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MIXED PRECISION ITERATIVE REFINEMENT WITH SPARSE
APPROXIMATE INVERSE PRECONDITIONING

ERIN CARSON* AND NOAMAN KHANT

Abstract. With the commercial availability of mixed precision hardware, mixed precision
GMRES-based iterative refinement schemes have emerged as popular approaches for solving sparse
linear systems. Existing analyses of these approaches, however, are based on using full LU factor-
izations to construct preconditioners for use within GMRES in each refinement step. In practical
applications, inexact preconditioning techniques, such as incomplete LU or sparse approximate in-
verses, are often used for performance reasons.

In this work, we investigate the use of sparse approximate inverse preconditioners based on Frobe-
nius norm minimization within GMRES-based iterative refinement. We analyze the computation of
sparse approximate inverses in finite precision and derive constraints under which user-specified
stopping criteria will be satisfied. We then analyze the behavior of and convergence constraints
for a five-precision GMRES-based iterative refinement scheme that uses sparse approximate inverse
preconditioning, which we call SPAI-GMRES-IR. Our numerical experiments confirm the theoret-
ical analysis and illustrate the resulting tradeoffs between preconditioner sparsity and GMRES-IR
convergence rate.
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1. Introduction. We consider the problem of solving linear systems Az = b with
a nonsingular n x n matrix A. With the recent emergence of commercially available
mixed precision hardware, there has been a renewed interest in the development of
mixed precision algorithms for numerical linear algebra. The benefit of using low
precision is that it is much faster and more energy efficient. Compared to double
precision, for example, using half precision tensor cores available on modern NVIDIA
GPUs leads to a theoretical 16x improvement in performance. Low precision can
also reduce communication and memory bottlenecks, since we need to move and store
fewer bits. The downside is that with fewer bits, we have less accuracy and a smaller
range of representable numbers. The size in bits, range, and unit roundoff u are given
for four IEEE precisions in Table 1.1.

Table 1.1: Parameters for IEEE floating point precisions. The range denotes the order
of magnitude of the largest and smallest positive normalized floating point numbers.

Type ‘ Size ‘ Range ‘ Unit Roundoff u
half 16 bits | 10*° 2711 ~49.107%
single | 32 bits | 10%38 2724 ~6.0-1078
double | 64 bits | 10398 | 2793 ~1.1.10716
quad | 128 bits | 10F4932 | 2-113 x 9.6.1073°

The goal is thus to design mixed precision approaches which use lower precision
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in select computations and higher precision in others, in such a way that both (1)
performance is improved and (2) the attainable accuracy remains sufficient; see [].
For the problem of solving linear systems, mixed precision iterative refinement has
been the focus of renewed attention. The general idea behind iterative refinement is
that after computing an initial solution zg to Az = b, we can refine this solution by
repeatedly computing the residual r; = b — Ax;, solving Ad; = r;, and then updating
the approximate solution z;11 = x; + d; until some convergence criterion is satisfied.
Typically, an LU factorization of A is used to solve for xg, and then is reused in each
iteration to solve for the correction d;. We call this LU-based variant “standard IR”
or SIR for short.

There is a long history of using mixed precision within iterative refinement. What
we call “traditional” iterative refinement involves computing the residuals in double
the working precision u, which was used already by Wilkinson in 1948 [41], and was
analyzed by Wilkinson [42] and Moler [36]. Fixed precision iterative refinement, in
which all computations are performed in precision u, was analyzed by Jankowski and
Wozniakowski [31] and Skeel [40]. Motivated by the faster speed of single precision
versus double, in the early 2000s, there was a flurry of work in using lower precision
in the computation of the LU factorization, which is the most expensive part of the
computation, and the working precision elsewhere; see, for example, [33], [1, Section
9]. See [12, Table 1.1] for a summary.

The inclusion of half precision in modern GPUs inspired the development of it-
erative refinement schemes that use three or more hardware precisions. In [12], the
authors define an iterative refinement scheme which uses three potentially different
precisions: uy for the factorization, u for the working precision, and w, for the residual
computation. To allow for general solvers for the correction term d;, the authors also
introduce a fourth precision us, which denotes the “effective precision” of the solve.
For standard iterative refinement, the effective precision of the solve (which involves
triangular solves with the LU factors computed in precision uy), we have us = uy.
Then assuming that uy > u and u, < u?, the relative forward and backward errors
in standard iterative refinement will converge to level u when ko, (A) < u;l.

The reason for introducing this effective precision becomes clear when we use a
more accurate solver. The GMRES-based iterative refinement scheme (GMRES-IR)
introduced in [11] uses GMRES left preconditioned by the computed LU factors in
order to solve for d; in each refinement step. Assuming that GMRES is executed in
working precision u, with the matrix-vector products with the preconditioned matrix
computed in precision u?, GMRES-IR is guaranteed to give forward and backward
errors to the working precision for more ill-conditioned systems than standard iterative
refinement. Again under the assumption that uy > v and u, < u?, the relative forward
and backward errors in GMRES-IR will converge to level u when fioo (4) < u™/?uyt.

The requirement that the preconditioned matrix is applied in double the working
precision within GMRES is unattractive from a performance perspective. In [2], the
authors introduce and analyze a five-precision variant of GMRES-IR. In addition
to the working precision u, factorization precision uf, and residual precision wu, for
the refinement scheme, they also add precisions u, for the working precision within
GMRES and u, for the precision in which the preconditioned matrix is applied to a
vector within GMRES. Setting v = u4 = u, is a variant commonly used in practice.
The cost is that this variant is only guaranteed to converge for a smaller range of
condition numbers; again assuming that uy > » and u, < u?, one obtains relative
forward and backward errors to the level of the working precision for matrices with



Koo(A) < u Y/ 3u;2/ 3, although this restriction is likely overly pessimistic in practice.

Existing analyses of GMRES-IR makes the assumption that an LU factorization
is computed for use as a left preconditioner in GMRES in each refinement step. This
may be undesirable from a performance perspective in the case of sparse A. Even if
A is very sparse, its LU factors may have considerable fill-in. In practice, inexact pre-
conditioners, such as incomplete LU factorization or sparse approximate inverses are
often used. SPAI preconditioners have the advantage that their construction is highly
parallelizable; in theory, each column of the approximate inverse can be computed
independently. Further, their application to a vector involves only a sparse matrix-
vector multiplication, rather than the two triangular solves required for applying LU
factors.

In this work, we explore the potential for the use of sparse approximate inverse
preconditioners within five-precision GMRES-IR. In Section 2 we give a brief back-
ground on sparse approximate inverse preconditioning and mixed precision iterative
refinement. In Section 3, we analyze the error in constructing the sparse approximate
inverse in finite precision and then analyze the behavior of five-precision GMRES-
based iterative refinement schemes based on sparse approximate inverses, giving the-
oretical results on the attainable accuracy and criteria for convergence of the refine-
ment scheme. In Section 4 we present numerical experiments and in Section 5 we
discuss open problems and future work.

2. Background and related work.

2.1. Notation. We first introduce notation which will be used in the remainder
of the text. Of particular importance will be various condition numbers. For a given
norm p, a matrix A, and a vector x, we define

_ A Al

kip(A) = [A7 | Allp,  cond,(A) = [[[AT[|A]]l,,  condy (A, x) I
p

where |A| = (|a;;]). In the case that p is not specified, the infinity norm should
be assumed. We will use u’s to denote unit roundoffs, where subscripts on u will
distinguish between various precisions. For rounding error analysis, we will frequently
use the notation

B ku . cku
I A N

where ¢ is a small constant independent of problem dimension. A superscript on
~ indicates that u has that superscript as a subscript, e.g., Wif = kus/(1 — kuy).
Quantities computed in finite precision will be denoted with hats. In order to make
clear the distinction between iterative refinement (the outer solver) and GMRES (the
inner solver), we will always use the word “steps” when referring to iterative refinement
and “iterations” when referring to GMRES.

