3, and t ∈ R+ are the space and time variables, respectively.
The vector valued function u ∈ Rd and the scalar functions ρ and p stand for
the velocity, density and pressure, respectively. For the polytropic ideal gas, the
pressure-density relation is

p = p(ρ) = Kργ , with γ > 1, (1.2)

where K is a positive constant, and γ is the adiabatic constant.
In this paper, we first study global behaviors of classical solutions for the ini-

tial value problem of (1.1) with radial symmetry. Then, we prove the singularity
formation for solutions with a large class of initial data involving initial compres-
sion. Here the radially symmetric solution of (1.1) satisfies the following symmetric
transformation:

ρ(x, t) = ρ(r, t), u(x, t) = u(r, t)
x

r
, with radius r = |x|.

Then the functions (ρ, u) are governed by the following Euler equations(Aρ)t + (Aρu)r = 0,

(Aρu)t + (Aρu2)r +Apr = 0,
with A(r) = rd−1, d = 1, 2, 3. (1.3)
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We consider the initial value problem of system (1.3) for (r, t) ∈ [0,∞) × [0,∞),
subject to the following initial conditions:

ρ(r, 0) = ρ0(r), u(r, 0) = u0(r). (1.4)

When r > 0, system (1.3) can be written asρt + (ρu)r = −A′

A ρu,

(ρu)t + (ρu2 + p)r = −A′

A ρu
2.

(1.5)

See [19] for the derivation of (1.3) or (1.5).

The compressible Euler system is the most fundamental model for system of
hyperbolic conservation laws. It is well known that, due to nonlinearity, classical
solutions of systems of hyperbolic conservation laws, may form gradient blowup
in finite time, even when initial data are smooth. This is a physical effect mani-
fested by the development of shock waves, at which the conserved variables become
discontinuous.

The study of breakdown of classical solutions for hyperbolic conservation laws has
a long history [19]. One can trace back to Stokes in [43] for a breakdown example
for some scalar equation. In one space dimensional (1-d), classical solutions may
break down, even under small initial oscillation. The result was initiated by the
pioneer work of Lax in [25] in 1964 for strictly hyperbolic genuine nonlinear systems
with two unknowns, then followed by John, Li-Zhou-Kong and Liu in [21, 29, 31],
and etc. for more general systems of conservation laws.

For large data 1-d problem of (1.1). i.e. (1.3) with d = 1, Lax’ method in [25] can
directly provide an equivalent condition on the initial data for singularity formation
when γ ≥ 3. The result can be read as: The finite time singularity, due to shock
wave, forms if and only if the initial data include compression.

However, when 1 < γ < 3, to prove the same equivalent condition on singularity
formation, one needs to first prove a proper density lower bound estimate, since the
Riccati equations will degenerate while density approaches zero. See examples with
density approaching zero as t → ∞ in [18, 20, 30]. Such a time-dependent lower
bound was first found by Chen-Pan-Zhu in [8] then improved to its optimal order
O(1/t) by Chen in [6]. Furthermore, singularity formation for 1-d solutions of non-
isentropic Euler equations was proved when the initial compression is stronger than
some threshold [8].

For 3-d solutions of compressible Euler equations, Sideris proved some singularity
formation results when considering the initial locally supersonic data, in a pioneer
work [40]. Based on a contradiction argument, he proved that the corresponding so-
lutions cease to be C1 in finite time. The solution could be rotational with non-trivial
(dynamic) entropy. Unfortunately this approach fails to provide any information on
the nature of breakdown or identify the actual time of blow-up. Similar results can
be found in [39,41] for the 2-d case and in [26,36] for the radially symmetric case.

For solutions with small perturbation, Alinhac proved a blowup result for 2-d
barotropic compressible Euler equations with radial symmetry [1]. A sharp estimate
on the life span of classical solution was also given. Later, Alinhac [2–4] proved the
blowup of classical solutions for a large class of 2-d quasilinear wave equations that
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fail to satisfy the null condition in [23]. The isentropic irrotational compressible
Euler equations, linked to the quasilinear wave equations, are included.

Another method to study the singularity formation of multi-d solutions is to use
the geometric framework introduced by Christodoulou [16]. He first studied wave
equations modeling isentropic, irrotational special relativistic fluid mechanics, and
found a shock formation example with some compactly supported initial data near
a given constant state. Later, Christodoulou-Miao [17] studied shock formation
for small and compactly supported perturbations of constant solutions to the non-
relativistic compressible Euler equations. In particular, for isentropic, irrotational
initial data, the work [17] yielded a precise description on the singularity formation
detected by Sideris [40], and revealed the fine geometric property of the singular
hyperplane (shock front). Recently, Luk and Speck [37] considered the 2-d case with
small but non-zero vorticity, even at the location of the shock. This result provides
the description of the vorticity near a singularity formed from compression.

In this paper, we focus on the singularity formation for radially symmetric multi-
dimensional solutions of Euler equations satisfying (1.3). For radially symmetric
solutions, one can still track the propagation of any initial compression wave along
characteristic using some Riccati system on gradient variables. Here we use the
system established by Chen-Young-Zhang in [11]. However, the geometric effect at
the origin and the inhomogeneity caused by the varying A(r) make the problem very
different from the 1-d problem.

One of the most challenging parts is to establish the uniform upper bounds on
|u| and ρ and the time-dependent lower bound on ρ. These global bounds shall hold
for classical solutions in the whole space {(r, t) | r ≥ 0, t ≥ 0} including the origin.

The key ideas, used in this paper, to establish the uniform bounds in the whole
space, come from finding invariant regions on both planes of (u, ρ) and some gradient
variables. Here the invariant region on the (u, ρ) plane found in this paper lies in the
half plane u ≥ 0. This means that solutions considered in this paper only include
expanding waves, traveling away from the origin. Applying the Riccati system in
Chen-Young-Zhang [11], one can track the propagation of strong compression wave
then show the finite time blowup. On the other hand, we find global L∞ bounds on
velocity and density before singularity formation. So it is reasonable to believe that
the singularity formation is due to the shock formation, where we refer the readers
to some earlier works in [14, 15, 22]. Since there needs no restriction on the size of
solutions, all results in this paper are large data results.

Another motivation of this paper, besides studying the shock formation, is to
provide useful C1 and L∞ estimates on velocity and density for classical solutions.
These estimates are very useful for the future construction of interesting finite time
or global-in-time solutions for (1.3). In fact, for 1-d solutions, a method to construct
global special solutions using C1 and L∞ estimates on velocity and density was
provided in a very recent paper in [7]. Currently, for radially symmetric solutions,
we are still lack of a framework on the global BV existence of solutions in the whole
space. For the isothermal gas, see BV existence results for the exterior problem of
flow outside of a fixed ball with reflecting boundary conditions in [33–35]. The L∞

existence for a lager class of initial data for the isentropic gas in the whole space was
established in [12], while the Lp case are given in [13,24], by using the compensated
compactness method.
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In this paper, for a large class of supersonic initial data, we construct the local
existence and uniform upper bound along with the time depend density lower bound,
without smallness restriction. By transfer the spacial gradient to new variables
satisfying Riccati type equations, the gradient blowup is shown, which indicate the
formation of shock.

This paper is divided into six sections. We will introduce our main results in
Section 2. In Sections 3 and 4, we will show the local existence and a uniform upper
bound estimate. In Section 5, we will prove the results on low bound of density.
Finally, in Section 6, we will prove the gradient blowup theorem.

2. Main results

In this section, we introduce the main results of this paper. To begin with, we
give the definition of classical solutions to system (1.3)–(1.4).

Definition 2.1. Let T be any given positive constant. The functions (ρ, u)(r, t) are
called a classical solution to the initial value problem of compressible Euler equations
(1.3)–(1.4) for any t ∈ [0, T ), if

ρ ∈ C1(R+ × [0, T )), u ∈ C1(R+ × [0, T )),

solve the system (1.3) for any (r, t) ∈ R+ × [0, T ), and satisfy the initial condition
(1.4) point-wisely on r ∈ R+. Here ρ is non-negative.

