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Abstract. We develop an implementable stochastic proximal point (SPP) method for a class of
weakly convex, composite optimization problems. The proposed stochastic proximal point algorithm
incorporates a variance reduction mechanism and the resulting SPP updates are solved using an
inexact semismooth Newton framework. We establish detailed convergence results that take the
inexactness of the SPP steps into account and that are in accordance with existing convergence
guarantees of (proximal) stochastic variance-reduced gradient methods. Numerical experiments show
that the proposed algorithm competes favorably with other state-of-the-art methods and achieves
higher robustness with respect to the step size selection.
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1. Introduction. In this work, we consider optimization problems of the form

(1.1) min
x∈Rn

ψ(x) := f(x) + φ(x), f(x) :=
1

N

∑N

i=1
fi(Aix),

where Ai ∈ Rmi×n is given and the component functions fi : Rmi → R, mi ∈ N,
i ∈ {1, . . . , N}, are supposed to be continuously differentiable. The mapping φ :
Rn → (−∞,∞] is convex, proper, and lower semicontinuous.

Problems of the form (1.1) have gained significant attention over the past decades
in the context of large-scale machine learning [9]. Initiated by the pioneering stochastic
approximation methods of Robbins and Monro [49] and Kiefer and Wolfowitz [33],
more recent extensions of stochastic (proximal) gradient descent schemes for (1.1)
have been studied, including variance reduction methods such as SAGA [12] or SVRG

[32, 59], adaptive methods [15, 34] and several variants [43, 24, 54].
In this work, we consider the stochastic proximal point method (SPP) for problem

(1.1), which can be implicitly expressed as

xk+1 = proxαkφ
(xk − αk∇fSk

(xk+1)),

where αk > 0 is a suitable step size and ∇fSk
is a stochastic approximation of ∇f . In

this article, we combine the SPP method with a SVRG-type variance reduction strategy
and derive novel convergence guarantees. A particular focus is put on the question of
how to efficiently compute the SPP update which is an implicit equation in xk+1.

1.1. Background and Related Work. If the function ψ is convex, the fa-
mous (deterministic) proximal point algorithm (PPA) for minimizing (1.1) can be
represented as follows

(1.2) xk+1 = proxαkψ
(xk) := argmin

y∈Rn

ψ(y) +
1

2αk
∥xk − y∥22, αk > 0.
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Here, the mapping proxαkψ
: Rn → Rn denotes the well-known proximity operator of

the function αkψ. Convergence of the method (1.2) was first studied by Martinet in
[41] and later extended by Rockafellar in his seminal paper [51]; let us also refer to
Güler [22]. Specifically, Rockafellar showed that an inexact version of PPA (1.2),

xk+1 ≈ proxαkψ
(xk),(1.3)

converges whenever one of the following accuracy conditions

• ∥xk+1 − proxαkψ
(xk)∥ ≤ εk with

∑∞
k=0 εk <∞ or

• ∥xk+1 − proxαkψ
(xk)∥ ≤ δk∥xk+1 − xk∥ with ∑∞

k=0 δk <∞,

is utilized. Furthermore, under an error bound condition, it is also possible to establish
linear convergence if the regularization parameters αk are chosen sufficiently large, see,
e.g., [51, Thm. 2]. These strong theoretical properties and the duality-type results
derived in [50] are the foundations of several semismooth Newton-based augmented
Lagrangian approaches and PPAs developed in [63, 30, 31, 60, 10, 38] for semidefinite
programming, nuclear and spectral norm minimization, and Lasso-type problems.

More recently, stochastic versions of the PPA have been studied, in particular
when the objective is in the form of an expectation. In this line of research, a model-
based stochastic proximal point method has been proposed by Asi and Duchi [3, 2]
for the convex case and by Davis and Drusvyatskiy for the weakly convex, composite
case [11]. SPP has also been analyzed in an incremental framework [6] and for con-
strained problems with Lipschitz or strongly convex objective [47]. To the best of our
knowledge an effective combination of SPP and variance reduction techniques seems
to be unavailable so far.

1.2. Contributions. Our main contributions and the core challenges addressed
in this article are as follows:

• We introduce SNSPP, a semismooth Newton stochastic proximal point method
with variance reduction for the composite problem (1.1). Similar to SVRG [59,
28], we prove linear convergence in the strongly convex case and a sublinear
rate is established in the weakly convex case (using constant step sizes).

• Semismooth Newton-based PPAs are known to be highly efficient in deter-
ministic problems [63, 60, 38, 62]. Our proposed algorithmic strategy benefits
from the fast local convergence properties of the semismooth Newton method
and allows to further reduce the computational complexity of the occurring
subproblems which can be directly controlled by the selected batch sizes.

• The inexactness of the stochastic proximal steps is an integral component of
our theoretical investigation. We present a unified analysis allowing broader
applicability of the (variance reduced) SPP method.

• Numerical experiments suggest that SPP with variance reduction performs
favorably and is more robust in comparison to state-of-the-art algorithms.

2. Preliminaries. ForN ∈ N, we set [N ] := {1, . . . , N} and denote by I ∈ Rn×n
the identity matrix. By ⟨·, ·⟩ and ∥·∥, we denote the standard Euclidean inner product
and norm. The set of symmetric, positive definite n× n matrices is denoted by Sn++.
For a given matrix M ∈ Sn++, we define the inner product ⟨x, y⟩M := ⟨x,My⟩ and
the induced norm ∥x∥M :=

√
⟨x, x⟩M . The function f : Rn → (−∞,∞] is called

ρ-weakly convex, ρ > 0, if the mapping x 7→ f(x) + ρ
2∥x∥2 is convex. Furthermore,

f is called µ-strongly convex, µ > 0, if f − µ
2 ∥ · ∥2 is a convex function. The set

dom(f) := {x ∈ Rn : f(x) < +∞} denotes the effective domain of f . The mapping f
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is called L-smooth, if f is differentiable on Rn and if there exists L ≥ 0 such that

∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥ ∀ x, y ∈ Rn.

The proximity operator and the Moreau envelope, defined below, are essential ingre-
dients used in this work.

Definition 2.1. Let g : Rn → (−∞,∞] be a proper and closed function and let
M ∈ Sn++ be given such that the mapping x 7→ g(x) + 1

2∥x∥2M is strongly convex. The
proximity operator of g is defined via

proxMg : Rn → Rn, proxMg (x) := argmin
z∈Rn

g(z) +
1

2
∥x− z∥2M .

In addition, suppose that the function g + 1
2λ∥ · ∥2M is strongly convex for some λ > 0

and M ∈ Sn++. The associated Moreau envelope of g is then given by

envM,λ
g : Rn → R, envM,λ

g (x) := min
z∈Rn

g(z) +
1

2λ
∥x− z∥2M .(2.1)

If g is convex, we also use the notations proxg(x) = proxIg(x) and envg(x) = envI,1g (x).

The proximity operator can be uniquely characterized by the optimality conditions
of its underlying minimization problem. Let M be positive semidefinite; if g is prox-
bounded with proximal subdifferential ∂g (cf. [52, Def. 8.45, Prop. 8.46]), then

(2.2) p = proxI+Mg (x) ⇐⇒ p ∈ x−M(p− x)− ∂g(p).

If g is convex, the proximity operator is firmly nonexpansive [5, Thm. 6.42], i.e.,

(2.3) ∥proxg(x)− proxg(y)∥2 ≤ ⟨x− y,proxg(x)− proxg(y)⟩ ∀ x, y ∈ Rn.

In particular, proxg is Lipschitz continuous with constant 1. Moreover, by [5, Thm.
6.60] the Moreau envelope is continuously differentiable with

∇envg(x) = x− proxg(x).(2.4)

For extensive discussions of the proximity operator, the Moreau envelope, and related
concepts, we refer to [44, 4, 5]. For a function g : Rn → (−∞,∞], the conjugate of g
is defined by g∗ : Rn → (−∞,∞], g∗(x) := supz∈Rn ⟨z, x⟩ − g(z).

Proposition 2.2. Let g : Rn → (−∞,∞] be proper and closed. If g is µ-strongly
convex, then its conjugate g∗ is closed, convex, proper, and Fréchet differentiable and
its gradient is given by ∇g∗(x) = argmaxz∈Rn ⟨z, x⟩ − g(z). In addition, ∇g∗ : Rn →
Rn is Lipschitz continuous with Lipschitz constant µ−1.

Proof. The first part is a consequence of [5, Cor. 4.21] and [4, Prop. 17.36]. The
remaining properties follow from [4, Prop. 13.11, Thm. 13.32, and Thm. 18.15].

Let F : Rn → Rm be a locally Lipschitz function. We use ∂F to denote its Clarke
subdifferential (∂F reduces to the standard subdifferential if m = 1 and F is convex).
As computing elements of ∂F can be challenging, we will make use of generalized
derivatives ∂̂F that share similar properties. We call ∂̂F a surrogate generalized
differential of F . Following [48, 58], we present a definition of semismoothness of F .
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Definition 2.3. Let F : V → Rm be locally Lipschitz and let V ⊂ Rn be an
open set. F is called semismooth at x ∈ V (with respect to ∂F ), if F is directionally
differentiable at x and if it holds that

supM∈∂F (x+s) ∥F (x+ s)− F (x)−Ms∥ = o(∥s∥) as s→ 0.

Moreover, for ν > 0, F is called ν-order semismooth (strongly semismooth if ν = 1)
at x ∈ V (w.r.t. ∂F ), if F is directionally differentiable at x and we have

supM∈∂F (x+s) ∥F (x+ s)− F (x)−Ms∥ = O(∥s∥1+ν) as s→ 0.

For problem (1.1), we introduce the proximal gradient mapping as a measure of sta-
tionarity, i.e., for α > 0, we define

Fαnat : Rn → Rn, Fαnat(x) := x− proxαφ(x− α∇f(x))

and Fnat(x) := F 1
nat(x) (cf. [20, 45]). Clearly, due to (2.3), if f is L-smooth, then the

function Fnat is Lipschitz continuous with constant 2 + L.

3. The Stochastic Proximal Point Method.

3.1. Assumptions. We first specify the basic assumptions under which we con-
struct and study our stochastic proximal point method. Throughout this paper, we
assume that the functions fi : Rmi → R, i ∈ [N ], are continuously differentiable and
φ : Rn → (−∞,∞] is a closed, convex, and proper mapping. Further conditions on f
and φ are summarized and stated below.

Assumption 3.1. Let f be defined as in (1.1). We assume:
(A1) The functions fi : Rmi → R are Li-smooth and γi-weakly convex for all i.
(A2) The objective function ψ is bounded from below by ψ⋆ := infx ψ(x).
(A3) The mapping x 7→ proxαφ(x) is semismooth for all α > 0 and all x ∈ Rn.
We note that Li-smoothness already ensures weak convexity of fi, i ∈ [N ] (but

with a potentially different constant). Let us also set f̂i(z) := fi(z) + (γi/2)∥z∥2. We

work with the following assumptions for the conjugates f̂∗i :

Assumption 3.2.
(A4) The functions f̂∗i are essentially differentiable (cf. [21]) with locally Lipschitz

continuous gradients on the sets Di := int(dom(f̂∗i )) ̸= ∅, i ∈ [N ].