Yk

2.2. Sparse approximate inverse preconditioners. The idea behind sparse
approximate inverse (SPAI) preconditioning is to explicitly construct a matrix M =
A~'. This has advantages within Krylov subspace methods since the application
of the preconditioner involves only a matrix-vector product, rather than, e.g., the
triangular solves involved when using LU-based preconditioners. There are many
possible algorithms for computing M; see [9, 7] for a survey and references.

For computing a sparse approximate inverse in unfactored form (i.e., a single
matrix M), a popular approach is based on Frobenius norm minimization, in which
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M is computed as the solution to min yes || —AM || F, where J € B"*" is a prescribed
binary sparsity pattern in the set of all possible binary sparsity patterns S € B"*".
The key feature of this minimization problem is that it can be decoupled as

n
. 2 . 2
(2.1) min |1 — AM ||y = kgljlk{lelgk lex — Amall3,

where Jj, my, and ey are the kth columns of 7, M, and I, respectively. The compu-
tation of M thus reduces to solving a linear least squares problem for each column my
of M. A primary advantage in terms of performance is that these linear least squares
problems are independent, and thus can in principle be solved in parallel.

Early work based on this technique used a fixed sparsity pattern J. The set Jj is
called the extraction set, giving the column indices of A that are relevant for solving
for a column my. The nonzero rows of the submatrix A(:, Jx) are denoted by the
so-called “shadow” of J,

T = ie{l,...,n}:2|aij|7é0 ,

JETk

where a;; is the (4, ) entry of A. Thus each term in the summation on the right in
(2.1) can be reduced to
(2.2) min - [|ex — Apiigl|2,

J (mi)=Tk
where Ak = A(Ik,jk) S Rlzk"‘j’“l, my = mk(Jk) S lekl, e = ek(Ik) S Rlzkl,
and J(my) is the binary sparsity pattern of my. Because the resulting least squares
problems are small, they can be solved directly, for example, via QR factorization.

A deficiency of this approach is that it is difficult in general to select a priori a
sparsity pattern which will produce an effective preconditioner. Common choices in-
clude the sparsity pattern of A, AT, or a power of a sparsified A, although these are not
in general guaranteed to produce effective preconditioners. To overcome this, many
authors have developed iterative approaches, in which one starts with an initial spar-
sity structure and adds nonzeros to this pattern until the constraint ||ex — Amyg|2 < &
is satisfied for some threshold € or a maximum number of nonzeros has been reached.
For algorithms of this type, see, e.g., the work of Cosgrove et al. [15], Grote and
Huckle [23], and Gould and Scott [21].

The algorithm of Grote and Huckle [23] is among the most successful and com-
monly used approaches for computing an SPAI preconditioner [9], and is the focus
of our present work. Motivated by the difficulty of selecting a sparsity pattern that
results in a good preconditioner a priori, the idea in [23] was to develop an adaptive
technique which captures the most important nonzero indices dynamically.

A particular variant of Grote and Huckle’s approach, which appears in [39, Al-
gorithm 4] is shown in Algorithm 2.1. The algorithm takes as input the matrix A,
an initial binary sparsity pattern J, the convergence tolerance ¢, o, which gives the
maximum number of iterations for each column, and (3, which gives the maximum
number of nonzeros that are added to the pattern in each iteration.

Given an initial sparsity pattern J, for each column, the algorithm solves the
least squares problem (2.2) and computes the residual 5 (lines 5-10). If the 2-norm
of the residual is below the threshold e, we are finished for this column. Otherwise,
we proceed with adding entries to J.



The nonzeros entries in 5;, are given by the index set £, in line 14. For every entry
¢ of L}, we can define the set A, which contains the column indices of the nonzero
entries in the /th row of A which are not already in J,. The union of the sets N
gives the set T, which is the set of potential indices to be added to J;. We want to
select only a subset of the “most important” of these indicies to add.

There are various ways of determining which indices are most important. The ap-
proach of Grote and Huckle is to consider a univariate minimization problem, through
which the quantity p;, computed in line 21 gives a measure of the 2-norm of the new
residual if index j is added to Ji. A well-known heuristic (see, e.g., [6]) is to mark
indices as “acceptable” if their p;; is less than the arithmetic mean p; over all j. In
each of the « iterations, we add up to § of the best (smallest p;i) acceptable indices
(lines 26-28).

We note that the QR factorization in line 8 does not need to be recomputed
entirely in each step, but can instead be updated using the QR factorization computed
in the previous step and the entries added to Ay; see [23, Equs. (14) and (15)].
A benefit of the adaptive approach of Grote and Huckle is that the algorithm is
robust with respect to choice of initial sparsity pattern 7. A common choice, also
recommended in [23], is to take the initial J to be the identity matrix. Typical
choices of the other parameters are € € [0.1,0.5], « € {1,...,5}, and 8 € {3,...,8}
[39, Section 3.1.3].

Despite that each column can be computed in parallel, constructing an SPAT pre-
conditioner is often costly, especially for large-scale problems; see, e.g., [6, 9, 14, 19].
The memory requirements for SPAI scale quadratically and the computational cost
cubically in the number of nonzeros per row [19]. Thus the use of low precision for
storage and computation has the potential to significantly reduce this cost. The de-
velopment of efficient sparse approximate inverse computations for modern hardware,
especially GPUs, has been the subject of much recent work; see, e.g., [20, 35, 17, 24].

We note that there are also techniques based on incomplete biconjugation which
can be used to produce sparse triangular factors, so that the approximate inverse is a
product of two matrices approximating the LU factors of A; see, e.g., [8]. Here we do
not consider this approach nor the many other variants of sparse approximate inverses,
including factorized sparse approximate inverses [29], modified sparse approximate
inverses [30], or incomplete sparse approximate inverses [4]. We note that these could
be interesting venues for extending the present work.

2.3. Mixed precision iterative refinement. In Algorithm 2.2 we present a
general three-precision iterative refinement scheme. There are three explicit hardware
precisions involved: u¢, in which the initial approximate solution z¢ is computed, u,,
in which the residual is computed, and u, the working precision in which all other
computations are performed and all quantities are stored.

