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Abstract

The reaction-diffusion master equation (RDME) is a lattice-based stochastic model for spa-
tially resolved cellular processes. It is often interpreted as an approximation to spatially con-
tinuous reaction-diffusion models, which, in the limit of an infinitely large population, may be
described by means of reaction-diffusion partial differential equations (RDPDEs). Analyzing and
understanding the relation between different mathematical models for reaction-diffusion dynam-
ics is a research topic of steady interest. In this work, we explore a route to the hydrodynamic
limit of the RDME which uses gradient structures. Specifically, we elaborate on a method in-
troduced in [J. Maas, A. Mielke.: Modeling of chemical reactions systems with detailed balance
using gradient structures. J. Stat. Phys. (181), 2257–2303 (2020)] in the context of well-mixed
reaction networks by showing that, once it is complemented with an appropriate limit procedure,
it can be applied to spatially extended systems with diffusion. Under the assumption of detailed
balance, we write down a gradient structure for the RDME and use the method to produce a
gradient structure for its hydrodynamic limit, namely, for the corresponding RDPDE.

1 Introduction

Mathematical modeling and numerical simulation of reaction-diffusion processes is a research topic
of steady interest. Application areas include many kinds of cellular processes like gene expression
[IP06, WS16], neurotransmission [ESSW22] or enzyme kinetics [SWSH21], but also social dynamics of
interacting agents such as innovation spreading or epidemics within a human population [HDCD+21,
WZSDC21]. While, on the level of spatially well-mixed kinetics, the convergence of the stochastic jump
process (characterized by the chemical master equation [Gil92]) to the corresponding deterministic
limit given by an ordinary differential equation is fully understood [Kur70], an analogue analysis of
the spatially resolved setting is not yet completed. Already the probabilistic formulation of particle-
based reaction-diffusion dynamics – as the root model to start with – is a non-trivial issue because
one has to couple the reaction kinetics to the continuous diffusion dynamics of a non-conserved
and possibly unbounded number of particles. Here, applications of the Fock space formalism from
quantum mechanics come into play, by which one can construct a characterizing evolution equation
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for particle-based reaction-diffusion dynamics using creation and annihilation operators [IMS20a,
IMS20b, dRFS+21]. Another approach, which will be used in this work, is to discretize space by a
regular Cartesian lattice and to replace the continuous spatial diffusion of particles by jumps between
the lattice sites, which leads to the well-known reaction-diffusion master equation (RDME) [HHP15,
Isa13, Isa09].

Taking the hydrodynamic limit of the RDME means identifying a spatially continuous, determin-
istic, fluid-like model, described by a reaction-diffusion partial differential equation (RDPDE), which
approximates the discrete model when the total number of particles is large. The hydrodynamic limit
of reaction-diffusion systems has been studied in the last forty years [DMFL85, DMFL86, Kot88,
Blo94, Per00, Mit18], but only partial rigorous results, namely in simple specific cases, have been
established so far. The main reason for the lack of results has to be traced in the nonlinearities that
characterize the general reaction-diffusion systems. The first consequence of the presence of those
nonlinearities is that a general theory for the well-posedness of RDPDEs is not yet available, except
in the simplest cases, up to quadratic nonlinearities (cf. [Pie10, Fis15, LP20] for the most recent
results). The second, related consequence is that proving that a hydrodynamic limit exists at all, i.e.,
compactness, is challenging because the concentrations of the species may become locally unbounded
[Mit18].

From the non-rigorous, “formal” standpoint, the situation is rather clear instead. If the particle
system is described by the RDME with mass-action-law stochastic reaction rates, the limit system,
when the number of lattice sites goes to infinity and the order of magnitude of the particle numbers
per lattice site is kept constant, is the RDPDE with mass-action-law deterministic reaction rates.
The latter rates are averaged versions of the former, as we will see, with respect to a local-equilibrium
distribution.

Given compactness and local equilibrium, the hydrodynamic limit of interacting particle systems is
usually proven at the level of the stochastic process [KL99]. In this work, we take a different route and,
still not aiming at a full rigorous proof, apply a heuristic method by Maas and Mielke that uses gradient
structures [MM20]. These are geometric structures that were introduced in both physical [Grm85,
Mor86] and mathematical [DGMT80, CV90] contexts to model dissipative phenomena, in particular
in the literature of nonequilibrium thermodynamics [Ons31, GÖ97]. To prove the hydrodynamic
limit or other results, one works with the gradient structures associated with the system rather than
directly with the evolution equations.