Our first result is a local existence theorem, which provides a basis on the singu-
larity formation result, i.e. the singularity forms from a local-in-time C1 solution.
In the same time, we also provide the uniform L∞ upper bound on |u| and ρ. First,
we introduce the following initial assumption.

Assumption 2.1. Assume the initial data (ρ0, u0)(r) ∈ (C1([0,∞)))2, (
ρ
γ−1
2

0
r , u0r )

∈ (C1[0, 1))2 and there exists a uniform constant C0 such that

0 <
2
√
Kγ

γ − 1
ρ
γ−1
2

0 (r) ≤ u0(r) ≤ C0, (2.1)

for any r ∈ (0,∞), and
ρ0(0) = u0(0) = 0. (2.2)

The local existence theorem can be stated as following. We also achieve some
uniform L∞ upper bounds on |u| and ρ, as long as the solution is still in C1.

Theorem 2.1. For 1 < γ ≤ 3, when the initial value problem (1.3)–(1.4) satis-
fies the initial Assumption 2.1, there exists δ > 0 and a unique solution (ρ, u) ∈
(C1([0,+∞)× (0, δ)))2, with

0 <
2
√
Kγ

γ − 1
ρ
γ−1
2 (r, t) ≤ u(r, t) ≤ 2C0, (2.3)

for any r ∈ (0,∞) and ρ(0, t) = u(0, t) = 0. Furthermore, for any t̄ > 0, r̄ > 0, the
backward characteristics will not touch the origin r = 0.

In this proof, the main idea is to observe an invariant domain on t, when r ∈
(0,∞): {

(w, z)
∣∣ 0 ≤ z < w ≤ 2C0

}
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where

w := u+
2
√
Kγ

γ − 1
ρ
γ−1
2 , z := u− 2

√
Kγ

γ − 1
ρ
γ−1
2 ,

are two Riemann variables. Here C0 is the arbitrary constant in the initial Assump-
tion (2.1).

From the physic point of view,

2
√
Kγ

γ − 1
ρ
γ−1
2 (r, t) ≤ u(r, t) (2.4)

equals to Ma > 2
γ−1 , while Ma is the Mach number. (2.1) and (2.3) shows if the

flows are sufficient supersonic Ma > 2
γ−1 ≥ 1, the flows will keep supersonic. The

similar property is exploded in [12] in the study of L∞ weak entropy solution.
Next, we will provide a lower bound estimate on density in the domain (x, t) ∈

[b,+∞)× [0,∞), for any b > 0. Note one cannot achieve any positive lower bound
on density in the whole plane since the density is always zero at the origin.

The proof relies on finding an invariant domain on some gradient variables in
the Lagrangian coordinates. This idea has been first used in [6] for 1-d solutions.
We will state the main results (Theorems 5.1-5.2) later, after introducing the Euler
equations (5.3) in the Lagrangian coordinates.

Finally, we present the main theorem on singularity formation. To state the
theorem, we first introduce the Lagrangian coordinates (x′, t′)

x′ =

∫ r

0
A(r)ρ(r) dr, t′ = t,

where A is defined in (1.3). For any time, x′ ∈ [0,∞) is a strictly increasing function
on r.

Theorem 2.2. For 1 < γ < 3 and d = 2, 3, assume the initial data satisfy conditions
in Assumption 2.1 and (α(x′, 0), β(x′, 0), α̃(x′, 0), β̃(x′, 0)) defined in (5.6) and
(5.15) are all uniformly bounded. Assume one of the following two conditions holds:

(i) There exist some x̄′ and T : satisfying condition (6.9), such that

Y (x̄′, 0) < −Gγ,T (x̄′), when γ 6= 5

3
;

or satisfying condition (6.25), such that

Y1(x̄′, 0) < −Gγ,T (x̄′), when γ =
5

3
.

(ii) There exist some x̄′0 > x̄′ > 0 and T : satisfying condition (6.9) and r(x̄′0, 0)−
r(x̄′, 0) ≥ 2C0γT , such that

Q(x̄′0, 0) < −Gγ,T (x̄′), when γ 6= 5

3
;

or satisfying condition (6.25) and r(x̄′0, 0)− r(x̄′, 0) ≥ 2C0γT , such that

Q1(x̄′0, 0) < −Gγ,T (x̄′), when γ =
5

3
.

Then the C1 solutions of (5.3) will break down in finite time before t = T . Here
Gγ,T (x′) > 0 will be defined in (6.8) and (6.24) for different γ values. The gradient
variables Y , Q, Y1 and Q2 will be defined in (6.1) and (6.23).
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When γ = 3, we have a stronger version of singularity formation.

Theorem 2.3. For γ = 3, assume the initial data satisfy conditions in Assumption
2.1. If there exists some x̄′ > 0 such that,

Y2(x̄′, 0) < −H(x̄′), or Q2(x̄′, 0) < −H(x̄′), (2.5)

with H(x̄′) defined in (6.27), then the C1 solution of (5.3) will break down in finite
time. Here Y2, Q2 are defined in (6.26).

Since when d = 1, an if and only if condition on the initial date for singularity
formation was proved in [8, 25], we do not include the 1-d case in this theorem.

We note that if Y and Q (or Y1, Q1, Y2, Q2 for other γ value) are both bounded
away from negative infinity when t ∈ [0, T ), one can prove the global existence up
to time T , using the uniform L∞ estimates on ρ and u. The upper bounds on Y ’s
and Q’s can be proved using the results in Theorems 5.1-5.2, where the case when
γ = 3 can be treated in a similar method. Here T can be infinity.

By the a priori L∞ estimate in (2.1) and the time dependent density lower bound,
we know when singularity forms, the state variables u, ρ are both finite, and the
specific volume 1/ρ is finite except on the line r = 0. On the other hand, C1 solution
exists before the earliest time of gradient blowup calculated by the Riccati system.
So it is reasonable to believe that the singularity forms due to the shock formation.
We refer the readers to some earlier works [14, 15, 22] showing why the singularity
is a shock in the 1-d case.

Finally we give a remark on the initial assumption (2.2).

Remark 2.1. The assumption u0(0) = 0 is a reasonable physical assumption, under
which the system (1.3) is satisfied at the origin.

To make the initial assumption (2.3) satisfied on the entire half line 0 ≤ r <∞,
we must assume that ρ0(0) = 0. Then we can obtain a global L∞ estimate on density
and velocity using the invariant domain argument, before singularity formation.

On the other hand, we can still claim a singularity formation result when ρ0(0) >
0. In fact, we can consider the initial data with ρ0(0) > 0, but satisfying (2.1) on
a set r > ε for some ε > 0. By restricting the consideration on the domain of
dependence corresponding to the initial ray r > ε at t = 0, we can still establish the
L∞ bounds similarly as in Theorem 2.1 and Theorems 5.1 and 5.2, then derive a
finite time singularity formation result. Here we omit the detail of this construction.
But we note that for such a result, we do not have any global L∞ estimates including
the origin, before blow-up, using the methods in the current paper.

If the initial assumption is satisfied, no matter on the whole half line r ≥ 0 or
on r > ε, the singularity formation considered in this paper is due to the concen-
tration of compression wave propagating in the outward direction in the Eulerian
coordinates, i.e. both wave speeds c1, c2 ≥ 0 when 1 < γ ≤ 3, by (3.2) and (2.3).

3. Local existence

Let’s first introduce some notations. We define the function h as

h :=
√
Kγρ

γ−1
2 ,

which takes the role of ρ. Then we define the Riemann variables as

w := u+ 2
γ−1h, z := u− 2

γ−1h.
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For any smooth solution away from the center, the equation (1.5) could be diag-
onalized as: {

wt + c2wr = −d−1
r uh,

zt + c1zr = d−1
r uh,

(3.1)

where two characteristic speeds are denoted as{
c1 = u−

√
p′(ρ) = u− h,

c2 = u+
√
p′(ρ) = u+ h.

(3.2)

Instead of considering a boundary value problem in the region r ≥ 0, we can
consider an initial value problem with initial data given on r ∈ R. Here we add the
solution when r < 0 by reflecting the solution with positive radius.

Assume that, when r < 0,

u(r, 0) = −u(−r, 0), h(r, 0) = h(−r, 0).