The effective precision us for the solve in line 5 of Algorithm 2.2 depends on the
precisions and the solver used. In particular, us is defined such that the solver satisfies
the conditions:

(2.3) di = (1 +usE)d;, us|Eilloe <1, and
(2.4) 17 = Adilloo < us(erllAlloolldilloe + c2l|Tilloo),

where FE;, ¢1, and ¢ are functions of n, A, 7;, and us. These two conditions are used
in analyzing the relative forward error and normwise backward errors, respectively.
For simplicity, we will only consider normwise forward and backward errors in this
work, but direct the reader to [12, Section 5] for detailed treatment of componentwise
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Algorithm 2.1 Variant of sparse approximate inverse (SPAI) construction ([39, Al-
gorithm 4])

Input: A € R™", 7 €B™™ a>0,3>0,c>0
Output: Right preconditioner M ~ A~!, M € R"*"
1: for k=1 ton do
2: e = I(:7 k)
3: jk = j(:, k‘)

4: for step = 0 to a do
5: Ik:{ie{l?""n}:Zjejkw‘ijl?éo}
6: Ay = ATy, Tk)
7 er = ex(Zy) - o
8: Compute QR factorization A = QR
9: my = RiléTék
10: S = Akmk — €L
11: if ||5k|l2 < € then
12: break
13: end if
14: Ly =T, U {k}
15: for ¢ € L}, do
16: MZ{jZG@j#O}
17: end for
18: T = Uper, Ne
19: P =0
20: for j € jk do )
=T 2 5
21: pon = (Isullg — G2l )*
22: Pk = Pk + Pjk
23: end for
24: Pk = L%’;l
25: for idx =1 to 8 do
26: j= aTgminjEjk Pik
27: T =Tk Uit pji < pr}
28: Tk = Te\{j}
29: end for
30: end for
31: mg(Jx) = mg
32: end for

backward error. Given a choice of solver with a particular ug along with precisions
uf, u, and u,, the authors in [12] prove the following results about the behavior of
the resulting iterative refinement scheme.

THEOREM 2.1. [12, Corollary 3.3] Let Algorithm 2.2 be applied to a linear system
Ax = b where A is n xn and nonsingular with at most ¢ nonzeros per row and assume
the solver used satisfies (2.3). Then for refinement step i > 0, as long as

(2.5) ¢; = 2us min(cond(A), koo (A) ;) + us|| Ei || oo

is less than 1, the forward error is reduced on the ith step by a factor of approximately
6



Algorithm 2.2 General Iterative Refinement Scheme

Input: n-by-n nonsingular matrix A and length-n right-hand side vector b.
Output: Approximate solution Z to Ax = b.
: Compute LU factorization of A in precision uy.
: Solve Axy = b in precision uy; store g in precision u.
: for i =0,1... until convergence do
Compute r; = b — Ax; in precision u,; store r; in precision u.
Solve Ad; = r; at effective precision ug; store d; in precision u.
Update z;41 = x; + d; in precision u.
end for

IR -

¢; until an iterate T is obtained for which

[ = Zfloo

< 4qu,cond(A, x) + u.
[/l oo

The quantity p; in the above Theorem is defined such that
[A(x = Zi)lloo = pill Allco |l = Zilloo,

where y; satisfies foo(A) ™1 < p; < 1. The insight in [11] is that u; will be very small
at the beginning of the refinement process, and will only grow close to its maximum
once the process is close to convergence. Thus the size of the quantity us||E;|loo will
usually dictate convergence in practice.

THEOREM 2.2. [12, Corollary 4.2] Let Algorithm 2.2 be applied to a linear system
Ax = b where A is n xn and nonsingular with at most ¢ nonzeros per row and assume
the solver used satisfies (2.3). Then for refinement step i > 0, as long as

(2.6) ¢i = (c1hic(A) + c2)us

is less than 1, the residual is reduced in each step by a factor of approximately ¢; until
an iterate T is obtained for which

16— AZ[lce S qu[blloc + [ Allol|Z]lo0);

which indicates that T is a backward stable solution to the working precision.

Thus the quantities us, || E;||oo, ¢1, and ca, which come from the particular solver,
completely determine the convergence conditions for the forward and backward errors
in iterative refinement. The authors in [12] bound these quantities for two differ-
ent solvers: 1) triangular solves using the computed LU factors (SIR), and 2) left-
preconditioned GMRES, where the computed LU factors are used as preconditioners
and the preconditioners and preconditioned coefficient matrix are applied to vectors in
double the working precision (GMRES-IR). The authors in [2] recently extended this
analysis to cover the more general case where the solver is GMRES left-preconditioned
by the computed LU factors run in a working precision 4, where the precondition-
ers and preconditioned coefficient matrix are applied to vectors in a precision .
The variant of GMRES-IR in which v = ug, = u, is attractive from a performance
standpoint and is commonly used in practice.

We summarize the size of these quantities in Table 2.1. Here, f denotes a generic
function, n is the problem dimension, & is the maximum number of GMRES iterations

7



Table 2.1: Summary of sizes of quantities in the assumptions (2.3)-(2.4) for various
solvers as given in [2]. In the table, f denotes a generic function, n is the problem
dimension, k is the maximum number of GMRES iterations in any refinement step,
pn is the growth factor in LU, and A = U121 A for the computed factors L and U.

| SIR GMRES-IR (uy = u,up = u?) GMRES-IR (uy = u, = u)

Us Uy u ) Ug + Uphioo (A)
||EZ||OO f(napn) f(n’kapn)’%og(A) f(nvk’pn)ﬁog(A)
(&1 f(napn) f(n>k7pn)HAHOO f(n7k>pn)||A”00
C2 f(napn) f(n’kapn)ﬁw(A) f(nvk’pn)ﬁoo(A)

in any refinement step, p, is the growth factor in LU, and A =U-1L'4 for the
computed factors L and U.

Substituting the values for us, || F;|/, ¢1, and ¢z from Table 2.1 into Theorems
2.1 and 2.2 shows that for SIR, the forward and backward errors will converge as long
as Keo(A) < u3 ', with a limiting value of qu for the backward error and a limiting
value of qu,.cond(A,z) 4+ u for the forward error.

GMRES-IR with uy = v and u, = u? will have the same limiting values, but
looser constraints on condition number. Using the bound ke (A) < Koo(A)?uF (see
[12, Eqn. (8.3)]), for the forward error, we require roo(A4) < u_l/QuJ?l. For the
backward error, we can use the bound on ||A|s from [11, Eqn. (3.2)] to give the
constraint ko (A) < u=1/%u _1/2; see also [2, Table 2.1]. Note that in the case that
u, = u?, the constraint for the convergence of the backward error to the working
premsmn also becomes koo (A) < u=/2u;! since the backward error is bounded by
the forward error.

From the analysis in [2], for GMRES-IR with u = u4 = u,, using the same bound
on Koo ([1)7 the constraint for convergence of the forward error to the limiting value
i8S Koo (A) < u*1/3u;2/3 and that for the backward error is koo (4) < u*1/3u;1/3. As
above, the constraint for convergence of the backward error is stricter, and thus we
can take the constraint for the convergence of both forward and backward errors to
the limiting value to be koo (A4) < u™'/3u 2/3 in the case u, = u?. We stress that
these constraints are overly strict in practlce and convergence is often observed even
in cases where these conditions are violated; see, e.g., [38].

In order to simplify the presentation and allow easy extension of results, we will
restrict ourselves to left preconditioning, since this has been used in previous works
on GMRES-based iterative refinement; see, e.g., [2, 12]. In [5, Remark 3.5], Arioli and
Duff comment that right-preconditioned GMRES is only backward stable if the pre-
conditioner satlsﬁes certain constraints. For the case of sparse approximate inverses,
this condition is ||M Y2/l Allz &~ 1, where M is the computed sparse approximate
inverse. If we could guarantee this, then it could be shown that right-preconditioned
GMRES is backward stable and we conjecture that similar bounds could be proven
on the quantities in Table 2.1. We note that we could also use right-preconditioned
FGMRES with an SPAI preconditioner within GMRES-based iterative refinement,
although such a result has not yet been formally proven. We leave these tasks as
future work, but note that it is likely that right-preconditioning will work in practice.
In the context of SPAI, right-preconditioning may be preferred when A~! has some
dense rows, since this will yield a sparser approximate inverse [23, pp. 843].
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2.4. Related Work. Along with the resurgence of interest in mixed precision
iterative refinement have come a number of works that build on and expand the work
on GMRES-based iterative refinement, e.g., [11, 12, 1, 2]. In [26], Higham and Mary
develop a new general preconditioning technique based on a low-rank approximation
of the error E = U 'L™'A — I, where L and U are approximate LU factors of
A. A randomized SVD is used to produce this low-rank approximation, and the
preconditioner is applied in the context of GMRES-IR. This technique can apply to
the case where the approximation in LU is due to low precision computation, as well
as other sources of error including using an incomplete LU factorization and a block
low-rank LU factorization. See [3, 27] for other theoretical and experimental results on
the use of block low-rank LU factorization preconditioners within iterative refinement.

