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Abstract

Dynamical systems have a wide range of applications in mechanics, electrical engineering,
chemistry, and so on. In this work, we propose the adaptive spectral Koopman (ASK) method
to solve nonlinear autonomous dynamical systems. This novel numerical method leverages the
spectral-collocation (i.e., pseudo-spectral) method and properties of the Koopman operator to
obtain the solution of a dynamical system. Specifically, this solution is represented as a linear
combination of the multiplication of Koopman operator’s eigenfunctions and eigenvalues, and
these eigenpairs are approximated by the spectral method. Unlike conventional time evolution
algorithms such as Euler’s scheme and the Runge-Kutta scheme, ASK is mesh-free, and hence is
more flexible when evaluating the solution. Numerical experiments demonstrate high accuracy
of ASK for solving one-, two- and three-dimensional dynamical systems.

Keywords: dynamical systems, Koopman operator, spectral-collocation method

1 Introduction

The Koopman operator, introduced in 1931 by B. O. Koopman [12], is an infinite-dimensional linear
operator that describes the evolution of a set of observables rather than the system state itself. The
Koopman operator approach to nonlinear dynamical systems has attracted considerable attention
recently, as it provides a rigorous method for globally linearizing the system dynamics. Specifically,
because it is a linear operator, one can define its eigenvalues, eigenfunctions, and modes, and use
them to represent dynamically interpretable low-dimensional embeddings of high-dimensional state
spaces, which helps to understand the behavior of the underlying system and construct solutions
through linear superposition [4]. In this procedure, the system dynamics is typically decomposed
into linearly independent Koopman modes even if the system is nonlinear. In particular, as pointed
out in [20, 13, 21], if the dynamics is ergodic but non-chaotic, the spectrum of the Koopman
operator in properly defined spaces does not contain continuous spectra, and the observable of
the system can be represented as a linear combination of eigenfunctions associated with discrete
eigenvalues of the Koopman operator.

The Koopman operator provides powerful analytic tools to understand behaviors of dynamical
systems. For example, dynamical evolution of a finite-dimensional system described by ordinary
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differential equations (ODEs) can be studied by conducting Koopman mode analysis. Such analysis
starts with a choice of a set of linearly independent observables, and the Koopman operator is then
analyzed through its action on the subspace spanned by the chosen observables [19]. Moreover,
it is also shown that the Koopman operator approach can be formally generalized to infinite-
dimensional dynamical systems described by partial differential equations (PDEs), providing new
perspectives on the analysis and control of these nonlinear spatiotemporal dynamics [37, 22, 24, 21].
In addition, ergodic quotients and eigenquotients allow the Koopman operator to be used for the
extraction and analysis of invariant and periodic structures in the state space [5]. Moreover, Mezić
provided a Hilbert space setting for spectral analysis of disspative dynamical systems, and proved
that the spectrum of the Koopman operator on these spaces is the closure of the product of the
“on-attractor” and “off-attractor” spectra [20].

On the computational side, most existing numerical schemes motivated by the Koopman op-
erator are categorized as data-driven methods, as they use spatiotemporal data to approximate a
few of the leading Koopman eigenvalues, eigenfunctions, and modes. In particular, the emerging
computational method dynamics mode decomposition (DMD) [26, 27, 32, 25, 15, 22, 1] as well as
its variant such as extended DMD (EDMD) [36] uses snapshots of a dynamical system to extract
temporal features as well as correlated spatial activity via matrix decomposition techniques. DMD
and EDMD produce results for any appropriately formatted set of data, but connecting these out-
puts to the Koopman operator requires additional knowledge about the nature of the underlying
system in that the system should be autonomous. Later, a modified EDMD [35] was proposed to
compensate for the effects of system actuation when it is used to explore state space during the
data collection, reestablishing the connection between EDMD and the Koopman operator in this
more general class of data sets. A review of many of the DMD variants for approximating the
Koopman operator can be found in Brunton et al [4]. Moreover, theoretical results of identifying
Koopman eigenfrequencies and eigenfunctions from a discretely sampled time series generated by
such a system with unknown dynamics is provided in [7] for a Fourier function.

Our aim in this paper is to provide a numerical method based on the spectral-collocation method
(i.e., the pseudospectral method) to implement the Koopman-operator approach to solving non-
linear ordinary differential equations (ODEs). Unlike the data-driven methods, this approach is
on the other end of the “spectrum” of numerical methods, as it is based on the classical spectral
method [8, 31]. The main idea is to approximate eigenvalues, eigenfunctions, and modes of the
Koopman operator based on its discretized form. Specifically, this method uses the differentiation
matrix in the spectral method to approximate the generator of the Koopman operator, and then
conducts eigendecomposition numerically to obtain eigenvalues and eigenvectors that approximate
Koopman operator’s eigenvalues and eigenfunctions, respectively. Here, each element of an eigen-
vector is the approximation of the associated eigenfunction evaluated at a collocation point. The
modes are approximated by the computed eigenvalues, eigenvectors, and the initial state (or ob-
servable). This work focuses on autonomous systems, and it would serve as a starting point for a
new framework of numerical methods for dynamical systems.

The paper is organized as follows. Background topics are introduced in Section 2. Then, the
adaptive spectral Koopman method is discussed in detail in Section 3. We present numerical results
in Section 4, and the discussion and conclusions follow in Section 5.
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2 Background

2.1 Koopman operator

Borrowing notions from [14], we consider an autonomous system described by the ordinary differ-
ential equations

dx

dt
= f(x), (1)

where the state x = (x1, x2, . . . , xd)⊺ belongs to a d-dimensional smooth manifold M , and the
dynamics f ∶M →M does not explicitly depend on time t. Here, f is a possibly nonlinear vector-
valued smooth function, of the same dimension as x. In many studies, we are concerned with the
behavior of observables on the state space. To this end, we define an observable to be a scalar
function g ∶M → R, where g is an element of some function space G (e.g., G = L2(M ) as in [19]).
The flow map Ft ∶ M → M induced by the dynamical system (1) depicts the evolution of the
system as

x(t0 + t) = Ft(x(t0)) = x(t0) + ∫
t0+t

t0
f(x(s))ds. (2)

Now we define the Koopman operator for continuous-time dynamical systems as follows [20]:

Definition 2.1. Consider a family of operators {Kt}t≥0 acting on the space of observables so that

Ktg(x0) = g(Ft(x0)),
where x0 = x(t0). We call the family of operators Kt indexed by time t the Koopman operators of
the continuous-time system (1).

By definition, Kt is a linear operator acting on the function space G for each fixed t. Moreover,
{Kt} form a semi-group.

2.2 Infinitesimal generator

The Koopman spectral theory [19, 26] reveals properties that enable the Koopman operator to
convert nonlinear finite-dimensional dynamics into linear infinite-dimensional dynamics. A key
component in such spectral analysis is the infinitesimal generator (or generator for brevity) of the
Koopman operator. Specifically, the generator of the Koopman operator Kt, denoted as K, is given
by

Kg = lim
t→0

Ktg − g
t

. (3)

For any smooth function g, Equation (3) implies that

Kg(x) = dg(x)
dt

= ∇g(x) ⋅ dx
dt

. (4)

Denoting ϕ an eigenfunction of K and λ the eigenvalue associated with ϕ, we have

Kϕ(x) = λϕ(x). (5)
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Thus,

λϕ(x) = Kϕ(x) = dϕ(x)
dt

. (6)

This implies that ϕ(x(t0 + t)) = eλtϕ(x(t0)), i.e.,
Ktϕ(x(t0)) = eλtϕ(x(t0)). (7)

Therefore, ϕ is an eigenfunction of Kt associated with eigenvalue λ. Of note, following the conven-
tional notation, the eigenpair for Kt is considered as (ϕ,λ) instead of (ϕ, eλt).