Then it is easy to see that, when r < 0,

c1(r, 0) = −c2(−r, 0), c2(r, 0) = −c1(−r, 0),

and

w(r, 0) = −z(−r, 0), z(r, 0) = −w(−r, 0).

So, if (u(r, t), h(r, t)) is a solution for (3.1) on (r, t) ∈ [0,∞) × [0, δ) with u(0, t) =
h(0, t) = 0, then (u(r, t), h(r, t)) is a solution for (3.1) on (r, t) ∈ (−∞,∞)× [0, δ).

Next to cope with the vacuum at the origin, we need to introduce the weighted
variables:

ũ :=
u

r
, h̃ =

h

r
, for any r ∈ R,

and

w̃ = ũ+
2

γ − 1
h̃, z̃ = ũ− 2

γ − 1
h̃.

Then (3.1) is reformulated as:{
w̃t + c2w̃r = −(d− 1)ũh̃− (ũ+ h̃)w̃,

z̃t + c1z̃r = (d− 1)ũh̃− (ũ− h̃)z̃.
(3.3)

Since we assume that ‖h̃0, ũ0‖C1 is finite. So there exists Tδ > 0, such that the

solution of (3.3) exists in t ∈ [0, Tδ]. And the life-span Tδ <∞ if and only if ‖h̃, ũ‖C1

blows up in finite time. This result is standard, since (3.3) includes no singular term.
The reader can find a proof of local existence at Theorem 2.1 in [28], and a global

one when ‖h̃, ũ‖C1 is a priorily bounded in [29].
Now we transform the C1 solution of (3.3) to (3.1) when r > 0 under Assumption

2.1 on the initial data.
First, we claim that h̃ 6= 0 for any r 6= 0. In fact, by (3.3), we know that

h̃t + rũh̃r = −
(
ũ+

γ − 1

2
(rũ)r +

γ − 1

2
(d− 1)ũ

)
h̃. (3.4)

So along any flow map
dr(t)

dt
= rũ,
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for any C1 solution of (3.3), we have

h̃(r(t), t) 6= 0, if h̃(r(0), 0) 6= 0.

By Assumption 2.1, h̃(r, 0) possibly vanishes only when r = 0, where the corre-
sponding flow map is r(t) ≡ 0. Hence,

h̃(r, t) 6= 0, when r 6= 0.

As a consequence, also by (3.4),

h(r, t) > 0, ρ(r, t) > 0 when r 6= 0.

Since h̃, ũ ∈ C1, we know h(0, t) = u(0, t) = 0 and c1(0, t) = c2(0, t) = 0. So the
characteristic r = 0 will split the positive radius and negative radius regions. When
r ∈ (0,∞), the C1 solution of (3.3) will give a non-vacuum solution of (3.1), under
Assumption 2.1. Adding h(0, t) = u(0, t) = 0, we get a local solution of (3.1), before
any gradient blowup.

Note, the method in this section will not give a useful density lower bound for a
future singularity formation result, although we can prove there is no vacuum when
r > 0. A better density lower bound will be given in section 5.

Now, we want to show: for any t̄ > 0, r̄ > 0, the backward characteristics will
not touch the origin r = 0. First, the backward characteristics are defined as follow:

l1 :
dr1

dt
= c1(r1, t) = u(r1, t)− h(r1, t),

and

l2 :
dr2

dt
= c2(r2, t) = u(r2, t) + h(r2, t),

with r1(t̄) = r2(t̄ = r̄. From above properties, before touch the origin r = 0, ρ > 0
which implies r1(t) < r2(t) for t < t̄. So, one just need to show r1(t) > 0 for t < t̄.
Due to h(0, t) = u(0, t) = 0,

c1(r, t) = c1(r, t)− c1(0, t) ≤ Lr, (3.5)

while L is Lipschitz constant of h and u . Then, for l1,

dr1

dt
≤ Lr1, (3.6)

which leads to for any t < t̄,

r1(t) > eL(t−t̄)r̄ > 0. (3.7)

Hence, the both backward characteristics will not touch the origin. And this poros-
ity will still hold after smooth transformation, like from Eulerian to Lagrangian
coordinates.

4. An invariant domain on density and velocity: upper bound

In this section, we give a uniform upper bound on density and velocity, by finding
an invariant domain.
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Lemma 4.1. Suppose (h, u) is any C1 solution of (3.1) when r > 0 and 0 < t < T ,
satisfying

0 ≤ u0 −
2

γ − 1
h0 < u0 +

2

γ − 1
h0 ≤ 2C0,

and other initial conditions in Assumption 2.1, then

0 ≤ u(r, t)− 2

γ − 1
h(r, t) < u(r, t) +

2

γ − 1
h(r, t) ≤ 2C0, (4.1)

i.e.
0 ≤ z < w ≤ 2C0,

when r > 0 and 0 < t < T .

Remark 4.1. The above result implies:

0 <
2

γ − 1
h(r, t) ≤ u(r, t) ≤ 2C0,

when r > 0.

Proof. We first prove z ≥ 0 by employing a contradiction argument. Assume
z(r̄, t̄) < 0 at some point (r̄, t̄) with t̄ > 0. We still use l1 to denote the 1-
characteristic r = r1(t) though the point (r̄, t̄):

dr1

dt
= c1(r1(t), t), r1(t̄) = r̄.

See Figure 1.

r

t

t
-

t1
~

t1

(r,t)
--

l1

Figure 1. Proof of Lemma 4.1.

Then we can find a time t1 with 0 < t1 < t̃1 ≤ t̄, such that, along the characteristic
r1(t),

• z(r1(t), t) ≥ 0 when t ∈ [0, t1),
• z(r1(t1), t1) = 0, and
• z(r1(t), t) < 0 when t ∈ (t1, t̃1].

Since h > 0 along r1, now we know that 0 < 2
γ−1h ≤ u when t ∈ [0, t1], hence,

zt + c1zr =
d− 1

r
uh > 0.

This contradicts to that z(r1(t1), t1) = 0 while z(r1(t), t) < 0 when t1 < t ≤ t̃1.
Therefore 0 ≤ z.
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Then clearly for t > 0, r > 0, u(r, t) > 2
γ−1h(r, t) > 0 and

wt + c2wr = −d− 1

r
uh < 0,

which implies w(t) ≤ w(0) along any 2-characteristic dr2
dt = c2. Therefore, we have

0 ≤ z < w ≤ 2C0.

�

5. Lower bound of density

The aim of this section is to give some lower bound estimates on the density
function in classical solutions, when 1 < γ ≤ 3 for most physical cases. To find
these estimates, it is much more convenient to study the solution in the Lagrangian
coordinates. For convenience, we always assume that d = 2, 3 in this section. In
fact, when d = 1, there is an O(1 + t)−1 estimate on lower bound of density in [6].

5.1. Lagrangian coordinates. In this section, we use Lagrangian coordinates
(x′, t′) transformed from the Eulerian coordinate (r, t), defined by

x′ =

∫ r

0
A(r)ρ(r) dr, t′ = t, (5.1)

where

A := A(r) = rd−1.

For C1 solutions satisfying Assumption 2.1 on the initial data, ρ(r, t) > 0 when
r > 0, while ρ(0, t) = 0, by Theorem 2.1. So we know x′(r, t) is well-defined and
strictly increasing on r for any t ≥ 0, with x′(0, t) = 0. And r(x′, t′) is well-defined
and strictly increasing on x′ for any t′.

Using system (1.3), it is easy to check that the transformation satisfies dx′ = Aρdr −Aρudt ,

dt′ = dt,

and 
∂

∂t
= −Aρu ∂

∂x′
+

∂

∂t′
,

∂

∂r
= Aρ

∂

∂x′
.

(5.2)

We define a new variable

v :=
1

A(r)ρ
,

then system (1.3) can be written in the Lagrangian frame as{
vt′ − ux′ = 0,

ut′ +Apx′ = 0.
(5.3)

For convenience, we introduce a new variable

η :=
2
√
Kγ

γ − 1
A
γ−1
2 ρ

γ−1
2 (5.4)
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to take the place of ρ. So the state variables v and p, which satisfies (1.2), can be
written as

v = Kτη
− 2
γ−1 and p = KpA

−γη
2γ
γ−1 ,

and the (Lagrangian) wave speed is

C :=
√
−Apv =

√
Kγ A−

γ−1
2 v−

γ+1
2 = KcA

− γ−1
2 η

γ+1
γ−1 ,

where Kτ ,Kp and Kc are positive constants given by

Kτ := (
2
√
Kγ

γ − 1
)

2
γ−1 , Kp := KK−γτ and Kc :=

√
KγK

− γ+1
2

τ .