In [34], Lindquist, Luszczek, and Dongarra have recently evaluated mixed pre-
cision restarted GMRES (equivalent in some sense to a variant of GMRES-IR) on
a GPU-accelerated node with various preconditioners. They found that the use of
incomplete LU with zero fill-in (ILU(0)) resulted in unfavorable performance (a slow-
down on average). The authors attribute this partially to the fact that sparse trian-
gular solves have limited parallelism for the GPU to exploit.

In the recent work [3], Amestoy et al. extend the work on GMRES-based iterative
refinement to LU factorization methods more appropriate for sparse matrices, includ-
ing those based on block low-rank approximations and on static pivoting strategies.

The present work differs from these recent approaches in that we depart from the
restriction to preconditioning based on LU factorization and instead look at sparse ap-
proximate inverses as preconditioners within mixed precision GMRES-based iterative
refinement. In the following section, we will first analyze the numerical properties of
SPAI preconditioners computed in a given precision with given parameters, and then
evaluate the constraints for convergence of GMRES-IR with SPAI preconditioners.

3. Analysis of SPAI-based iterative refinement. Our ultimate goal is to
prove conditions under which the SPAI-GMRES-IR algorithm (Algorithm 3.1) will
converge and to determine how the precision vy and approximation parameter € should
be related. We first give bounds on the quality of the SPAI preconditioner when it is
computed in finite precision, analogous to those given for the case of exact arithmetic
in [23].

Suppose we want to construct a sparse approximate inverse of a nonsingular
matrix A for use as a left preconditioner, which we will denote P. That is, instead of
solving Ax = b we will solve PAx = Pb. We will construct P using the algorithm of
Grote and Huckle [23] (see Algorithm 2.1), executed in some precision uy. Algorithm
2.1 as stated produces a right preconditioner M. We can obtain a left preconditioner
by executing the algorithm on A7 and then transposing the obtained approximate
inverse, i.e., P = M T We will denote the version of M computed in finite precision
as M.

In contrast to how the method is often used in practice, we will not specify a
maximum number of nonzeros here (i.e., in the extreme case we could allow a fully
dense inverse). More important for our purposes will be the assumption that for each

column 77y, of M , it holds that
(3.1) llex — AT g2 < e.

The way the SPAI algorithm works, we keep iterating, computing a QR factor-
ization of some submatrix A7 of AT (selected by specifying a particular set of row
and column indices) and solving the least squares problem min,;,, ||ATmy —éx||2. The
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vector mmy then gives the nonzero entries in column k of M (corresponding to the
same indices as the rows of AT selected to construct AT). Row and column indices
are added to the set, and the iteration is continued until ming,, ||ATmy — éxll2 < e,
which indicates that (3.1) holds.

We assume that all computations within the SPAI algorithm are performed in a
precision uy. We make the simplifying assumption that the QR factorization of AT
is computed fully, but note again that in practice one only needs to compute a QR
factorization of a smaller block corresponding to the newly added indices; see, e.g.,
[39, Algorithm 5]. We further assume that the QR factorization is computed using
Householder QR (or a method with similar numerical properties, like TSQR [18]).

Now, assuming we impose no maximum sparsity pattern on M , we seek to deter-
mine under what constraint on uy we can guarantee that ||7x|l2 < e can be satisfied,
where 7 = fl,,(ex — ATy, for the computed 7. Here we will assume that no
overflow or underflow occurs during the SPAI computation in precision uy. We note
that to mitigate the risk of this one could use sophisticated scaling techniques such
as those described in [28] and [13]; we use a similar column scaling technique in our
experiments in Section 4. To account for finite precision error, it suffices to assume
that we are on the final iteration for column k, after which we will quit since the con-
dition ||7g||2 is satisfied. Using the backward error result [25, Theorem 20.3], which
says that the computed solution 7 is the exact least squares solution to

min || (ex + Aeg) — (AT + AAT) |2,

M
where |[AAT| < nyleeT|AT| and |Aex| < n7/eeT |ex|, we can then bound
(3.2) Hek—ATﬁLkHQ < n2'~y}: |||ek| + |AT||7/7\”L]€|||2+(1 + n2§/£cond2(A)) ||7‘k||2+0(u§c),

where 7, = e, — ATmy,. Then using standard rounding error analysis, we have

7ll2 < llex — AT 12 + |ATx 2,
where [|AF|l2 < 3 ||lex] + [AT |||, Then
(33) 7kl < n®3) [[lex] + [AT[[7l]], + (1 +n*F conda(A)) [[rxll2 + O(uF),

where the ||A7}||2 factor has been absorbed into the ¥/ in the first term on the right-
hand side.

Recall that our goal is to determine under what constraint on uy we can say that
|7%|l2 < € is achievable, with no restriction on the number of nonzeros in the columns
my. In theory, we could keep increasing the size of the subproblem in solving for the
column of the inverse until we have the full matrix A7, which would mean that in
exact arithmetic, my, is the exact kth column of the inverse of AT, and thus r; = 0.
Thus the second term on the right-hand side of (3.3) will not limit us from satisfying
the stopping criterion ||7%||2 < €, and it can thus be ignored for our purposes. We are
then left with (ignoring higher order terms)

Pillz < 03] [[lex] + |AT ]|, -

Then in order to guarantee that we will eventually iterate to a solution with [|7%]|2 < e,
we should have

(3.4) 3, [llexl + AT [, < e
10



In other words, the problem must not be so ill-conditioned relative to us such that
we can not guarantee that we incur an error less than ¢ just computing the residual.
We note that the dimensional constants here can be a large overestimate, since we in
practice solve the least squares problem with the smaller submatrix A”. We can turn
this into the more descriptive (but less rigorous) bound

conda (AT, my) < €u;1,
as well as an a priori bound of the form
(3.5) condy(AT) < Eu;l.

We note that this is likely quite pessimistic in practice. Note that conds(AT) can be
considerably smaller than k2(A). Perhaps a more useful way to think about (3.5) is
that with a given matrix A and a chosen precision u¢, in order to guarantee success
of the SPAI algorithm, one must set € such that

upcondy(AT) < e.

This analysis echoes what we may intuitively think: the larger we make ¢ (meaning
the more approximate the inverse), the larger the uy we can tolerate. If we require
smaller £, meaning we want a better quality preconditioner, then we must have a
smaller uy to match.

Given that (3.4) is satisfied, we know that we can find a computed solution mi
such that ||7y |2 < e. Writing 7% = ex — ATy, + ATy, we have

lex — ATmkll2 < [Fkll2 + | AT

< e+ ||lerl + AT |l |,
< 2g,

from which we can write the Frobenius norm bound
1T = ATM||p < 2¢/ne.