Now suppose g exists in the function space spanned by all the eigenfunctions ϕj (associated
with eigenvalues λj) of K, i.e., g(x) = ∑j cjϕj(x), then

Kt[g(x(t0))] = Kt

⎡⎢⎢⎢⎢⎣∑j cjϕj(x(t0))
⎤⎥⎥⎥⎥⎦ = ∑j cjKt[ϕj(x(t0))]. (8)

Hence,
g(x(t0 + t)) = ∑

j

cjϕj(x(t0))eλj t. (9)

Similarly, if we choose a vector-valued observable g ∶M → R
d with g ∶= (g1(x), g2(x), . . . , gd(x))⊺,

the system of observables becomes

dg(x)
dt

= Kg(x) =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Kg1(x)
Kg2(x)
⋮

Kgd(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= ∑

j

λjϕj(x)cj , (10)

where cj ∈ Cd is called the jth Koopman mode with cj ∶= (c1j , c2j , . . . , cdj )⊺. In general, there is
no universal guide for choosing observables as this choice is problem dependent. A good set of
observables can lead to a system that is significantly easier to solve. An example from [3, 18] is
illustrated in Appendix A.

We finalize the introduction of the Koopman operator with the following simple example. Con-
sider the system dx

dt
= µx with x,µ ∈ R and µ ≠ 0. Then, one can easily verify that ϕn(x) ∶= xn

is an eigenfunction of the Koopman operator associated with this dynamical system, and the cor-
responding eigenvalue is λn = nµ with n ∈ N+ (a similar example is presented in [6]). According
to Equation (9), by setting g(x) = x and let x(0) = x0, we have

x(t) = ∞∑
j=1

cjϕj(x0)eλjt =
∞

∑
j=1

cjx
j
0
eµjt.

Setting t = 0 gives x0 = x(0) = ∑∞j=1 cjxj0, which indicates c1 = 1 and cj = 0 when j ≠ 1. Therefore,
we obtain the solution of the ODE as x(t) = x0eµt.
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3 Adaptive Spectral Koopman Method

In this section, we introduce the adaptive spectral Koopman (ASK) method, which is a numerical
method based on the Koopman operator and the spectral method to solve ODE systems. Before
describing details of this method, we introduce the notations used in this algorithm. Let x(t) denote
the solution of an ODE system with an initial condition x(t0) = x0. Assume t0 = 0 in eq. (2), we
consider solutions in time interval [0, T ] with T > 0. Letter n denotes the number of “check points”
(see details in section 3.4). The radius of the neighborhood of x(t) is denoted by r while γ is a
parameter that controls the update of the neighborhood.

3.1 Finite-dimensional approximation

Based on the preliminaries introduced in Section 2.2, we aim to identify the following truncated
approximation of Equation (9)

g(x(t)) ≈ gN(x(t)) = N

∑
j=0

c̃jϕ
N
j (x0)eλ̃jt. (11)

where ϕN
j are polynomial approximations of ϕj , λ̃j and c̃j approximate λj and cj , respectively.

Next, because dx

dt
= f(x), Equation (4) and Equation (6) indicate that for any eigenfunction ϕ,

Kϕ = f ⋅ ∇ϕ = (f1 ∂ϕ
∂x1
+ f2

∂ϕ

∂x2
+ ... + fd

∂ϕ

∂xd
)

= (f1 ∂

∂x1
+ f2

∂

∂x2
+ ... + fd

∂

∂xd
)(ϕ).

Thus,

K = f1 ∂

∂x1
+ f2

∂

∂x2
+ ... + fd

∂

∂xd
. (12)

Here, we consider the case with d ≤ 3, and adopt the approaches in the spectral-collocation method.
Specifically, our algorithm uses Gauss-Lobatto points for the interpolation of ϕ and approximates
(partial) derivatives with differentiation matrices (see e.g., [11, 28, 10]) in Equation (12). Conse-
quently, the first step is to discretize K.
(1) When d = 1. Let {ξi}Ni=0 be the Gauss-Lobatto points and the polynomial interpolation of ϕ(x)

is

ϕ(x) ≈ ϕN(x) ∶= N

∑
i=0

ϕN(ξi)Pi(x),
where the basis functions Pj are Lagrange polynomials satisfying Pj(ξi) = δij and δij is the
Kronecker delta function. Namely, ϕN(x) is the projection of ϕ(x) on the space span{Pj(x)}Nj=0.
Let ϕN = [ϕN(ξ0), ϕN (ξ1), . . . , ϕN (ξN)]⊺, we have

KϕN = diag(f(ξ0), f(ξ1), . . . , f(ξN))DϕN
∶=KϕN , (13)

where D is the differentiation matrix associated with {ξi}Ni=0 and K is an (N + 1) × (N + 1)
matrix. Here, we abuse the notation to let KϕN = [KϕN (ξ0),KϕN (ξ1), . . . ,KϕN (ξN)]⊺, and
similar notations are used in the following d = 2,3 cases.

5



(2) When d = 2. Let {ξi}Ni=0 and {ηj}Nj=0 be the Gauss-Lobatto points of x1 and x2, respectively.

Every eigenfunction ϕ is now a bivariate function, whose polynomial interpolation ϕN is

ϕ(x1, x2) ≈ ϕN(x1, x2) ∶= N

∑
i=0

N

∑
j=0

ϕN(ξi, ηj)Pi(x1)Pj(x2).
Hence, we define a matrix ΦN as

ΦN =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

ϕN(ξ0, η0) ϕN(ξ0, η1) . . . ϕN(ξ0, ηN)
ϕN(ξ1, η0) ϕN(ξ1, η1) . . . ϕN(ξ1, ηN)

⋮ ⋮ ⋱ ⋮

ϕN(ξN , η0) ϕN(ξN , η1) . . . ϕN(ξN , ηN)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Let D1 and D2 be the differentiation matrices for x1 and x2, respectively, and F1 and F2 be
the matrices of f1 and f2 evaluated at (ξi, ηj). Also, we denote KΦN the matrix with elements(KΦN)ij = KΦN(ξi, ηj). Then, KΦN can be computed as

KΦN = F1 ⊙ (D1Φ
N) +F2 ⊙ (ΦND⊺

2
) ,

where ⊙ denotes the Hadamard product. In the computation, we vectorize ΦN (along columns)
to obtain

Kvec(ΦN) = vec(F1)⊙ ((I⊗D1)vec(ΦN)) + vec(F2)⊙ ((D2 ⊗ I)vec(ΦN))
= [diag(vec(F1))(I⊗D1) + diag(vec(F2))(D2 ⊗ I)](vec(ΦN))
∶=Kvec(ΦN),

where ⊗ denotes the Kronecker product, I is the identity matrix, and K is an (N +1)2×(N +1)2
matrix.

(3) When d = 3. Let {ξi}Ni=0, {ηj}Nj=0, and {ζk}Nk=0 be the Gauss-Lobatto points of x1, x2, and x3,
respectively. The collocation points are then (ξi, ηj , ζk). In this case, ϕ is approximated as

ϕ(x1, x2, x3) ≈ ϕN(x1, x2, x3) ∶= N

∑
i=0

N

∑
j=0

N

∑
k=0

ϕN(ξi, ηj , ζk)Pi(x1)Pj(x2)Pk(x3).
Hence, the values of ϕN at the collocation points can be represented by a tensor ΦN whose
frontal slices are written as

ΦN(∶, ∶, k) =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

ϕN(ξ0, η0, ζk) ϕN(ξ0, η1, ζk) . . . ϕN(ξ0, ηN , ζk)
ϕN(ξ1, η0, ζk) ϕN(ξ1, η1, ζk) . . . ϕN(ξ1, ηN , ζk)

⋮ ⋮ ⋱ ⋮

ϕN(ξN , η0, ζk) ϕN(ξN , η1, ζk) . . . ϕN(ξN , ηN , ζk)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

With the n-mode multiplication in tensor algebra, we arrive at a compact representation of the
approximation,

KΦN = F1 ⊙ (ΦN
×1 D1) +F2 ⊙ (ΦN

×2 D2) +F3 ⊙ (ΦN
×3 D3),

6



where ×p denotes the mode-p tensor-matrix multiplication. Here, D1,D2,D3 are the differentia-
tion matrices, and F1,F2,F3 denote the tensors resulting from f1, f2, f3 evaluated at (ξi, ηj , ζk).
Following the same idea of vectorization, we rewrite the tensor representation as

Kvec(ΦN ) = vec(F1)⊙ ((I⊗ I⊗D1)vec(ΦN ))
+ vec(F2)⊙ ((I⊗D2 ⊗ I)vec(ΦN))
+ vec(F3)⊙ ((D3 ⊗ I⊗ I)vec(ΦN))
= [diag(vec(F1))(I⊗ I⊗D1)
+ diag(vec(F2))(I⊗D2 ⊗ I)
+ diag(vec(F3))(D3 ⊗ I⊗ I)](vec(ΦN))
∶=Kvec(ΦN).

where K is an (N + 1)3 × (N + 1)3 matrix.