The forward and backward characteristics are described by

dx′

dt′
= C and

dx′

dt′
= −C,

respectively. We denote the corresponding directional derivatives along these char-
acteristics by

∂+ :=
∂

∂t′
+ C

∂

∂x′
and ∂− :=

∂

∂t′
− C ∂

∂x′
.

By (5.2), it is easy to check that these derivatives are equivalent to derivatives along
1 and 2 characteristics in the Eulerian coordinates, respectively,

∂+ =
∂

∂t
+ c2

∂

∂r
and ∂− =

∂

∂t
+ c1

∂

∂r
.

We notice that along any 1 or 2-characteristic, radius r is not decreasing on time
since c1 and c2 are always nonnegative by (2.3) when 1 < γ ≤ 3.

In these coordinates, classical solutions of (5.3) satisfy the system ηt′ + CA
γ−1
2 ux′ = 0,

ut′ + CA−
γ−1
2 ηx′ − γpAx′ = 0,

(5.5)

by (1.5).

5.2. Riccati equations and key ideas. The crucial point in [6], to obtain the
lower bound estimate on density for 1-d solutions, is to find an uniform upper
bound on some gradient variables measuring compression and rarefaction.

For isentropic solutions in multiple space dimensions, what is the best way to
define the rarefaction and compression, is not as clear as for solutions in one space
dimension where one can use the derivate of Rieman invariants, such as in [5,10,25].

One natural good choice of gradient variables is the following one, extending from
the derivatives of Riemann invariants in one space dimension, which was first given
in [11],

α := ux′ +A−
γ−1
2 ηx′ ,

β := ux′ −A−
γ−1
2 ηx′ .

(5.6)
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These variables satisfy the following coupled Riccati equations, where the detail
calculations can be found in [11], ∂+α = k1(αβ − α2) + k+

2 (α− β) + F,

∂−β = k1(αβ − β2) + k−2 (β − α) + F,
(5.7)

where

k1 =
γ + 1

2(γ − 1)
Kcη

2
γ−1 > 0,

k±2 = −γ − 1

4
uA−1Ȧ± 3(γ − 1)2

8
ηA−

γ+1
2 Ȧ,

F =
(γ − 1)3

8Kc
η

2γ−4
γ−1 A−γ−1(AÄ− γȦ2).

Here

Ȧ :=
dA(r)

dr
, and Ä :=

d2A(r)

dr2
.

In the coordinate (r, t), it is easy to check that

AÄ− γȦ2 < 0 when d = 2, 3.

So it is easy to see that
F < 0 when x′ > 0. (5.8)

Now we restrict our consideration on the case when Assumption 2.1 on the initial
data is satisfied. By Theorem 2.1, we know that for any classical solutions in (x′, t′) ∈
(0,+∞)× [0, T ) satisfying initial conditions in Assumption 2.1, it holds

u ≥ A−
γ−1
2 η,

where we also use the definition of η in (5.4). We thus conclude that

k+
2 ≤

γ − 1

8
A−

γ+1
2 Ȧ(−2 + 3(γ − 1))η =

(γ − 1)(3γ − 5)

8
A−

γ+1
2 Ȧη, (5.9)

and

k−2 ≤
γ − 1

8
A−

γ+1
2 Ȧ(−2− 3(γ − 1))η = −(γ − 1)(3γ − 1)

8
A−

γ+1
2 Ȧη < 0. (5.10)

Furthermore, we find

k+
2 ≤ 0 when 1 < γ ≤ 5

3
. (5.11)

Using (5.8), (5.10) and (5.11), when x′ > 0, we have ∂+α < k1(αβ − α2) + k+
2 (α− β),

∂−β < k1(αβ − β2) + k−2 (β − α).
(5.12)

Consider solutions on the region (x′, t′) ∈ (0,+∞)× [0, T ). Note when 1 < γ ≤ 5
3 ,

the functions k±2 are both negative. Then we can directly use the idea in [6] to
see that max(α, β) < M is an invariant domain on the (α, β)-plane, as shown in
Figure 2. In fact, it is easy to show that on the right boundary of {max(α, β) < M}
(except the vertex) where α = M and β < M , α strictly decays on time, i.e.
∂+α < 0. Similarly, α strictly decays on time, i.e. ∂−β < 0 on the upper boundary
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of {max(α, β) < M}. As a direct consequence, α(x′, t′) and β(x′, t′) have a constant
upper bound max

x′∈R+
(α(x′, 0), β(x′, 0)), so by (5.3),

vt′ = ux′ =
1

2
(α+ β) < M, (5.13)

which gives a uniform linear time-dependent upper bound on v.

0

(M,M).

Figure 2. For any positive constant M , the region {max(α, β) <
M} is an invariant domain when 1 < γ ≤ 5

3 .

Unfortunately, for the case when 5
3 < γ < 3, the coefficient k+

2 might be positive
when d = 2, 3, hence {max(α, β) < M} is not an invariant domain. Instead, we
will introduce some new transformation to conquer the possible growth given by k+

2
when r is uniformly away from the origin. Then we can obtain some non-uniform
upper bound on α and β. Finally, one can also find some non-uniform upper bound
on v using (5.13).

We will prove two theorems for the upper bound of v for classical solutions to
(5.3) in the next two subsections: Theorem 5.1 when 1 < γ ≤ 5

3 and Theorem 5.2

when 5
3 < γ < 3. The upper bounds on v could directly give a lower bound on

density depending on b > 0, when r ∈ (b,∞).

5.3. Upper bound on v when 1 < γ ≤ 5
3 . By (5.12), we can prove the following

lemma. The proof is similar as the one in [6]. Since the proof is brief, we add the
proof to make the paper self-contained.

Lemma 5.1. Suppose the initial conditions in Assumption 2.1 are satisfied. Let
1 < γ ≤ 5

3 and the positive constant M be an upper bound of α(x′, 0) and β(x′, 0),
i.e.

max
x′∈R+

{
α(x′, 0), β(x′, 0)

}
< M,

then for any t′ > 0,

max
x′∈R+

{α(x′, t′), β(x′, t′)} < M.

Proof. We now prove Lemma 5.1 by contradiction. Without loss of generality, we
may assume α(x′∗, t

′
∗) = M , at some point (x′∗, t

′
∗). Because wave speed C is bounded

on [0, t′∗], then we can find the characteristic triangle with vertex (x′∗, t
′
∗) and lower

boundary on the initial line t′ = 0, denoted by Ω0. Also by Theorem 2.1, we know
that Ω0 will not include any part of the line x′ = 0 (equivalently r = 0). See Figure
3. In turn, we can find the first time t′1 such that α(t′1) = M or β(t′1) = M in Ω0.
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t'

x'

(x'1,t'1)

(x'*,t'*)

t'2

0 b

Figure 3. Proof of Lemma 5.1.

More precisely,

max
(x′,t′)∈Ω0,t′∈[0,t′1)

{α(x′, t′), β(x′, t′)} < M,

with α(x′1, t
′
1) = M or/and β(x′1, t

′
1) = M for some (x′1, t

′
1) ∈ Ω0. Without loss of

generality, we still assume

α(x′1, t
′
1) = M.

The other case can be proved similarly. Denote the characteristic triangle with
vertex (x′1, t

′
1) by Ω1 ⊂ Ω0, then

max
(x′,t′)∈Ω1,t′∈[0,t′1)

{α(x′, t′), β(x′, t′)} < M,

and α(x′1, t
′
1) = M . By the continuity of α and β, we could find a time t′2 ∈ [0, t′1)

such that, for any (x′, t′) ∈ Ω1, t
′
2 ≤ t′ < t′1, it holds

0 < α(x′, t′) < M.

