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Abstract. We investigate the maximum size of graph families on a common vertex set of
cardinality n such that the symmetric difference of the edge sets of any two members of the family
satisfies some prescribed condition. We solve the problem completely for infinitely many values of
n when the prescribed condition is connectivity or 2-connectivity, Hamiltonicity, or the containment
of a spanning star. We also investigate local conditions that can be certified by looking at only a
subset of the vertex set. In these cases a capacity-type asymptotic invariant is defined and when
the condition is to contain a certain subgraph this invariant is shown to be a simple function of the
chromatic number of this required subgraph. This is proven using classical results from extremal
graph theory. Several variants are considered and the paper ends with a collection of open problems.
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1. Introduction. Celebrated problems of extremal combinatorics may get an
exciting new flavor when the presence of some special structure is imposed in the
condition. A prominent example is the famous Simonovits—Sés conjecture [38] proven
by Ellis, Filmus, and Friedgut [17], which determines the maximum possible cardi-
nality of a family of graphs on n labeled vertices in which the intersection of any two
members contains a triangle. (The result of [17] shows, along with several far reaching
generalizations, that the best is to take all graphs containing a given triangle, just as
it was conjectured in [38]. This is clearly reminiscent of the Erdés—Ko—Rado theorem
[20].) As another example we can also mention the Ramsey type problem investigated
in [26] that was also initiated by a question of Sés and can be considered as a graph
version of the first unsolved case of the so-called perfect hashing problem. (For details
we refer to [26]).
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In this paper we study several problems we arrive at if the basic code distance
problem (how many binary sequences of a given length can be given at most if any
two differ in at least a given number of coordinates) is modified so that we do not
prescribe the minimum distance of any two codewords but require that they differ in
some specific structure. In particular, just as in the Simonovits—Sés problem, we seek
the largest family of (not necessarily induced) subgraphs of a complete graph such
that the symmetric difference of the edge sets of any two graphs in the family has
some required property. We will consider properties like connectedness, Hamiltonicity,
containment of a triangle, and some more. Formally, all of these can be described
by saying that the graph defined by the symmetric difference of the edge sets of any
two of our graphs belongs to a prescribed family of graphs (namely those that are
connected, contain a Hamiltonian cycle, or contain a triangle, etc.).

Let F be a fixed class of graphs. A graph family G on n labeled vertices is called
F-good if for any pair of distinct G, G’ € G the graph G & G’ defined by

V(GG =V(G) =V(G) =[],
where [n]={1,...,n} and

E(Go @) ={e:ec(E(G)\ E(G))U(E(G)\ E(G))}

belongs to F.

Let Mx(n) denote the maximum possible size of an F-good family on n vertices.
We are interested in the value of Mz(n) for various classes F. We will give exact
answers or both lower and upper bounds in several cases.

We mention that codes where the codewords are described by graphs already
appear in the literature. In [40], for example, Tonchev looked at the usual code
distance problem restricted to codes whose codewords are characteristic vectors of
edge sets of graphs. Gray codes on graphs are also considered (see [32]), where the
graphs representing the codewords should have some similarity properties if they are
consecutive in a certain listing. Problems analogous to the present ones, though
restricted to special graph classes, were also considered in [27,14]. A very interesting
result along these lines is the one in [29)].

This paper is organized as follows. In section 2 we give a general upper bound
that will turn out to be sharp in several of the cases we consider. In section 3 we
consider classes F defined by some global criterion as connectivity or 2-connectivity,
Hamiltonicity, or containing a full star, that is, a vertex of degree n—1. We determine
Mz (n) for infinitely many values of n and for all n in the first and the last case. In
most of the cases when we give sharp bounds it is via also solving the problem we
call dual: we give the largest possible size of a graph family for which the symmetric
difference of no two of its members satisfies the original requirement. The case of
the full star is an exception in this sense, nevertheless we also solve the dual problem
in that case for all even n by using a celebrated lemma of Shearer. In section 4 we
consider classes F defined by local conditions. This means that for certifying the
condition it is enough to see just a special part of the graph pair at hand. A capacity-
type asymptotic invariant is natural to define in these cases. It turns out that when
the requirement is that the pairwise symmetric differences contain a certain subgraph,
then this asymptotic invariant depends only on the chromatic number of the graph
to be contained. We also discuss the case when the above containment is required in
an induced manner, and obtain similar results in this case. The final section contains
a collection of open problems.
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2. A general upper bound. To bound Mz(n) for various graph classes F it
will often be useful to also consider the related problem of constructing large graph
families in which no pair satisfies the condition prescribed by F.

DEFINITION 1. For a class of graphs F let Dx(n) denote the mazimum possible
size of a graph family on n labeled vertices (that is, each member of the family has [n] =
{1,...,n} as vertex set), the symmetric difference of no two members of which belongs
to F. Determining Dx(n) will be referred to as the dual problem of determining

M]:(TL) .
Note that denoting by F the class containing exactly those graphs that do not
belong to F we actually have

that is, the requirement of having no symmetric difference in F is clearly the same as
saying that all symmetric differences belong to the complementary family 7. Never-
theless, we will use the Dx(n) notation to emphasize the dual nature of the problem
in those cases.

LEMMA 2.1. For any graph class F we have
Mz(n) - Dr(n) < 2(2),

Proof. Let us define a graph Hx whose vertices are all the possible (simple) graphs
on the vertex set [n]. Connect two such vertices if and only if the corresponding pair
of graphs have their symmetric difference belonging to . Then by definition we have

Mxz(n)=w(Hz) and Dx(n)=«a(HF),

where w(H) and «(H) denote the clique number and the independence number of the
graph H, respectively. Observe that Hr is vertex-transitive, (in fact, it is a Cayley
graph of the group ZQ(Q)). Indeed, if G; and G5 are two graphs forming vertices of
Hz, then taking the symmetric difference of all n-vertex graphs forming vertices of
Hyx with the graph G; @ G is an automorphism of Hx that maps G; to G5. Since
a vertex-transitive graph H always satisfies o(H)w(H) < |[V(H)| (this can be seen
by using that the fractional chromatic number x ;(H) always satisfies w(H) < xs(H),
while if H is a vertex-transitive graph, we also have x(H) = ‘Z((g))‘; cf. [36]), the
statement follows. O

The above lemma makes it possible to bound Mz(n) from above by bounding
Dx(n) from below. In particular, whenever we construct two families of graphs .4 and
B on [n] such that A, A’ € A implies A®A’ € F and B, B’ € B implies B&B' ¢ F, while
|A||B| = 2(3), then we know that |A| and |B| realize the optimal values Mz(n) and
Dx(n) for such families. Below we will see several cases when this simple technique
can indeed be used to obtain these optimal values. An exception to this phenomenon
is also presented by Theorems 6 and 7.

Remark 2.2. Tt is worth noting that Lemma 2.1 can be proven in a different
way, with no reference to the fractional chromatic number. Indeed, if G1,...,Gy is
an F-good family, while T1,...,T),, is a family satisfying the conditions of the dual
problem, then all the symmetric differences of the form G; @ T are different, implying

km < 2(;) This is true because if G; ® T; and G, ® Ts; would be the same for
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some {3,5} # {r,s}, then (G; ®T;) ® (G, ® Ts) would be the empty graph that could
also be written (by commutativity and associativity of the symmetric difference) as
(Gi® G,) ® (T; ®Ty). This would mean that G; ® G, and T; & T are two identical
graphs. But if one of them is the empty graph (that is, G; = G, or T; = T), then
the other cannot be empty, and if both are nonempty, then one of them belongs to F
while the other one does not, so this is impossible. O

3. Global conditions.

3.1. Connectivity. When we speak about the class of connected graphs in the
following theorem, we mean graphs with a single connected component, and hence
without isolated vertices.

THEOREM 1. Let F. denote the class of connected graphs. Then
]\4]:c (n) = 2”_1.