In all these cases, the discretized generator K can be represented as a matrix K. For d = 2
and d = 3, the total number of eigenfunctions used in Equation (11) is (N + 1)2 and (N + 1)3,
respectively, instead of (N +1). For brevity, gN is still used to denote the approximated observable
for different d. The derivation of higher dimensional systems amounts to further extensions of the
three-dimensional case by the Kronecker product.

3.2 Eigen-decomposition

Now the eigenvalue problem of the Koopman operator in Equation (5) is discretized as the eigen-
value problem of matrix K, i.e., Kv = λ̃v, where λ̃ ∈ C and v is a complex vector. The vector v is an
approximation of K’s eigenfunction ϕ evaluated at the collocation points and λ̃ is the approximation
of the associated eigenvalue of K. The matrix form of the eigenvalue problem is

KV =VΛ, (14)

where V consists of columns vj and the diagonal elements of Λ are λ̃j. By construction, for d = 1,(vj)i = ϕN
j (ξi) ≈ ϕj(ξi), and for d = 2 or 3, vj = vec(ΦN

j ), where ΦN
j approximates the values of

eigenfunction ϕj at the collocation points. Of note, the collocation points in multi-dimensional
cases are constructed by the tensor product of one-dimensional collocation points, but we have not
specified how to obtain such points, the details of which are given in Section 3.3. Also, we emphasize
that these collocation points are related to x instead of t. In other words, ASK discretizes ϕ(x)
in space instead of discretizing x(t) in time, which is different from conventional spectral methods
for ODEs.

3.3 Constructing the solution

Let us first consider d = 1. By the eigen-decomposition, one can access values of eigenfunctions
at the Gauss-Lobatto points Ξ ∶= {ξi}Ni=0, where ξ0 < ξ1 < . . . < ξN . Therefore, ϕ(x0) can be
approximated when ξ0 ≤ x0 ≤ ξN . To avoid polynomial interpolation, ASK uses an even number
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for N and sets ξN/2 = x0. Based on this setting, we consider a neighborhood of x0 with radius
r, i.e., [x0 − r,x0 + r], where r is tunable. Gauss-Lobatto points are then generated such that
x0 − r = ξ0 < ξ1 < . . . < ξN/2 = x0 < . . . < ξN = x0 + r. Thus, gN is constructed as

gN(x(t)) = N

∑
j=0

c̃jϕ
N
j (x0)eλ̃j t =

N

∑
j=0

c̃jϕ
N
j (ξN/2)eλ̃j t =

N

∑
j=0

c̃j(vj)N/2eλ̃jt, (15)

where vj are eigenvectors of matrix K computed in Section 3.1.
To approximate Koopman modes cj , we set t = 0 in Equation (15), which yields

g(x0) ≈ gN(x0) = N

∑
j=0

c̃jϕ
N
j (x0),

which holds for different initial state x0, e.g.,

g(ξi) ≈ gN(ξi) = N

∑
j=0

c̃jϕ
N
j (ξi), i = 0, . . . ,N,

where ξi are the aforementioned Gauss-Lobatto points. Thus, we can obtain c̃j by solving a linear
system Vc = g(Ξ), where V is defined in Equation (14), g(Ξ) = (g(ξ0), . . . , g(ξN))⊺ and c =(c̃0, . . . , c̃N)⊺. As an example, if g(x) ∶= x, then g(Ξ) = (ξ0, . . . , ξN)⊺.

For d = 2, we consider the neighborhood of x0 = (x10, x20)⊺ as [x1
0
− r, x1

0
+ r] × [x2

0
− r, x2

0
+ r].

Similarly, for d = 3, the neighborhood is [x1
0
− r, x1

0
+ r] × [x2

0
− r, x2

0
+ r] × [x3

0
− r, x3

0
+ r], where

x0 = (x10, x20, x30)⊺. We then generate (N + 1) Gauss-Lobatto points in each direction and use
the tensor product rule to construct multi-dimensional collocation points. In practice, one can
use standard Gauss-Lobatto points in the spectral method such as Legendre-Gauss-Lobatto and
Chebyshev-Gauss-Lobatto points. Now the set of all collocation points is Ξ = {(ξi, ηj)}Ni,j=0 for d = 2
and Ξ = {(ξi, ηj , ζk)}Ni,j=0 for d = 3. Of note, the isotropic set up is applied here for demonstration
purpose, i.e., we use a fixed r in each direction and admit the same number of Gauss-Lobatto points
in each dimension. However, this is not necessarily the optimal choice, and one can use different r
and different numbers of Gauss-Lobatto points in different directions.

Next, since we vectorize matrix (or tensor) ΦN column by column (or slice by slice) as shown
in Section 3.1, ϕj(x0) is again approximated by the “middle” element of vector vec(ΦN

j ), which
leads to

gN(x(t)) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(N+1)2−1

∑
j=0

cj (vj)[(N+1)2−1]/2 eλ̃jt, d = 2;
(N+1)3−1
∑
j=0

cj (vj)[(N+1)3−1]/2 eλ̃jt, d = 3.
(16)

Here, each element of the modes cj = (c̃1j ,⋯, c̃dj )⊺ corresponds to a component of g, and it is com-
puted in the same manner as in the d = 1 case. For example, for d = 2, i.e., g(x) = (g1(x), g2(x))⊺
(correspondingly, gN(x) = (g1N(x), g2N (x))⊺), we have g1N(x(t)) = ∑(N+1)2−1j=0 c̃1jvec(ΦN

j )[(N+1)2−1]/2eλ̃jt.

Consider matrix g1(Ξ) whose elements are (g1(Ξ))ij = g1(ξi, ηj). The modes c1 = (c̃1
0
, . . . , c̃1N )⊺ are

obtained by solving a linear system Vc1 = vec(g1(Ξ)). Similarly, we can compute the modes for
g2N(x). In practice, our algorithm solves the linear system VC = g(Ξ), where C = (c1,c2) and
g(Ξ) = (vec(g1(Ξ)), vec(g2(Ξ))). The modes for d = 3 are computed in the same manner. In
addition, a pseudocode is presented in Appendix B to illustrate how the solution is constructed.
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3.4 Adaptivity

Since we apply a finite-dimensional approximation of the Koopman operator and exploit the La-
grange interpolation to approximate the eigenfunctions, the accuracy of the solution may decay
as time evolves, especially for highly nonlinear systems. To further improve the accuracy, we
propose an adaptive approach to update V,Λ and cj. The main idea is to identify the time
to repeat the procedure described in Section 3.1– Section 3.3. To this end, we set check points
0 < τ1 < τ2 < . . . < τn < T to examine the “validity” of the neighborhood of x(τk). Specifically, the
component of x(τk) = (x1(τk), . . . , xd(τk))⊺ is acceptable if xi(τk) ∈ Ri where

Ri ∶= [Li + γri,Ui − γri]. (17)

Here, Li and Ui are the lower and upper bounds, ri is the radius in the ith direction, and γ ∈ (0,1] is
a tunable parameter. Recall that the isotropic setup is used in this work, thus ri ≡ r. In the initial
step, Li ∶= xi0 − ri and Ui ∶= xi0 + ri, i.e., γ = 1. In practice, one can fix γ = 1 (or other real number in(0,1]) and tune ri only. Hereby, we keep both γ and ri for future extension to anisotropic design
and more advanced adaptivity criterion.