Hence, by (5.12)1, along the forward characteristic segment through (x′1, t
′
1), when

t′2 ≤ t′ < t′1, we have, since k1 > 0 and k+
2 ≤ 0,

∂+α < (k1α− k+
2 )(β − α) ≤ (k1α− k+

2 )(M − α) ≤ K1(M − α),

for some positive constant K1 depending on M and the minimum value of r on the
piece of forward characteristic when t′2 ≤ t′ < t′1. Note to find K1, we use that fact
that both forward and backward characteristics have positive wave speeds in the
Eulerian coordinates, so the lowest r value on the characteristic segment considered
is at t = t′2. This gives, through the integration along the forward characteristic,

ln
1

M − α(t′)
≤ ln

1

M − α(t′2)
+K1(t′ − t′2) . (5.14)

As t′ → t′1−, the left hand side approaches infinity while the right hand side ap-
proaches a finite number, which gives a contradiction. This completes the proof of
Lemma 5.1. �

Using the argument in (5.13) and Lemma 5.1, we immediately prove the upper
bound for v when 1 < γ ≤ 5

3 in the following theorem.

Theorem 5.1. We consider the C1 solutions (v, u)(x′, t′) of (5.3) in the region
(x′, t′) ∈ (0,+∞) × [0, T ), for some T > 0, with initial data satisfying conditions
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in Assumption 2.1 and α(x′, 0), β(x′, 0) are uniformly bounded above by a constant
M , where α and β take the form in (5.6). If 1 < γ ≤ 5

3 , then we have

v(x′, t′) ≤ v(x′, 0) +Mt′.

5.4. Upper bound on v when 5
3 < γ < 3. Similar as Theorem (5.1), when

5
3 < γ < 3, the key point is still to get the uniform upper bound of some gradient
variables measuring rarefaction. However, we fail to control the lower order term
k+

2 (α− β) by directly using the Riccati equations (5.7).
The new method is to introduce some transformation on gradient variables α and

β:

α̃ := η
3−γ
γ−1α and β̃ := η

3−γ
γ−1β. (5.15)

According to (5.5) and (5.7), we obtain∂+α̃ = 3γ−5
2(γ−1)Kcηα̃β̃ − γ+1

2(γ−1)Kcηα̃
2 + k+

2 (α̃− β̃) + η
3−γ
γ−1F (x′, t′),

∂−β̃ = 3γ−5
2(γ−1)Kcηα̃β̃ − γ+1

2(γ−1)Kcηβ̃
2 + k−2 (β̃ − α̃) + η

3−γ
γ−1F (x′, t′).

That is∂+α̃ = ηK̃1α̃(β̃ − α̃)− η
(
K̃2α̃

2 − k̃+(α̃− β̃)
)

+ η
3−γ
γ−1F (x′, t′),

∂−β̃ = ηK̃1β̃(α̃− β̃)− η
(
K̃2β̃

2 − k̃−(β̃ − α̃)
)

+ η
3−γ
γ−1F (x′, t′),

(5.16)

with

K̃1 =
3γ − 5

2(γ − 1)
Kc, K̃2 =

3− γ
γ − 1

Kc,

and

k̃± = −(γ − 1)u

4η
A−1Ȧ± 3(γ − 1)2

8
A−

γ+1
2 Ȧ.

Similar as in (5.9) and (5.10), we know that when x′ > 0 or r(x′, t′) > 0

k̃−(x′, t′) < 0,

but k̃+(x′, t′) might be positive. The nice thing happens in (5.16)1 is that in any
domain of dependence away from the origin, when α̃ is large enough (depending on
the domain) then the second term in (5.16)1 becomes negative. Hence, the value of
α̃ will not become very large.

Now we define the domain of dependence Ω as in Figure 4:

Ω = {(x′, t′) |x′ ≥ x+(t′; x̄′), t′ ∈ R+}, (5.17)

where the left boundary characteristic of Ω is a 2-characteristic starting from the
point (x̄′, 0), i.e. the characteristic satisfies

d

dt′
x+(t′; x̄′) = C(x+(t′; x̄′), t′), x+(0; x̄′) = x̄′.

We first recall that along any 1 or 2-characteristic, the radius r is not decreasing
on time since c1 and c2 in the Eulerian coordinates are always nonnegative by (2.3)
when 1 < γ ≤ 3, and the characteristics in Eulerian and Lagrangian coordinates are
equivalent under transformation. So

min
(x′,t′)∈Ω

r(x′, t′) = r(x̄′, 0), (5.18)
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0 x' x'-

Ω

t'

Figure 4. Upper bound on v when 5
3 < γ < 3 in the domain of

dependence Ω.

where we also use the fact that r(x′, 0) > r(x̄′, 0) when x′ > x̄′. By Theorem 2.1, it
holds that

k̃+(x′, t′) ≤ (γ − 1)(3γ − 5)

8
A−

γ+1
2 Ȧ ≤ (γ − 1)(3γ − 5)(d− 1)

8
r(x̄′, 0)

d(1−γ)+γ−3
2

=: K̂(x̄′),
(5.19)

when (x′, t′) ∈ Ω and 5
3 < γ < 3. We will sometimes use K̂ to denote K̂(x̄′) if there

is no ambiguity.

Definition 5.1. When 5
3 < γ < 3, we use N(x̄′) to denote a constant depending on

x̄′ larger than both

max
x′∈Ω

{
α̃(x′, 0), β̃(x′, 0)

}
and

max
{

8(γ−1)
(3−γ)Kc

, 4(γ−1)
(3γ−5)Kc

}
· K̂(x̄′), (5.20)

where K̂(x̄′) is defined in (5.19).

Theorem 5.2. Suppose the initial conditions in Assumption 2.1 are satisfied. Let
5
3 < γ < 3. We consider the C1 solution in the domain Ω when 0 < t < T defined
in (5.17), with left-below vertex (x̄′, 0). Then

max
(x′,t′)∈Ω

{α̃(x′, t′), β̃(x′, t′)} < N(x̄′), (5.21)

for any 0 < t′ < T . Here N(x̄′) is independent of T , and T can be infinity.
And for any (x′, t′) ∈ Ω with 0 < t′ < T ,

v
γ−1
2 (x′, t′) ≤ v

γ−1
2 (x′, 0) +

√
KγK−1

τ N(x̄′)t′. (5.22)

Proof. For brief, we just use N to denote N(x̄′) in the proof of this lemma. To guide
the proof, the readers can still use Figure 3.

We first prove (5.21) by contradiction. Without loss of generality, assume that
α̃(x′∗, t

′
∗) = N , at some point (x′∗, t

′
∗). Since wave speed C is bounded on [0, t′∗], we

can find the characteristic triangle with vertex (x′∗, t
′
∗) and lower boundary on the

initial line t′ = 0, denoted by Ω2 ⊂ Ω. Then we can find the first time t′1 such that

α̃(t′1) = N or β̃(t′1) = N in Ω2. More precisely,

max
(x′,t′)∈Ω2,t′∈[0,t′1)

{α̃(x′, t′), β̃(x′, t′)} < N,
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with α̃(x′1, t
′
1) = N or/and β̃(x′1, t

′
1) = N for some (x′1, t

′
1) ∈ Ω2. Without loss of

generality, we still assume

α̃(x′1, t
′
1) = N.

Denote the characteristic triangle with vertex (x′1, t
′
1) by Ω3 ⊂ Ω2, then

max
(x′,t′)∈Ω3,t′∈[0,t′1)

{α̃(x′, t′), β̃(x′, t′)} < N,

and α̃(x′1, t
′
1) = N . Now, we divide the problem into two cases:

Case I. −N
2 < β̃(x′, t′) < N . By the continuity of α̃ and β̃ and our construction,

we could find a time t′2 ∈ [0, t′1) such that, for any (x′, t′) ∈ Ω3, t
′
2 ≤ t′ < t′1, we have

N

2
< α̃(x′, t′) < N, |β̃(x′, t′)| < N. (5.23)

Using (5.8), (5.16)1, (5.19), (5.20) and (5.23), along the forward characteristic seg-
ment through (x′1, t

′
1), when t′2 ≤ t′ < t′1, one has

∂+α̃ ≤ K̃1η(α̃β̃ − α̃2) + η
(
− 3−γ

γ−1Kcα̃
2 + k̃+(α̃− β̃)

)
≤ K̃1η(α̃β̃ − α̃2) ≤ K̃1ηα̃(N − α̃) ≤ LN(N − α̃).

for some positive constant L. Then similar as (5.14), we can find a contradiction.