Note that assuming exact arithmetic, e.g., using uy = 0 in (3.2), the above bound
becomes ||I — AT M||r < \/ne, which is the same bound given by Grote and Huckle
[23, Theorem 3.1]. At this point we can transpose to get the desired bound for the

left preconditioner P=MT , and then convert to the desired infinity norm, giving
(3.6) I — PA|oo < 2ne.

We note that from (3.6) we then also have an a priori bound on the distance from the
computed P to the true inverse of A,

(3.7) P =AY = [(PA=DA Yoo < T = PA||oo||A™ |0 < 2n6[ A7V oo

An important conclusion that we can draw from this analysis, in particular from
the fact that (3.6) is guaranteed as long as (3.5) holds, is that there is no advantage to
using a higher precision in computing the SPAI preconditioner beyond that dictated by
uy &~ econdy L(AT). Using higher precision will have very little effect, since we will end
up with a preconditioner of similar quality. We will demonstrate this observation in
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Section 4 below. Note that this is in contrast to the case of using full LU factorization,
where the quality of the factors scales with the precision used.

Intultlvely, however, we may think that using hlgher precision for uy might result
in a P with fewer (more accurate) nonzeros than a P computed in lower precision.
This can be the case, but not necessarily. We demonstrate this in Figure 3.1 for the
matrices saylrl (left plot) and steam3 (right plot) from SuiteSparse [16], where we
plot the number of nonzeros in the resulting P computed using the SPAT algorithm
(Algorithm 2.1) in single precision (blue squares) and double precision (red circles)
for various € values. Within Algorithm 2.1, we use the identity as the initial sparsity
pattern, 8 = 8, and a = [n/]; this value of « allows the sparse approximate inverse
to fill in as much as needed in order to satisfy (3.1).

For saylr1, there is very little relative difference between single and double preci-
sion in the resulting size of P if anything, single precision results in a P with slightly
fewer nonzeros. For the matrix steam3, the relative difference between single and
double precision is more significant; P computed in double precision has, on average,
about 24% fewer nonzeros than the P computed in single precision. Note that for
both matrices, these choices of € satisfy (3.5) for both single and double precision; see
Table 4.1 for properties of the matrices. We will explore further examples in Section
4.3.

x10

—B—uy = single 500 —B—uy = single |]
5b —©—uy = double| | —O—uy = double

Fig. 3.1: Number of nonzeros in the computed sparse approximate inverse precondi-
tioner P when P is computed in single precision (blue squares) and double precision
(red circles), for the matrices saylril (left) and steam3 (right), for various choices of
€.

3.1. GMRES-based iterative refinement with SPAI. Our goal is now to
bound the relative error in the correction solve when the solver is GMRES left-
preconditioned by the approximate inverse P. For clarity, we present this variant,
which we call SPAI-GMRES-IR, in Algorithm 3.1. We follow and heavily rely on the
analysis of [2], [12], and [11]. Here we will analyze the general five-precision GMRES-
IR variant of 2], in which in addition to precisions uy, u, and w,, u, denotes the
working precision used within GMRES and u, represents the precision in which the
preconditioner or preconditioned linear system is applied to a vector within GMRES.

We first want to bound ks (A), where A = PA. We stress that the condition
number of the preconditioned matrix will not tell us anything about the convergence
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Algorithm 3.1 GMRES-based Iterative Refinement with SPAI Preconditioning
(SPAI-GMRES-IR)

Input: n x n nonsingular matrix A and length-n right-hand side vector b, maxi-
mum number of refinement steps i,,4,, GMRES convergenge tolerance 7, SPAI
parameter €.

Output: Approximate solution z;41 to Ax = b.

1: Run Algorithm 2.1 on AT with parameter ¢ to obtain M; set P = M7”.
2: Compute xo = Pb in precision uy; store xy in precision u.

3: for i =0: 4,4, — 1 do

4

5

Compute r; = b — Ax; in precision u,.; store in precision wu.

Solve PAd; = Pr; via left-preconditioned GMRES with tolerance 7 in working
precision ug, with matrix-vector products with P and A computed in precision
Up; store d; in precision u.

6: Update x;41 = x; + d; in precision u.
7: end for

rate of GMRES (see [22]); here we will use it to bound the relative error after we
obtain a backward error result for the preconditioned system. We can write

A=PA=1-(I-PA),
AV =ATP = (I — (I - PA)™!
(3.8) ~ 1+ (I — PA).

Thus using (3.6), we have

||/~1||OQ <1+ 2ne,

A oo S 1+ 2ne,

which gives
(3.9) Foo(A) < (14 2ne).

We note that this should not be taken as an upper bound but rather as a rough
estimate, since for practical problem sizes, 2ne will likely be greater than 1, and
thus our dropping of higher order terms in the Taylor expansion to get (3.8) may be
dubious. Although (3.9) is not strictly an upper bound, we note that the growth of
koo(A) does generally follow this bound asymptotically. In Figure 3.2, we plot the
condition number £, (A) versus e for two matrices from SuiteSparse [16], saylr1 (Fig.
3.2a) and steam3 (Fig. 3.2b), where the sparse approximate inverses are computed
in single precision (blue squares) and single precision (red circles). As before, we use
the identity as the initial sparsity pattern, § = 8, and a = [n/f]; see Algorithm 2.1.
We additionally plot (1 4 2ne)?, the estimate in (3.9), demonstrating that (3.9) well
describes the resulting condition number of the preconditioned coefficient matrix. We
again note that there is little difference between single and double precision, since
we expect preconditioner quality to depend on e rather than uy as long as (3.5) is
satisfied.

Now we turn our attention to the application of the preconditioner to the right-
hand side 7;. Let the (exact) preconditioned right-hand side be z; = Pr;. Assuming
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—B—u; = single
—O—uy = double R
---- (14 2ne)? T

—B~u; = single

—©-uy = double ! D
---- (14 2ne)?

10° 10°
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
£ I3

(a) saylr1 (b) steam3

Fig. 3.2: koo(A) versus e for matrices saylri (left) and steam3 (right) for SPAI
preconditioners computed in single (blue squares) and double (red circles), compared
with the approximation (3.9).

we apply P to 7; in precision u,, we have
Z=(P+APF,  |AP|<A%IP),
=z + APﬁ_lzi.
We then have the bound
(3:10) 17 = zilloe < VENPIP M llcolzilloo < Vakoo(P)llzilloe S Voo (A2l oo,

under the reasonable assumption that koo (ﬁ) R Koo(A).
Following [11] and [2], we now seck to bound the error in applying PA to a vector
U; in iteration j of the GMRES algorithm. We compute this via

(A+64)0; =@,  |AA| <A2A],
(P+AP)@; =3;,  |AP| <~2|P].

Then we can write the computed vector y; as
Jj = (P+ AP)(A+ AA)YD; = (PA+ APA + PAA)G; = (A + AA))G;,
where
AA' = APA+ PAA
= APP7'PA+ PAAT'AA
= APP7'A+ AATIAA,
for which we can write the bound
1A 2 < AR (IPIP e+ 1A IAll) [AllLe
<A (kr(P) + kp(A)) [ Allr
S Abkr(A)|Allr.
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Thus
Ui = Av; + [,
with .
[ fillso < Anrr(A)AlF|V;2.