(A5) The mappings ∇f̂∗i are semismooth on Di for all i.
By [4, Thm. 18.15], condition (A1) guarantees that the mappings f̂∗i are 1/(Li +

γi)-strongly convex on dom(f̂∗i ). This, together with (A4), ensures that each f̂∗i has
uniformly positive definite second derivatives, i.e., there exists µ∗ ≥ mini∈[N ] 1/(Li +
γi) > 0 such that for all i ∈ [N ]

⟨h,Mi(z)h⟩ ≥ µ∗∥h∥2 ∀ h ∈ Rmi , ∀ Mi(z) ∈ ∂(∇f̂∗i )(z), ∀ z ∈ Di,(3.1)

see [26, Ex. 2.2]. Moreover, (A4) implies that each f̂i is essentially locally strongly
convex [21, Cor. 4.3]. Next, we state two stronger versions of (A3) and (A5):

Assumption 3.3.
(Ã3) For every α > 0 the proximal operator x 7→ proxαφ(x) is ν-order semismooth

on Rn with 0 < ν ≤ 1.
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(Ã5) The mappings z 7→ ∇f̂∗i (z) are ν-order semismooth on Di with 0 < ν ≤ 1 for
all i.

In the stochastic optimization literature, convexity and/or L-smoothness are stan-
dard assumptions for the component functions fi (see [12, 59, 20, 28, 3]). In contrast
to other recent works on stochastic proximal point methods, we neither assume con-
vexity of ψ (as in, e.g., [3]) nor Lipschitz continuity of f (as in, e.g., [11]).
The additional condition (A4) and the semismoothness properties (A3) and (A5) (or
(Ã3) and (Ã5), respectively) hold for many classical loss functions and regularizers.
In fact, assumption (A3) is satisfied for (group) sparse regularizations based on ℓ1- or
ℓ2-norms or low rank terms such as the nuclear norm. More generally, semismoothness
of the proximity operator can be guaranteed when φ is semialgebraic or tame. We
refer to [7, 42] for a detailed discussion of this observation. Strong semismoothness
of proxαφ can be ensured whenever proxαφ is a piecewise C2-function (see [58, Prop.
2.26]). For instance, if φ(x) = λ∥x∥1 is an ℓ1-regularization with λ > 0, then the
associated proximity operator is the well-known soft-thresholding operator which is
piecewise affine. If every mapping ∇f̂∗i is piecewise C1, then assumption (A5) holds

and (Ã5) is satisfied with ν = 1 if all ∇f̂∗i , i ∈ [N ], are piecewise C2.
3.2. Algorithmic Framework. We now motivate and develop our algorithmic

approach in detail.
Stochastic Proximal Point Steps. Our core idea is to perform stochastic proximal

point updates that mimic the classical proximal point iterations, [40, 41, 50], for
minimizing the potentially nonconvex and nonsmooth objective function ψ in (1.1):

xk+1 = proxαkψ
(xk),

where αk > 0 is a suitable step size. While f is possibly nonconvex, we can conclude
from (A1) that x 7→ fi(Aix) +

γi
2 ∥Ai(x− z)∥2 is a convex mapping for every z ∈ Rn.

Hence, setting MN := 1
N

∑N
i=1 γiA

⊤
i Ai, the step

xk+1 = proxI+αkMN

αkψ
(xk)

= argmin
x

ψ(x) +
1

2N

∑N

i=1
γi∥Ai(x− xk)∥2 +

1

2αk
∥x− xk∥2

is well-defined. Utilizing (2.2), we have p = xk+1 if and only if p ∈ [xk − αk∇f(p)−
αkMN (p−xk)]−αk∂φ(p) and, hence, the proximal point update can be equivalently
rewritten as the following implicit proximal gradient-type step

(3.2) xk+1 = proxαkφ
(xk − αk∇f(xk+1)− αkMN (xk+1 − xk)).

This implicit iteration forms the conceptual basis of our method. However, as our aim
is to solve the finite-sum problem (1.1) in a stochastic fashion, we will use stochastic
oracles to approximate the full gradient ∇f in each iteration [19, 20, 43]. In our case,
the function f corresponds to an empirical expectation and thus, sampling a random
subset of summands fi(Ai·) can be understood as a possible stochastic oracle for f
and ∇f . Specifically, for some given tuple S ⊆ [N ], we can consider the following
stochastic variants of f , ∇f , and ψ:

fS(x) :=
1

|S|
∑

i∈S
fi(Aix), ∇fS(x) :=

1

|S|
∑

i∈S
A⊤
i ∇fi(Aix),
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and ψS(x) := fS(x) + φ(x). Let Sk ⊆ [N ] be the tuple drawn randomly at iteration
k. The stochastic counterpart of the update (3.2) is then obtained by replacing the
gradient ∇f with the estimator ∇fSk

and MN with MSk
:= |Sk|−1

∑
i∈Sk

γiA
⊤
i Ai.

This yields

(3.3) xk+1 = proxαkφ
(xk − αk∇fSk

(xk+1)− αkMSk
(xk+1 − xk)).

This step can also be interpreted as a stochastic proximal point iteration

xk+1 = prox
I+αkMSk

αkψSk
(xk)

for the sampled objective function ψSk
. Consequently, the update (3.3) can be seen

as a combination of the stochastic model-based proximal point frameworks derived in
[3, 11] and of variable metric proximal point techniques [8, 46].

Incorporating Variance Reduction. Variance reduction has proven to be a powerful
tool in order to accelerate stochastic optimization algorithms [12, 28, 59, 24]. Similar
to [28], we consider SRVG-type stochastic oracles that additionally incorporate the
following gradient information in each iteration

vk := ∇f(x̃)−∇fSk
(x̃),(3.4)

where x̃ ∈ Rn is a reference point that is generated in an outer loop. This leads to
stochastic proximal point-type updates of the form

(3.5) xk+1 = proxαkφ
(xk − αk[∇fSk

(xk+1) + vk]− αkMSk
(xk+1 − xk)).

Our subsequent analysis and discussion focuses on this general formulation.
An Implementable Strategy for Performing the Implicit Step (3.5). We now intro-

duce an alternative equation-based characterization of the implicit update (3.5). Let
us set bk := |Sk| and let (κk(1), . . . , κk(bk)) enumerate the elements of the tuple Sk.
We will often abbreviate κk by κ. We now define ξk+1 = (ξk+1

1 , . . . , ξk+1
bk

) by

(3.6) ξk+1
i := ∇f̂κ(i)(Aκ(i)xk+1) = ∇fκ(i)(Aκ(i)xk+1) + γκ(i)Aκ(i)x

k+1 i ∈ [bk].

Under assumption (A1), [5, Thm. 4.20] yields

ξk+1
i = ∇f̂κ(i)(Aκ(i)xk+1) ⇐⇒ ∇f̂∗κ(i)(ξk+1

i ) = Aκ(i)x
k+1.

Thus, setting v̂k := αk(v
k −MSk

xk), the step (3.5) is equivalent to the system

(3.7)

 xk+1 = proxαkφ

(
xk − αk

bk

∑bk
i=1A

⊤
κ(i)ξ

k+1
i − v̂k

)
,

∇f̂∗κ(i)(ξk+1
i ) = Aκ(i)proxαkφ

(
xk − αk

bk

∑bk
i=1A

⊤
κ(i)ξ

k+1
i − v̂k

)
∀ i ∈ [bk].

Similar to [63, 38], we use a semismooth Newton method to solve the system of non-
smooth equations defining ξk+1 in an efficient way. Importantly, the dimension of this
system and of ξk+1 is controlled by the batch size bk which is an advantage if bk ≪ n.
We allow approximate solutions of the system (3.7) which results in inexact proximal
steps. This potential inexactness is an important component of our algorithmic design
and convergence analysis that has not been considered in other stochastic proximal
point methods [3, 11]. The full method is shown in Algorithm 3.1. The semismooth
Newton method for (3.7) is specified and discussed in the next section. In this article,
we primarily focus on the variance-reduced update (3.5), yet the technique and results
presented in section 4 also hold true for the general update (3.3).

The Full Stochastic Setup and Stochastic Assumptions. We now formally specify
the notion of admissible stochastic oracles for our problem.
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Algorithm 3.1 SNSPP

Require: x̃0 ∈ Rn, m,S ∈ N, and, for s = 0, . . . , S, k = 0, . . . ,m − 1, step sizes
αsk > 0, batch sizes bsk ∈ N, and tolerances εsk ≥ 0.
for s = 0, 1, 2, . . . , S do
Set x0 := xs,0 := x̃ := x̃s, and, for 0 ≤ k < m, αk := αsk, bk := bsk, and εk := εsk.
for k = 0, 1, 2, . . . ,m− 1 do
(Sampling) Sample Sk = Ssk with |Sk| = bk and set

vk := vs,k := ∇f(x̃)−∇fSk
(x̃), v̂k := v̂s,k := αk(v

k −MSk
xk).

(Solve subproblem) Compute ξk+1 = ξs,k+1 by invoking Algorithm 4.1 with
input xk, αk,Sk,−v̂k and εk.

(Update) Set xk+1 := xs,k+1 := proxαkφ

(
xk − αk

bk

∑bk
i=1A

⊤
κ(i)ξ

k+1
i − v̂k

)
.

Option I: Set x̃s+1 := xm.
Option II: Set x̃s+1 := 1

m

∑m
k=1 x

k.

return x̃S+1; xπ drawn uniformly from {xs,k}0≤s≤S0≤k<m.

Definition 3.4. Let S ∼ P be a b-tuple of elements of [N ], where b ∈ [N ] is
fixed. Let κ(i) ∈ [N ] denote the random number in the i-th position of S. We call
S ∼ P an admissible sampling procedure if, for all zi ∈ Rℓ, i ∈ [N ], ℓ ∈ N, it holds
that EP[zS ] = 1

N

∑N
i=1 zi where zS := 1

b

∑b
i=1 zκ(i).

If S ∼ P is an admissible sampling procedure, then we have EP[fS(x)] = f(x) and
EP[∇fS(x)] = ∇f(x) for all x ∈ Rn. In the simplest case, we can choose S by drawing
b elements from [N ] under a uniform distribution (cf. [59] for a similar setting). This is
an admissible sampling procedure in the sense of Definition 3.4, regardless of whether
we draw with or without replacement (cf. [39, §2.8]).

Remark 3.5. Note that xk, αk, etc., serve as abbreviations when the value of s is
clear. The notation xs,k, αsk, etc., can be used to highlight the full (s, k)-dependence.

4. A Semismooth Newton Method for Solving the Subproblem. In the
following, we assume that we are given a b-tuple S = (κ(1), . . . , κ(b)) of elements of

[N ], a step size α > 0, and vectors x, v ∈ Rn. Let mS :=
∑b
i=1mκ(i) denote the

dimension of the subproblem and let D =
∏
i∈S Di ⊆ RmS . Now, the second line in

(3.7) corresponds to a system of nonlinear equations which can be reformulated as

(4.1) V(ξ) = 0,

where V : D → RmS , V(ξ) := (V1(ξ)⊤, . . . ,Vb(ξ)⊤)⊤, and ξ := (ξ⊤1 , . . . , ξ
⊤
b )

⊤. Setting
AS := 1

b (A
⊤
κ(1), . . . , A

⊤
κ(b))

⊤ ∈ RmS×n, each Vi is defined via

(4.2) Vi : D → Rmκ(i) , Vi(ξ) = ∇f̂∗κ(i)(ξi)−Aκ(i)proxαφ
(
x− αA⊤

S ξ + v
)
.