Case II. β̃(x′, t′) ≤ −N
2 . By the continuity of α̃ and β̃ and our construction, we

could find a time t′3 ∈ [t′0, t
′
1) such that

N

2
< α̃(x′, t′) < N and β̃ < −N

4
, for any (x′, t′) ∈ Ω3, t

′
3 ≤ t′ < t′1. (5.24)

Thus, using (5.19), (5.20) and (5.24), we obtain

K̃1α̃β̃ − k̃+β̃ = (K̃1α̃− k̃+)β̃ < 0.

Using this inequality and also by (5.8), (5.16)1, (5.19), (5.20) and (5.24), we have

∂+α̃ ≤ η
(
− γ+1

2(γ−1)Kcα̃
2 + k̃+α̃

)
< 0,

which contradicts to that α̃(x′1, t
′
1) = N while α̃(x′, t′) < N when (x′, t′) ∈ Ω3, t

′
3 ≤

t′ < t′1. This completes the proof of (5.21).
Finally, we prove the upper bound on v. By (5.3) and (5.21), we have

η
3−γ
γ−1 vt′ = η

3−γ
γ−1ux′ =

1

2
(α̃+ β̃) < N(x̄′),

in Ω, that is

(v
γ−1
2 )t′ ≤ γ−1

2

( γ−1
2
√
Kγ

) 3−γ
γ−1N(x̄′)

which directly gives (5.22). �
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6. Singularity formation

Now we are in a position to study the singularity formation for system (5.3). Here
we skip the case when d = 1, where a complete resolution on the shock formation
can be found in [6, 8]. So in this section, d = 2 or 3.

In what follows, we will establish the finite time singularity formation results
for 1 < γ ≤ 3 in multiple space dimension when the initial compression is slightly
stronger than a critical value. In order to control the solutions of the decoupled
Riccati equations, we shall use the estimates in Theorem 5.1 and 5.2. We will follow
the notations used in section 5.

6.1. Singularity formation for γ 6= 5
3 and γ 6= 3. As in [5, 11], system (5.7) can

be rewritten as a decoupled system with varying coefficients. We define when γ 6= 5
3

and γ 6= 3,

Y := η
γ+1

2(γ−1)α+ (γ−1)2

2Kc(γ−3)A
−1Ȧuη

γ−3
2(γ−1) − (3γ−13)(γ−1)3

4Kc(γ−3)(3γ−5)A
− γ+1

2 Ȧη
3γ−5
2(γ−1) ,

Q := η
γ+1

2(γ−1)β + (γ−1)2

2Kc(γ−3)A
−1Ȧuη

γ−3
2(γ−1) + (3γ−13)(γ−1)3

4Kc(γ−3)(3γ−5)A
− γ+1

2 Ȧη
3γ−5
2(γ−1) ,

(6.1)

which satisfy equations {
∂+Y = d0 + d1Y + d2Y

2,

∂−Q = d̄0 + d̄1Q+ d2Q
2,

(6.2)

with coefficients

d2 = − γ + 1

2(γ − 1)
Kcη

3−γ
2(γ−1) ,

d1 = L1A
−1Ȧu+ L2A

− γ+1
2 Ȧη,

d0 = L3A
− γ+3

2 Ȧ2uη
3γ−5
2(γ−1) + L4A

− γ+1
2 Äuη

3γ−5
2(γ−1) + L5A

−(γ+1)Ȧ2η
5γ−7
2(γ−1)

+ L6A
−γÄη

5γ−7
2(γ−1) + L7A

−1Äu2η
γ−3

2(γ−1) + L8A
−2Ȧ2u2η

γ−3
2(γ−1) ,

d̄1 = L̄1A
−1Ȧu+ L̄2A

− γ+1
2 Ȧη,

d̄0 = L̄3A
− γ+3

2 Ȧ2uη
3γ−5
2(γ−1) + L̄4A

− γ+1
2 Äuη

3γ−5
2(γ−1) + L̄5A

−(γ+1)Ȧ2η
5γ−7
2(γ−1)

+ L̄6A
−γÄη

5γ−7
2(γ−1) + L̄7A

−1Äu2η
γ−3

2(γ−1) + L̄8A
−2Ȧ2u2η

γ−3
2(γ−1) ,

where Lj and L̄j , i, j = 1, 2 · · · , 8 are constants depending only on γ. The derivation
of this system can be found in [11]. Then system (6.2) can be further written as∂+Y = d0 + d1Y + 1

2d2Y
2 + 1

2d2Y
2,

∂−Q = d̄0 + d̄1Q+ 1
2d2Q

2 + 1
2d2Q

2.
(6.3)

The roots of d0 + d1Y + 1
2d2Y

2 = 0 and d̄0 + d̄1Q + 1
2d2Q

2 = 0, if they exist, are
given by the quadratic formula

Y± =
−d1 ±

√
d2

1 − 2d0d2

d2
(6.4)
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and

Q± =
−d̄1 ±

√
d̄2

1 − 2d̄0d2

d2
. (6.5)

The structure of the roots Y± and Q± lead us to study the ratios d0
d1

and d0
d2

which
dominate behaviors of solutions. A direct calculation is carried out as follows. Since
A = rd−1 and Ȧ = dA(r)

dr , the ratios are

d1

d2
= r−1η

γ−3
2(γ−1) (L9u+ L10r

(1−γ)(d−1)
2 η),

d0

d2
= r−2η

γ−3
γ−1 (L11r

(1−γ)(d−1)
2 uη + L12r

(1−γ)(d−1)η2 + L̂5u
2),

when d > 1, where Li are constants depending only on γ and d. Thus, the roots

Y± =
−d1 ±

√
d2

1 − 2d0d2

d2
≥ −r−1η

γ−3
2(γ−1) (L13u+ L14r

(1−γ)(d−1)
2 η), (6.6)

for some positive constants L13 and L14 depending only on γ and d. Similar bounds
hold for Q±.

In a summary, we can find two positive constants L15, L16 depending only on γ
and d, such that

−2d1

d2
,−2d̄1

d2
, Y±, Q± ≥ −r−1η

γ−3
2(γ−1) (L15u+ L16r

(1−γ)(d−1)
2 η). (6.7)

Now we prove the singularity formation theorem. First, we define

GT (x̄′) ≡ Gγ,T (x̄′) :=


C1 (r(x̄′, 0))−1K

γ−3
4

τ

(
v̄ +MT

) 3−γ
4 , if 1 < γ < 5

3 ,

C1 (r(x̄′, 0))−1K
γ−3
4

τ

(
v̄
γ−1
2 +

√
KγK−1

τ N(x̄′)T
) 3−γ

2(γ−1) ,

if 5
3 < γ < 3,

(6.8)
with C1 = 2C0(L15 + L16) and

v̄ =
1

min
x′∈(x̄′,+∞)

A(r(x′, 0))ρ(x′, 0)
.

Here it is easy to check that GT (x̄′) is a decreasing function on x̄′.
The main result reads as follows:

Theorem 6.1. For 1 < γ < 3 and γ 6= 5
3 , assume the initial data satisfy conditions

in Assumption 2.1 and (α(x′, 0), β(x′, 0), α̃(x′, 0), β̃(x′, 0)) are all uniformly bounded
in d = 2, 3. For any C1 solution of (5.3), if there exists some x̄′ > 0 and T satisfying

T ≥ 4Kτr(x̄
′, 0)

C0(L15 + L16)(γ + 1)
, (6.9)

such that

Y (x̄′, 0) < −GT (x̄′), (6.10)

then classical solution will break down before t = T .
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Proof. We want to prove that when (6.10) is satisfied, then blowup happens before
time t = T .

We only have to consider the solution when t ≤ T , where T satisfies (6.9).
First, along any 2-characteristic Λ starting from the point (x̄′, 0), the estimates

on v in Theorems 5.1 or 5.2 are satisfied, where the region to the right of this Λ is
the region Ω defined in (5.17). One can still use Figure 4 as a reference.