Proof. First, we give a very simple dual family B.. Let it consist of all graphs on
[n] in which the vertex labeled n is isolated. Clearly, |B.| = 2("") (that is the number
of all graphs on [n — 1]) and n is also isolated in the symmetric difference of any two
of them, so no such symmetric difference is connected, This gives Dr_ (n) > 2("2")
and thus by Lemma 2.1 we have

Now we show that this upper bound can be attained. Let the family A. consist
of all those graphs on [n] that are the vertex-disjoint union of two complete graphs
(where each vertex belongs to one of them) including the case when one of the two is on
the empty set. Clearly, the number of these graphs is just half the number of subsets
of [n], that is exactly 2"~1. All we have to show is that the symmetric difference of
any two of these graphs is connected. Choose two arbitrary graphs G and G’ from
our family. Let G be the union of complete graphs on the complementary vertex sets
K and L, while G’ be the same on K’ and L'. Let A=KNL',B=L'NL,C=LNK',
and D= K'NK. It is possible that one, but (if neither of K, L, K*, L¢ is empty) only
one, of A, B,C,D is empty. The edges of G & G’ are all the edges of the complete
bipartite graph with partite classes AU C and B U D, so it must be connected. O

With just a little more consideration one can also treat the case of 2-connectedness
at least for even n.

THEOREM 2. Let Fo. denote the class of 2-connected graphs. Then if n is even,
we have

M].‘2C (’I’L) =9on=2

Proof. The proof is a modification of the previous one. Therefore, we use the
notation introduced there. The construction given there may result in symmetric
differences that are not 2-connected only if AUC or BU D contains only one element.
For even n this can be avoided if we consider only such graphs in our construction
where the bipartition of [n] defining the individual graphs has an even number of
elements in both partite classes K and L. This proves the lower bound.

For the upper bound we consider all graphs in which the vertex n is either isolated
or it has one fixed neighbor, say n — 1. The symmetric difference of any two such
graphs is not 2-connected, since n has at most one neighbor in it. The number of
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such graphs is just twice the number of graphs in which n is an isolated point, that

is, 2 "2+ proving the matching upper bound by Lemma 2.1. 0

Remark 3.1. The upper bound proven in Theorem 2 clearly holds also for odd n
but we have not found a matching construction in general. For n =3 a triangle and
the empty graph would do, still achieving the upper bound. But for larger odd n the
best we could do is to take only those graphs from our construction for which in the
corresponding bipartition the smaller partition class has an odd number of elements
if n=1 (mod 4) and it has an even number of elements if n =3 (mod 4). The number

of graphs obtained this way is 2772 — ((75"_3)2}2) O

Remark 3.2. Changing the graphs to their complements in the proofs of Theo-
rems 1 and 2 makes these graph families vector spaces over the 2-element field, while
they still satisfy the conditions as the symmetric differences do not change by com-
plementation (or by taking the symmetric difference of all elements with any fixed
graph which is the complete graph in case of complementation). (|

It does not sound surprising that if we step further on to k-connectedness for
k > 2, then the problem becomes rather more complicated. Nevertheless, if we insist
on linear codes, that is graph families closed under the symmetric difference operation,
then for k = 3 we can still determine the largest possible cardinality for infinitely many
values on n using Hamming codes.

THEOREM 3. Let Fs. be the class of 3-connected graphs, and let MJ(T?C (n) denote
the size of a largest possible linear graph family on vertex set [n] any two members of
which have a 3-connected symmetric difference. If n =2F — 1 for some integer k > 2,
then

O

o (n) — 2n7k:71'

Proof. First, we prove that Dr, (n) > n2(">") holds in general. Consider the
family of all graphs on vertex set [n] in which the degree of vertex n is at most 1.
There are exactly n2("2") such graphs. The symmetric difference of any two of these
graphs is at most 2-connected, since the vertex n has degree at most 2 in all these
symmetric differences. This proves the claimed inequality, and by Lemma 2.1 this
implies Mz, (n) <2"!/n.

It is well known that if a family of subsets of a finite set contains the empty set
and is closed under the symmetric difference operation, then the cardinality of this
set must be a power of 2. This follows immediately from linear algebra and the fact
that such a family forms a vector space over GF(2); cf., e.g., Lemma 3.1 in Kozlov’s
book [31] where a simple combinatorial proof of this fact is also presented. Since a
linear graph family code on [n] can be viewed as a collection of subsets of E(K,,), this
implies that M;-?C (n) is a power of 2. Since we obviously have M%)C (n) < Mz, (n),
the upper bound proved above implies M](_-i)c (n) <29 with d = |log, %2”‘1J giving

M.;_l;’)c (n) S 277.7]671

for n=2F — 1,k > 2, which proves the required upper bound.

For the lower bound consider the Hamming code Cp(n) with length n = 2% — 1
that exists for every k > 2. (For a nice quick account on Hamming codes, see, e.g.,
[10].) Tt is a linear code with minimum distance three that consists of 2"~* binary
codewords having the property that if ¢ = (¢1,...,¢,) belongs to the code, then so
does ¢ = (¢1,...,Cy) also, where ¢; = 1 — ¢;. For each codeword ¢ € Cy(n) consider
the bipartition of [n] into the subsets K, Le, where Ko ={i:¢; =0}, Lc={i:¢; =1}
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and the complete bipartite graph G, 1. with partite classes K., L.. Note that by
the above mentioned property of Hamming codes we have ¢ € Cy(n) if and only
if ¢ € Cy(n) and thus since Gk, 1, = Gr,,1., We get 1|Cy(n)| = 2"~F~1 different
complete bipartite graphs this way. All we have to prove is that the symmetric
difference of any two of our graphs is 3-connected. This is equivalent to show that if
¢/ #c,c, then the cardinality of both partite classes of Gk, . ® Gk ,.L ,, that is, of
(KeNK)U(LeNLy)and (KeNLy)U (KN Le) is at least three. However, this
immediately follows from the fact that the codeword ¢’ must differ from both ¢ and
C in at least three coordinates. This completes the proof. ]

3.2. Hamiltonicity. A graph is connected if and only if it contains a span-
ning tree. Next, we consider what happens if we require the containment of specific
spanning trees: a path in this subsection and a star in the next one.

THEOREM 4. Let Fpp denote the class of graphs containing a Hamiltonian path.
Then for infinitely many values of n we have

M]:Hp (n) = 2n—1.

In particular, this holds whenever n=p or n=2p — 1 for some odd prime p.

To prove the above theorem we will refer to the following old conjecture that is
known to be true in several special cases. To state it we need the notion of perfect 1-
factorization. It means the partition of the edge set of a graph into perfect matchings
such that the union of any two of them is a Hamiltonian cycle.

PERFECT 1-FACTORIZATION CONJECTURE (P1FC) (Kotzig [28]). The complete
graph K, has a perfect 1-factorization for all even n > 2.

This conjecture is still open, in general; however, it is known to hold in several
special cases, for example, whenever n = p + 1 (Kotzig [28]) or n = 2p for some odd
prime p (Anderson [8] and Nakamura [33]; cf. also Kobayashi [24]). For a recent
survey, see Rosa [34], according to which the smallest open case of the conjecture is
n = 64.

Proof of Theorem 4. Since Hamiltonian paths are connected, it follows from the
proof of Theorem 1 that 27! is again an upper bound. Now we show that it is also a
lower bound whenever the P1FC holds for n+ 1. (Note that if the conjecture is true,
then this means that our statement holds for all odd numbers at least 3, while for 1
it is void.)

Let n be an odd number for which K, 11 has a perfect 1-factorization M and v
a fixed vertex of K,, 1. Note that deleting the edge incident to v from all matchings
belonging to M we obtain n matchings of K, such that the union of any two of them
is a Hamiltonian path in K, := K, 1 \ {v}. Now consider all those subgraphs of K,
that can be obtained as the union of an even number of these n matchings. Clearly,
the symmetric difference of any two of them is also the union of at least two of these
matchings and thus contains a Hamiltonian path. The number of graphs obtained
this way is 277!, matching the upper bound. 0

The case of Hamiltonian cycles can be treated essentially the same way.

THEOREM 5. Let Fy. denote the class of graphs containing a Hamiltonian cycle.
For all even values of n for which the P1FC holds, we have

M]:Hc (n) = 2n_2'

In particular, this is the case if n=p-+1 or n=2p for some odd prime p.
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Proof. Since Hamiltonian cycles are 2-connected, it follows from the proof of
Theorem 2 that 2”2 is again an upper bound.