If xi(τk) ∈ Ri for all i, then R1× . . .×Rd is a valid neighborhood of x(τk). Otherwise, we update
all Li,Ui and reconstruct ϕN

j , λ̃j , c̃j to obtain x(t) (t > τk) as follows:
1. Set Li = xi(τk) − ri,Ui = xi(τk) + ri, 1 ≤ i ≤ d.
2. Generate Gauss-Lobatto points and the differentiation matrix in each interval [Lk

i ,U
k
i ]. Re-

peat the procedure in Section 3.1 to compute matrix K.

3. Repeat the eigendecomposition in Section 3.2 to update V and Λ in Equation (14).

4. Compute coefficient cj as in Section 3.3 with the updated V.

5. Construct solution x(t) by replacing eλ̃jt with eλ̃j(t−τk) in Equation (15) (or Equation (16)
for d = 2,3).

Note that the modification of constructing the solution in step 5 is necessary because when an
update is performed, we need to set t0 = τk and x0 = x(t0) = x(τk).

The parameter γ decides how often we update the neighborhood and reconstruct the solution.
By construction, a larger γ demands updating the eigendecomposition more frequently. The ex-
treme case γ = 1 enforces the update at every check point. In this work, we set τk+1 − τk ≡ ∆τ .
Notably, since the solution is discretized in space instead of in time as in conventional ODE solvers,
the check points are different from time grids 0 < t1 < t2 < . . . in those solvers. If we set k = 0, then
no update is made, which indicates that the solution x(t) only relies on the eigendecomposition
based on x0 (see the example pseudocode in Appendix B).

3.5 Properties of the algorithm

In this work x, f ,g are real-valued functions. Now we show that the solutions obtained by ASK
are real numbers, although V,Λ,cj may contain complex values. We start with reiterating a
well-known conclusion:
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Lemma 3.1. If a real matrix has complex eigenvalues, then they always occur in complex conjugate
pairs. Furthermore, a complex conjugate pair of eigenvalues have a complex conjugate pair of
associated eigenvectors.

Proof. Suppose the matrix K ∈ Rn×n has an eigenpair v and λ such that Kv = λv. Let ⋅̄ operator
denote the complex conjugate. Taking the complex conjugate of both sides of the equation, we
have K̄v̄ = λ̄v̄. However, K = K̄ since K has real entries. Thus, Kv̄ = λ̄v̄. The claim follows.

Our main theorem is presented next:

Theorem 3.2. ASK yields real-valued solutions for dynamical systems with real-valued x, f and g.

Proof. We only need to consider the d = 1 case since the solution for high-dimensional cases are
constructed in the same manner. Let v be a eigenvector, then it is a column of matrix V in Equa-
tion (14). It is only necessary to consider the case where v is not a real-valued vector. According
to Lemma 3.1, v̄ is also a column of V. Let u be a row of V−1 such that u ⋅ v = 1 and u ⋅ ṽ = 0,
where ṽ is any column of V other than v. It is clear that ū ⋅ v̄ = 1 and ū ⋅ ṽ = 0. Therefore, ū is also
a row of V−1. Next, as shown in Section 3.3, we compute the modes c as c =V−1g(Ξ). Let cm be
the element of c such that cm = u ⋅ g(Ξ), then ū ⋅ g(Ξ) = u ⋅ g(Ξ) = c̄m is also an element of c.

In the numerical solution, it suffices to consider cmνeλt+ c̄mν̄eλ̄t, where ν ∈ C denotes the middle
element of the eigenvector v. For convenience, we denote ν = A+Bi,λ = C +Di, cm = E +Fi. Here,
A,B,C,D,E,F ∈ R. Then,

cmνeλt + c̄mν̄eλ̄t = (E +Fi)(A +Bi)e(C+Di)t
+ (E − Fi)(A −Bi)e(C−Di)t

= (P +Qi)e(C+Di)t
+ (P −Qi)e(C−Di)t

= (PeCt
+QeCti)eDti

+ (PeCt
−QeCti)e−Dti

= (PeCt
+QeCti)[cos(Dt) + sin(Dt)i]

+ (PeCt
−QeCti)[cos(Dt) − sin(Dt)i]

= 2PeCt cos(Dt) + 2(QeCti) sin(Dt)i
= 2PeCt cos(Dt) − 2QeCt sin(Dt) ∈ R,

among which P = AE −BF and Q = AF +BE.

Remark 3.3. In practice, the imaginary part may be non-zero due to the round off error. In all
numerical examples shown in this work, the magnitude of the imaginary part is extremely small (if
it is non-zero), and we only keep the real part of the solution.

3.6 Algorithm summary

As a summary, Section 3.1 to Section 3.3 present a numerical scheme that solves an autonomous
ODE system using the eigendecomposition and a linear system solver. Section 3.4 introduces a
heuristic adaptivity criterion to repeat the aforementioned procedure at appropriate time points to
further enhance the accuracy. We conclude the algorithm in Algorithm 1.

In the ASK scheme, the neighborhood for all components must be updated in the adaptivity
step. This is because we set the current state of each component to be the midpoint of the corre-
sponding neighborhood to avoid computing interpolation. Also, following the standard practice in
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Algorithm 1 Adaptive spectral Koopman method

Require: n,T,N,x0, r, γ

1: Set check points at 0 = τ0 < τ1 < ... < τn < T .
2: Let Li = xi0 − ri,Ui = xi0 + ri and set neighborhood Ri as Ri = [Li + γri,Ui − γri] for i = 1,2, ..., d,

where ri = r.
3: Generate Gauss-Lobatto points and differentiation matrix Di in [Li,Ui] for i = 1,2, ..., d. Con-

struct collocation points Ξ for d > 1 using the tensor product rule. (For d = 1, Ξ is the set of
the Gauss-Lobatto points.)

4: Construct matrix K using the formulas in Section 3.1
5: Compute eigen-decomposition KV =VΛ

6: Solve linear system VC = g(Ξ), where the lth column of matrix g(Ξ) consists of the lth
component of all collocation points (see Section 3.3).

7: for k = 1,2,3, . . . , n do

8: Let νj be the middle element of the jth column of V. Construct solution at time τk as

g(x(τk)) = ∑
j

C(j, ∶)νjeλ̃j(τk−τk−1), where C(j, ∶) is the jth row of C.

9: if (x(τk))i ∉ Ri for any i then

10: Reset Li = xi(τk) − ri,Ui = xi(τk) + ri and Ri = [Li + γri,Ui − γri].
11: Repeat steps 3 − 6
12: end if

13: end for

14: return g(x(T )) = ∑
j

C(j, ∶)νjeλ̃j(T−τn).

11



the spectral method, we generate Gauss-Lobatto points ξi and the associated differentiation matrix
Di on [−1,1] first, and then scale them to [Li,Ui] as Ui−Li

2
(ξi + 1) + Li and

2Di

Ui−Li
to improve the

computational efficiency. Moreover, it is worth emphasizing again that the isotropic setup (i.e.,
using the same number of Gauss-Lobatto points in each direction and fix ri ≡ r) is not necessarily
the optimal choice, and that the adaptivity in different directions may improve the efficiency of the
algorithm. This is beyond the scope of this work and will be included in the future study.