With the use of gradient structures, we aim to pave the way to (i) a rich thermodynamic insight in
reaction-diffusion systems, (ii) a possible alternative scheme for rigorous proofs of their hydrodynamic
limit, (iii) a general framework for the construction of hybrid models, namely models where part of
the system is treated stochastically, partly deterministically. An essential requirement for the use of
gradient structures is the presence of detailed balance [Mie11, MM20].

The method of Maas and Mielke, as introduced in [MM20], essentially transfers the gradient
structures with the help of a local-equilibrium assumption. While this method works for well-mixed
chemical reactions, for spatially extended systems this is not sufficient to get the desired result, but
has to supplemented with a limit procedure.

The plan of the paper is as follows. In sec. 2, we describe the main physical and mathematical
elements to describe reaction-diffusion systems, and in particular the stochastic model (RDME) in
sec. 2.1 and the deterministic model (RDPDE) in sec. 2.2. In sec. 3, we introduce the notion of a
gradient structure and formulate how it is applied to both the RDME and the RDPDE. We then
use the method of Maas and Mielke, in sec. 4, to show that the RDPDE is indeed the hydrodynamic
limit of the RDME. In the conclusions (sec. 5), we summarize the results and suggest the main future
steps.
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2 Reaction-diffusion systems

The systems we study in this work are characterized by the superposition of two different phenomena.
When a substance diffuses in a container in the absence of external forces and cross effects with other
dissipative phenomena, it tends to occupy the whole container by transferring from regions with
higher concentrations to regions with lower concentrations. In this paper, we assume that the system
consists of different substances that diffuse independently from each other. Furthermore, we suppose
that even the single particles of the same species do not feel each other. The motion of each species is
thus characterized by some diffusion coefficient or tensor. To avoid considering boundary conditions,
the space where the motion takes place is a torus in d dimensions.

A reaction models the sudden transformation of several species into different ones. This model
is usually a coarse-grained picture of a complex system, where the effect of multiple interactions in
a high-dimensional space gives rise to preferred, metastable states where the system spends most
of its time. These preferred states are exactly what we refer to as “species”, which are thus not
necessarily chemical species, but may just be different important configurations of the same molecule,
for instance. The set of all possible reactions is encoded by a reaction network of the type

α1
rA

1 + α2
rA

2 + . . .+ αSr A
S k+r−−⇀↽−−

k−r
β1
rA

1 + β2
rA

2 + . . .+ βSr A
S (r = 1, . . . , R) , (1)

constituted of S species and R reactions. The symbol As indicates a species, αr := (αsr)s=1,...,S :=
(α1
r, α

2
r, . . . , α

S
r ) and βr := (βsr)s=1,...,S , where αsr, β

s
r ∈ N are (possibly zero) stoichiometric coefficients

for the species s and the reaction r, and k+r and k−r are the forward and backward reaction rates for
the reaction r. We will specify later the role of k+r and k−r. When a reaction r occurs, the species s
is changed by βsr − αsr unities. Furthermore, we introduce the notations, for any vectors m,γ ∈ RS ,

|γ| :=
S∑
s=1

γs , mγ :=

S∏
s=1

(ms)γ
s

, m! :=

S∏
s=1

ms! . (2)

By their combination, reaction and diffusion influence each other. On the one hand, in a certain
region of the torus, reaction may decrease the amount of a certain species, which may however be
transferred to that region by diffusion and thus be able to react again. We say that reactions are
diffusion-limited in this situation. On the other hand, diffusion of a species can occur only if that
species is produced by reactions.

What may sound surprising is that both phenomena, in the stochastic model of this paper, can be
thought of in exactly the same way: both diffusion and reaction constitute “reaction” phenomena in
a proper abstract sense. What especially marks their difference does not lie in their inherent nature,
but in the rate at which they occur. The difference in the scalings causes the deterministic limits of
the stochastic systems to be of two different natures: one, indeed, of diffusive type, and the other one
of reaction type.

2.1 The reaction-diffusion master equation (RDME)

By the expression reaction-diffusion master equation, we mean a stochastic model where reaction and
diffusion occur on a lattice according to a continuous-time Markov process. Diffusion is the part of the
process by which particles jump from a lattice site to the neighboring ones. Reaction is a phenomenon
that involves only one lattice site. In the following sections we present the two components of the
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stochastic process separately, and in the last section we see that, from an abstract viewpoint, they
can be described essentially in the same way.