Let n be an even number for which the P1FC holds, and let M be a perfect 1-
factorization of K,,. Note that M contains n—1 matchings (indeed the edge-chromatic
number of K, for even n is n — 1). Now consider the 2"~2 graphs we can obtain as
the union of an even number of matchings from M. Clearly, the symmetric difference
of any two of them contains a Hamiltonian cycle. |

Remark 3.3. Since Hamiltonian cycles are 2-connected graphs the proof of The-
orem 5 obviously gives an alternative proof of Theorem 2 for those values of n for
which the P1FC is known to hold. (The situation is similar for Theorems 4 versus 1.)
On the other hand, the construction in the proof of Theorem 2 utterly fails to give a
good lower bound for the value of Mg, (n) investigated in Theorem 5. Indeed, the
symmetric difference of two graphs in the construction given in the proof of Theorem
2 contains a Hamiltonian cycle if and only if the sets denoted by AUC and BU D in
that proof both have cardinality 5§ which happens exactly when the partition classes
of the partitions (K, L) and (K’,L’) are orthogonal in the sense that by representing
these bipartitions by characteristic vectors consisting of +1 and —1 coordinates in
the obvious way, we get a collection of vectors that are pairwise orthogonal. So their
number cannot be more than just n and we can give exactly n such vectors if and
only if an n x n Hadamard matrix exists. ]

3.3. Containing a spanning star. We have seen in the previous subsection
that if we want every symmetric difference to contain a spanning tree which is a path,
then for infinitely many values of n our family can be just as large as if we did not want
more than just the connectedness of these symmetric differences. In this subsection
we show that if the required spanning tree is a star, then the largest possible family
is drastically smaller.

THEOREM 6. Let Fg denote the class of graphs containing a spanning star, that
18 a vertex connected to all other vertices in the graph. Then we have

n+1 if nisodd,

n if n iseven.

Mzg(n)= {

Proof. First, we prove the upper bound. Let Gi,...,G,, be an Fg-good family
on the vertex set [n]. Consider the complete graph K, whose vertices are labeled
with the graphs G1,...,Gy,. For each edge {G;,G;} of this graph assign an element
h € [n] for which h is adjacent to all other elements of [n] in the graph G; @ Gj.
By the definition of Fg-goodness such an h exists for every pair of our graphs. Now
observe that if an element a € [n] is assigned to two distinct edges e and f of our
graph K,,, then e and f must be independent edges. Indeed, if that was not the case
then we would have e = {G;,G;}, f = {Gi, Gy} for some ¢, j, k € [n] and a would be a
full-degree vertex (that is, one connected to all other vertices) in both of the graphs
G; ® G, and G; ® Gy. But since G; ® G, = (G; & G;) ® (G; ® G},), that would mean
that @ is an isolated vertex in G; @ G, so no vertex of this latter graph can have full
degree contradicting the Fg-goodness of our family. Thus our assignment of vertices
from [n] to the edges of our K,, partitions the edge set of K, into sets of independent
edges (every partition class consisting of the edges with the same assigned label). In
other words, it defines a proper edge-coloring of K,,. This means that the number of
possible labels, which is n, should be at least as large as the edge-chromatic number
Xe(Kpm) of K. Since the latter is m — 1 for even m and m for odd m, turning it
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around we obtain that for odd n we must have m < n + 1 and for even n we must
have m <n.

Now we show that the upper bound we proved is sharp. First, assume that n is odd
and consider a complete graph K, 11 on the vertices vy, ..., v,41 along with an optimal
edge-coloring ¢: E(K,,4+1) — [n] of this graph. This edge-coloring partitions F(K,11)
into n disjoint matchings M, ..., M,,, where M consists of the edges colored j for
every j € [n]. Now we construct the graphs Gi,...,Gp41 by telling for each potential
edge ij of the complete graph on [n] which G’s will contain it and which ones will
not. Consider the edge ij and the union of the matchings M; and M; (note that
these matchings are in the “other” complete graph on n+ 1 vertices). This union is a
bipartite graph on the vertex set {vy,...,v,41} with two equal size partite classes A
and B. Let ij be an edge of the graph G, if and only if vy, € A. (So ij will be an edge
of exactly half of our graphs Gy, ...,Gp41.) Do this similarly for all edges of K,,, the
complete graph on vertex set [n]. This way we defined our n+ 1 graphs. We have to
show that they form an Fg-good family.

To this end consider two of our graphs, say Gj, and G. The edge {vp, vi } has got
some color in our coloring ¢, call this color j. This means that {v, vx} belongs to the
matching M;. We claim this means that j € [n] is a full-degree vertex of Gj, ®Gy. The
latter is equivalent to the statement that every edge j7 incident to the point j appears
in exactly one of the graphs G}, and G. But this follows from the way we constructed
our graphs: when we decided about the edge ji we considered the matchings M; and
M; and the bipartite graph their union defines. Since {vj, v} € Mj;, the points vy,
and v are always in different partite classes of this bipartite graph, so whichever was
called A, exactly one of v, and v belonged to it. Thus the edge ij was declared to
be an edge of exactly one of G}, and G. Since this is so for every i # j, j is indeed a
full-degree vertex in G, ® Gy.

Assume now that n is even. Then n — 1 is odd and we can construct graphs
Gi,...,G, on vertex set [n — 1] ={1,...,n — 1} as given in the previous paragraph.
These are not yet good, however, since we have an nth vertex that does not appear yet
in any of the graphs. Note that we have n—1 matchings M, ..., M,,_ involved in the
construction so far whose indices are just the first n — 1 vertices of our graphs. Think
about the additional vertex n as the index of an additional “matching” M, that has
no edges at all. We decide about the involvement of the edges ni (i <n) in our graphs
analogously as we did for the earlier edges: Consider the bipartite graph M; U M,,,
which consists of just the edges of M;, so it is a perfect matching on the vertex set
{v1,...,v,}. Let the two partite classes defined by this perfect matching be A and B
and add the edge ni to the graph Gy, if and only if vy, belongs to A. Now we can prove
analogously to the odd case that the symmetric difference of any two of our graphs
contains a vertex of degree n — 1. Consider G}, and G. The edge between vy, and vy
in the auxiliary complete graph belongs to exactly one of the matchings M; and every
edge ij is in exactly one of the graphs G;, and Gy if i € {1,...,57— 1,7+ 1,...,n}.
This completes the proof. ]

The following remark is due to Gédbor Tardos [39].

Remark 3.4. The statement and proof of the above theorem can also be presented
in a more compact form as follows. There exists m graphs on vertex set [n] forming
an Fg-good family if and only if x.(K;,) < n. The proof is essentially the same as
what was shown above but in the second part we do not have to distinguish between
odd and even n, rather just say that Mi,..., M, are the color classes of a proper
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edge-coloring of K, (some of which may be empty) and then define the graphs
G1,...,G,, the same way as above. O

The only graph family code proven to be optimal and nonlinear (or not the coset
of a linear code) in this paper is the one appearing in the above Theorem 6. This is
also the first case so far when the upper bound is proven without the use of Lemma
2.1. This suggests the question of what could be said about the dual problem in this
case. The next theorem solves this dual problem for even values of n also showing
that Lemma 2.1 would not give a sharp upper bound for Mz, (n).

THEOREM 7. Ifn is even, then

Dr.(n)=20(:)"%
When n is odd, then we have

n

2(3) =" < Dr (n) <2(3)-3%.

For the proof we will need the following celebrated result from [13] (see also
Corollary 15.7.7 in [7]).

Shearer’s Lemma (see [13]). Let S be a finite set, and let Ay,..., Ay be subsets
of S such that every element of S is contained in at least k of the sets Ay,..., An.
Let M be a collection of subsets of S, and let M; ={TNA;:T e M} for 1<i<m.
Then

IMPF<T]IMil.
i=1

Proof of Theorem 7. We will prove

2(8)=181 < Dr_(n) <2(5)-%
that implies both the even and the odd case. For the lower bound fix a subgraph T" of

K, with the minimum number [%] of edges such that no vertex is isolated and take
all possible subgraphs of K, that contain none of the edges of T. The number of such
subgraphs is 2(2)=31 and no two of them has a symmetric difference that contains
all edges incident to any fixed vertex. This proves the lower bound.