Remark 3.4. The spectral method has been implemented to solving ODEs. The existing methods
expand solution x(t) with orthogonal polynomials of t, which is again a discretization in time. In
this setting, when f is nonlinear, one needs to solve a nonlinear system. Take a one-dimensional
problem for example, the pseudo-spectral approach requires solving Dy = f(y), where D is the
differentiation matrix, y consists of the value of x(t) at collocation points (i.e., at different t), and
f(y) is a vector of evaluating f at y. Therefore, the accuracy and efficiency rely on the property of
f as well as the performance of the nonlinear system solver, selection of initial points, etc. In other
words, even if a high order polynomial is used to approximate a smooth solution, the accuracy may
be limited by the performance of the nonlinear solver. On the other hand, ASK uses discretization
in space, and the accuracy and efficiency are influenced by the eigen-solver and the linear solver.
These solvers are more mature and stable than nonlinear solvers in general and typically have
(much) better guarantee in accuracy and efficiency.

4 Numerical Results

In this section, we first present the performance of ASK on six nonlinear ODE systems including
d = 1,2,3 in Section 4.1. In each example, we investigate the influence of number of Gauss-Lobatto
points N , number of check points n, and the radius r on the accuracy. The reference solution is
generated by Verner’s ninth order Runge-Kutta (RK9) method [33] with sufficiently small time
step if a close-form solution is not available. Next, in Section 4.2 we compare the efficiency of
ASK with conventional ODE solvers including Euler forward method, fourth order Runge-Kutta
(RK4) method, five step Adams-Bashforth (AB5) method, and four step Adams-Moulton (AM4)
method, since these are common methods used to solve ODEs. These comparisons include error
against number of function calls, where the function refers to f in the ODE. Also, we compare
the error against running time (i.e., wall time) for different methods when evaluating f is costly.
Finally, Section 4.3 shows preliminary study on reusing computed eigenpairs and Koopman modes
for solving new initial value problems. Here, we consider an uncertainty quantification problem
with random initial condition for demonstration purpose. The mean and standard deviation of
the solution are computed by ASK and RK4 to compare the performance. Throughout the nu-
merical examples, ASK employs the Chebyshev-Gauss-Lobatto points. Additionally, we also tested
Legendre-Gauss-Lobatto points but there was no significant difference. (All the MATLAB codes
can be downloaded at https://github.com/Navarro33/Adaptive-Spectral-Koopman-Method)
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4.1 Solving ODEs with ASK

4.1.1 Cosine model

The cosine model is a synthetic model invented for our demonstrative purposes. The governing
ODE is written as

dx

dt
= −0.5cos2(x).

We set x(0) = π
4
and T = 20 in this example. Despite the nonlinearity, the system has a closed-form

solution x(t) = arctan(−0.5t + tan(x0)). We aim to compute the solution at T = 20. The three
experiments use the following parameters:

(a) test of N : n = 200, r = π
20
;

(b) test of n: N = 9, r = π
20
;

(c) test of r: n = 200,N = 9.
In all these tests, we set γ = 0.2. Figure 1 summarizes these results in plots (a), (b) and (c),
respectively. The first test shows the exponential convergence of ASK with respect to N , which is
similar to the conclusions in conventional spectral methods. Test (b) shows that the accuracy does
not change monotonically as n varies given the parameter setting in this work. On the other hand,
using no more than 100 check points is sufficient to obtain good accuracy. The last test illustrates
that the accuracy shows a “V shape” with respect to the radius, i.e., r can not be too large or too
small.

4.1.2 Lotka-Volterra model

The Lotka-Volterra equations model the interactive evolution of the population of prey and preda-
tors [2]. Specifically, it is defined by

dx1
dt
= 1.1x1 − 0.4x1x2,

dx2
dt
= 0.1x1x2 − 0.4x2.

We set x(0) = (10,5)⊺ and T = 20 in this example. The parameters used in three different tests are
as follows:

(a) test of N : n = 200, r = 1.5;
(b) test of n: N = 5, r = 1.5;
(c) test of r: n = 200,N = 5.

In all the tests, γ is set to 0.5. Note that for multi-dimensional systems in the test of radius, all
components share the same radius if it is not specified otherwise. Figure 2 presents the results
of these tests. Similar to the cosine model, the error decreases exponentially with respect to N .
The accuracy is quite stable with respect to the number of check points in this case. Furthermore,
Figure 2c shows that the radius cannot not be too small as in the first example.
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Figure 1: Cosine model: (a) testing number of Gauss-Lobatto points N ; (b) testing number of
check points n; (c) testing radius r.

4.1.3 Simple pendulum

The simple pendulum is well studied in physics and mechanics. The movement of the pendulum is
described by a second order ordinary differential equation,

d2θ

dt2
= − g

L
sin(θ).

Here, θ is the displacement angle, and L denotes the length of the pendulum. The parameter
g is the gravity acceleration. This second order equation can be converted to a two-dimensional
first-order ODE system. To keep the notations consistent, we define x1 ∶= θ and x2 ∶= dθ

dt
. Also, we

set L = g = 9.8 in our numerical experiments. Correspondingly,

dx1
dt
= x2,

dx2
dt
= − sinx1.

We set x(0) = (−π
4
, π
6
)⊺ and T = 20. The parameters in the three tests are as follows:
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Figure 2: Lotka-Volterra model: (a) testing number of Gauss-Lobatto points N (total number of
collocation points is (N + 1)2); (b) testing number of check points n; (c) testing radius r. ◯,◻
denote x1, x2, respectively.

(a) test of N : n = 200, r = (π
8
, π
12
);

(b) test of n: N = 7, r = (π
8
, π
12
);

(c) test of r: n = 200,N = 7.
We set γ = 0.2 in all these tests. The results are presented in Figure 3. Again, we observe exponential
convergence with respect to N in Figure 3a. Figure 3b implies that more check points can improve
the accuracy but the difference is not very large. Figure 3c indicates there exists an “optimal” r

as in the simple pendulum example.
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Figure 3: Simple pendulum: (a) testing number of Gauss-Lobatto pointsN (i.e., (N+1)2 collocation
points in total); (b) testing number of check points n; (c) testing radius r. ◯,◻ denote x1, x2,
respectively.

4.1.4 Limit cycle

The limit cycle is applied to model oscillatory systems in multiple research fields [34]. Here, we
follow the definition,

dx1
dt
= −x1 − x2 + x1√

x2
1
+ x2

2

,

dx2
dt
= x1 − x2 + x2√

x2
1
+ x2

2

.

The closed-form solution is

x1(t) = [1 − (1 −√x1(0)2 + x2(0)2) e−t] cos(t + arctan(x2(0)/x1(0))),
x2(t) = [1 − (1 −√x1(0)2 + x2(0)2) e−t] sin(t + arctan(x2(0)/x1(0))).

We set x(0) = (√2

2
,−
√
2

2
)⊺ and T = 20 in this example. The parameters in the experiments are

specified as follows:
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(a) test of N : n = 200, r =
√
2

6
;

(b) test of n: N = 7, r =
√
2

6
;

(c) test of r: n = 200,N = 7.
We set γ = 0.2 in all these tests. The results shown in Figure 4 reveal similar patterns to the results
of the simple pendulum, except that a very small r can still lead to accurate results.
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Figure 4: Limit cycle: (a) testing number of Gauss-Lobatto points N (i.e., (N + 1)2 collocation
points in total); (b) testing number of checck points n; (c) testing radius r. ◯,◻ denote x1, x2,
respectively.