Since [2, Eqn. 3.2] is satisfied, we can thus apply Theorem 3.1 from [2], which gives the
result that for some iteration k < n, the left-preconditioned MGS-GMRES algorithm
will produce an approximate solution d; for which

(A+AA)d; =% + AF,
with
(3.11) [|[AA|lr < (B, +737n 2, koo (ADIANE, 1AZ 2 < AL, 122 S 2237, 112l

Using this result together with (3.10), we can bound the normwise relative backward
error by

2i — Ady|oo
(3.12) e S f(n, k) (ug + upkios(A))
| Alloo 1 dilloo + ll2ill 0o

where f(n,k) = n®k'/2. This gives the relative forward error bound

ldi — dill o
”diHoo

Note that from (3.13), we have that for SPAI-GMRES-IR, the quantity us||E; ||
in (2.3) is on the order f(n, k) (uy + Upkoo(A)) Koo(A), and by (3.11), the quantities
c1 and ¢y in (2.4) will be similar to those stated for five-precision GMRES-IR in [2].
The difference will lie in the values of koo (A) and || A p, which here will depend on
the € used in constructing the SPAI preconditioner.

Using the estimate for the condition number of the preconditioned coefficient

matrix in (3.9), we can thus give the rough bound

(3.13) S f(n, k) (g + tphioo (A)) Koo (A).

Id; — dillo

(3.14)
1dil oo

S f(nsk) (ug + upkoo(A4)) (1 + 2n5)2~

Assume we are in the setting where u = u, = ug4, which is commonly used in
practice. Combining (3.14) with (3.5), we thus must have roughly

upconda(AT) S e Su2ro(A)~Y?

in order to guarantee both that the SPAI algorithm will complete and that the
GMRES-based iterative refinement scheme will converge.

We note that the bound (3.12) on the normwise relative backward error that can
be achieved with GMRES in precisions u, and u, assumes that we do not stop the
iterations early. In practice, we will use some stopping criterion 7 within GMRES. If
7 is based on the backward error of the preconditioned system, then (3.12) becomes

||z: — Ad;||oo < max (f(n, k) (ug + Upkoo(A)), 7).

(3.15) = <
[Alloolldilloo + ll2illo
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In theory, we should then set 7 to be on the same order as the other term in the
maximum above if we do not want to affect the convergence conditions. In practice,
however, the convergence conditions are often too strict, and thus we can use a larger
7 and still maintain convergence of the iterative refinement process, perhaps with a
larger ¢;. In practice, choosing 7 is largely done based on empirical observations, and
is a tradeoff between the number of GMRES iterations per refinement step and the
overall number of refinement steps; see, e.g., the discussion and experiments in [2,
Section 4.2].

Comparing the expected behavior of SPAI-GMRES-IR and GMRES-IR with full
LU factorization, we expect that convergence for GMRES with the SPAI precon-
ditioner will in general be slower than GMRES using the full LU factors, at least
when we assume common choices of e. However, the construction and application of
the SPAI preconditioner may be less expensive and more parallelizable than for the
full LU factors. This behavior and the resulting tradeoffs will be strongly problem
dependent.

4. Numerical Experiments. We now turn to an experimental evaluation of
the numerical behavior of SPAI-GMRES-IR. Our experiments are performed in MAT-
LAB R2020a. In these experiments we use four precisions. For half precision, we use
the chop library available at https://github.com/higham/chop and the associated
functions available at https://github.com/SrikaraPranesh/Multi_precision_-
NLA_kernels. For quadruple precision, we use the Advanpix Multiprecision Com-
puting Toolbox [37]. For single and double precision we use the built-in MAT-
LAB datatypes. The code used to generate plots in this work can be found at
https://github.com/Noaman67khan/SPAI-GMRES-IR.

The matrices tested come from the SuiteSparse Matrix Collection [16]. We list
tested matrices and their relevant properties in Table 4.1. In all tests, the right-
hand sides are set to the vector with equal components and unit 2-norm. For the
convergence tolerance in GMRES, we use 7 = 10~* when the working precision is
single and 7 = 10~® when the working precision is double, which responds to roughly
the square root of the working precision. These are the default values which have
been used in previous works, e.g., [2], [12], although as mentioned in Section 3.1, this
parameter must be tuned in practical applications. In Table 4.1, we split the matrices
into two sets, those used with precisions (uy, u, u,) = (single, double, quad), and those
used with precisions (uy, u, u,) = (half, single double), based on whether GMRES-IR
with LU preconditioning converges with the given precisions and value of 7.

In all cases, we set the initial sparsity pattern for SPAI to be the identity matrix.
As noted by Sedlacek [39, Section 3.1.2], this can result in SPAI preconditioners with
zero columns in the case that A has a zero entry on the diagonal. We therefore
restrict ourselves to problems with nonzero diagonal entries, but note that this could
be remedied by either permuting A or using the initial sparsity pattern of A, which,
when SPAI is run on AT guarantees that we obtain a P with nonzero rows [39,
Theorem 3.1].

For SPAI-GMRES-IR, we preprocess the matrices via a column scaling such that
the largest element in absolute value in every column of A7 is 1. A one-sided scaling
was proposed in the context of using low-precision QR factorization to solve least
squares problems in [13, Section 3.2], which is precisely the task we perform in SPAI
construction. The goal of this scaling is to avoid overflow in the low precision compu-
tations. To be precise, we run SPAI on A”D to obtain M, where D is the diagonal
matrix that performs the scaling, and then set P = MTD. For all tests, we use
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Table 4.1: Matrices used in experiments along with their properties. All matrices
come from the SuiteSparse collection [16].

Name n nnz | nnz(A7Y) | Keo(A) | condy(AT)
pores_3 532 | 3474 213712 1.2e+06 1.7e4-05
steaml 240 | 2248 57599 3.1e+07 | 2.8e+03
steam3 80 314 6315 7.6e+10 | 5.6e+03
saylrl 238 | 1128 56644 1.6e+09 | 5.2e+05
bfwa782 | 782 | 7514 458839 | 6.8¢+03 | 1.3e+03
cageb 37 233 1369 2.9e+01 7.5e4-00
gre_115 115 421 13225 1.4e+02 3.7e+01
orsreg_1 | 2205 | 14133 | 4862025 | 7.0e+03 5.9e+03
sherman4 | 1104 | 3786 208674 | 3.1e+03 | 1.2e+403

B = 8, which is in the range suggested by Sedlacek [39]. Since we want to allow the
approximate inverse to fill in as much as necessary so that (3.1) is satisfied, we allow
a to be as large as [n/f].

As a point of comparison, we also provide results for GMRES-IR with full LU
factorization (which in this section we refer to as LU-GMRES-IR) as well as GMRES-
IR with no preconditioner. To enable a fair comparison, for LU-GMRES-IR, we first
test multiple reorderings of the matrix and then choose the one that provides the
least number of nonzeros in L and U. The reorderings tested are reverse Cuthill-
McKee (rcm), approximate minimum degree (amd), nested dissection (nds), and col-
umn count (col). For LU-GMRES-IR, if uy = half produces LU factors containing
NAN or INF, we implement the scaling advised in [28].

We note that for SPAI-GMRES-IR, we use the natural ordering; as noted in
[10, p. 12], there is no expected benefit to reordering for the case of nonfactorized
sparse approximate inverses. We also note that in all variants of GMRES-IR tested
here, including SPAI-GMRES-IR, we use the variant in which u, = u, = u, which is
commonly used in practice.