For the upper bound consider a graph family M that satisfies the condition that
no two of its elements have a symmetric difference with a vertex of degree n — 1. For
i=1,...,nlet S; be the set of n —1 edges (of K,,) incident to vertex i. Then for any
T,T" € M we cannot have E(T")NS; = S; \ (E(T) N S;), that is, E(T) and E(T")
cannot be complementary on any .S;. So if M; denotes the family of graphs obtained
by taking the projection of all graphs from M to the edge set S;, then |M;| <2772,
Since each edge of K,, appears in exactly two of the sets S;, we can apply Shearer’s
lemma to these sets with k£ =2. This gives

=1

Taking square roots we get the upper bound. 0

Note that if we restrict our attention to linear graph families for the dual problem
treated in Theorem 7, then using again that the cardinality of such a family should
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be a power of 2 (cf. the similar argument in the proof of Theorem 3) we get that our
lower bound is also sharp for odd values of n.

4. Local conditions. In the previous section we investigated Mz(n) in cases
when the required symmetric differences contain specific spanning subgraphs; there-
fore, to check whether these conditions are satisfied we have to consider our graphs
on the whole vertex set. Now we turn to families F defined by containing some fixed
small finite graphs, so the nature of these conditions will be local.

4.1. General local conditions.

DEFINITION 2. A graph class L defines a local condition if it has the property
that whenever Hy is an induced subgraph of Hs and Hy belongs to L, then so does
also Ho. In short, we will refer to such an L as a local graph class.

Note that the above definition implies that whenever two graphs F' and G are
in the £-good relation (that is, FF & G € L), then any F’ with F'[U] 2 F and G’
with G'[U] 2 G for some U C V(F') = V(G’) (that is, F’ and G’ induce subgraphs
isomorphic to F' and G, respectively, on the same subset U of their vertex set) are
also in the £-good relation. This means that if two graphs are in this relation, then
there is always some local certificate for this.

Here are some examples of local graph classes.

1. L={H :L C H} for some fixed finite simple graph L. That is, £ contains
all graphs that contain a (not necessarily induced) subgraph isomorphic to
L. When L is such a family we will use the simplified notation My (n) for
M[: (n)

2. L={H:LC;,q H} for some fixed finite simple graph L. That is, £ contains
all graphs that have an induced subgraph isomorphic to L. When L is such
a family we will use the simplified notation My, jna(n) for Mz (n). (Note that
although the above two examples give different notions, the word “induced”
is indeed needed in Definition 2.)

3. L=Codq :={H : Cor+1 C H for some integer 1 <k}, that is, Cogqq contains all
graphs that contain an odd cycle.

4. For some fixed integers h and ¢ we can define Ly o= {H :3U CV(H),|U| =
h,|E(H[U))| = ¢}, that is, Ly, ¢ is the class of all graphs that have an induced
subgraph on h vertices with exactly ¢ edges.

In the following we prove some general results related to M, (n) for local graph
classes £ and will further investigate the special case belonging to our first example
above in the next subsection. In subsection 4.3 we will focus on Mk, (n) and Mc,_,,(n).
In the final subsection we discuss the behavior of the functions My, jnq(n) mentioned
in the second example above.

The next proposition gives a straightforward upper bound on the value of M, (n).
It is in terms of ex(n,L) that, as is usual in extremal graph theory, denotes the
maximum number of edges a graph on n vertices can have without containing any
L € L as a subgraph.

PROPOSITION 8. For any local graph class L
Mg (n) < 2(3)ex(n0),
Proof. Consider an n-vertex graph H satisfying |E(H)| = ex(n, £) and containing

no subgraph isomorphic to any L € £. The family of all subgraphs of H clearly
satisfies the requirements of the dual problem of M(n). This is because no subgraph
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of H can have a subgraph belonging to £ and the symmetric difference of two such
subgraphs is also a subgraph of H so such a symmetric difference can also not contain
any L € £. This family has size 2¢*("£)  thus the claimed upper bound follows from
Lemma 2.1. O

Proposition 8 and our following results will justify the relevance of the following
notion in our current setting.

DEFINITION 3. The rate Re(n) of an optimal graph family code on n vertices
satisfying the requirement prescribed by the local graph class L is defined as

Re(n) = logy M (n).

n(n—1)

We will soon see that the value limsup,,_, ., Rz (n) is strictly positive for any £
belonging to this section. We will use the following theorem due to Wilson to show
that the limit actually exists for all local graph classes.

Wilson’s Theorem (see [42]). For every finite simple graph T there exists a thresh-
old no(T') such that if n>no(T) and the following two conditions hold, then the edge
set of the complete graph K, can be partitioned into subgraphs each of which is iso-
morphic to T. The two conditions are as follows:

1. (3) is divisible by |E(T)|;
2. n — 1 is divisible by the greatest common divisor of the degrees of wvertices
i T

Note that the two conditions in the above theorem are obviously necessary. The
decomposition of K, in the conclusion of the theorem is called a T-design when it
exists; cf. [1].

THEOREM 9. Let L be an arbitrary fized local graph class. Then the value
lim,, o Re(n) exists and is bounded from below by Rr(n) for every n.

Proof. Let n be an arbitrary natural number, and let G = {Gy,...,Gp,} be an
optimal graph family code for £ with V(G;) = [n],i € {1,...,m}, that is, one with
m = Mg (n). By Wilson’s theorem a K,-design exists for Ky, whenever N is large

enough and both n—1 divides N —1 and (72’) divides (g ) Take such an N and consider
N(N-1)

the K,-design on Ky consisting of the subgraphs KM, ..., K(") where r = o (n=1)

and each K@ is isomorphic to K,. Now let g; = {ng),...,G%)} be an optimal
graph family code for £ on V(K©) for every j € {1,...,7}. (Obviously, we can
choose each G; to be isomorphic to G.) Now define a graph family code on Ky for £
as the collection of graphs that can be written in the form of G4 := U;zngjj), where
a=(ay,...,a,) runs through all possible sequences satisfying a; € {1,...,m} for every
i. Since there are m" such sequences a, this way we have m” different graphs in our
family. They indeed form a graph family code for £ since for any two of them, G,
and G there is some j for which a; # b; and thus G4 ® Gb 2ind Ga; © Go; 2ina L for
some L € L. This implies Mz (N)>m" and thus

Rc(N)

Y

logy m” = logy M(n) = Re(n).

2
n(n—1)

The requirements for N are satisfied if N =kn(n —1) 4+ 1 and k is large enough.
(Also for N =kn(n—1)+n and large enough k but considering the former is enough
for our argument.) Since M,(n) is clearly monotone nondecreasing in n (as we can
always ignore some vertices and consider a graph family code only on the rest), we

2
N(N-1)
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can write that for any kn(n — 1) +1 <4 < (k4 1)n(n — 1) we have M,(i) > m"
(kw,(n;1)+1) (kn(n;l)+1)

(%)

for r = . Introducing the sequence b; := m" for r = whenever

kn(n—1)+ 12§ 1 < (k4 1)n(n—1) we can write

n

. 2 N 2
hirglorolf -0 logy M, (i) > hirgg}f HE) log,, b;

(kn(n;l)+1)

> liminf logy, m (2)

koo ((FHTR0-D))
2
(kn(nfl)Jrl) 9

= liminf 2
k— o0 ((’H‘l)g("—l)) n(n—1)

logym = R (n).

This proves that lim,_, . Rz (n) exists and is equal to sup,, Rz (n). O

Remark 4.1. The above proof is similar to proving that the limit defining Shan-
non capacity of graphs exists which is usually done using Fekete’s lemma. Here,
however, there are some technical subtleties (because of the divisibility requirements
for N) that made it simpler to present a full proof than to refer simply to Fekete’s
lemma. U

In view of Theorem 9 the following definition is meaningful.

DEFINITION 4. The distance capacity (or distancity for short) of a local graph
class L is defined as

DC(L):= lim Rz(n).

n—roo
Based on Turédn’s celebrated theorem [41] (cf. also, e.g., in [16]) and the famous
theorem of Erdés and Stone [22], Erdés and Simonovits [21] proved that if £ is an
arbitrary family of graphs, then
ex(n,L) ] 1
Xmin(ﬁ) - 1,

where xmin(£) =minges x(L) and x(G) denotes the chromatic number of graph G.
(We assume that ymin(£) > 2. For the case when L contains some edgeless graph, see
Remark 4.10.)

Note that Proposition 8 and the above result determining the order of magnitude
of ex(n, L) has the following immediate consequence for the distancity.