The Newton step of this system is given by

(4.3) W(ξ)d = −V(ξ),

where W(ξ) ∈ ∂̂V(ξ) is an element of the surrogate differential ∂̂V defined via

∂̂V(ξ) :=
{
Diag (Hi(ξi)i=1,...,b) + αbASU(ξ)A⊤

S
∣∣

U(ξ) ∈ ∂proxαφ
(
x− αA⊤

S ξ + v
)
, Hi(ξi) ∈ ∂(∇f̂∗κ(i))(ξi) ∀ i ∈ [b]

}
.



8 A. MILZAREK, F. SCHAIPP AND M. ULBRICH

We first present several basic properties of the operators and functions involved in
the Newton step (4.3). The nonexpansiveness of the proximity operator (2.3) and [29,
Prop. 2.3] imply the next result (see also [42, Lem. 3.3.5]).

Proposition 4.1. Let α > 0 and x ∈ Rn be given. Each element U ∈ ∂proxαφ(x)
is a symmetric and positive semidefinite n× n matrix.

Proposition 4.2. Suppose that the conditions (A3), (A4), and (A5) are satisfied.
Let S be a b-tuple of elements of [N ], and let α > 0 and x, v ∈ Rn be given. Then,

the function V is semismooth on D w.r.t. ∂̂V. If (Ã3) and (Ã5) hold instead of (A3)

and (A5), V is ν-order semismooth w.r.t. ∂̂V.
Proof. The first claim follows using the chain rule for semismooth functions [18,

Thm. 7.5.17]. If we assume (Ã3) and (Ã5) instead, the claim follows from [58, Prop.
3.8] and [55, Prop. 3.6].

In the following, we show that the function V can be interpreted as a gradient mapping.
Thus, finding a root of V is equivalent to finding a stationary point.

Proposition 4.3. Let the assumptions (A1) and (A4) hold. Let α > 0 and x, d ∈
Rn be given and let S be a b-tuple of elements of [N ]. For ξ ∈ RmS , we define

U(ξ) :=
∑b

i=1
f̂∗κ(i)(ξi) +

b

2α
∥z(ξ)∥2 − b

α
envαφ(z(ξ)), z(ξ) := x− αA⊤

S ξ + v.

Then, U is µ∗-strongly convex on the set E :=
∏b
i=1 dom(f̂∗κ(i)) and we have ∇U(ξ) =

V(ξ) for all ξ ∈ D where V is defined in (4.2).

Proof. For every ξ ∈ D and i ∈ [b], we have ∂z
∂ξi

(ξ) = −αbA⊤
κ(i) and

∇ξiU(ξ) = ∇f̂∗κ(i)(ξi) +
b

α

∂z

∂ξi
(ξ)⊤(z(ξ)− (z(ξ)− proxαφ(z(ξ))))

= ∇f̂∗κ(i)(ξi)−Aκ(i)proxαφ(z(ξ)) = Vi(ξ),

where we used (2.4). For the first statement, note that (A1) implies strong convexity

of f̂∗i on dom(f̂∗i ) for i = 1, . . . , N . Applying Moreau’s identity, [5, Thm. 6.67],

(4.4)
1

2
∥z∥2 − envαφ(z) = α2envα−1φ∗(z/α),

we can use the fact that the Moreau envelope of a proper, closed, and convex function
is convex [5, Thm. 6.55]. Hence, the mapping ξ 7→ b

2α∥z(ξ)∥2− b
αenvαφ(z(ξ)) is convex

as ξ 7→ z(ξ) is affine. Altogether, U is µ∗-strongly convex on E (cf. (3.1)).

In Algorithm 4.1, we formulate a globalized semismooth Newton method for solving
the nonsmooth system (4.1). Specifically, the result in Proposition 4.3 enables us to
measure descent properties of a semismooth Newton step using U and to apply Armijo
line search-based globalization techniques. Based on the results on SC1 minimization
(cf. [17, 63, 58]), we obtain the following convergence result.

Theorem 4.4. Let the assumptions (A1)–(A5) be satisfied and let the sequence
{ξj} be generated by Algorithm 4.1. Then, {ξj} converges q-superlinearly to the unique

solution ξ̂ ∈ D of (4.1), i.e., ∥ξj+1 − ξ̂∥ = o(∥ξj − ξ̂∥) as j → ∞. Moreover, under
(Ã3) and (Ã5), we obtain

∥ξj+1 − ξ̂∥ = O(∥ξj − ξ̂∥1+min{τ,ν}) for all j sufficiently large.
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Algorithm 4.1 Semismooth Newton Method for Solving (4.1)

Require: x, v ∈ Rn, α > 0, a b-tuple S of elements of [N ], and a tolerance εsub.
Choose an initial point ξ0 such that ξ0i ∈ Di for all i = 1, . . . , b. Choose parameters
γ̂ ∈ (0, 12 ), η ∈ (0, 1), ρ ∈ (0, 1), τ ∈ (0, 1], and τ1, τ2 ∈ (0, 1). Set j = 0.
while ∥∇U(ξj)∥ > εsub do

(Newton direction) Choose W ∈ ∂̂V(ξj), set ηj := τ1 min{τ2, ∥V(ξj)∥}, and
approximately solve the linear system

(W + ηjI)d
j = −V(ξj)

via the conjugate gradient method such that ∥rj∥ ≤ min{η, ∥V(ξj)∥1+τ} with
rj := (W + ηjI)d

j + V(ξj).
(Armijo line search) Find the smallest non-negative integer ℓj such that

U(ξj + ρℓjdj) ≤ U(ξj) + γ̂ρℓj ⟨∇U(ξj), dj⟩

and ξji + ρℓjdji ∈ Di for all i = 1, . . . , b. Set βj := ρℓj .
(Update) Compute the new iterate ξj+1 = ξj + βjd

j and set j ← j + 1.
return ξj

Proof. By construction, we have {ξj} ⊂ D and the set D is open. Proposition 4.3
and (A4) imply that U is strongly convex (on E) and essentially differentiable. Hence,

U has a unique minimizer ξ̂ ∈ D which is also the unique solution of (4.1). For every

ξ ∈ D, the matrices W(ξ) ∈ ∂̂V(ξ) are positive definite by (3.1) and Proposition 4.1.
Using standard arguments (see [63, Thm. 3.4] and [38, Thm. 3.6]), it can be shown

that the sequence {ξj} generated by Algorithm 4.1 converges to ξ̂. Under (A1)–(A5),

we conclude from equation (67) in the proof of [63, Thm. 3.5] that ∥ξj + dj − ξ̂∥ ≤
o(∥ξj− ξ̂∥) holds for all j sufficiently large. If assumptions (Ã3) and (Ã5) are satisfied

instead of (A3) and (A5), then we have ∥ξj+dj− ξ̂∥ ≤ O(∥ξj− ξ̂∥1+min{τ,ν}). Finally,
let us show that in a neighborhood of the limit point the unit step size is accepted by
the Armijo line search. Setting W̃j :=W + ηjI and using V(ξj)→ 0, we can infer

∥dj∥ = ∥W̃−1
j (rj − V(ξj))∥ ≤ ∥W̃−1

j ∥(∥rj∥+ ∥V(ξj)∥) ≤ 2λmin(W̃j)
−1∥V(ξj)∥,

for all j sufficiently large. Thus, we have

−⟨∇U(ξ
j), dj⟩

∥dj∥2 ≥ λmin(W̃j)
2

4

⟨−∇U(ξj), dj⟩
∥∇U(ξj)∥2 ≥ λmin(W̃j)

2

4λmax(W̃j)
,

where the second inequality comes from [63, Prop. 3.3]. Due to strong convexity, there

exists ρ̃ > 0 such that
λmin(W̃j)

2

4λmax(W̃j)
≥ ρ̃ > 0 for all j. Thanks to [17, Thm. 3.3], βj = 1

then fulfills the Armijo condition for j sufficiently large which concludes the proof.

5. Controlling the Inexactness of the Update. In this section, we will dis-
cuss the stopping criterion of Algorithm 4.1. Let x ∈ Rn, α > 0, and a tuple S of
elements of [N ] be given. By Proposition 4.3, U is µ∗-strongly convex on D ⊂ E . Thus,
the gradient ∇U is a µ∗-strongly monotone operator on D. Let ξ̂ := argminξ U(ξ) ∈ D
again denote the unique minimizer of U . Then, we have

∥ξ − ξ̂∥ ≤ µ∗
−1∥∇U(ξ)∥ ∀ ξ ∈ D,(5.1)
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Hence, the stopping criterion of Algorithm 4.1 – ∥∇U(ξj)∥ ≤ εsub – allows to control

the error ∥ξj − ξ̂∥. As we solve each subproblem inexactly, the updates (xk+1, ξk+1)
in Algorithm 3.1 are not an exact solution to (3.5). It is desirable to control the error
∥xk+1 − x̂k+1∥ in each iteration, where x̂k+1 is the exact solution of (3.5). This is
addressed in the following result.

Proposition 5.1. Let us define Ā := maxi∈[N ] ∥Ai∥ and let x, v ∈ Rn, α > 0,
and a b-tuple S of elements of [N ] be given. Suppose that U , defined in Proposition 4.3,

is µ∗-strongly convex on E and let ξ̂ = argminξ U(ξ) ∈ D be the unique minimizer of
U . Suppose that Algorithm 4.1 – run with tolerance εsub – returns ξ. Then, setting

x̂+ := proxαφ(x− αA⊤
S ξ̂ + v) and x+ := proxαφ(x− αA⊤

S ξ + v),

it holds that ∥ξ − ξ̂∥ ≤ εsub

µ∗
and ∥x+ − x̂+∥ ≤ α∥A⊤

S (ξ − ξ̂)∥ ≤ αĀ
µ∗

√
b
εsub.

Proof. The bound on ∥ξ− ξ̂∥ follows directly from (5.1). Utilizing the nonexpan-
siveness of the proximity operator, we can estimate

∥x+ − x̂+∥ = ∥proxαφ
(
x− αA⊤

S ξ + v
)
− proxαφ

(
x− αA⊤

S ξ̂ + v
)
∥

≤ α∥A⊤
S (ξ − ξ̂)∥ ≤

αĀ√
b
∥ξ − ξ̂∥ ≤ αĀ

µ∗
√
b
εsub.