For this example, we also compared ASK with RK4 at various time within [0, T ]. Given the
closed-form solution xC(t), we computed the errors by ∣xASK(t) − xC(t)∣ and ∣xRK4(t) − xC(t)∣.
Here, RK4 employed M = 200 equidistant time points on [0, T ]. The purpose of this comparison
is to demonstrate that the meaning of the check points in ASK is different from the time grids
in RK4 (and other conventional ODE solvers). In this specific case, we set n = M . As for ASK,

we used N = 9, r =
√
2

8
, γ = 0.2 and the check points are set to be the same as the time points in

RK4. With this set of parameters, ASK constantly outperforms RK4 significantly, as illustrated in
Figure 5. For both components x1 and x2, the errors of ASK remain almost constant at the level of
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10−10. In comparison, the error of RK4 exhibits a periodic pattern, rising slowly from 10−6 to 10−5.
Moreover, Figure 6 illustrates the evolution of the limit cycle model along time. The path decided
by the two components elevates spirally as time evolves. If seen from above, the cross section is an
exact circle.
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10-4

10-2

(a) Error of x1
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10-12

10-10

10-8

10-6

10-4

10-2

(b) Error of x2

Figure 5: Error of the limit cycle solutions on [0, T ]: ◯ denotes ASK and △ denotes RK4.

Figure 6: Limit cycle solution trajectory: ◯ denotes ASK and − denotes the closed-form solutions.

4.1.5 Kraichnan-Orszag model

The Kraichnan-Orszag model comes from the problem raised in [23]. This system is nonlinear and
three-dimensional, defined by

dx1
dt
= x2x3,

dx2
dt
= x1x3,

dx3
dt
= −2x1x2.

We set x(0) = (1,2,−3)⊺ and T = 20. In the three experiments, we employed the following param-
eters:
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(a) test of N : n = 400, r = 1;
(b) test of n: N = 3, r = 0.1;
(c) test of r: n = 400,N = 3.

Also, in all the tests, we set γ = 0.15. The results are presented in Figure 7a. In particular, different
from previous examples, Figure 7b demonstrates that n significantly influences the accuracy. This
is because the Kraichnan-Orszag model exhibited strong oscillations, so it requires more frequent
update of eigenpairs to guarantee high accuracy. We can infer that there is an “optimal” r in the
Kraichnan-Orszag example, as demonstrated by Figure 7c.
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Figure 7: Kraichnan-Orszag model: (a) testing number of Gauss-Lobatto points N (i.e., (N + 1)3
collocation points in total); (b) testing number of check points n; (c) testing radius r. ◯,◻,△
denote x1, x2, x3, respectively.
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4.1.6 Lorenz attractor

The Lorenz attractor was first introduced by Lorenz [17]. It is a highly chaotic system that models
the turbulence in dynamic flows. The governing equations are as follows,

dx1
dt
= 10(x2 − x1),

dx2
dt
= x1(28 − x3) − x2,

dx3
dt
= x1x2 − 3x3.

We set x(0) = (5,5,5)⊺ and T = 10 in this example. Parameters used in the experiments are listed
here:

(a) test of N : n = 500, r = 4;
(b) test of n: N = 5, r = 1;
(c) test of r: n = 500,N = 5.

In all the tests, we set γ = 0.5. The results are summarized in Figure 8. As the Loren attractor
exhibits chaotic behaviour, it requires a greater number of check points. Meanwhile, a relatively
large radius favored the convergence of the algorithm.This is probably because the eigenfunctions
need to be approximated in a larger neighborhood of the solution to include sufficient information
of the dynamics.

Next we compare the accuracy of ASK and RK4 to demonstrate the difference between the
check points and time grids as in the Lorenz attractor example (see Section 4.1.6). In this test,
T = 20, and RK4 uses M = 2000 time steps, i.e., step size ∆t = 0.01. Since the Lorenz attractor does
not have closed-form solutions, RK9 is used to compute the reference. To guarantee accuracy, RK9
used step size ∆t = 0.001, i.e., M = 20000 time steps. On the other hand, ASK was implemented
with n = 2000,N = 5, r = 1, γ = 0.75. For the comparison purpose, we set n =M again and use small
tolerance for the acceptable range. Figure 9 reveals the accuracy of ASK in all three components.
However, unlike the limit cycle case, the error increases as time evolves. Although it rises to around
10−3 at t = 20, ASK still yields an acceptable accuracy for such a chaotic system. In comparison,
RK4’s error ascends to a level that makes it impractical. To obtain an insight of how the Lorenz
system evolves, we plot each of its component in Figure 10. Up to time t = 10, solutions given by
ASK, RK4, and RK9 almost coincide. Nevertheless, RK4 deviates from the other two completely
starting at t = 11. The evolution vibrates violently and does not possess periodicity, which imposes
difficulty on numerical solvers.

The chaos can also be observed in a three-dimensional graph depicting the trajectory, using
the numerical solutions given by ASK. As in Figure 11, the lemniscate shape demonstrates the
complexity of the system.

4.2 Computational complexity

By construction, the computational complexity of conventional explicit scheme solving ODE is
O(M) where M is the number of time steps. In other words, it is M multiplied by a constant that
represents the cost of evaluating function f plus the cost of operations in each time step, which
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Figure 8: Loren attractor: (a) testing number of Gauss-Lobatto points N (i.e., (N +1)3 collocation
points in total); (b) testing number of check points n; (c) testing radius r. ◯,◻,△ denote x1, x2, x3,
respectively.

varies according to the accuracy of the scheme. The computational complexity of ASK depends
on the number of times that eigenfunctions are constructed (and corresponding eigenvalues as well
as Koopman modes are computed). In this construction procedure, ASK needs to perform the
eigendecomposition and solve a linear system. For d = 1 this is not costly because empirically we
set 4 ≤ N ≤ 10, and the size of matrix in the eigendecomposition as well as the linear system is
N × N . But when d > 1, the complexity will increase exponentially with the dimension of the
current setting because we use the tensor product rule to construct the collocation points and the
matrix size is (N + 1)d × (N + 1)d. Hence, ASK can be less efficient than conventional ODE solvers
for high-dimensional systems.

As an example, we present the accuracy and running time of different methods solving the
simple pendulum problem (see Section 4.1.3) in Table 1. Here, the final time T = 20, and we set
n = 200,N = 7,x0 = (−π

4
, π
6
), r = (π

8
, π
12
), γ = 0.2 in ASK. For conventional ODE solvers, we set

number of time steps as m = 1000. It is clear that explicit schemes RK4 and AB5 dramatically
outperforms ASK in terms of computational time at the same accuracy level. Euler forward scheme
is fast but not accuracy because it is a first-order scheme. AM4 is an implicit scheme that requires
solving nonlinear systems in each step. Hence, it is 10 times slower than ASK and is much slower
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Figure 9: Error of Lorenz attractor solutions on [0, T ]: ◯ denotes ASK and △ denotes RK4.

than explicit schemes. But it has higher accuracy in this case. Similarly, the comparison of

Table 1: Error and running time of solving the simple pendulum problem with T = 20. Here,
n = 200,N = 7,x0 = (−π

4
, π
6
), r = (π

8
, π
12
), γ = 0.2 in ASK and m = 1000 (i.e., ∆t = 0.02) for other

ODE solvers.

Algorithms x1 x2 time (s)

ASK 2.5524e-08 1.3242e-08 0.0498
Euler 2.9415e-01 1.4698e-01 0.0008
RK4 9.3583e-09 1.3346e-08 0.0017
AB5 2.9335e-08 1.1873e-08 0.0019
AM4 1.6637e-09 6.4782e-10 0.5835

different methods for Kraichnan-Orszag is presented in Table 2, where T = 20, n = 300,N = 5,x0 =(1,2,−3), r = (0.2,0.2,0.2), γ = 0.15 for ASK, and number of time steps m = 3000 for other ODE
solvers. In this test, ASK has the best accuracy but it is much slower than the explicit schemes.
The gap between the computational time is larger than that in the simple pendulum problem.
Also, the computation time of ASK is only slightly shorter than that of AM4. This is because the
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Figure 10: Lorenz attractor evolution: ◯ and △ denote ASK and RK4, respectively; −− denotes
the reference solutions given by RK9

Figure 11: Lorenz attractor 3D visualization

Kraichnan-Orszag problem is three-dimensional, and, as expected, ASK becomes less efficient.
However, in the comparisons above, the cost of evaluating f in the dynamical system is extremely

low. In the next comparison, we consider an evaluation of f as a function call, and compare the
accuracy of ASK and the explicit solvers against number of function calls. The cosine model
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Table 2: Error and running time of the Kraichnan-Orszag model with T = 20. Here, n = 300,N =
5,x0 = (1,2,−3), r = (0.2,0.2,0.2), γ = 0.15 for ASK and m = 3000 (i.e., ∆t = 1/150) for other ODE
solvers.