4. lim
(41) BT

COROLLARY 10. For any local graph class L with Xmin(L) > 2 we have

1

poB) < -1

4.2. Containing a prescribed subgraph. Now we focus on local graph classes
mentioned in our first example after Definition 2: we have some fixed finite simple
graph L and consider £ = {H : L C H}. As said above in this case we will use
the notation My (n) for M, (n) and, similarly, we will also denote R, (n) and DC(L)
by Rp(n) and DC(L), respectively. We prove that in this case the upper bound of
Corollary 10 is always sharp.

THEOREM 11. For any fized graph L we have

1

DO(L) =~
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For the proof we will use a result by Erdés, Frankl, and Rodl [18] about the
number F,, (L) of graphs on n labeled vertices containing no subgraph isomorphic
to L.

Erdés—Frankl-Rédl Theorem (see [18]). Suppose x(L)=r>3. Then

F,(L) = 2¢(mKr)(1+o(1))
Note that this gives
Fo(L) = 2(8) (1= xi=r o)

by (4.1) (in fact, already directly by Turén’s theorem).

While the proof of the Erdés—Frankl-R6dl theorem is based on Szemerédi’s Reg-
ularity lemma, a similar result for bipartite L easily follows from (4.1) (or from
the Ké&vari-Sés—Turdn theorem [30]). Indeed, it implies that if L is bipartite, then

F,(L)< ( G;) ) for any € > 0 provided n > ng(¢), and that implies the claimed state-

€
ment. (To see the latter, one can use the well-known fact (cf., e.g., Lemma 2.3 in [15])

that
£ _ gth(@)+o(1)
ot ’

where h(z) = —zlogy z—(1—2)logy(1—x) is the binary entropy function and 0 < < 1
is meant to be such that ot is an integer. Applying this for ¢ := (7}) and a = ¢ we obtain

that for any 0 < e < 1 the number (6((22)) is more than 2°(3) for some positive §.)
2

Proof of Theorem 11. It follows immediately from Corollary 10 that the right-
hand side is an upper bound on the left-hand side so we only have to prove the reverse
inequality.

To this end let G, denote the graph whose vertices are all possible graphs on n
labeled vertices and two are connected if and only if their symmetric difference does
not contain L as a subgraph. (Note that this is just the complementary graph of Hx
used in the proof of Lemma 2.1 when F is set to be the local graph class £ belonging
to our problem.) Then M (n) is equal to the independence number a(Gy) of Gp.
Clearly, G, is vertex-transitive (cf. the argument in the proof of Lemma 2.1 for Hr),
in particular, it is regular. Since the degree of its vertex representing the edgeless
graph is just F,, (L), we get (denoting the maximum degree of a graph G by A(G))
that

V(G _ V(GL)|
A(GL)+1  F.(L)+1

SO RN e )
9(5) (1= xzh=s +o(1)
by the Erdés—Frankl-Rodl theorem (and by the above discussion also for bipartite

graphs). Putting this inequality into the definition of DC(L) the required result
follows. U

Mp(n)=a(Gr) >

COROLLARY 12. Let G be a set of graphs, each containing at least one edge, and
let Lg be the local graph class containing all graphs that contain at least one G € G as
a subgraph. Then

1 B 1
Xmin(£g) =1 Xmin(G) — 1’

DC(Lg) =
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In particular,

1
DC(Coaa) = DC(K3) = 3

Proof. The second statement is clearly a special case of the first one, so it is
enough to prove the latter. It is a straightforward consequence of Corollary 10 that
the left-hand side is bounded from above by the right-hand side. For the reverse
inequality note the trivial fact that DC(Lg) > DC(G) for any G € G. Applying this
for some G € G that satisfies x(G) = mingeg X(G) = Xmin(Lg) the statement follows
from Theorem 11. d

Remark 4.2. Tt is straightforward from the foregoing that the above results also
determine for any graph family G the asymptotic behavior of the value D, (n) be-
longing to the dual problem. Indeed, by Lemma 2.1 and Corollary 12 we have that
lim,, o0 7o~ log Dr,(n)<1-DC(Lg)=1- m while a matching lower bound

2
follows from the argument in the proof of Proposition 8. Thus we have

o
Xmin(g) -1

for any graph family G. This means that by taking all subgraphs of a graph with
the largest possible number of edges without containing a subgraph from G we obtain
asymptotically a largest family of graphs, no two of which have any G € G in their
symmetric difference. (|

. 2
A Ty loe Deg () =1 -

4.3. Containing a triangle or an odd cycle. In this subsection we are in-
vestigating My, (n) for small values of n and the simplest 3-chromatic graph, which is
the triangle K3. We will also look at the analogous problem when K3, the cycle of
length 3 is replaced by the family of all odd cycles.

For L = K3 the bound of Proposition 8 gives us Mg, (n) < 2(3)—(% 3] Below
we show that this upper bound is tight whenever n is at most 6.

The first part of the following proposition is very simple and we present it only
for the sake of completeness.

PROPOSITION 13. We have Mg, (3) =2 and Mg, (4) =4.

Proof. For n =3 the statement is trivial: take the empty graph and a triangle on
three vertices, this 2-element family already achieves the value of the upper bound
which is 2 for n=3.

For n =4 we give the following four graphs on the vertex set {1,2,3,4} by their
edge sets. Let

E(Go)=0, E(G1)=1{12,23,13,34},
E(G2) =1{23,34,24,14}, FE(G3)=1{12,13,24,14}.

It takes just an easy checking to see that the symmetric difference of any two of these
graphs contains a triangle. Since the upper bound in Proposition 8 is also 4 in this
case, this proves that M, (4) = 4. 0

Remark 4.3. Note that both of the above simple constructions are closed under
the symmetric difference operation, that is they form a linear space over GF(2) when
the graphs are represented by the characteristic vectors of their edge sets. In fact,
the second construction could also be presented as the vector space generated in this
sense by any two of the graphs G1,Gs, G3. |
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PROPOSITION 14.
M, (5) = 16.

Proof. The value of the upper bound in Proposition 8 gives 16 for n = 5, so
we only have to prove that 16 is also a lower bound. To this end we will give a
set of graphs forming a vector space in the sense of Remark 4.3. We will give this
vector space by a set of generators, although in a somewhat redundant way. (Our
reason to keep this redundancy is that the construction has more symmetry this
way.)

Think about the vertices {1,2,3,4,5} as if they were given on a circle at the
vertices of a regular pentagon in their natural order. Consider the graph with edge
set

E(Gy):={12,23,13,35}.

Let G2, G35, Gy, G5 be the four graphs we obtain from G by rotating it along the circle
containing the vertices so that vertex 1 moves to 2, 2 to 3, etc. Thus we have

E(Gs)={23,34,24,41}, E(G3)={34,45,35,52),
E(G4) ={45,51,41,13}, E(Gs)={51,12,52,24}.

Now we consider the linear space the characteristic vectors of the edge sets of these
five graphs G;,i € {1,2,3,4,5} generate. These graphs can be defined as the elements
of the family G ={Gy:I C [5]}, where

G = ®ic1Gl,

meaning that V(Gr) = [5] and E(Gy) contains exactly those edges that appear in an
odd number of the graphs G; with i € I.

Note that every edge of the underlying K5 on [5] appears in exactly two of the
graphs G1,...,G5; therefore, for I = [5] we have that G is the empty graph just
as Gy is. This implies that for every I C [5] and I := [5] \ I we have G; = G7,
thus every graph in our graph family has exactly two representations as G for some
I C[5]. (The two representations are given by I and I as we have seen. It also follows
that if J # I,1, then G; # G, otherwise we would have G jg; be the empty graph
for J& I ¢ {0,[5]} contradicting that every edge appears exactly twice in the sets
E(G;), i=1,...,5.) Thus we have indeed %25 = 16 graphs in our family matching
our upper bound for n =4.

We have to show that the symmetric difference of any two of our graphs contains
a triangle. Since our construction is closed for the symmetric difference operation,
this is equivalent to say that all graphs in our family except the empty graph contains
a triangle. Since G; = G7 it is enough to prove that G; contains a triangle for all
1 < |I| <2,I C[5]. This is easy to see when |I| = 1. For subsets with |I| =2 it is
enough to check this for I = {1,2} and I ={1,3} by the rotational symmetry of our
construction. But these two cases are easy to check: Gy 2y contains the triangles on
the triples of vertices 1,2,4 and 1,3,4, while G'(; 3} contains the triangle on vertices
1,2,3. |

ProroSITION 15.
Mg, (6) = 64.
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Proof. The value of the upper bound given by Proposition 8 is 26 for L = K3 and
n =6, so we need only prove the lower bound.