Before doing that, we introduce some further notation. The lattice is a d-dimensional space of
Nd points that are denoted by i := (i`)`=1,...,d with i` ∈ [0, N ]; we silently assume periodic boundary
conditions, namely that the point with i` = N is the same as the point with i` = 0. The space
is thus the discrete torus ZdN := Zd/(NZ)d. At each lattice point i ∈ ZdN , and for each species,
we count the number of particles. The collection of all particle numbers at all points is denoted by

n := (ni)i∈ZdN ∈ (NS)Z
d
N =: N with ni := (nsi )s=1,...,S ∈ NS and nsi ∈ N. We define

m! :=
∏
i∈ZdN

mi! . (3)

Finally, the state of the RDME is described by the probabilities of each configuration n, which we
indicate by un ∈ R+, and we collect all of these in the infinite-dimensional vector u, an element of the
space of probability measures on N , which we denote by P(N ) and may be identified with the space{
u ∈ [0, 1]N

∣∣∣ ∑
n∈N

un = 1
}

.

Reaction

At each lattice site, there are R possible reactions according to the network (1), and the particle
numbers jump according to certain transition rates that can be modeled in various ways depending
on the reaction types. In this paper, we assume that the rates are modeled according to the law of
mass action. The law-of-mass-action transition rates for a well-mixed system specify the chemical
master equation [Gil92].

Let us introduce the mass-action-law stochastic factors, for a generic γ ∈ NS ,

Bγ : ZS → Q ,

n 7→


n!

(n− γ)!
for n− γ ∈ NS ,

0 for n− γ /∈ NS .

(4)

This definition automatically assigns a zero rate to the reactions that do not have a sufficient number
of particles to occur.

A forward reaction r makes the state of the system at position i jump

from ni to ni −αr + βr with rate k+r Bαr(ni) (5a)

and a backward reaction

from ni to ni +αr − βr with rate k−r Bβr(ni) , (5b)

with k+r, k−r > 0.

Diffusion

Diffusion is modeled, at the stochastic level, as a jump process that transfers one particle from a
lattice site to one of its neighbors. Let us introduce {`}`=1,...,d, a basis of unit vectors of Rd. A
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forward diffusion event in such a direction for the species s moves a particle between two neighboring
positions, namely it changes the state of the system at the positions i and i+ `

from

{
nsi

nsi+`
to

{
nsi − 1

nsi+` + 1
with rate N2Ds,+`

i nsi , (6a)

and a backward event

from

{
nsi

nsi+`
to

{
nsi + 1

nsi+` − 1
with rate N2Ds,−`

i+` n
s
i+` , (6b)

with Ds,+`
i , Ds,−`

i ≥ 0 at every i. Once we introduce

es , the canonical unit vector in RS in the direction s ,

we may reformulate the transitions as

from

{
ni

ni+`
to

{
ni − es

ni+` + es
with rate N2Ds,+`

i Be
s

(ni) and (7a)

from

{
ni

ni+`
to

{
ni + es

ni+` − es
with rate N2Ds,−`

i+` Be
s

(ni+`) . (7b)

From the last formulation of the rates, we may already notice how reaction and diffusion have es-
sentially the same structure in terms of the functions B: diffusion is a special case for first-order
reactions, which have linear rates. We recognize an even more elegant joint formulation in the next
section.

Reaction-diffusion

Let us define the functions on the lattice

(δi)j :=

{
1 if j = i,

0 if j 6= i,
�ri := αr δi , �ri := βr δi , esi := es δi , (8)

and the rates

B
(n) :=
∏
i∈ZdN

Bγi(ni) =


∏
i∈ZdN

ni!

(ni − γi)!
=:

n!

(n− 
)!
if n− 
 ∈ N ,

0 otherwise.

(9)

The transitions given in (5)-(7) may then be re-expressed as follows:

from n to n− �ri + �ri with rate k+r B
�ri(n) ,

from n to n + �ri − �ri with rate k−r B
�ri(n) ,

from n to n− esi + esi+` with rate N2Ds,+`
i Be

s
i(n) , and

from n to n + esi − esi+` with rate N2Ds,−`
i+` Be

s
i+`(n) .
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All of the rates are thus in the form k B
(n), where k is a rate constant and 
 is a generalized vector of

stoichiometric coefficients: this is, instead of a vector in RS , a vector in N = (RS)Z
d
N . In the standard

RDME that we consider in this paper, any of these generalized vectors have non-zero entries only for
one lattice site i, meaning that reactants and products of a reaction are located at the same site. In
some models, however, reactions are allowed between different lattice sites [Isa13].