6. Convergence Analysis. We first introduce several important constants. Let
(A1) of Assumption 3.1 be satisfied. We denote the Lipschitz constant of ∇f by L
and we set L̄ := maxi Li∥Ai∥2. For b ∈ [N ], let us define L̄b := maxS,|S|=b LS where

LS is the Lipschitz constant of ∇fS , and MS := 1
b

∑
i∈S γiA

⊤
i Ai. Then, for any tuple

S it holds that

L ≤ 1

N

∑N

i=1
Li∥Ai∥2 ≤ L̄, L̄b ≤ L̄, ∥MS∥ ≤ max

i=1,...,N
γi · Ā2 =: M̄.(6.1)

We now formulate the main convergence results for Algorithm 3.1. For simplicity, we
assume that Sk is drawn uniformly from [N ] with replacement for all s and k.1

6.1. Weakly Convex Case.

Theorem 6.1. Let the iterates {xs,k} be generated by Algorithm 3.1 with S =∞,
constant batch sizes bsk = b, and using Option I. Let Assumption 3.1 and Assump-
tion 3.2 be satisfied and assume

(6.2)

∞∑
s=0

m−1∑
k=0

αsk =∞,
∞∑
s=0

m−1∑
k=0

αsk(ε
s
k)

2 <∞, αsk ≤ min{1, α̂} ∀ s, k,

where α̂ := η̄max{2L+ M̄, [1 +m/
√
2b]L̄+max{L, M̄}}−1 and η̄ ∈ (0, 1). Then, for

all 0 ≤ k < m, {E∥Fnat(x
s,k)∥}s∈N0

converges to zero and {Fnat(x
s,k)}s∈N0

converges
to zero almost surely as s→∞.

Similar to [28, Thm. 1], we obtain the following rate of convergence.

Corollary 6.2. Let the iterates {xs,k} be generated by Algorithm 3.1 with S ∈
N, constant step sizes αsk = α, constant batch sizes bsk = b, and using Option I. Let

1Without replacement, only some of the constants change, see Corollary A.4 for details.
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Assumption 3.1 and Assumption 3.2 be satisfied. Let η̄ ∈ (0, 1) be given and assume
α ≤ α̂, where α̂ is defined as in Theorem 6.1. Then, it holds that

E∥Fαnat(xπ)∥2 ≤
2α[ψ(x̃0)− ψ⋆ + α · O(∑S

s=0

∑m−1
k=0 (εsk)

2)]

(1− η̄)3 ·m(S + 1)
.

The proofs are given in Appendix B.

6.2. Strongly Convex Case. In this section, we establish q-linear convergence
of Algorithm 3.1 if ψ is strongly convex. We derive – similar to Thm. 3.1 in [59] –
convergence in terms of the objective function if we assume each fi to be convex. We
present an additional result for weakly convex f and strongly convex φ. The proofs
are given in Appendix C. In the following, we suppose that in iteration s of the outer
and iteration k of the inner loop of Algorithm 3.1, the tolerances εsk satisfy the bound

εsk ≤ δs∥Fnat(x̃
s)∥(6.3)

for all k ∈ {0, . . . ,m− 1}, s ∈ N, and for some sequence R++ ∋ δs → 0. Notice, since
∇f(x̃s) is known, ∥Fnat(x̃

s)∥ can be computed without additional costs.

Theorem 6.3. Let Assumption 3.1 and Assumption 3.2 be satisfied and suppose
that each function fi is convex and ψ = f + φ is µ-strongly convex with µ > 0.
Consider Algorithm 3.1 with S = ∞ and Option II using constant step sizes αsk =
α > 0, and constant batch sizes bsk = b. For θ ∈ (0, 1/2), let the step size α satisfy

α ≤
[
L+ L̄

b (
4

1−2θ + 3)
]−1

(6.4)

and let condition (6.3) hold for a given sequence {δs}. If δs, s ∈ N, is sufficiently
small and the inner loop length m sufficiently large, then {ψ(x̃s)} converges q-linearly
in expectation to ψ⋆ with rate at least 1− θ, i.e., for all s, we have

E[ψ(x̃s+1)− ψ⋆] ≤ (1− θ)E[ψ(x̃s)− ψ⋆].

More formal and explicit conditions on δs and m can be found in the proof of
Theorem 6.3 in Appendix C.

Theorem 6.4. Let Assumption 3.1 and Assumption 3.2 be satisfied and let φ and
ψ = f + φ be µφ- and µ-strongly convex, respectively, with

µφI −MN ⪰ µI.

Consider Algorithm 3.1 with S = ∞ and Option I, using constant step sizes αsk =

α > 0 and constant batch sizes bsk = b. Assume that α ≤ [L +
√
2/b ·mL̄]−1 and let

(6.3) hold for a given sequence {δs} satisfying δs < min{ 2αµ
1+αµφ

,
1+α(µ+µφ)

1+αµφ
} for all s.

Then, the iterates {x̃s} converge q-linearly in expectation to the unique solution x⋆ of
problem (1.1), i.e., as s→∞, we have

E∥x̃s+1 − x⋆∥2 ≤
[
1− 2αµ

1+α(µφ+µ) +O(δs)
]
E∥x̃s − x⋆∥2.

7. Numerical Experiments. In the following, we investigate the practical per-
formance of Algorithm 3.1 which we will refer to as SNSPP. Specifically, we compare
SNSPP with three state-of-the-art and benchmark stochastic algorithms – namely SVRG,
SAGA, and AdaGrad for all of which we use their proximal versions.
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• SVRG [32, 59]2 is a (minibatch) stochastic gradient method with variance re-
duction. Its proximal version was proposed in [59] for convex composite
problems and extended to nonconvex objectives in [28].

• SAGA [12] is a stochastic proximal gradient method utilizing a different vari-
ance reduction strategy. It has been analyzed for the nonconvex case in [28].

• AdaGrad [15] is a proximal adaptive gradient method that assigns larger step
sizes to features which have been rarely explored up to the current iteration.

7.1. General Setting. For all experiments, we set the parameter m in Algo-
rithm 3.1 to m = 10. For Algorithm 4.1, we use γ̂ = 0.4, η = 10−5, ρ = 0.5, τ = 0.9,
τ1 = 0.5, τ2 = 2 · 10−4 and terminate if ∥∇U(ξj)∥ ≤ 10−3. Typically, Algorithm 4.1
reaches the desired accuracy within less than 10 iterations. We also ran the exper-
iments with the adaptive accuracy εsk = δs∥Fnat(x̃

s)∥, δs = 0.1, introduced in (6.3)
but did not observe any significant effects on the results. We precompute an estimate
for ψ⋆ by running a solver for a large number of iterations: for the experiments in
subsection 7.2, we use scikit-learn for this step; for the experiments in subsec-
tion 7.3 we use our own implementation of SAGA. We use constant batch and step
sizes throughout all experiments. The experiments were performed in Python 3.8.3

7.2. Logistic Regression with ℓ1-Regularization. Sparse logistic regression
is a classical model for binary classification [35, 25]. Let the coefficient matrix A =
(a⊤1 , . . . , a

⊤
N )⊤ ∈ RN×n and the binary labels bi ∈ {−1, 1}, i = 1, . . . , N be given.

The associated sparse regression problem can then be formulated as follows:

min
x

1

N

N∑
i=1

ln(1 + exp(−bi⟨ai, x⟩)) + λ∥x∥1, λ > 0.

This problem is of the form (1.1) with mi = 1, Ai = biai, and fi(z) = flog(z) :=
ln(1 + exp(−z)) for all i = 1, . . . , N . The nonsmooth part is given by φ(x) = λ∥x∥1.

Since flog is convex, we can set γi = 0 for all i. The conjugate f∗log of the logistic
loss function is given by [35]:

f∗log(z) =

{
−z ln(−z) + (1 + z) ln(1 + z) −1 < z < 0

+∞ otherwise.
(7.1)

The mapping f∗log is C∞ on (−1, 0) and locally Lipschitz. For all z ∈ (−1, 0), we have

(f∗log)
′(z) = ln(1 + z)− ln(−z) and (f∗log)

′′(z) = − 1
z2+z ≥ 4. We conclude that f∗log is

essentially differentiable and strongly convex on (−1, 0).
The proximity operator of φ and its Clarke differential are discussed in, e.g., [62].

The proximity operator is the well-known soft-thresholding operator proxλ∥·∥1
(x) =

sign(x)⊙max{|x|−λ1, 0} where “⊙” denotes component-wise multiplication. We can
choose the generalized derivative D ∈ ∂proxλ∥·∥1

(x) as follows: D = Diag(di)i=1,...,n

and di = 0 if |xi| ≤ λ and di = 1 if |xi| > λ. Lem. 2.1 in [62] ensures that proxλ∥·∥1
is

strongly semismooth. Altogether, Assumption 3.1 and 3.2 are satisfied (due to strong
semismoothness of proxλ∥·∥1

, Assumption 3.3 holds as well).

7.2.1. Description of Datasets. We use several standard datasets for our ex-
periments, listed in Table 1.4 The dataset mnist contains 28 × 28 pixel pictures of

2We use the acronym SVRG even though the method is named Prox-SVRG in the original article.
3Code is available at https://github.com/fabian-sp/snspp.
4Dataset sido0 is downloaded from http://www.causality.inf.ethz.ch/challenge.php?page=

datasets#cont, higgs from https://archive.ics.uci.edu/ml/datasets/HIGGS, and mnist from openml.

https://github.com/fabian-sp/snspp
http://www.causality.inf.ethz.ch/challenge.php?page=datasets#cont
http://www.causality.inf.ethz.ch/challenge.php?page=datasets#cont
https://archive.ics.uci.edu/ml/datasets/HIGGS
openml.org
openml.org
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Dataset N n ψ⋆ λ

mnist 56000 784 0.552 0.02
gisette 4800 4955 0.476 0.05
sido0 10142 4932 0.146 0.01
covtype 581012 54 0.642 0.005
higgs 11 · 106 28 0.657 0.005
madelon.2 2000 125751 0.568 0.02
news20 15996 1355191 0.653 0.001

Table 1: Information of the different datasets for sparse logistic regression. The
optimal objective function value ψ⋆ is rounded to 3 digits.

hand-written digits [37]. In order to obtain binary labels, we classify the two sets of
digits {0, 3, 6, 8, 9} and {1, 2, 4, 5, 7}. gisette is derived from mnist but with addi-
tional higher-order and distractor features [23]. The madelon.2 dataset is obtained
as follows: we first scale the original madelon dataset (from LIBSVM) having 500
features and 2000 samples obtaining mean-zero and unit-variance features. Then, we
apply a polynomial feature expansion of degree two, i.e., we add all pairwise products
of features and a constant feature, resulting in n = 125751. For mnist and higgs, we
apply standard preprocessing to obtain mean-zero and unit-variance features. The
other datasets are already suitably scaled and therefore not preprocessed. For mnist,
gisette, sido0, covtype, and news20, we use 80% of the dataset samples for training
and the remaining 20% are used as validation set. Note that SNSPP and SVRG compute
the full gradient for the first time at the starting point x̃0. In contrast to SVRG, the
first iterate of SNSPP is not deterministic and therefore high variance in the gradient
at the starting point could lead to unfavorable performance. In particular, we observe
such effect for the sido0 dataset. We find that this behavior can be easily prevented
by running one iteration of SNSPP without variance reduction before computing the
full gradient. However, for better comparability, for sido0 we run one epoch of SAGA
and use the final iterate as starting point for all methods. For all other datasets, we
use x̃0 = 0 as initial point for all algorithms.