To this end we give a construction of 64 graphs forming a graph family code on
[6] for K3. The construction will have several similarities to that in Proposition 14
though with somewhat less symmetry. But again our graphs will form a vector space
in the sense of Remark 4.3 to be specified through a set of seven generators that
altogether cover each one of the edges of the underlying K¢ exactly twice, so every
member of our graph family will have exactly two representations by the generators
just as in the proof of Proposition 14. Here are the details.

Think about the six vertices 1,...,6 as being on a circle in the vertices of a regular
hexagon in their natural order as we go around the circle. Our first four generator
graphs are the following four edge-disjoint triangles (plus three isolated points) given
by their edge sets as follows.

E(Gy)=1{12,23,13}, E(G,)={34,45,35},
E(Gs)={56,16,15}, E(G4)={24,46,26}.

The other three graphs are three K4’s (plus two isolated vertices) that are rotations
of each other, in particular,

E(Gs) ={12,24,45,15,14,25}, E(Gg) = {23,35,56,26,25,36},
E(G7)={34,46,16,13,36, 14}.

It is easy to check that the above seven graphs cover each edge of the underlying Kg
exactly twice. Just as in the proof of Proposition 14 this implies that the generated
family of graphs of the form

G = ®ie1Gl,

where I runs through all subsets of [7], contains exactly two representations of this
form for each of its members, namely

Gr=G; ifand only if J=[7]\ 1.

Thus our family has 26 = 64 members that matches our upper bound. Now we have
to show that the symmetric difference of every pair of our graphs contains a triangle.
Since the family is closed under symmetric difference this is equivalent to every Gy
except Gy = Gy containing a triangle. To show this we consider the representation
of each of our graphs as Gy where I contains at most one of the three K, generators,
that is [I N {5,6,7}| <1. When I N{5,6,7} =0 but I itself is nonempty, then this is
trivial as in such a case G is the union of some of the edge-disjoint graphs G1,...,Gy
each of which is a triangle itself. In case | N{5,6,7}| =1, then by symmetry we may
assume w.l.o.g. that I N {5,6,7} = {5}. Then if we also have {1,2} C I, then the
triangles on vertices 1, 3,4 and 2,3,5 (and more) will be contained in G;. So we may
assume that at least one of (G; and G5 is not part of our representation of Gy and by
symmetry, we may assume 2 ¢ I. But then to avoid the triangles on vertices 1,4,5
and 2,4,5 being in G; we need both 3 € I and 4 € I. In this case, however, we will
have the triangle on vertices 4,5,6 present in G;. This completes the proof. 0

Recall Coqq to be the class of all graphs containing an odd cycle. Since ex(n,Coqq) =
ex(n, K3) the upper bound of Proposition 8 is also 2(3)=T31L3] for Me,,,(n). Since
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1 2 2 1 2
; % o 4 ;oo g ;o= g
5 4 d d
[ ] [
Gy Gy Gs G145

Fic. 1. Graphs G1,G4,Gs, and their generated graph Gy 45} in the proof of Proposition 15.

K3 >~ (3 is an odd cycle, we obviously have Mg, (n) < M, ,,(n) and so by Propo-
sitions 13, 14, and 15 the previous upper bound is also sharp for Mc_,,(n) when
n € {3,4,5,6}. Although we could not prove that Mg, (7) is also equal to this upper
bound, we can show this at least for Mc_,, (7).

PROPOSITION 16.

n

Proof. The upper bound 9(3)-T511%] i equal to 27, so it is enough to prove that
this is also a lower bound. This we do similarly as in the proofs of Propositions 14
and 15.

Again, we think about the seven vertices forming the set [7] as the vertices of a
regular 7-gon around a cycle in their natural order. We define 7+3 = 10 simple graphs
G1,...,G7 and Gy, ...,G1o that will generate our family. Let G be the triangle with
edges 12,24,14 and G, ..., G5 be its six possible rotated versions, that is the triangles
with edge sets {23,35,25},{34,46,36},...,{17,13,37}, respectively. Note that these
seven triangles cover all pairs of vertices exactly once, that is, they form a Steiner
triple system. The three other graphs Gg,Gg, G1¢ are three edge-disjoint seven-cycles,
namely those with edge sets

{12,23,34,45,56,67,17}, {13,35,57,27, 24, 46, 16}, {14, 47, 37, 36, 26, 25, 15},

respectively. Note that these three graphs also cover all pairs of vertices exactly once
and that the edge sets of a G; for i € [7] and G; with j € {8,9,10} intersect in exactly
one element. Since our ten graphs cover the edges of the underlying K, exactly twice,
just as in the proofs of Propositions 14 and 15, the generated family

BierGi
as I runs over all subsets of {1,...,10} will have exactly 2° distinct members each of
which is represented by two subsets of {1,...,10}, some I, and its complement. All

we are left to show for proving Mc,,,(7) > 2° is that each such G except Gy = Go
contains an odd cycle. If I C [7], this is obvious and also is if I C {8,9,10}. When both
IN[7] and IN{8,9,10} are nonempty, then we consider that representation Gy which
has |[I N[7]| < 3. If we have |[I N{8,9,10}| =1, then whichever 7-cycle we have (that
is, whichever of Gg, Go,G1¢) it will have two consecutive edges that do not appear in
either of the at-most three triangles. If we take the first pair of such edges (as we go
along our 7-cycle in an appropriate direction) for which the previous one is an edge
of one of our triangles (since we take at least one triangle and each triangle intersects
each T-cycle, such an edge must exist), then the construction ensures that these two
consecutive edges close up to a K3 in our Gy. In case we have two 7-cycles in our G
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Fia. 2. Graphs G1,G3,Gs, and their generated graph G138} in the proof of Proposition 16.

representation, then those create 7 distinct K3’s in their union. Each of our triangles
intersect exactly three of those seven K3's created, so if we have |I N [7]| <2, then at
least one of these seven K3’s remain untouched. Thus we are left with the case of two
7-cycles and exactly three triangles. For this case let us switch to the complementary
representation with four triangles and one 7-cycle. By symmetry, we may assume that
our 7-cycle is Gg. If the four triangles are such that two consecutive edges of Gg do
not appear in any of them, then we can finish the argument as before. If this is not the
case, then the four triangles must leave three such edges of Gg uncovered which form
a matching. Because of symmetry we may assume that these are the edges 12,34, 56.
This also tells us exactly which are the four triangles we have in the representation
of G, namely those that contain the remaining four edges, that is, G2, G4, Gg, and
G'7. In this case G contains the K3, for example, on the vertices 2,5,6. Finally, if we
have all of the three 7-cycles in our representation, then the complementary represen-
tation has no 7-cycle at all and this case we have already covered. This completes the
proof. 0

4.4. Containing a prescribed induced subgraph. In this subsection we dis-
cuss local graph classes mentioned in the second example after Definition 2. Here we
have a fixed finite simple graph L and consider the family £ of all graphs containing L
as an induced subgraph. Recall that in this case we let My inqa(n) denote M (n), and
similarly, we denote R, (n) and DC(L) by Ry ina(n) and DC(L,ind), respectively. In
this section we prove that requiring the subgraphs to be induced does not change the
answer from that of section 4.2. The upper bound, of course, trivially carries over
from the noninduced case, while the lower bound strengthens the one in Theorem 11.

THEOREM 17. For any fixed graph L we have

DC(L,ind) D=1

Remark 4.4. Note that despite the apparent similarity, the proof of Theorem
11 does not carry over to show Theorem 17. Still, it is possible to describe the
asymptotic number of induced L-free graphs for a fixed graph L by introducing the
partition number r(L). Define r(L) as the largest integer r so that there is some
integer s, 0 < s < r such that the vertices of L cannot be covered by s cliques
and r — s independent sets. Results obtained independently by Alekseev [2] and by
Bollobas and Thomason [11, 12] imply that the number of induced- L-free graphs on n
vertices is 21 1/r(L)n*/2+o(n*) “Note that r(L) > x(L)—1, as the vertices of L cannot
be covered by x(L) — 1 independent sets. There are cases when equality holds and
thus the required result follows (an example for that is L = C5, the 5-length cycle),
but in general, (L) can be much larger than x(L) — 1, as shown, for example, by any
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long (even or odd) cycle. Hence the proof of Theorem 11 does not give the required
bound for an arbitrary L. |

The main tool in the proof of Theorem 17 is Lemma 4.5, which bounds the number
of balanced k-partite induced-L-free graphs.