More precisely, at any point (x′, t′) on the 2-characteristic Λ with t′ < T , when
1 < γ < 5

3 , Theorem 5.1 gives that

v(x′, t′) ≤ v(x′, 0) +Mt′,

then using η = 2
√
Kγ

γ−1 v−
γ−1
2 and (5.18), we have

r−1η
γ−3

2(γ−1) (x′, t′) ≤ (r(x̄′, 0))−1K
γ−3
4

τ

(
v̄ +MT

) 3−γ
4 . (6.11)

When 5
3 < γ < 3, Theorem 5.2 gives that

v
γ−1
2 (x′, t′) ≤ v

γ−1
2 (x′, 0) +

√
KγK−1

τ N(x̄′)t′,

and similarly, by (5.18), one obtains

r−1η
γ−3

2(γ−1) (x′, t′) ≤ (r(x̄′, 0))−1K
γ−3
4

τ

(
v̄
γ−1
2 +

√
KγK−1

τ N(x̄′)T
) 3−γ

2(γ−1) . (6.12)

By Theorem 2.1,

2C0 ≥ u ≥ A−
γ−1
2 η(r, t),

where A = rd−1. Then we have

L15u+ L16r
(1−γ)(d−1)

2 η ≤ 2C0(L15 + L16). (6.13)

Based on the above analysis (6.11)–(6.13), when 1 < γ < 3 and γ 6= 5
3 , using (6.7)

and (6.8), we have

− 2d1

d2
,−2d̄1

d2
> −GT (x̄′) and Y±, Q± > −GT (x̄′). (6.14)

Suppose (6.10) is satisfied. We want to prove the key estimate

∂+Y <
1

2
d2Y

2, (6.15)

on Λ before t = T . In fact, notice that along the 2-characteristic Λ starting from
(x̄′, 0), by (6.14), we have

∂+Y < 0 and Y (t′) < −GT (x̄′), (6.16)

which in turn implies

Y (t′) +
2d1

d2
< 0. (6.17)

On the part of characteristic when the roots (6.4) do not exist, i.e. when d2
1 −

2d0d2 < 0, we have d0 < 0, since d2 < 0. In view of (6.3), we get

∂+Y = d0 + d1Y + d2Y
2 <

1

2
d2Y (Y +

2d1

d2
) +

1

2
d2Y

2 <
1

2
d2Y

2,

by (6.17).
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On the part of characteristic when the roots (6.4) exist, we can rewrite the equa-
tion (6.3)1 as

∂+Y =
1

2
d2(Y − Y+)(Y − Y−) +

1

2
d2Y

2.

By (6.16) and (6.7)–(6.8),

Y (t′)− Y+ < 0, Y (t′)− Y− < 0,

which implies that

∂+Y =
1

2
d2(Y − Y+)(Y − Y−) +

1

2
d2Y

2 <
1

2
d2Y

2,

since d2 < 0. Hence, we proved (6.15).
Integrating (6.15) in time, we get

1

Y (t′)
≥ 1

Y (x̄′, 0)
− 1

2

∫ t′

0
d2(s) ds, (6.18)

where the integral is along Λ. Hence the blowup happens at a time t′1 when the
right hand side of (6.18) equals to zero, that is,

− 1

Y (x̄′, 0)
=

1

2

∫ t′1

0
(−d2)(s) ds.

In fact, when 1 < γ < 5
3 , we read from the definition of d2 in (6.2) and Theorem 5.1

that

− d2 ≥
γ + 1

4
K
− γ+1

4
τ [v̄ +Mt′]−

3−γ
4 . (6.19)

When 5
3 < γ < 3, by using Theorem 5.2, we can get

− d2 ≥
γ + 1

4
K
− γ+1

4
τ [v̄

γ−1
2 +

√
KγK−1

τ N(x̄′)t′]
− 3−γ

2(γ−1) . (6.20)

Thus, it is clear from the estimates (6.19) and (6.20) that such a finite time t′1 exists.
However, we still need to show that t′1 < T. From (6.10), we only need to show that

1

GT (x̄′)
≤ 1

2

∫ T

0
(−d2)(s) ds. (6.21)

When 1 < γ < 5
3 , (6.19) gives

1

2

∫ T

0
(−d2)(s) ds ≥ γ + 1

8
K
− γ+1

4
τ

∫ T

0
[v̄ +Mt′]−

3−γ
4 dt

≥ γ + 1

8
K
− γ+1

4
τ T (v̄ +MT )

γ−3
4 .

Combining (6.8) and (6.9), we then obtain (6.21) for 1 < γ < 5
3 .

When 5
3 < γ < 3, from (6.20), we obtain

1

2

∫ T

0
(−d2)(s) ds ≥ γ + 1

8
K
− γ+1

4
τ

∫ T

0
[v̄

γ−1
2 +

√
KγK−1

τ N(x̄′)t′]
− 3−γ

2(γ−1) dt

≥ γ + 1

8
K
− γ+1

4
τ T [v̄

γ−1
2 +

√
KγK−1

τ N(x̄′)T ]
γ−3

2(γ−1) .
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This together with (6.8) and (6.9) imply (6.21) immediately. This completes the
proof of Theorem 6.1. �

Finally, we state the singularity formation theorem when the backward initial
compression is strong enough. One must assume more initial conditions to make
sure that blowup happens before the time when the 1-characteristic including strong
compression leaves Ω defined in (5.17). Our main result reads as follows:

Theorem 6.2. For 1 < γ < 3 and γ 6= 5
3 , assume the initial data satisfy conditions

in Assumption 2.1 and (α(x′, 0), β(x′, 0), α̃(x′, 0), β̃(x′, 0)) are all uniformly bounded
in d = 2, 3. For any C1 solution of (5.3), if there exist some x̄′0 > x̄′ > 0 and T ,
with r(x̄′0, 0)− r(x̄′, 0) ≥ 2C0γT and T satisfying (6.9), such that

Q(x̄′0, 0) < −GT (x̄′), (6.22)

then classical solution will break down before t = T .

Proof. We want to prove that singularity formation happens before time t = T when
(6.22) is satisfied.

We only need to check that before time t = T , the 1-characteristic starting from
x̄0 will not reach the left boundary of Ω defined in (5.17). This is clear because
r(x̄′0, 0)− r(x̄′, 0) ≥ 2C0γT , and in the Euler coordinates∫ T

0
c2 dt−

∫ T

0
c1 dt ≤

∫ T

0
(u+

√
Kγρ

γ−1
2 ) dt+

∫ T

0

√
Kγρ

γ−1
2 dt

≤ 2C0T + 2(γ − 1)C0T = 2C0γT

by Theorem 2.1, here the first integration of the above inequality is along the char-
acteristic dr

dt = c2 from 0 to T , the second integration is along the characteristic
dr
dt = c1 from 0 to T , See Figure 5.

t

rr(x'0,0)r(x',0)0

dr
dt
_=c2

dr
dt
_=c1

T

Figure 5. Proof of Theorem 6.2.

Using similar arguments as in Theorem 6.1, one can prove this theorem, where
we also use the fact that −GT (x̄′) ≤ −GT (x̄) for any x̄ ≥ x̄′.

�
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6.2. Singularity formation for γ = 5
3 . Our present goal is to understand wether

the finite time shock formation result also holds when γ = 5
3 . As before, we define

Y1 := η2α− 1

6Kc
A−1Ȧuη−1 − 1

3Kc
A−

4
3 Ȧ ln η,

Q1 := η2β − 1

6Kc
A−1Ȧuη−1 +

1

3Kc
A−

4
3 Ȧ ln η.