7.2.2. Subproblem Complexity. We first illustrate the impact of solving the
subproblems, i.e., invoking Algorithm 4.1, on the overall performance of SNSPP. Fig-
ure 1 depicts the subproblem complexity (in terms of runtime) and the overall progress
of SNSPP for different choices of batch sizes using the news20 dataset. As the batch
size b determines the dimension of the subproblem, we see a sharp increase in the
runtime for larger choices of b (bottom right). However, a larger batch size also al-
lows to take larger steps and therefore more progress per iteration can be made as
demonstrated in the left plot of Figure 1. In our experiments, we typically observe
that the subproblems can be solved very efficiently for batch sizes up to the order of
few hundreds. For much larger batch sizes, the resulting higher computational costs
of the subproblem will start to outweigh the benefits of reducing the variance of ∇fS .

org using the scikit-learn API. All other datasets are downloaded from LIBSVM, https://www.
csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html.

openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
openml.org
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Fig. 1: Sparse logistic regression for news20. Left: Objective function gap for different
batch and step sizes. Top Right: average runtime for solving the subproblem once
(with Algorithm 4.1) and for computing ∇f(x̃). Displayed for α = 1000, b = 0.005 ·
N . Bottom Right: Mean runtime (per iteration index k in SNSPP) for solving the
subproblem.

7.2.3. Stability Analysis. The main focus of our numerical test is put on sta-
bility experiments with respect to hyperparameter selection, in particular, the step
size. In practical scenarios, it is unlikely that a solver is executed with an intensively
tuned step size due to tuning budgets. Hence, it is important to evaluate optimization
methods considering the amount of step size tuning needed to reach optimal perfor-
mance/runtime [53]. A similar comparison of SPP and SGD was conducted in [3, 11],
but without variance reduction, on a single batch, and with synthetic data only. We
compare SNSPP to the other variance-reduced methods SAGA and SVRG. We solve the
ℓ1-regularized logistic regression problem for several datasets, for a range of step sizes
α and different batch sizes b.5 For SVRG, we set the inner loop length to ⌊N/b⌋.

The tested algorithms terminate at iteration k, if the criterion

ψ(xk) ≤ 1.0001ψ⋆(7.2)

is satisfied. The runtime elapsed until fulfilling (7.2), averaged over five independent
runs, is plotted in Figure 2. The shaded area depicts the bandwidth of two standard
deviations (over the five independent runs). If a method does not satisfy (7.2) within
some maximum number of iterations or if it diverges, it is marked as no convergence.

Discussion. First, we observe that for all instances, SNSPP converges for much
larger step sizes than SAGA and SVRG. The elapsed runtime until convergence of SNSPP
is robust to step size selection across all datasets. For mnist, covtype and higgs, the
robustness of SNSPP is comparable to SAGA and slightly better than SVRG. For gisette,
sido0, and madelon.2 (all of which are datasets where n is large(r)) the advantage
of SNSPP is most pronounced: for madelon.2, the runtimes of the best parameter
settings are: SNSPP: 73 sec, SAGA: 132 sec, SVRG: 413 sec. SNSPP further converges in
less than 300 seconds for a large range of step sizes (i.e., without extensive tuning)

5We always include results for SAGA with b = 1 as this setting is widely adopted, for example in
scikit-learn.
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while for SAGA and SVRG the runtime steeply increases beyond 500 seconds if the step
size is chosen too small (see Figure 7 for a convergence plot). Our results underpin the
numerical evidence in [3, 11] that implicit stochastic proximal point methods tend to
be more robust with respect to step size choices than stochastic gradient descent-type
approaches.
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Fig. 2: Runtime until convergence for different choices of step and batch sizes.
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Fig. 3: Objective function convergence for the logistic regression datasets. For SAGA
and AdaGrad, one marker denotes one epoch. For SVRG one marker denotes one outer-
loop iteration while for SNSPP it denotes one (inner-loop) iteration.

7.2.4. Speed of Convergence. Based on the stability results depicted in Fig-
ure 2, we now illustrate the speed of convergence of SNSPP compared to SAGA, SVRG
and AdaGrad. For the experiments in this section, we choose a manually tuned (con-
stant) batch and step size for all methods in order to allow a fair comparison. Details
on the tuning procedure and the specific batch and step sizes values are reported in
Table 2 in Appendix D.

We plot the objective function value – averaged over 20 independent runs – over
the (average) cumulative runtime in Figure 3. Due to the incorporated variance
reduction, SNSPP converges to the optimal value and requires a relatively low number
of iterations (compared to the other methods) in order to reach a high accuracy
solution. However, in each iteration we need to run Algorithm 4.1 instead of having
a closed-form update. Overall in terms of runtime, for mnist and covtype, SNSPP is
slightly slower than SAGA/SVRG but still competitive. For sido0 and gisette, SNSPP
is the fastest method. We also plot the convergence in terms of gradient evaluations,
ignoring all other computational costs, in Figure 6.
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7.3. Sparse Student-t Regression. Next, for a given matrix A ∈ RN×n (with
rows ai) and measurements b = (b1, . . . , bN ) ∈ RN , we consider sparse regression
problems of the form

min
x
L(Ax− b) + λ∥x∥1.(7.3)

where λ > 0 is a regularization parameter and L : Rm → R is a loss function.
In statistical learning, problem (7.3) with the squared loss L(r) = 1

N ∥r∥2 is known
as the Lasso [57]. Other regularization terms have been proposed in order to model
group sparsity or ordered features [56]. While the squared loss is suitable when b is
contaminated by Gaussian noise, more heavy-tailed distributions have been studied
in the presence of large outliers [27]. For instance, using the Student-t distribution
[1, 36] and the respective maximum-likelihood loss, problem (7.3) becomes

min
x

1

N

N∑
i=1

ln
(
1 + ν̂−1(⟨ai, x⟩ − bi)2

)
+ λ∥x∥1.(7.4)

where ν̂ > 0 is the degrees of freedom-parameter of the Student-t distribution. Prob-
lem (7.4) is of the form (1.1) with fi(z) = ln(1 + ν̂−1(z − bi)2).

We now fix b ∈ R and consider the scalar function fstd : R→ R, fstd(x) := ln(1+

ν̂−1(x− b)2); we have f ′std(x) = 2(x−b)
ν̂+(b−x)2 and f ′′std(x) =

2(ν̂−(b−x)2)
(ν̂+(b−x)2)2 . The minimum of

f ′′std is attained at x ∈ {b +
√
3ν̂, b −

√
3ν̂} and we can conclude infx f

′′
std(x) = − 1

4ν̂ .
Consequently, fstd is 1

4ν̂ -weakly convex. Next, we compute the convex conjugate of

x 7→ f̂std(x) := fstd(x) +
γ
2x

2 which is strongly convex for γ > 1
4ν̂ . For fixed x ∈ R, it

holds that

z = arg supy xy − f̂std(y) ⇐⇒ x− f ′std(z)− γz = 0

⇐⇒ − γz3 + z2 (x+ 2γb) + z
(
−2bx− 2− γν̂ − γb2

)
+

(
xν̂ + xb2 + 2b

)
= 0.

(7.5)

Choosing γ > 1
4ν̂ , (7.5) has a unique real solution z∗ for any x, b ∈ R due to strong

convexity. Applying Lemma A.1 yields

f̂∗std(x) = xz∗ − f̂std(z∗), (f̂∗std)
′(x) = z∗, (f̂∗std)

′′(x) = (f̂ ′′std(z
∗))−1.

We solve the cubic polynomial equation in (7.5) using Halley’s method [13]. We run
two different settings: First, we use a synthetic dataset with n = 5000, N = 4000,
Ntest = 400, λ = 0.001, and ν̂ ∈ {0.5, 1, 2}. We generate x̂ ∈ Rn with 20 non-
zero entries. To obtain A and b, we first perform a SVD of a (N + Ntest) × n-
matrix with entries drawn uniformly at random from [−1, 1] and rescale its non-zero
singular values to lie in the interval [1, 15]. We use Ã to denote the resulting larger
matrix and we compute b̃ via b̃ = Ãx̂ + 0.1 · ε̄ where ε̄ ∈ RN+Ntest is generated
from a Student-t distribution with degrees of freedom ν̂. A and b are then given
as the first N rows/entries of Ã and b̃. The remaining rows/entries are used as a
test set. Secondly, we consider problem (7.4) using the feature matrix A from the
sido0 dataset. We generate x̂ with 50 non-zero entries and compute b = Ax̂+ 0.1 · ε̄
where ε̄ ∈ RN is generated from a Student-t distribution with degrees of freedom
ν̂ = 2. As in the previous test, 20% of the samples are used as test set (applying
the same procedure) and we set λ = 0.01. We follow the same tuning strategy as
described in subsection 7.2.4. The objective function and test loss are averaged over
20 independent runs.
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Fig. 4: Objective function (top) and test loss (bottom) for Student-t regression with
different values of degrees of freedom. Test loss is defined as the value of fstd averaged
over the samples of the test set.

Discussion. For the synthetic data (Figure 4), we observe that SNSPP performs
comparably to SVRG and SAGA in reducing the objective as well as the Student-t likeli-
hood loss on a held-out test set. In order to exclude the possibility that the methods
converge to different points with similar objective function values, we verified that
the iterates of all methods follow a similar path and that the final iterates stay very
close in terms of Euclidean distance. (Only the iterates generated by AdaGrad show
a more oscillatory behavior which is expected as it does not use variance reduction).
Figure 5 shows the results for the regression on sido0: here, SNSPP performs favorably
compared to the other methods – both in terms of objective function and test loss.

8. Conclusion. We develop a semismooth Newton stochastic proximal point
method (SNSPP) for composite optimization that is based on the stochastic proximal
point algorithm, the semismooth Newton method, and progressive variance reduc-
tion. The novel combination of stochastic techniques and of the semismooth Newton
method to solve the occurring subproblems results in an effective stochastic proximal
point scheme that is suitable for classes of weakly convex, nonsmooth, and large-scale
problems. Convergence guarantees have been established that reflect similar theoret-
ical results for SVRG. The proposed algorithm achieves promising numerical results
and – compared to other variance reduced gradient methods – its performance is less
sensitive with respect to tuning of the step size. This can be advantageous in practice
when tuning budgets have to be considered.

Appendix A. Auxiliary Results.

A.1. Preparatory Lemma.

Lemma A.1. Let h : Rn → R be a strongly convex, twice continuously differen-
tiable mapping and let z∗(x) denote the (unique) solution to maxz⟨x, z⟩−h(z). Then,
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Fig. 5: Sparse Student-t regression for sido0 dataset. Test loss is defined as the value
of fstd averaged over the samples of the test set.

the convex conjugate h∗ : Rn → R is C2 and for all x ∈ Rn it holds that

h∗(x) = ⟨x, z∗(x)⟩ − h(z∗(x)), ∇h∗(x) = z∗(x), ∇2h∗(x) =
[
∇2h(z∗(x))

]−1
.