LEMMA 4.5. For a fized positive integer k and a fized graph L, consider the
set of balanced k-partite graphs G on k-classes Ai,..., Ak, each having size n/k.
Among those graphs, at most 9(=5=1)""/24("") 4 1ot contain an induced subgraph
isomorphic to L.

In what follows we will assume some familiarity with Szemerédi’s regularity lemma
and the terminology related to it. A good introduction to these notions (with a full
proof of the lemma itself) can be found, for example, in section 7.4 of Diestel’s book
[16].

Before presenting the proof of Lemma 4.5, whose proof relies on the regularity
lemma, we need to establish the following auxiliary claim about finding induced sub-
graphs using regularity. Versions of this result have been used before, for completeness
we include a simple proof.

LEMMA 4.6. For every 0 < 6 < % and a graph L, there exist positive constants
e = e(6,L) and ng = no(6,L) with the following property. Suppose G is a graph
whose vertices are partitioned into x(L) independent sets, Vi,Va,..., V(1) of equal
size which is at least ng. If the pairs (V;,V;) are e-reqular and if their density satisfies
d(Vi,V;) € (6,1 —0) for alli,j, then G contains an induced copy of L.

Proof. Let [ be the number of vertices of L, and let V(L) =U; U---UU,z) be a
partition of L into x (L) independent sets. The idea is to find a copy of L in G such that
the vertices of U; come from V;, for all i. Having this goal in mind, refine the partition
Vi,..., V() by partitioning every V; into |U;| smaller sets, V; 1,.. - Vi .|, of nearly
equal sizes. Subdividing V; does not affect regularity of the new pairs significantly,
and so the pairs (V; ;,Vi,m) are still le-regular. Similarly, the density of the pairs
(Vijs Vi,m) is in the interval (6 —e,1 — 0 +¢) if ¢ # k, and zero otherwise. Now, we
use the following standard lemma (see, e.g., Lemma 3.2 in [4]).

Lemma on regularity and induced subgraphs (see [4]). For every 0 < &y < 1
and | € Zxq, there exist positive constants g = €9(do,1) and po = po(do,1) with the
following property. Suppose L is a graph on [ vertices, vi,...,v; and Sy,...,5; is an
I-tuple of disjoint vertex sets of a large graph G such that every pair S;S; is €o-regular
with density at least 0o if viv; is an edge of L and at most 1 — &g if vsv; is not an
edge of L. Then, G contains at least pyg Hi:l |S;| tuples (w1,...,w;) € S1 X ... xS
spanning an induced copy of L, where each w; corresponds to v;.

Note that identifying the sets V; ; with .S; from this lemma satisfies the conditions,
as the pairs (V; ;,V;x) of density 0 occur only when the corresponding vertices of L
belong to the same independent set U;. Therefore, if we set dg = § — €,69 = el and
choose € small enough, we conclude that for large enough ng, G contains at least one
induced copy of L, as needed. 0

Proof of Lemma 4.5. The proof uses Szemerédi’s regularity lemma to partition
an arbitrary induced-L-free graph, after which a standard “cleaning” argument shows
that the main contribution to the total number of such graphs comes from the number
of possible bipartite graphs induced by regular pairs of density bounded away from 0
and 1. Then, Turan’s theorem provides an upper bound for the number of such pairs,
completing the proof. The details follow.
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Begin by fixing a small § > 0 and the corresponding ¢ = &(d, L) > 0 from Lemma
4.6. What we have in mind is a not-yet-fixed induced-L-free graph G whose vertex
set will be partitioned and we will calculate the number of ways we can connect
pairs of vertices so that our graph becomes indeed induced-L-free. By Szemerédi’s
regularity lemma, there is an e-regular partition V(G) = Vo U V3 U ... U Vp, where
T is a constant, that is, it can be bounded from above by a number Ty(e, k) which
does not depend on n. We may also assume that this partition refines the original
partition V(G) = A; U--- U Ay, i.e., that every V; for i > 1 is a subset of some A;.
(This follows from the standard proof of the regularity lemma (cf., e.g., [16]) that
works by iterating the refinement of some original partition which we can choose to
be the one given by the partite classes A;.)

We split the pairs (V;,V;) into three classes: the irregular pairs, the e-regular
pairs with d(V;,V;) € [0,8]U[1 -6, 1], and the e-regular pairs with d(V;,V;) € (6,1 —9).
We first show that the contribution of all pairs except those in the third class to the
total number of graphs is negligible, and then we discuss the number of pairs in the
third class.

There are at most (T'+ 1)" = 2"2”2) ways to distribute the vertices into parts
Vo,...,Vpr, and there are at most 2°™ ways to choose the edges incident to Vj, as
[Vo| < en. Note that there are no edges within the other parts V;, so we have no
additional choice here. The number of ways to associate pairs to classes is at most
3(5), which is a constant (depending on €).

Further, there are at most 2(#)° ways to choose the edges between each of the
irregular pairs, and there are at most €72 irregular pairs. Hence, the number of
choices for the edges between all irregular pairs is at most 2en”, Similarly, for the

parts of density close to 0 or 1, we have at most QZf(:%/T)z ((n/iT)2) < (STL; (5(&//7;"))22) <

‘ST%Z(65’1)5(”/71)27 and there are at most (:g) such pairs. Hence, the total number of
choices for the edges in these pairs is at most ed(1=10g8)(5)+o(n?),

Finally, we need to bound the contribution from the pairs (V;, V;) with d(V;,V;) €
(0,1 —0). Define an auxiliary graph G’ on the vertex set {Vi,...,Vr}, in which V;V;
is an edge if and only if (V;,V;) forms an e-regular pair of density in (4,1 —J). Lemma
4.6 shows that if G contains no induced copy of L, then G’ cannot contain a subgraph
isomorphic to K, (). Applying Turdn’s theorem, we conclude that at most (1 —

ﬁ)T2 /2 pairs among Vi, ..., Vr can be e-regular and have density bounded away
2

from 0 and 1. Hence, there are at most 9= xm=1)(T*/2) 3 < (= swy=r)n*/2+o(n?)
choices for the edges in this case.

To complete the argument, we let §,6 — 0 and note that the contribution of all
pairs except those in the third class are negligible. We conclude that the number of k-
partite balanced induced-L-free graphs on n vertices is at most 9= xi=1)m/ 2+°(”2),
as stated. 0

Using Lemma 4.5, the proof of Theorem 17 follows almost immediately.

Proof of Theorem 17. Analogously to what was done in the proof of Theorem 11,
now consider the graph Gy, ; whose vertices are all balanced k-partite graphs on n
vertices, in which two vertices are adjacent if and only if their symmetric difference
contains no induced copy of L. As shown by Lemma 4.5, the maximum degree in
this graph is at most A(Gp k) < 9(=xm=)m"/24o(n*) () the other hand, G\ has
2(’5)(%)2 = 20-8)7/2 yertices. Hence, the size of its maximum independent set is at
least
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V(Gr.i)l (sb=g— 1 )n2/2+0(n?)
al(G > 1 7P S O\X@)-1 & ]

(L) 2 A(Gry)+17
As k can be arbitrarily large, we conclude that DC(L, ind) = ﬁ, completing the
proof. 0

As a short digression from the main line of our discussion we mention that in the
case of bipartite graphs, one can prove a result analogous to Lemma 4.5 with much
better bounds, as shown in [3], and [5] with an improved error term.

LEMMA 4.7. For every fized bipartite graph L there is some e =e(L) >0 so that
the number of bipartite graphs on two classes of vertices 2A and B, both of size m, that
do not contain an induced copy of L is smaller than 2™ .

The statement of this lemma, with a nonoptimal value of €, follows from the
results in the above mentioned papers that estimate the number of bipartite graphs
that do not contain an induced copy of the universal bipartite graph U(k) with k
vertices in one vertex class and 2* in the other, connected in all possible ways to
the vertices of the first class. Every bipartite graph L is an induced copy of U(k)
for all sufficiently large k. Although this is good enough for our purpose here, we
present next a shorter new proof of the lemma, which gives a tight estimate up to a
logarithmic factor in the exponent for many graphs L.