(6.23)

which satisfy the equations∂+Y1 = d̂0 + d̂1Y1 + d2Y
2

1 ,

∂−Q1 = d̃0 + d̃1Q1 + d2Q
2
1,

with coefficients

d2 = −2Kcη,

d̂1 = L̂1A
−1Ȧu+ L̂2A

− 4
3 Ȧη ln η + L̂3A

− 4
3 Ȧη,

d̂0 = L̂4A
−2Ȧ2u2η−1 + L̂5A

− 7
3 Ȧ2u ln η + L̂6A

− 7
3 Ȧ2u+ L̂7A

− 8
3 Ȧ2η ln2 η

+ L̂8A
− 8

3 Ȧ2η ln η + L̂9A
− 8

3 Ȧ2η + L̂10A
−1Äu2η−1 + L̂11A

− 4
3 Äu

+ L̂12A
− 4

3 Äu ln η + L̂13A
− 5

3 Äη + L̂14A
− 5

3 Äη ln η,

d̃1 = L̃1A
−1Ȧu+ L̃2A

− 4
3 Ȧη ln η + L̃3A

− 4
3 Ȧη,

d̃0 = L̃4A
−2Ȧ2u2η−1 + L̃5A

− 7
3 Ȧ2u ln η + L̃6A

− 7
3 Ȧ2u+ L̃7A

− 8
3 Ȧ2η ln2 η

+ L̃8A
− 8

3 Ȧ2η ln η + L̃9A
− 8

3 Ȧ2η + L̃10A
−1Äu2η−1 + L̃11A

− 4
3 Äu

+ L̃12A
− 4

3 Äu ln η + L̃13A
− 5

3 Äη + L̃14A
− 5

3 Äη ln η,

where L̂j and L̃j are constants. The roots of d̂0 + d̂1Y1 + 1
2d2Y

2
1 = 0 and d̃0 + d̃1Q1 +

1
2d2Q

2
1, if they exist, are given by the quadratic formula

Y1,± =
−d̂1 ±

√
d̂2

1 − 2d̂0d2

d2
and Q1,± =

−d̃1 ±
√
d̃2

1 − 2d̃0d̄2

d2
.

Now, applying the same argument as in (6.7), (6.11)–(6.14), for any classical solu-
tions in [0, T ) satisfying initial conditions in Assumption 2.1, in view of Theorem

5.1, we can find some positive constants L̂15, L̂16, L̂17 depending only on d, such
that, when γ = 5

3 ,

−2d̂1

d2
,−2d̃1

d2
, Y1,±, Q1,± ≥ −η−1[L̂15r

−1u+ L̂16r
−2−d

3 η + L̂17r
−2−d

3 η ln η]

and we define that

Gγ,T (x̄′) = 2C0K
− 1

3
τ (r(x̄′, 0))−1(v̄ +MT )

1
3 [L̂15 + L̂16 + 2C0L̂17r(x̄

′, 0)
d−1
3 ] (6.24)

with

v̄ =
1

min
x′∈(x̄′,+∞)

A(r(x′, 0))ρ(x′, 0)
.
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and the upper bound T on blowup time, which satisfies

T ≥ 3r(x̄′, 0)Kτ

2C0(L̂15 + L̂16 + 2C0L̂17r(x̄′, 0)
d−1
3 )

. (6.25)

For γ = 5
3 , we have the following gradient blowup results. The proof is similar to

Theorem 6.1 and 6.2, we omit it here for brevity.

Theorem 6.3. For γ = 5
3 , assume the initial data satisfy conditions in Assumption

2.1 and (α(x′, 0), β(x′, 0)) are both uniformly bounded in d = 2, 3. Assume one of
the following two conditions holds for Gγ,T (x̄′) defined in (6.24):

(1) There exist some x̄′ > 0 and T satisfying (6.25), such that,

Y1(x̄′, 0) < −Gγ,T (x̄′).

(2) There exist some x̄′0 > x̄′ > 0 and T , with r(x̄′0, 0)− r(x̄′, 0) ≥ 2C0γT and T
satisfying (6.25), such that,

Q1(x̄′0, 0) < −Gγ,T (x̄′).

Then the C1 solution of (5.3) will break down before time T .

6.3. Singularity formation for γ = 3. At last, we show the finite time blowup of
solutions when γ = 3. Toward this goal, we define

Y2 := ηα+
1

2Kc
A−1Ȧu ln η − 2

Kc
A−2Ȧη +

1

2Kc
A−2Ȧη ln η,

Q2 := ηβ +
1

2Kc
A−1Ȧu ln η +

2

Kc
A−2Ȧη − 1

2Kc
A−2Ȧη ln η,

(6.26)

which satisfy the equations∂+Y2 = ď0 + ď1Y2 + d2Y
2

2 ,

∂−Q2 = d0 + d1Q2 + d2Q
2
2,

with coefficients

d2 = −Kc,

ď1 = Ľ1A
−1Ȧu+ Ľ2A

−1Ȧu ln η + Ľ3A
−2Ȧη + Ľ4A

−2Ȧη ln η,

ď0 = Ľ5A
−2Ȧ2u2 ln η + Ľ6A

−2Ȧ2u2 ln2 η + Ľ7A
−3Ȧ2uη + Ľ8A

−3Ȧ2uη ln η

+ Ľ9A
−3Ȧ2uη ln2 η + Ľ10A

−4Ȧ2η2 + Ľ11A
−4Ȧ2η2 ln η + Ľ12A

−4Ȧ2η2 ln2 η

+ Ľ13A
−2Äuη ln η + Ľ14A

−2Äuη + Ľ15A
−3Äη2 ln η + Ľ16A

−3Äη2 + Ľ17A
−1Äu2 ln η,

d1 = L1A
−1Ȧu+ L2A

−1Ȧu ln η + L3A
−2Ȧη + L4A

−2Ȧη ln η,

d0 = L5A
−2Ȧ2u2 ln η + L6A

−2Ȧ2u2 ln2 η + L7A
−3Ȧ2uη + L8A

−3Ȧ2uη ln η

+ L9A
−3Ȧ2uη ln2 η + L10A

−4Ȧ2η2 + L11A
−4Ȧ2η2 ln η + L12A

−4Ȧ2η2 ln2 η

+ L13A
−2Äuη ln η + L14A

−2Äuη + L15A
−3Äη2 ln η + L16A

−3Äη2 + L17A
−1Äu2 ln η,
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where Ľj and Lj are constants. The roots of ď0 + ď1Y2 + 1
2d2Y

2
2 = 0 and d0 +d1Q2 +

1
2d2Q

2
2 = 0, if they exist, are given by the quadratic formula

Y2,± =
−ď1 ±

√
ď2

1 − 2ď0d2

d2
and Q2,± =

−d1 ±
√
d2

1 − 2d0d2

d2
.

In a similar procedure as in (6.7), it is easy to see that there exists a positive constant
Ľ18 depending only on d, such that

−2ď1

d2
,−2d1

d2
, Y2,±, Q2,± ≥ −Ľ18(r−1u+ r−1u ln η + r−dη + r−dη ln η).

By using Theorem 2.1, when γ = 3, it holds that

2C0 ≥ u ≥ A−
γ−1
2 η(r, t) = r1−dη,

where A = rd−1. We finally obtain

−2ď1

d2
,−2d1

d2
, Y2,±, Q2,± ≥ −4C0Ľ18

[
r(x̄′, 0)−1 + 2C0r(x̄

′, 0)
d−3
2
]

=: −H(x̄′),

(6.27)

along any 1 or 2 characteristic starting from (x̄′, 0), on which r always increases with

respective to time so large than r(x̄′, 0). Here we have used the fact that ln η ≤ η
1
2 .

Now we come to prove the singularity formation result for γ = 3: Theorem 2.3.
Since H(x̄′) is independent of time T , Theorem 2.3 is much stronger than Theorem
2.2.

Proof. Suppose that (2.5) holds. Without loss of generality, we assume that Y2(x̄′, 0) <
−H(x̄′). The case whenQ2(x̄′, 0) < −H(x̄′) is similar. Now consider the 2-characteristic
Λ starting at (x̄′, 0).

Similar as in Theorem 6.1, we have

∂+Y2 < −
1

2
KcY

2
2

on Λ for any time before blowup, since H(x̄′) is independent of time. Integrating it
in time, we get

1

Y2(t′)
≥ 1

Y2(x̄′, 0)
+

1

2

∫ t′

0
Kc ds, (6.28)

where the integral is along Λ. Since Kc is a positive constant, the right hand side
of (6.28) approaches zero in finite time. This implies that Y2(t′) approaches −∞ in
finite time. This completes the proof of Theorem 2.3.

�
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