Proof. As h is strongly convex and C2, z∗(x) is the unique solution to ∇h(z) = x.
By [5, Thm. 4.20], we have ∇h(y) = x if, and only if, ∇h∗(x) = y for all x, y ∈ Rn,
which implies ∇h∗(x) = z∗(x). The inverse function theorem yields that x 7→ z∗(x)
is C1 with Jacobian Dz∗(x) = [∇2h(z∗(x))]−1; as Dz∗(x) = ∇2h∗(x) the statement is
proven.

A.2. Bounding the Variance. In this section, let F be a σ-algebra and sup-
pose that x and x̃ are F-measurable random variables in Rn. For i ∈ [N ], let us
further define ζi := A⊤

i (∇fi(Aix)−∇fi(Aix̃)).
Lemma A.2. Suppose that condition (A1) is satisfied and let the index i be drawn

uniformly from [N ] and independently of F . Conditioned on F , we then have E∥ζi∥2 ≤
L̄2∥x − x̃∥2 almost surely. In addition, if every fi is convex and there exists x⋆ ∈
argminx ψ(x), then it holds

E∥ζi∥2 ≤ 4L̄(ψ(x)− ψ(x⋆) + ψ(x̃)− ψ(x⋆)) almost surely.

Proof. The first statement follows directly from Lipschitz-smoothness. To prove
the second part, let us define ϕi : x 7→ fi(Aix). Lem. 3.4 in [59] (applied to ϕi) implies

E∥∇ϕi(x)−∇ϕi(x̃)∥2 ≤ 2E∥∇ϕi(x)−∇ϕi(x⋆)∥2 + 2E∥∇ϕi(x̃)−∇ϕi(x⋆)∥2
≤ 4L̄(ψ(x)− ψ(x⋆) + ψ(x̃)− ψ(x⋆)),

where we used ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2. We conclude as ζi = ∇ϕi(x)−∇ϕi(x̃).
Lemma A.3. Let S be a b-tuple drawn uniformly from [N ] and independently of

F . Conditioned on F , the random variable u := ∇fS(x) − ∇fS(x̃) + ∇f(x̃) is an
unbiased estimator of ∇f(x). Moreover, almost surely, if S is drawn

(i) with replacement, then E∥u−∇f(x)∥2 ≤ 1
bE∥ζi∥2 for any i ∈ S.

(ii) without replacement, then E∥u−∇f(x)∥2 ≤ (1− b
N ) 1

b(N−1)

∑N
i=1 E∥ζi∥2.
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Proof. Utilizing [39, §2.8], we clearly have E[u] = ∇f(x). For part (i), consider
ζ = 1

b

∑
i∈S ζi. It holds ζ = u−∇f(x̃) and, conditioned on F , we obtain

E∥u−∇f(x)∥2 =
1

b2
E
∥∥∥∑

i∈S
ζi − E[ζi]

∥∥∥2
since E[ζi] = ∇f(x)−∇f(x̃) for all i ∈ S. Since the random variables {ζi−E[ζi]} are
i.i.d. and have mean zero (conditioned on F), [28, Lem. 7] allows to conclude

E∥u−∇f(x)∥2 =
1

b2

∑
i∈S

E∥ζi − E[ζi]∥2 ≤
1

b2

∑
i∈S

E∥ζi∥2.(A.1)

This proves the first statement as the random variables ζi are identically distributed.
The formula in (ii) is shown in [39, §2.8].

Combining Lemma A.2 and Lemma A.3, we obtain the following result which extends
Lem. 3 in [28] and Cor. 3.5 in [59].

Corollary A.4. Let (A1) hold and let S be a b-tuple drawn uniformly from [N ]
and independently of F . With u as in Lemma A.3 and conditioned on F , it holds that

(i) E∥u−∇f(x)∥2 ≤ L̄2τ
b ∥x− x̃∥2;

(ii) if all fi are convex and x⋆ ∈ argminx ψ(x) exists, then

E∥u−∇f(x)∥2 ≤ 4L̄τ
b (ψ(x)− ψ(x⋆) + ψ(x̃)− ψ(x⋆));

where τ = 1 if S is drawn with replacement and τ = N−b
N−1 if S is drawn without

replacement.

Appendix B. Proof for the Weakly Convex Case.

Proof of Theorem 6.1. Let us fix the index of the outer loop s. Recall the notation
ASk

= 1
b (A

⊤
κk(1)

, . . . , A⊤
κk(b)

)⊤ and abbreviate κk by κ. Let (x̂k+1, ξ̂k+1) denote the

pair of exact solutions of the implicit updates (3.5) and (3.7). In particular, setting

wk := A⊤
Sk
ξk+1 −MSk

xk + vk and ŵk := A⊤
Sk
ξ̂k+1 −MSk

xk + vk, we have

(B.1) xk+1 = proxαkφ
(xk − αkwk) and x̂k+1 = proxαkφ

(xk − αkŵk).

We introduce the deterministic proximal update

(B.2) x̄k+1 = proxI+αkMN

αkψ
(xk) = proxαkφ

(xk − αk∇f(x̄k+1)− αkMN (x̄k+1 − xk)).

Using the Lipschitz smoothness of f , we obtain

(B.3) f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+ L

2
∥xk+1 − xk∥2.

Setting p = proxγφ(y − γw) and applying the optimality condition of the proximity
operator (2.2), it holds that

(B.4) φ(p)− φ(z) ≤ −⟨w, p− z⟩+ 1

2γ
∥y − z∥2 − 1

2γ
∥p− y∥2 − 1

2γ
∥p− z∥2

for all y, w ∈ Rn, z ∈ dom(φ), and γ > 0, see, e.g., [28, Lem. 1] for comparison.
Setting y = xk, γ = αk, w = wk, and z = x̄k+1, this yields

(B.5)
φ(xk+1) ≤ φ(x̄k+1)− ⟨wk, xk+1 − x̄k+1⟩+ 1

2αk
∥x̄k+1 − xk∥2

− 1
2αk
∥xk+1 − xk∥2 − 1

2αk
∥xk+1 − x̄k+1∥2.
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Moreover, setting y = xk, γ = αk, w = ∇f(x̄k+1) +MN (x̄k+1 − xk), and z = xk in
(B.4) and recalling (B.2), it follows

(B.6) φ(x̄k+1) ≤ φ(xk)−⟨∇f(x̄k+1)+MN (x̄k+1−xk), x̄k+1−xk⟩− 1
αk
∥x̄k+1−xk∥2.

Adding the three inequalities (B.3), (B.5), and (B.6), we obtain

ψ(xk+1) ≤ ψ(xk) + ⟨∇f(xk)−∇f(x̄k+1), x̄k+1 − xk⟩+ ⟨∇f(xk)− wk, xk+1 − x̄k+1⟩
− ∥x̄k+1 − xk∥2MN+ 1

2αk
I +

1
2

[
L− 1

αk

]
∥xk+1 − xk∥2 − 1

2αk
∥xk+1 − x̄k+1∥2.(B.7)

Let us define ṽk := ∇fSk
(xk) − ∇fSk

(x̃) +∇f(x̃) = ∇fSk
(xk) + vk. We decompose

the term ∇f(xk)− wk as follows:

∇f(xk)− wk

= −A⊤
Sk
(ξk+1 − ξ̂k+1)

=:T1

−MSk
(x̂k+1 − xk+1)− (∇fSk

(x̂k+1)−∇fSk
(xk+1))

=:T2

−MSk
(xk+1 − xk)− (∇fSk

(xk+1)−∇fSk
(xk))

=:T3

+∇f(xk)− ṽk,

where we used A⊤
Sk
ξ̂k+1 = ∇fSk

(x̂k+1) +MSk
x̂k+1 (cf. (3.6), where ξk+1 and xk+1

must be replaced by ξ̂k+1 and x̂k+1, respectively, since in Algorithm 3.1 and beyond,
ξk+1 and xk+1 involve inexactness). Next, from the choice of εsub and Proposition 5.1,

we obtain ∥T1∥2 ≤ Ā2

µ2
∗b
ε2k. Applying Lipschitz smoothness, Proposition 5.1, and using

∥MSk
∥ ≤ M̄ (cf. (6.1)), this yields

∥T2∥ ≤ (L̄b + ∥MSk
∥)∥x̂k+1 − xk+1∥ ≤ (L̄b + M̄)

√
Ā2b−1µ−1

∗ αkεk

for all k = 0, . . . ,m− 1. Using MSk
⪰ 0 and Young’s inequality, we have

⟨T3, xk+1 − x̄k+1⟩ = −⟨MSk
(x̄k+1 − xk), xk+1 − x̄k+1⟩ − ∥xk+1 − x̄k+1∥2MSk

− ⟨∇fSk
(xk+1)−∇fSk

(xk), xk+1 − x̄k+1⟩
≤

[
M̄
2σ3

k
+ L̄b

2σ4
k

]
∥xk+1 − x̄k+1∥2 + L̄bσ

4
k

2 ∥xk+1 − xk∥2 + M̄σ3
k

2 ∥x̄k+1 − xk∥2

for some σ3
k, σ

4
k > 0. Combining these results with (B.7), applying Young’s inequality,

and defining ν1k := L+ 1
2M̄σ3

k − 1
2αk

, ν2k := 1
2 [L+ L̄bσ

4
k − 1

αk
],

ν3k := 1
2

[
1
σ1
k
+ 1

σ2
k
+ M̄

σ3
k
+ L̄b

σ4
k
+ 1

σ5
k
− 1

αk

]
, ν4k := 1

2

[
σ1
k + σ2

kα
2
k(L̄b + M̄)2

]
Ā2

µ2
∗b
,

we obtain

ψ(xk+1)− ψ(xk)
≤ σ1

k

2 ∥T1∥2 +
σ2
k

2 ∥T2∥2 +
σ5
k

2 ∥∇f(xk)− ṽk∥2 +
[
L+

M̄σ3
k

2 − 1
2αk

]
∥x̄k+1 − xk∥2

+ 1
2

[
L+ L̄bσ

4
k − 1

αk

]
∥xk+1 − xk∥2 + ν3k∥x̄k+1 − xk+1∥2

≤ σ5
k

2 ∥∇f(xk)− ṽk∥2 + ν1k∥x̄k+1 − xk∥2 + ν2k∥xk+1 − xk∥2

+ ν3k∥x̄k+1 − xk+1∥2 + ν4kε
2
k.
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Using Corollary A.4 (with x = xk, x̃ = x̃s), conditioned on all random events occurring
until the current iterate xk = xs,k, we have

E∥∇f(xk)− ṽk∥2 ≤ L̄2b−1∥xk − x̃s∥2.

for all k ∈ {0, . . . ,m− 1}. Taking expectation in the previous estimate, it holds that

(B.8)
E[ψ(xk+1)] ≤ E[ψ(xk)] + L̄2σ5

k

2b E∥xk − x̃s∥2 + ν1kE∥x̄k+1 − xk∥2

+ ν2kE∥xk+1 − xk∥2 + ν3kE∥x̄k+1 − xk+1∥2 + ν4kε
2
k.

With the goal of balancing the terms in ν1k , . . . , ν
4
k , we now choose σ1

k = mαk/(1− η̄),
σ2
k =
√
2b/[L̄bη̄], σ

3
k = σ4

k = 1, and σ5
k =
√
2b/[L̄(m− 1)]. For k < m, using x̃s = x0

and the Cauchy-Schwarz inequality, we deduce

E∥xk − x̃s∥2 = E
∥∥∥∥∑k−1

i=0
(xi+1 − xi)

∥∥∥∥2 ≤ k k−1∑
i=0

E∥xi+1 − xi∥2 ≤ k
m−2∑
i=0

E∥xi+1 − xi∥2.