Algorithms x1 x2 x3 time (s)

ASK 3.0384e-08 2.3718e-08 8.4070e-08 2.1840
Euler 8.8547e-01 3.2547e-01 4.7061e+00 0.0082
RK4 2.1203e-07 1.6047e-07 6.7413e-07 0.0113
AB5 8.3518e-06 6.6129e-06 2.5169e-05 0.0231
AM4 4.8154e-07 3.8129e-07 1.4022e-06 2.5995

(d = 1), the simple pendulum (d = 2), and the Kraichnan-Orszag problem (d = 3) exemplify the
comparison. The results are provided in Figure 12. Here, the error in the simple pendulum case

was computed by
√

e2
1
+e2

2

2
, where e1, e2 are the errors in x1, x2, respectively. Similarly, the error

for the Kraichnan-Orszag model is
√

e2
1
+e2

2
+e2

3

3
. In this test, ASK starts with a small N and keeps

increasing it by 2 as in the convergence study in Section 4.1. For conventional ODE solvers, we
start with a large time step and then keep reducing it by half. Figure 12(a) indicates that ASK is
superior to all conventional solvers even RK9 for the cosine model (d = 1). For the simple pendulum
(d = 2), RK9 is the most efficient method, while ASK outperforms RK4 and AB5 when number of
function calls is beyond 2000. For the Kraichnan-Orszag model (d = 3), ASK is less efficient than
high-order explicit schemes and can only outperform the Euler forward method. These phenomena
are consistent with the discussion at the beginning of this subsection. Of note, we do not include
conventional implicit solvers in this comparison as they are slower than the explicit solvers with
the similar accuracy level for the examples we consider in this work.

102 103 104

Number of function calls

10-15

10-10

10-5

E
rr

or

(a) Cosine model

103 104

Number of function calls

10-16

10-12

10-8

10-4

100

E
rr

or

(b) Simple pendulum

103 104 105

Number of function calls

10-11

10-7

10-3

E
rr

or

(c) Kraichnan-Orszag model

Figure 12: Comparison of computational efficiency: error against number of function calls. Symbols
◯,+,△,◇,◻ denote ASK, Euler, RK4, RK9, and AB5, respectively.

We note that the comparison of error against number of function calls still can not fully reflect
the efficiency of the algorithms. It seems to be straightforward that the total computational time
of evaluating f is the time of evaluating f once multiplied by the number of function calls. How-
ever, this is not necessarily true in the modern computing tools. For example, in MATLAB and
Python, built-in vectorization or tensorization approaches are used to accelerate the computing. In
other words, evaluating f at different collocation points x can be vectorized and be achieved with
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one function call instead of using a for-loop to evaluate f at each collocation points one by one.
Even though the computational time for this vectorized function call is longer than evaluating f

at one collocation point, it can be much shorter than using a for-loop. Consequently, ASK is more
efficient than conventional ODE solvers when evaluating f is costly. To demonstrate this advan-
tage, we artificially slow down the evaluation of f in the above three tests and compare the error
against computational time in different methods. Specifically, for the cosine model and the simple
pendulum, we replace sine and cosine functions with their corresponding Taylor expansions up to
x1000 (i.e., 500 terms in the expansion); for the Kraichnan-Orszag model, we evaluate f 1000 times
in the code before output its value. In this way, the computational time for evaluating f increases
significantly. We repeat the same tests as in the error against number of function calls study. The
results of error against computational time are presented in Figure 13. It is observed that ASK
outperforms all explicit solvers (even RK9) in the selected error and time ranges. The advantage
of ASK over the conventional solvers becomes less significant as the dimension increases, which
is consistent with the discussion on the complexity. Comparing the results in Figure 13 and the
results in Tables 1 and 2, we can see the impact of cost of evaluating f on the efficiency of different
approaches as we are solving the same two- and three-dimensional problems. These comparisons
indicate that ASK can be more efficient than conventional ODE solvers when evaluating f is costly
because of the build-in parallel mechanism for evaluating f at multiple x.
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Figure 13: Comparison of computational efficiency: error against running time. Symbols
◯,+,△,◇,◻ denote ASK, Euler, RK4, RK9, and AB5, respectively. The time of evaluating f

is artificially increased in the code.

4.3 Reusing eigenpairs and Koopman modes

It is typically necessary to solve an ODE with different initial values in the studying the property of
its dynamics numerically, such as sensitivity analysis, perturbation analysis, uncertainty quantifi-
cation (UQ), etc. In this case, another advantage of ASK in computation is that it can potentially
reuse computed eigenpairs and Koopman modes to facilitate solving the same ODE with different
initial values. Specifically, if (11) is obtained via ASK based on initial value x0. Then, for another
initial value x1 lying in a sufficiently small neighborhood of x0 (e.g., an open ball centered at x0),

it is possible to directly write down the solution as ∑N
j=0 c̃jϕ

N
j (x1)eλ̃jt. Here, the only additional

computation is evaluating ϕN
j (x1) for each j, which is accomplished by Lagrange interpolation

since we computed values of ϕN at the collocation points via eigen-decomposition. Specifically, the
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jth column of matrix V consists of the values of ϕN
j at the collocation points (see Section 3.2). The

applicability of this idea relies on the property of the dynamical system and more comprehensive
study is needed to decided the radius of the neighborhood for desired accuracy at time t.

Even though a systematic study is beyond the scope of this paper, we present an illustrative
example to show the potential of applying ASK to solve an ODE with different initial values
efficiently. Here, ASK solves a dynamical system with random initial values for UQ study. Our
goal is to compute the mean and the standard deviation of the solution at time T . The cosine model
is used here for demonstration, where the cosine function is replaced with its Taylor expansion as
in Section 4.2. Here, Monte Carlo (MC) simulation is leveraged to estimate the mean and standard
deviation of the solution at T = 1, as MC is a state-of-the-art sampling-based UQ method. The
initial value is set as x0 = π

4
θ, where θ ∼ U[0.75,1.25] is a uniform random variable, and we

generate 5,000 samples of θ denoted as θ(1), θ(2), . . . , θ(5000). ASK first solves a deterministic ODE
with x0 = π

4
using parameters N = 8, r = 0.2, after which Lagrange interpolation is applied to

evaluate ϕN
j (0 ≤ j ≤ N) at all the samples of the initial values, i.e., π

4
θ(i) (0 ≤ i ≤ 5000), to directly

construct the solutions. Then, we use the empirical mean and standard deviation of these 5,000
solutions to estimate the mean and standard deviation of the ODE. Particularly, RK4 serves as
a prototypical example of explicit solvers, and set ∆t = 0.1 to solve 5,000 initial value problems
to obtain samples of the solution. Subsequently, the empirical mean and standard deviation are
computed for estimation. We repeat these tests for 1,000 sets of independent samples of θ, and
present the results in Table 3. It shows that the accuracy of ASK and RK4 is similar for this
problem, but the time for solving 5,000 initial values problems (i.e., Average time in the table)
indicate that ASK is much more efficient. Of note, the RK4 implemented here is a vectorized
version solving all initial value problems simultaneously, which is much faster than a for-loop of
5,000 iterations. The error of RK4 for solving each initial value problem is at the level of 10−6,
which is sufficiently small for estimating statistics in this case because the statistical error is at
the level of 10−3. Also, for demonstration purpose, this example does not activate the adaptivity
step in ASK, so we only perform eigen-decomposition and solve the linear system once. A more
systematic study and delicate algorithm design will be included in our future work.