For each linear system and given combination of precisions, we run SPAI-GMRES-
IR with various values of ¢, LU-GMRES-IR, and GMRES-IR with no preconditioning.
We note that it is incredibly difficult to give an accurate comparison of cost among
the different methods; the relative cost of a GMRES iteration in GMRES-IR without
preconditioning and SPAI-GMRES-IR and LU-GMRES-IR will be different, since the
(preconditioned) coefficient matrix has different structure and density. SPAI-based
preconditioners may also be more inexpensive to apply (and more parallelizable), since
their application involves only a single SpMV rather than two triangular solves. Here
we will give a qualitative comparison of approaches in terms of preconditioner size
and number of GMRES iterations, but we note that high-performance experiments
on large-scale matrices are necessary future work in order to give a quantitative com-
parison.

The tables for each setup give the size of the preconditioner in terms of number
of nonzeros, the resulting condition number of the preconditioned system, as well as
information about the number of GMRES-IR refinement steps and GMRES iterations
per refinement step. For LU-GMRES-IR, the size of the preconditioner is given as
nnz(L + U), where II(QAQT) = LU where @Q is the best reordering among those
tested and II is a permutation arising from partial pivoting. The best reorderings
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are noted in the tables. We stress that quantitative conclusions about the relative
performance of LU-GMRES-IR versus SPAI-GMRES-IR cannot be drawn from the
size of the preconditioner.

In the final column in the tables, the first number gives the total number of
GMRES iterations summed over all refinement steps, and the following tuple gives
in position ¢ the number of GMRES iterations in refinement step i. Note that the
number of refinement steps is given by the number of elements in the tuple.

The best case scenario is that SPAI preconditioning produces a preconditioner
that is sparser than the full LU factorization and still effective in reducing the total
number of GMRES iterations versus the unpreconditioned case. We again stress,
however, that a full picture of expected relative performance cannot be given by
the size of the preconditioner and the number of iterations. In Section 4.1, we give
examples using precisions (us,u,u,) = (single, double, quad) and in Section 4.2, we
use (uf, u,u,) = (half, single, double). Finally, in Section 4.3, we redo the experiments
in Section 4.2 but now using (uf,u,u,) = (single, single, double). These results
demonstrate that there is often not a significant advantage, either in terms of the size
of the preconditioner or the total number of GMRES iterations, to using uy higher
than that dictated by the constraint (3.5). That is, the resulting SPATI preconditioner
will satisfy (3.6) regardless of whether half or single precision is used, and thus we do
not expect a significant difference in the behavior of the iterative refinement process.

4.1. Experiments with (u;,u,u,) = (single, double, quad). Experiments
using the settings (uy,u,u,) = (single, double, quad) are shown in Table 4.2. First,
we observe that it is clear that SPAI-GMRES-IR converges in every case. The po-
tential of SPAI-GMRES-IR is perhaps best exhibited for the matrix steam1. Here,
even with reordering the computed LU factors contain 14,133 nonzeros, compared
to the SPAI preconditioner, which contains 1,140 nonzeros when ¢ = 0.2 and 1, 303
nonzeros when € = 0.1 (note that this is fewer than the number of nonzeros in A4). In
both cases, SPAI-GMRES-IR requires only 14 total GMRES iterations to converge
to double precision accuracy; while this more than required by LU-GMRES-IR, it is
still significantly fewer than the case where no preconditioner is used, which requires
543 total GMRES iterations.

For the matrices pores_3, steam3, and saylrl, the results are as expected. The
SPAI preconditioner, depending on the ¢ parameter used, can have significantly fewer
nonzeros than the LU factors, and the total number of GMRES iterations required
for SPAI-GMRES-IR is somewhere in between that of LU-GMRES-IR and GMRES-
IR with no preconditioning. We again stress that it is difficult to make quantitative
comparisons; although the SPAI preconditioner may have close to the same number of
nonzeros as the LU factors, it may be less expensive to apply and more parallelizable.
We also note that the tradeoff in choosing ¢ is clear: a larger € can lead to a sparser
preconditioner, but a greater total number of GMRES iterations required for the
iterative refinement process to converge.

4.2. Experiments with (uy,u,u,) = (half, single, double). We now turn
to examples using precisions (uy, u, u,) = (half, single, double), the results for which
are shown in Table 4.3. We again note that we have limited ourselves to examples
where the use of half precision does not cause over/underflow in the SPATI construction
despite the scaling used.

From Table 4.3, we can see that SPAI-GMRES-IR indeed converges in every
case, although again we can see that there are clear tradeoffs related to the choice
of e. When we choose a larger ¢, the preconditioner becomes sparser, but also less
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Table 4.2: Comparison of SPAI-GMRES-IR for different ¢ values with LU-GMRES-IR
and GMRES-IR with no preconditioner for test matrices using (us,u,u,) = (single,
double, quad).

Preconditioner | koo(A) | Precond. nnz | GMRES-IR steps/iterations
m | SPAL e=0.5 | 6.6e+03 3560 223(110, 113)
g' SPAI, ¢ =0.4 | 3.8e+03 4871 174(86, 88)
% | Full LU (amd) | 1.0e+00 9706 4(2, 2)
2 None 1.2e+06 0 1314(417, 456, 441)
_ | SPALe=0.2 | 1.5e+00 1140 14(7,7)
8 | SPAL,e=0.1 | 1.5e400 1303 14(7, 7)
3 | Full LU (amd) | 1.9e400 14133 2(2)
@ None 3.1e+07 0 543(158, 193, 192)
v | SPAL =05 | 3.9¢+00 244 31(9, 12, 10)
§ | SPAL e=0.1 | 1.9e+00 403 17(5, 6, 6)
3 | Full LU (amd) | 1.1e400 483 2(2)
@ None 7.6e+10 0 221(61, 80, 80)
| SPAL e=04 | 1.9e+04 1932 195(64, 66, 65)
5 | SPALLe=0.3 | 7.5e+03 3405 89(44, 45)
% | Full LU (amd) | 1.0e+00 3607 5(2, 3)
@ None 1.6e+09 0 658(214, 229, 215)

effective, requiring a greater total number of GMRES iterations to converge. For
example, for the linear system with the matrix sherman4, ¢ = 0.5 leads to a very sparse
preconditioner (nearly diagonal), but requires almost as many GMRES iterations
across all refinement steps as the unpreconditioned case.

For the problem with matrix gre_115, we can see that for the choice of the smaller
€, € = 0.3, the resulting SPAI preconditioner has a greater number of nonzeros than
the LU preconditioner, and is also less effective in terms of reducing the total number
of GMRES iterations.

The matrix orsreg_1 perhaps best exhibits the potential of SPAI-GMRES-IR.
Here, with ¢ = 0.3, the SPAI preconditioner has over 12x fewer nonzeros than the
LU factors and still reasonably improves the convergence rate (5.8x fewer GMRES
iterations than the unpreconditioned case).

4.3. Experiments with (uy,u,u,) = (single, single, double). We now test
the same problems used in Section 4.2, now using single precision instead of half
precision for uy. The results are presented in Table 4.4. The analysis in Section 3
indicates that as long as, say, half precision is sufficient for producing a preconditioner
satisfying (3.5), there is in general no expected benefit to using higher precision in
the SPAT construction in terms of preconditioner quality. We do recall, however, that
the number of nonzeros in the preconditioner may be different when higher versus
lower precision is used. For easy comparison, in Table 4.4, we give in red bracketed
format the corresponding condition number, preconditioner size, and total number of
GMRES iterations from Table 4.3.