Summing this estimate for k = 0, . . . ,m− 1 gives

(B.9)

m−1∑
k=0

E∥xk − x̃s∥2 ≤
m−1∑
k=0

k

m−2∑
i=0

E∥xi+1 − xi∥2 ≤ m(m−1)
2

m−2∑
i=0

E∥xi+1 − xi∥2.

As σ5
k is independent of k, summing (B.8) over k = 0, . . . ,m− 1 gives

E[ψ(xm)] ≤ E[ψ(x0)] +
m−1∑
k=0

[
L̄2m(m−1)σ5

k

4b + ν2k

]
E∥xk+1 − xk∥2

+

m−1∑
k=0

ν1kE∥x̄k+1 − xk∥2 +
m−1∑
k=0

ν3kE∥xk+1 − x̄k+1∥2 +
m−1∑
k=0

ν4kε
2
k.

(B.10)

Let η̄ ∈ (0, 1) be as stated in Theorem 6.1. Utilizing the specific choices of σ1
k, . . . , σ

5
k,

we obtain L̄m/
√
2b+ 2ν2k ≤ −(1− η̄)/αk if η̄αk

−1 ≥ [1 +m/
√
2b]L̄+ L,

ν1k ≤ − 1−η̄
2αk

⇐⇒ η̄
αk
≥ 2L+ M̄, and ν3k ≤ 0 ⇐= 1

αk
≥ (M̄+L̄)m

m−(1−η̄) +
L̄m√
2b
.

Thus, defining

1
α̂ := 1

η̄ max
{
2L+ M̄,

[
1 + m√

2b

]
L̄+max{M̄, L}

}
,

it holds ν4k ≤ 1
2 [m/(1− η̄) +

√
2b(1 + M̄/L̄b)]

Ā2

µ2
∗b
αk =: ν̄αk.

Next, introducing the auxiliary function y 7→ ψx(y) := ψ(y) + 1
2∥y − x∥2MN

, we

can write x̄k+1 = proxαkψxk
(xk). Consequently, applying [45, Lem. 2] and [14, Thm.

3.5] with G = ∂φ, Φ = ∂ψxk , t = αk, and β = L+ M̄ , it follows:

∥x̄k+1 − xk∥ ≥ (1− (L+ M̄)αk)∥Fαk
nat(x

k)∥ ≥ (1− η̄)αk∥Fnat(x
k)∥(B.11)

as long as αk ≤ min{α̂, 1}. We now use full notations showing the (s, k)-dependence.

Let us define x̄s,k+1 := prox
I+αs

kMN

αs
kψ

(xs,k),

τ1s :=
∑m−1

k=0
(αsk)

−1E∥x̄s,k+1 − xs,k∥2, τ2s :=
∑m−1

k=0
(αsk)

−1E∥xs,k+1 − xs,k∥2.
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Using αsk ≤ α̂, (B.10) then implies

E[ψ(x̃s+1)]− E[ψ(x̃s)] ≤ −1− η̄
2

(τ1s + τ2s ) + ν̄ ·
∑m−1

k=0
αsk(ε

s
k)

2(B.12)

and due to (A2) and
∑∞
s=0

∑m−1
k=0 α

s
k(ε

s
k)

2 <∞, we further get

(B.13)
∑∞

s=0
τ1s <∞ and

∑∞

s=0
τ2s <∞.

Finally, the estimates (B.11) and (B.13) yield
∑∞
s=0

∑m−1
k=0 α

s
kE∥Fnat(x

s,k)∥2 <∞ and∑∞
s=0

∑m−1
k=0 α

s
k∥Fnat(x

s,k)∥2 < ∞ almost surely. Due to
∑∞
s=0

∑m−1
k=0 α

s
k = ∞ and

the Borel-Cantelli lemma [16], it holds lim infs→∞ ∥Fnat(x
s,k)∥2 = 0 almost surely for

all 0 ≤ k < m. The almost sure convergence Fnat(x
s,k)→ 0 (and E∥Fnat(x

s,k)∥ → 0)
essentially follows from (B.13) and from the Lipschitz continuity of x 7→ Fnat(x) and
can be shown as in [61, Thm. 3.3 and Thm. 4.1]. As this last step is basically identical
to the proofs in [61], we omit further details and refer to [61].

Proof of Corollary 6.2. We have ψ(x̃S+1) ≥ ψ⋆ for all S. In the previous proof,
(B.12) can be obtained directly from (B.10), using only the condition αsk ≤ α̂ on the
step sizes (in particular, we do not need to assume αsk ≤ min{α̂, 1}). Summing (B.12)

from s = 0, . . . , S, and setting x̄π := proxI+αMN

αψ (xπ), we conclude

E∥x̄π − xπ∥2 ≤ 2α
(1−η̄)m(S+1)

[
ψ(x̃0)− ψ⋆ + ν̄α ·

∑S

s=0

∑m−1

k=0
(εsk)

2

]
.

As in (B.11), we can now utilize the bound ∥x̄π −xπ∥ ≥ (1− (L+ M̄)α)∥Fαnat(xπ)∥ ≥
(1− η̄)∥Fαnat(xπ)∥ to express complexity in terms of E∥Fnat(xπ)∥2.

Appendix C. Proof for the Strongly Convex Case. The proofs of The-
orem 6.3 and Theorem 6.4 have several identical steps. We start by proving the
latter.

Proof of Theorem 6.4. Fix s ∈ N0 and let k ∈ {0, . . . ,m− 1} be given. Let again

(x̂k+1, ξ̂k+1) denote the pair of exact solutions of (3.5) and (3.7). Due to

ξ̂k+1
i = ∇fκ(i)(Aκ(i)x̂k+1) + γκ(i)Aκ(i)x̂

k+1, i ∈ [b],(C.1)

(cf. (3.6) replacing again (ξk+1, xk+1) by (ξ̂k+1, x̂k+1)) and (B.1), we have

x̂k+1 = proxαφ(x
k − α[∇fSk

(x̂k+1) + vk]− αMSk
(x̂k+1 − xk)).

Furthermore, introducing ψk(x) := ψSk
(x) + ⟨vk, x − xk⟩, the underlying optimality

condition of the proximity operator (2.2) implies

p = x̂k+1 ⇐⇒ p ∈ xk − αMSk
(p− xk)− α[∂φ(p) +∇fSk

(p) + vk]

⇐⇒ p = prox
I+αMSk

αψk
(xk).

Moreover, using (A1), the mapping

x 7→ F̂k(x) := fSk
(x) +

1

2
∥x− xk∥2MSk

=
1

b

∑
i∈Sk

fi(Aix) +
γi
2
∥Ai(x− xk)∥2
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is convex for all k. Hence, setting Ψk(x) := F̂k(x) + φ(x) + ⟨vk, x − xk⟩, the func-
tion x 7→ Ψk(x) +

1
2α∥x − xk∥2 is (µφ + α−1)-strongly convex and due to x̂k+1 =

argminxΨk(x) +
1
2α∥x− xk∥2, it follows

Ψk(x) +
1
2α∥x− xk∥2 ≥ Ψk(x̂

k+1) + 1
2α∥x̂k+1 − xk∥2(C.2)

+ 1
2

[
µφ + 1

α

]
∥x− x̂k+1∥2

for all x ∈ dom(φ). Next, combining the optimality condition (2.2), the update rule
of Algorithm 3.1, and (C.1), we obtain

xk+1 ∈ xk − αA⊤
Sk
ξk+1 − αvk + αMSk

xk − α∂φ(xk+1)

= xk − αA⊤
Sk
(ξk+1 − ξ̂k+1)− α[∇fSk

(x̂k+1)−∇fSk
(xk+1)]

− αMSk
(x̂k+1 − xk+1)− α[∇fSk

(xk+1) + ∂φ(xk+1) + vk +MSk
(xk+1 − xk)].

Setting hk+1 := A⊤
Sk
(ξk+1− ξ̂k+1)+ [∇fSk

(x̂k+1)−∇fSk
(xk+1)]+MSk

(x̂k+1−xk+1),

this shows that −hk+1 + (xk − xk+1)/α ∈ ∂Ψk(x
k+1). Thus, due to the strong

convexity of Ψk and applying −⟨a, b⟩ = 1
2∥a− b∥2 − 1

2∥a∥2 − 1
2∥b∥2, it follows

Ψk(x
k+1)−Ψk(y)

≤ − 1

α
⟨xk − xk+1, y − xk+1⟩+ ⟨hk+1, y − xk+1⟩ − µφ

2
∥y − xk+1∥2

=
1

2α
[∥xk − y∥2 − ∥xk+1 − xk∥2]− 1

2

[
µφ +

1

α

]
∥xk+1 − y∥2 + ⟨hk+1, y − xk+1⟩

for all y ∈ dom(φ). Using this estimate in (C.2) with y = x̂k+1 and applying Young’s
inequality, we have

1

2α
[(1 + αµφ)∥x̂k+1 − x∥2 − ∥xk − x∥2]

≤ Ψk(x)−Ψk(x
k+1) + Ψk(x

k+1)−Ψk(x̂
k+1)− 1

2α
∥x̂k+1 − xk∥2

≤ Ψk(x)−Ψk(x
k+1)− 1

2α
∥xk+1 − xk∥2 − µφ

2
∥x̂k+1 − xk+1∥2 + α

2
∥hk+1∥2.

Next, we expand the first term on the right hand side as follows:

Ψk(x)−Ψk(x
k+1) = [ψ(x)− ψ(xk+1)] + [fSk

(x)− f(x)] + [F̂k(x
k)− F̂k(xk+1)]

+ ⟨vk, x− xk+1⟩+ [f(xk+1)− f(xk)] + [f(xk)− fSk
(xk)] +

1

2
∥x− xk∥2MSk

.

By the convexity of F̂k, we have F̂k(x
k) − F̂k(x

k+1) ≤ ⟨∇F̂k(xk), xk − xk+1⟩ =
⟨∇fSk

(xk), xk−xk+1⟩. Combining this with the Lipschitz continuity of ∇f , it further
holds that

[F̂k(x
k)− F̂k(xk+1)] + [f(xk+1)− f(xk)]

≤ ⟨∇f(xk)−∇fSk
(xk), xk+1 − xk⟩+ L

2
∥xk+1 − xk∥2.