Table 3: Relative errors of estimating mean and standard deviation with random initial values
using 5,000 Monte Carlo simulations. The relative error is computed by dividing the absolute error
by the reference.

Algorithms Error of mean Error of std Average time (s)

ASK 6.1403e-03 ± 4.5974e-03 7.4006e-03 ± 5.5312e-03 0.0031
RK4 6.1403e-03 ± 4.5977e-03 7.4014e-03 ± 5.5306e-03 1.0555

5 Conclusion and Discussion

The ASK method uses the spectral-collocation (i.e., pseudo spectral) method in the state space
instead of in time to solve nonlinear autonomous dynamical systems. It discretizes the generator
of Koopman operator and employs the eigendecomposition to obtain approximation of the eigen-
functions and eigenvalues to construct solutions. Therefore, like the spectral method, ASK is an
expansion-based method to solve ODE systems, in which the basis functions in the expansion are
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approximated eigenfunctions of the Koopman operator. In each numerical example presented in
this work, ASK exhibits exponential convergence as the conventional spectral method. Therefore,
it is suitable for the circumstances where high-accuracy solutions are desired and f is expensive to
evaluate. Different from existing ODE solvers that obtain solutions on mesh grids, ASK does not
need a time mesh and can evaluate the solution at any time. Hence, the resolution of the time
mesh which impacts the solutions of conventional ODE solvers like Runge-Kutta methods does not
influence ASK.

In the ASK algorithm, adaptively updating the eigenfunction approximation in the neighbor-
hood of the solution is necessary because it is challenging to obtain very accurate approximation to
the eigenfunctions, eigenvalues and Koopman modes using the initial condition only, especially for
highly nonlinear systems. When no information (e.g., range of states, regularity of the eigenfunc-
tions) of the system is available a priori, the adaptivity criterion serves as a updating step based
on “posterior error estimates”. Furthermore, tunable parameters r and γ affect the accuracy as
they are related to eigenfunction approximation and the adaptivity criterion. Numerical analysis
based on the spectrum theorem as well as the spectral method is required to systematically under-
stand the convergence and the impact of all parameters on the performance of ASK, which will be
included in our future work.

Regarding the computational complexity, as indicated in Section 4.2, ASK is more efficient
than conventional ODE solvers when it is costly to evaluate f . This advantage benefits from the
vectorization of evaluating function f in modern computing tools. Namely, ASK has the potential
to outperform conventional solvers when evaluating costly function f can be parallelized. Never-
theless, ASK’s efficiency decreases (compared with conventional solvers like Runge-Kutta) as the
system dimension increases since the tensor product rule is applied to construct high-dimensional
collocation points. A possible way of improving the efficiency is to leverage the sparse grid methods
to construct collocation points, which has shown its success in solving partial differential equations
(PDEs) with the spectral method [29, 30]. Following this idea, we demonstrate that combined with
the sparse grid method ASK can solve linear and nonlinear PDEs accurately and efficiently [16].
In this work, the sparse-grid-based ASK manages to solve ODEs systems (semi-discrete PDE) with
dimension up to 100. It is shown to outperform RK4 in efficiency. Also, applying an anisotropic set-
ting, e.g., different number of Gauss-Lobatto points, different radius, different γ in each direction,
can potentially enhance the computational efficiency. Moreover, we provide an illustrative example
on reusing computed eigenpairs of Koopman operator to solve the same ODE with new initial val-
ues. The advantage of ASK over conventional solvers demonstrate its potential in numerical study
of the systems sensitivity, stability, uncertainty propagation, etc.

Furthermore, there are interesting relations between our work and the recently works on con-
structing Koopman operator’s eigenfunction in an appropriate space such as [9, 7]. ASK approxi-
mates eigenfunctions with orthogonal polynomials, whereas the authors use radial basis functions
for the approximation in a reproducing kernel Hilbert spacein [7]. As an analogue, both spectral
methods and radial basis methods are active topics, in the study of numerical PDEs. Also, in [9]
the author uses orthogonal basis and the spectral Galerkin approach in a data-driven setting to
construct eigenfunctions. As a connection, the pseudo-spectral method can be considered as a
Galerkin projection with a special measure. Both theoretical and numerical development of the
ASK method can benefit from these related studies.

Finally, since ASK is based on the Koopman operator, the spectra structure of the operator is
critical in designing the algorithm such as setting parameters. For instance, as pointed out in [7],
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the signal will be spectrally similar to signal generated by a noisy source in the data-driven setting,
if there is a non-empty continuous spectrum. Hence, it will be difficult to distinguish the true
discrete spectral components. Also, the magnitude of the discrete spectral components carried by
the signal may rapidly decay with increasing frequency. For ASK, similar problems may lead to
inaccurate approximation of the solution with a linear combination of eigenfunctions (because the
continuous spectrum is associated with an integral based on an appropriate measure) or numerical
issues when N is large (because the magnitude of eigenvalues may decay rapidly), which requires
further investigation.

A An example of the obervable

As an example, we consider the following nonlinear dynamical system [3, 18]:

dx1
dt
= αx1,

dx2
dt
= β(x2 − x21).

Here, α and β are the inherent parameters of the system. For such a system, appropriate observables
lead to a closed-form solution. In particular, let y ∶= (x1, x2, x21)⊺ be a three-dimensional observable.
Then, the system can be converted to the following linear system,

dy

dt
=
⎡⎢⎢⎢⎢⎢⎣
α 0 0
0 β −β

0 0 2α

⎤⎥⎥⎥⎥⎥⎦
y.

For simplicity, assume x1(0) = x2(0) = 1. Then, we have the closed-form solution

y =
⎡⎢⎢⎢⎢⎢⎣
1
0
0

⎤⎥⎥⎥⎥⎥⎦
eαt +

−2α

β − 2α

⎡⎢⎢⎢⎢⎢⎣
0
1
0

⎤⎥⎥⎥⎥⎥⎦
eβt +

⎡⎢⎢⎢⎢⎢⎣
0
β

β−2α

1

⎤⎥⎥⎥⎥⎥⎦
e2αt =

⎡⎢⎢⎢⎢⎢⎣
eαt

−2α
β−2α

eβt +
β

β−2α
e2αt

e2αt

⎤⎥⎥⎥⎥⎥⎦
.

Equivalently,

x1 = eαt, x2 = −2α
β − 2α

eβt +
β

β − 2α
e2αt.

B An example pseudocode

We demonstrate a pseudo code (in MATLAB) of solving dx
dt
= cos2(x), which summarizes the steps

presented in section 3.1–section 3.3. The MATLAB code generating Chebyshev-Gauss-Lobatto
points and the associated differentiation matrix can be found in [31].

f = @(x) cos(x).^2; % Function f

x0 = pi/4; % Initial condition

r = 0.1; % Radius of the neighborhood (tunable)

N = 4; % Number of collocation points (N+1 in total)

T = 5; % Final time

28



% Generate collocation points and the differentiation matrix

% on [x0-r, x0+r]

[quad_pnt, diff_mat] = cheb(N, x0-r, x0+r);

% Compute eigenpairs of the Koopman operator

K = diag(f(quad_pnt))*diff_mat;

[eig_vec, eig_val] = eig(K, ’vector’);

% Compute coefficients (Koopman modes)

coef = eig_vec\quad_pnt;

% Construct solutions at time T

sol = real(eig_vec(N/2+1,:).*coef’*exp(eig_val*T));

When the adaptive update in ASK is activated (see section 3.4), we only need to repeat this
pseudocode (as a subroutine) with an updated initial condition x0 and final time T .
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