For all test problems, notice that the results for SPAI-GMRES-IR either do not
change at all or change only very slightly. In cases where there is a slight difference,
note that it is not necessarily clear that uy = single or uy = half is better. For
example, for the problem with gre_115 and ¢ = 0.5, uy = half leads to 48 total
GMRES iterations whereas u s = single leads to 51. Conversely, for the problem with
orsreg_1 and € = 0.5, uy = half leads to 108 total GMRES iterations whereas u; =
single leads to 97. We note that for both these cases, the SPAI preconditioner has
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Table 4.3: Comparison of SPAI-GMRES-IR for different ¢ values with LU-GMRES-
IR and GMRES-IR with no preconditioner for test matrices using (uy, u, u,) = (half,
single, double).

Preconditioner | koo(A) | Precond. nnz | GMRES-IR steps/iterations
~ | SPAL,e=0.5 | 1.1e+03 6271 164(75, 89)
‘i.!; SPAL £ =0.3 | 5.0e+02 11430 114(54, 60)
2 | Full LU (amd) | 2.1e+00 21838 7(3, 4)
2 None 6.8e+03 0 381(172, 209)

SPAL e =05 | 9.9¢+00 101 16(8, 8)
® | SPAL e=03 | 3.9¢+00 213 12(6, 6)
§ | Full LU (amd) | 1.0e+00 359 2(2)

None 2.9¢+01 0 25(13, 12)

w | SPAL, e =05 | 5.8¢102 725 48(24, 24)
:. SPAI £ =0.3 | 1.8e+01 1719 21(10, 11)
o | Full LU (nds) | 1.0e4-00 1551 2(2)
& None 1.4e402 0 100(49, 51)
~ | SPAL, e =05 | 1.7¢402 9261 108(29, 45, 34)
8 | SPAL ¢ =0.3 | 1.3e+02 11120 61(23, 38)
5 | Full LU (rem) | 2.2e400 133634 9(4, 5)
5 None 7.0e+03 0 352(107, 150, 95)
< | SPAT,e=0.,5 | 1.6e+03 1386 140(67, 73)
é SPAI, ¢ = 0.3 | 5.0e+02 8496 74(35, 39)
% | Full LU (amd) | 1.8e400 14211 5(2, 3)
o None 3.1e+03 0 178(85, 93)

the same number of nonzeros regardless of whether u; = half or uy = single is used.

It is also not necessarily clear that uy = single or u; = half is better in terms of the
size of the preconditioner. For example, for the problem with bfwa782 and ¢ = 0.3,
the SPAI preconditioner has 11,430 nonzeros when uy = half, but 11,470 when uy =
single. For the problem with orsreg_1 and ¢ = 0.3, the SPAI preconditioner has
11,120 nonzeros when u; = half, and 11,025 when u; = single.

In any case, we can see that this data supports our theoretical conclusions: in
general, there is no expected benefit to using a higher precision than that dictated by
(3.5) for SPAI in terms of preconditioner quality. Note that this is in sharp contrast
to the case of LU preconditioning, where the precision used for the LU factorization
makes a significant difference in preconditioner quality. This intuitively makes sense
since LU factorization is a direct algorithm rather than an iterative one like SPAI
that iterates until the stopping criterion is met.

One interesting anomaly that we point out is that from Table 4.4, we can see that
the LU factors can have significantly fewer nonzeros when we use uy = half versus
uy = single. This difference is most evident for the problem with matrix orsreg_1,
where uy = half results in preconditioners with 133,634 nonzeros and u; = single
results in preconditioners with 330,910 nonzeros. We expect this is due to underflow;
the true LU factors likely contain many small elements which become zeros when half
precision is used.
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Table 4.4: Comparison of SPAI-GMRES-IR for different ¢ values with LU-GMRES-IR
and GMRES-IR with no preconditioner for test matrices using (us,u,u,) = (single,
single, double).

Preconditioner Koo (A) Precond. nnz GMRES-IR steps/iterations
~ | SPAL ¢ =05 | 1.1e+03 [I.1e103] 6261 [6271] 166(74, 92) [164]
€ | SPAL =03 | 5.0e402 [5.0e402] | 11470 [11430] 114(54, 60) [114]
£ | Full LU (amd) | 1.0e4+00 [2.1¢+00] | 21848 [21838)] 1(1) [7]
= None 6.8e+03 0 381(172, 209)

SPAT, e = 0.5 | 9.9e+00 [9.9¢-+00] 101 [101] 16(8, 8) [10]
© | SPAL e=0.3 | 3.9e+00 [3.9¢+00] 213 213 12(6, 6) [12]
g | Full LU (amd) | 1.0e+00 [1.0¢+00] 359 [359] 1(1) 2]

None 2.9e-+01 0 25(13, 12)

o | SPAL ¢ =05 | 626102 [5.8¢102] 725 [725] 51(24, 27) |48]
T | SPAL =03 | 1.7e+01 [1.8¢+01] 1739 [1719)] 20(10, 10) [21]
¢ | Full LU (nds) | 1.0e400 [1.0¢-+00] 1556 [1551] 1(1) [2]
o0 None 1.4e402 0 100(49, 51)
= | SPAL e=0.5 | Ldet02 [L.7e+02] | 9261 [0261] 97(25, 40, 32) [108]
® | SPAIL e=0.3 | 1.1e+02 [1.3¢+02] | 11025 [11120] 60(22, 38) [61]
5 | Full LU (rem) | 1.0e400 [2.2¢+00] | 330910 [133634] 1(1) [9]
5 None 7.0e+03 0 352(107, 150, 95)
< | SPAL c =05 | 1.6e+03 [1.6c+03] 1385 [13506] 140(67, 73) [140]
9§ | SPAL e=03 | 5.0e+02 [5.0e+02] | 8499 [8496] 74(35, 39)[74]
& | Full LU (amd) | 1.0e+00 [1.8¢+00] | 14211 [14211] 1(1) [5]
4 None 3.1e+03 0 178(85, 93)

5. Conclusions and future work. In this work we explored the use of sparse
approximate inverse preconditioners within mixed precision GMRES-based iterative
refinement as a method of solving sparse linear systems.

We first analyzed the computation of an SPAI preconditioner in some finite pre-
cision ug. The stopping criterion used in constructing each column of the sparse
approximate inverse M is based on the size of the measured residual norm e; — A7 my,
being less than some user-specified parameter €. Thus for a given €, our analysis
shows that we must use uy < econdy L(AT) in order to guarantee that this stopping
criterion can be achieved. As long as this constraint on uy holds, then the computed
M satisfies the bounds proved for the exact arithmetic case in [23] up to a constant
factor. An interesting point is that there is no significant benefit in terms of resulting
preconditioner quality to using a precision higher than dictated by this level.

We then prove conditions under which GMRES left preconditioned by the SPAI
preconditioner will be backward stable with respect to the preconditioned system. As
long as the constraint uy < econdy 1(AT) is satisfied, meaning that an approximate
preconditioner with parameter ¢ is computable in precision uy, then the constraints
for convergence of five-precision SPAI-GMRES-IR are essentially the same as those
for the five-precision GMRES-IR given in [2]. Our numerical experiments confirm the
expected behavior of SPAI-GMRES-IR.

While we have started with one variant of sparse approximate inverses here, it
is clear that other approximate preconditioners, such as incomplete LU factorization,
factorized sparse approximate inverses, or sparse approximate inverses based on a fixed
sparsity pattern may be suitable to use within mixed precision Krylov-subspace-based
iterative refinement schemes. In particular, we believe that extension of the analysis
here to modified SPAT (see, e.g., [30]) as well as factorized SPAI (see, e.g., [32], [43])
should be straightforward.
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