LEMMA 4.8. Let L be a bipartite graph L with color classes of sizes s and t > s.
Then the number of bipartite graphs on two classes of vertices A and B, each of size
2—1/s
m, that do not contain an induced copy of L, is at most 2¢(5)m /*logm

The above is tight, up to the logarithmic term in the exponent, for every pair ¢t > s
where ¢ is sufficiently large as a function of s. Indeed, as shown by the (projective)
norm-graphs of [25, 6], there is a bipartite graph with classes of vertices of size m
each and with Q(mQ’l/ %) edges that contains no copy of the complete bipartite graph
K = K, 4, provided t > (s —1)! Every member of the collection of all subgraphs of this
graph contains no (induced or noninduced) copy of K.

Proof. We apply the Sauer—Perles—Shelah lemma (see [35], [37]) which states that
for any collection C of more than Z?:o (7) functions from a set @ of size ¢ to {0,1}
there is a subset D C Q) of cardinality d + 1 shattered by C. That is, for any function
g: D — {0,1} there is an f € C such that g(x) = f(x) for all x € D. Let L be a
bipartite graph with classes of vertices of sizes t > s, and let G be a collection of
graphs on the two vertex classes A and B, where |A| =|B|=m. Let d =ex(2m, K, )
be the maximum possible number of edges in a graph on 2m vertices that contains no
copy of the complete bipartite graph K, ;. By the K6vari-Sés—Turdn theorem [30],
d <b(s,t)m>~'/%. By the Sauer-Perles-Shelah lemma, if

d m2
Iglzl+Z(i),
=0

then the collection of graphs G, viewed as a collection of functions from the set of all
edges of the complete bipartite graph on the classes of vertices A, B to {0, 1}, shatters
a set of d + 1 edges. By the definition of d this set of edges contains a complete
bipartite graph with vertex classes of sizes s and t. Any subgraph of this graph (and
in particular L) is an induced subgraph of some member of G. Since the right-hand
side of the last inequality is smaller than
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m2d < 777J2b(5,t)7712_1/S _ 2c(s,t)m2_1/s 10gm’

this completes the proof. 0
The following is a counterpart of Corollary 12 for the induced case.

COROLLARY 18. Let G be a set of graphs, each containing at least one edge, and
let LG ina) be the local graph class containing all graphs that contain at least one G € G
as an induced subgraph. Then

1
Xmin(g) - 1
Proof. The upper bound is immediate from DC(L g inq)) < DC(Lg) and Corol-
lary 12. The lower bound follows, as in Corollary 12, from the fact that DC(L g ina)) >

DC(G,ind) for any G € G. In particular, picking a graph G with x(G) = Xmin(9)
suffices. 0

DC(E(g,ind)) =

Remark 4.9. Tt is straightforward that the above results imply a strengthening
(as far as the upper bound is concerned) of the statement in Remark 4.2, namely that
we have for the dual problem also in the induced case

2 1
lim —————logD, . =1—-—F-.
nLH;o n(n — 1) 08 £@.na) (n) Xmin(g) -1
This follows from Lemma 2.1 and Corollary 18 just as the statement in Remark 4.2
followed from Lemma 2.1 and Corollary 12. |

Remark 4.10. If L is the edgeless graph on r > 2 vertices, then it is clear that
for every m > r there is a family of 2 2)-(2) graphs on [n] so that the symmetric
difference between any two contains an induced copy of L. Indeed we simply take
all graphs which agree on the (}) edges of a fixed r-clique. Note that for every fixed
r this is a constant fraction of all graphs on n vertices, much larger than Mp (n) or
M7y, ina(n) for any graph L with at least two edges. This (including the constant) is
clearly tight for r =2 (the family cannot contain a graph and its complement), and
by the main result of [17] it is tight also for r = 3 (the result in [17] holds for any
family in which any two members agree on a triangle, not only if any two intersect
in a common triangle—the equivalence of these two statements is proved already in
[13].) More recently, Berger and Zhao [9] proved the analogous result also for r = 4.
We do not know if the above lower bound is tight for > 4. Note that an equivalent
formulation of the question here is the determination of Mz(n) for F which is the
family of all graphs with independence number at least r. ]

5. Open problems. In this final section we collect some related problems left
open.

PROBLEM 1. For what graph families F is it true that Mz(n) is achieved by a
linear graph family code, that is one that is closed under the symmetric difference
operation?

Our results here include examples where this is the case as well as ones in which
it is not. Indeed in Theorem 6 the precise answer is n or n + 1, and if this is not a
power of 2 there is no optimal linear solution. Another family of examples in which
the optimal family cannot be achieved by a linear example is that in which the family
F is the family of all graphs with at most 2r edges, where r is chosen so that the sum
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is not a power of 2. Indeed, by a theorem of Kleitman [23] (for usual codes) the size
of the optimum family here is the size of the family of all graphs with at most r edges.

The construction in the proof of Theorem 1 has the property that for any two of
its graphs G and G’ with an equal number of edges their two asymmetric differences

G\ G =([n], E(G)\ E(G") and G'\G=([n],E(@)\ E(G))

are isomorphic. This suggests the following question.

PROBLEM 2. What is the mazimum possible size of a graph family A of graphs
on n vertices satisfying that if A, A’ € A, then A\ A" and A’ \ A are isomorphic?

Clearly, the conditions of the above problem imply that all graphs in a family
satisfying the above criteria must have the same number of edges. An appropriate
subfamily of the one constructed in the proof of Theorem 1 satisfies the requirements
but a significantly larger family can be given by taking |n/k]| vertex-disjoint stars,
each on k vertices. Such a family satisfies the requirements because any star of one
graph in it can have a common edge with at most one star of another graph of the
family and two stars on the same number of vertices obviously satisfy the criteria
as they cancel the same number of edges from each other resulting in two smaller
(possibly edgeless) stars that are also isomorphic. This gives a lower bound that is
superexponential in n but we do not have any nontrivial upper bound.

Theorems 4 and 6 show a huge difference between requiring a spanning path or
a spanning star in the symmetric differences. One may wonder what happens “in
between.” Note that if we formulate this “in betweenness” so that we want to have a
spanning tree with diameter at most k, then while with k = 2 we are at Theorem 6 and
with k =n —1 at Theorem 4, already for £k =3 we get the same result as for k=n—1
by the construction in the proof of Theorem 1. (This is simply because complete
bipartite graphs contain spanning trees of diameter at most 3.) So it seems plausible
to formulate questions in terms of more specific “natural” sequences of spanning trees
Ty, T, .... (In the problem below the notation My, (n) is meant to denote the largest
possible cardinality of a family of graphs on vertex set [n] such that the symmetric
difference of any two of them contains T;, as a subgraph.)

PROBLEM 3. For what “natural” sequences Ty, Ts,...,T;,... of trees (with T; hav-
ing exactly i vertices for every i) will the value of My, (n) grow only linearly in n?
A similar question is valid if T; is replaced by T;, some “natural” family of i-vertex
trees.

Propositions 13, 14, 15, and 16 showed that the upper bound of Proposition 8
can be sharp for small values of n for the requirement that a triangle or at least an
odd cycle is contained in the symmetric differences. It would be interesting to know
whether this can also happen for large values of n.

PROBLEM 4. Is
Mg, (n) =2()=151L5]

true always or at least for infinitely many values of n? Even if this is not so, does the
analogous equality hold for Mc_,,(n)?
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Note that there are much better known estimates for the number of triangle-free
graphs on n labeled vertices than the one we have used here, in fact, it is known that
almost all of these graphs are bipartite [19]. While this improves the gap between the
upper and lower bounds that follow from our proofs for Mg, (n), it is still far from
determining its precise value.

The final problem we mention is related to the remark in the end of the last
subsection.

PROBLEM 5. Is it true that for any fized r > 4 the mazimum possible cardinality
of a family of graphs on n labeled vertices in which the symmetric difference between
any two members has independence number at least r, is exactly a 1/2(;) fraction of
the number of all graphs on these vertices?

Acknowledgment. We thank Gabor Tardos for his remark presented as
Remark 3.4.
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