In addition, using Young’s inequality, we have

∥x̂k+1 − x∥2 ≥ (1− ρ1)∥xk+1 − x∥2 +
[
1− 1

ρ1

]
∥x̂k+1 − xk+1∥2
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for ρ1 ∈ (0, 1). Together, applying Young’s inequality once more and setting ek(x) :=
fSk

(x)− f(x) + f(xk)− fSk
(xk) + ⟨vk, x− xk⟩ − 1

2∥xk − x∥2MN−MSk
, this yields

(1 + αµφ)(1− ρ1)∥xk+1 − x∥2 − ∥xk − x∥2

≤ 2α[ψ(x)− ψ(xk+1)] + 2αek(x) + α∥x− xk∥2MN

+
α

ρ2
∥∇f(xk)−∇fSk

(xk)− vk∥2 − [1− (L+ ρ2)α] ∥xk+1 − xk∥2

+ α2∥hk+1∥2 + (1 + αµφ)(ρ
−1
1 − 1)∥x̂k+1 − xk+1∥2

(C.3)

for all x ∈ dom(φ) and ρ2 > 0, where we used −αµφ − (1 + αµφ)(1 − ρ−1
1 ) ≤

(1+αµφ)(ρ
−1
1 −1). The choice of εsub and Proposition 5.1 imply ∥A⊤

Sk
(ξk+1−ξ̂k+1)∥ ≤

Ā
µ∗

√
b
εk and ∥x̂k+1 − xk+1∥ ≤ αĀ

µ∗
√
b
εk. Moreover, applying Lipschitz smoothness and

Proposition 5.1, it holds that

∥hk+1∥ ≤ Ā
µ∗

√
b
εk + (L̄b + ∥MSk

∥)∥x̂k+1 − xk+1∥ ≤ (1 + α[L̄+ M̄ ]) Ā
µ∗

√
b
εk.

We now choose x = x⋆; this yields ψ(x⋆)−ψ(xk+1) ≤ −µ2 ∥xk+1−x⋆∥2. Furthermore,
Corollary A.4 (with x = xk, x̃ = x̃s) yields E∥∇f(xk)−∇fSk

(xk)−vk∥2 ≤ L̄2b−1∥xk−
x̃s∥2 and we have E[ek(x⋆)] = 0. In addition, by definition and due to the Lipschitz
continuity of Fnat, we obtain εk ≤ δs∥Fnat(x̃

s)∥ ≤ (2 + L)δs∥x̃s − x⋆∥. Using MN ⪯
(µφ − µ)I, combining our previous results, and taking expectation, it follows

[1 + α(µφ + µ)− ρ1(1 + αµφ)]E∥xk+1 − x⋆∥2

≤ [1 + α(µφ − µ)]E∥xk − x⋆∥2 +
L̄2α

bρ2
E∥xk − x̃s∥2 − [1− (L+ ρ2)α]E∥xk+1 − xk∥2

+
[
(1 + αµφ)ρ

−1
1 + (1 + α[L̄+ M̄ ])2

]
Ā2

µ2
∗b
(2 + L)2α2

=:c(α)

δ2sE∥x̃s − x⋆∥2.

We now suppose that ρ1 is chosen such that (1 +αµφ)ρ1 ≤ 2αµ. Then, summing the
last estimate for k = 0, . . . ,m− 1 and invoking (B.9), this implies

[1 + α(µφ + µ)− ρ1(1 + αµφ)]E∥x̃s+1 − x⋆∥2

≤ [1 + α(µφ − µ) + c(α)mδ2s ]E∥x̃s − x⋆∥2

−
[
1−

(
L+ ρ2 +

L̄2m(m−1)
2bρ2

)
α
]∑m−1

k=0
E∥xk+1 − xk∥2.

Choosing ρ2 = L̄
√
m(m− 1)/

√
2b, α ≤ (L+

√
2L̄m/

√
b)−1, and ρ1 = δs, we obtain

E∥x̃s+1 − x⋆∥2 ≤
[
1− 2αµ

1+α(µφ+µ)−ρ1(1+αµφ) +
ρ1(1+αµφ)+c(α)mδ2s

1+α(µφ+µ)−ρ1(1+αµφ)

]
E∥x̃s − x⋆∥2

≤
[
1− 2αµ

1+α(µφ+µ) +O(δs)
]
E∥x̃s − x⋆∥2

as s→∞. This proves q-linear convergence of {x̃s} to x⋆ in expectation.

Proof of Theorem 6.3. Let the iteration index s ∈ N0 and k ∈ {0, . . . ,m− 1} be
fixed and let hk+1, x̂k+1, ek(x) be defined as in the proof of Theorem 6.4. As all fi are
convex we have MSk

= MN = 0. Denote by µφ ≥ 0 the strong convexity parameter
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of φ. Let x⋆ denote the unique solution to (1.1) satisfying ψ⋆ = ψ(x⋆). Proceeding
as in the proof of Theorem 6.4, we obtain the following analogue to (C.3)

(1 + αµφ)(1− ρ1)∥xk+1 − x∥2 − ∥xk − x∥2 ≤ 2α[ψ(x)− ψ(xk+1)] + 2αek(x)

+
α

ρ2
∥∇f(xk)−∇fSk

(xk)− vk∥2 − [1− (L+ ρ2)α] ∥xk+1 − xk∥2

+ α2∥hk+1∥2 + (1 + αµφ)(ρ
−1
1 − 1)∥x̂k+1 − xk+1∥2

for x ∈ dom(φ), ρ1 ∈ (0, 1), and ρ2 > 0. Conditioned on xk, we have E[ek(x)] = 0.

By Proposition 5.1, it holds ∥hk+1∥2 ≤ (1+αL̄)2 Ā
2

µ2
∗b
ε2k and ∥x̂k+1−xk+1∥2 ≤ α2Ā2

µ2
∗b
ε2k

and we can again use the estimate εk ≤ (2 + L)δs∥x̃s − x⋆∥. Applying Corollary A.4
(with x = xk, x̃ = x̃s), conditioned on the history of iterates up to xk = xs,k, we have

E∥∇f(xk)−∇fSk
(xk)− vk∥2 ≤ 4L̄b−1(ψ(xk)− ψ⋆ + ψ(x̃s)− ψ⋆)

almost surely. At this point, we assume that the condition 1 − (L + ρ2)α ≥ 0 holds
(for the selected ρ2 and α). Next, setting β(ρ1) := (1 + αµφ)(1− ρ1) and x = x⋆, we
apply expectation conditioned on the history up to iterate xk = xs,k and conclude

β(ρ1)E∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 + 2αE[ψ⋆ − ψ(xk+1)]

+ 4αL̄(ρ2b)
−1(ψ(xk)− ψ⋆ + ψ(x̃s)− ψ⋆) + c̃(α)δ2s∥x̃s − x⋆∥2,

(C.4)

where c̃(α) := ((1+αL̄)2+(1+αµφ)ρ
−1
1 )α

2Ā2

µ2
∗b

(2+L)2. Using ∥xk−x⋆∥2 ≤ 2
µ (ψ(x

k)−
ψ⋆) and 1− β(ρ1) = ρ1 + αµφ(ρ1 − 1) ≤ ρ1, this yields

β(ρ1)E∥xk+1 − x⋆∥2 ≤ β(ρ1)∥xk − x⋆∥2 + 2αE[ψ⋆ − ψ(xk+1)](C.5)

+ c̃(α)δ2s∥x̃s − x⋆∥2 + 4αL̄
ρ2b

(ψ(xk)− ψ⋆ + ψ(x̃s)− ψ⋆) + 2ρ1
µ (ψ(xk)− ψ⋆).

We now require ρ1 ≤ min{ 12 ,
αµL̄
ρ2b
}. Using (C.5) recursively for k = 1, . . . ,m− 1 and

(C.4) for k = 0, applying expectation conditioned on the history up to x̃s and the
tower property, we obtain

β(ρ1)E∥xm − x⋆∥2 + 2α(1− 3L̄
ρ2b

)
∑m

k=1
E[ψ(xk)− ψ⋆]

≤ (1 + c̃(α)mδ2s)∥x̃s − x⋆∥2 + 4αL̄(m+1)
ρ2b

(ψ(x̃s)− ψ⋆).

Due to the convexity of ψ and by Option II, we can infer ψ(x̃s+1) ≤ 1
m

∑m
k=1 ψ(x

k)
and hence, for ρ2 > 3L̄b−1 it holds that

2α(1− 3L̄
ρ2b

)mE[ψ(x̃s+1)− ψ⋆] ≤ (1 + c̃(α)mδ2s)∥x̃s − x⋆∥2 + 4αL̄(m+1)
ρ2b

(ψ(x̃s)− ψ⋆).

Furthermore, the strong convexity of ψ again implies ∥x̃s − x⋆∥2 ≤ 2
µ (ψ(x̃

s) − ψ⋆).
We now set ρ2 = L̄

b (
4

1−2θ + 3), i.e., 4L̄
ρ2b

(1 − 3L̄
ρ2b

)−1 = 1 − 2θ. This choice satisfies

ρ2 > 3L̄b−1 automatically and due to (6.4), we have (L+ ρ2)α ≤ 1. This yields

E[ψ(x̃s+1)− ψ⋆] ≤
[

1 + c̃(α)mδ2s

µα(1− 3L̄
ρ2b

)m
+

2L̄(m+ 1)

ρ2b(1− 3L̄
ρ2b

)m

]
(ψ(x̃s)− ψ⋆).

By the choice of ρ2, it holds 2L̄(m+1)
ρ2bm

(1 − 3L̄
ρ2b

)−1 ≤ 1 − 2θ for all m ∈ N. Finally, if

δs is sufficiently small and m is sufficiently large such that
1+c̃(α)mδ2s

µαm (1− 3L̄
ρ2b

)−1 ≤ θ,
then we can conclude E[ψ(x̃s+1)− ψ⋆] ≤ (1− θ)E[ψ(x̃s)− ψ⋆].
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Remark C.1. In the case µφ > 0, ρ1 can be chosen small enough such that β(ρ1) ≥
1 and we obtain the term 1− 2L̄

ρ2b
instead of 1− 3L̄

ρ2b
in the latter computations.

Appendix D. Parameter Choices. Here, we report details on the tuning
procedure for subsection 7.2.4 and subsection 7.3. For each method and each dataset,
we first identify a candidate interval of step sizes. We then choose a range of step sizes
α on this interval (typically 5–7 values) and perform grid search over 2–3 different
batch sizes b. For SAGA, we additionally try b = 1. We select the combination of α
and b that performed best in terms of the objective function sub-optimality over three
runs. We observe that AdaGrad typically requires larger batch sizes than SNSPP/SVRG,
which might be due to a missing variance reduction mechanism in AdaGrad.

Dataset SNSPP SAGA SVRG AdaGrad

α b α b α b α b

mnist 2.5 280 0.04 56 0.25 280 0.030 2800
gisette 7.0 240 1.20·10−3 1 0.022 50 0.028 240
sido0 30.0 50 0.20 10 0.733 50 0.0150 200
covtype 50.0 50 0.25 50 0.350 50 0.10 250

student-t (ν̂ = 0.5) 1.05 20 2.50·10−3 1 0.140 40 0.032 40
student-t (ν̂ = 1) 3.0 20 0.015 4 0.120 20 0.030 20
student-t (ν̂ = 2) 7.0 20 0.20 20 0.40 20 0.032 40
student-t sido0 5.5 200 0.004 1 0.0145 10 0.015 100

Table 2: Step size and batch size values for the experiments in subsection 7.2.4 and
subsection 7.3.

Appendix E. Additional Plots.
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Fig. 6: Objective function convergence for the logistic regression datasets with respect
to number of gradient evaluations. All settings are identical to Figure 3.
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