The reaction-diffusion stochastic system evolves according to the Kolmogorov forward equation
associated with the transition rates that have just been defined, namely

u̇t =
∑
i∈ZdN

R∑
r=1

Rr
i (ut) +

∑
i∈ZdN

S∑
s=1

d∑
`=1

Ds,`
i (ut) , (10a)

where the vector fields Rr
i and Ds,`

i have components(
Rr
i (u)

)
n

:= k+r
[
Bαr(ni +αr − βr)un+�ri−�ri − Bαr(ni)un

]
+ k−r

[
Bβr(ni −αr + βr)un−�ri+�ri − Bβr(ni)un

]
, (10b)(

Ds,`
i (u)

)
n

:= N2Ds,+`
i

[
(nsi + 1)un+esi−esi+` − n

s
i un

]
+N2Ds,−`

i+`

[
(nsi+` + 1)un−esi+esi+`

− nsi+` un
]
. (10c)

Eq. (10) is the RDME.

2.2 The reaction-diffusion partial differential equation (RDPDE)

When the size N of the system is sufficiently large and the total particle numbers scales accordingly,
a deterministic model may constitute an accurate description of the dynamics of reaction-diffusion
systems. The state of the system is described by S fields of concentrations on the unit torus Td =
Rd/Zd, namely [0,∞)S-valued functions (or measures) c on Td (we write c ∈ C) such that∫

V
cs(x) dx = #{particles of species s in V} ,

where V is a measurable subset of Td and dx is the volume element on Td. Similarly to the discrete
case, we also write c(x) =

(
cs(x)

)
s=1,...,S

.

Reaction

At every point in space, R reactions may happen. By analogy with the stochastic factors B defined
in (4), let us introduce the mass-action-law deterministic factors

bγ(c) := cγ . (11)

A forward reaction moves the state of the system at position x

in the direction βr −αr with rate k+r bαr
(
c(x)

)
, (12)

and a backward reaction

in the direction αr − βr with rate k−r bβr
(
c(x)

)
. (13)
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Furthermore, we define the factors

b
(c) := c
 :=
∏
x∈Td

c(x)γ(x) =
∏
x∈Td

bγ(x)
(
c(x)

)
, (14)

and reformulate the rates as k+r b�
r
Nx(c) and k−r b�

r
Nx(c).

Diffusion

The species are assumed to diffuse independently from each other with the well-known dynamics of
the form

div
(
Ds(x)∇cs(x)

)
, (15)

where Ds(x) is symmetric and positive semidefinite, ∇ is the gradient operator on Td, and div the
divergence operator on Td. For a more condensed notation, we also define

D(x)∇c(x) := (Ds(x)∇cs(x))s=1,...,S (16)

and, for m ∈ Rd×S ,
divm :=

(
divms

)
s=1,...,S

with ms ∈ Rd . (17)

Reaction-diffusion

The two components combine into the RDPDE

ċt(x) =

R∑
r=1

(
k+r ct(x)αr − k−r ct(x)βr

)
(βr −αr) + div

(
D(x)∇ct(x)

)
, (18)

also written as

ċt =

R∑
r=1

rr(ct)(βr −αr)− div d(ct) (19a)

with
rr(c)(x) := k+r c(x)αr − k−r c(x)βr and ds(c)(x) := −D(x)∇c(x) . (19b)

3 Gradient structures for the RDPDE and the RDME

3.1 Gradient structures in a nutshell

When detailed balance is satisfied (cf. sec. 3.2), both the RDME and the RDPDE can be given the
form of a gradient flow. This means that their dynamics may be expressed in terms of the balance of
forces

− dE(zt)− ∂żΨ(zt, żt) = 0 , (20)

where d and ∂ indicate the total and partial derivative operators. The first force is a potential restoring
force and the second one is a frictional (or “thermodynamic”) force. Any relation ξ = K(z, ż) between
the rate ż and the frictional force ξ is usually referred to as a kinetic relation. A gradient structure
expresses such a kinetic relation as the derivative of a dissipation potential with respect to the rate ż.
The simplest example of the balance of forces is shown in Figure 1.
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E

z

Ψ

Figure 1: A typical potential energy is E(z) = 1
2
kz2, where k is the stiffness constant, and the simplest

dissipation potential is Ψ(z, ż) = 1
2
µż2, where µ is the friction coefficient. These choices lead to the

linear spring force −kz and the linear damping −µż. The force balance thus yields the linear ODE
µżt + kzt = 0.

Gradient structures constitute a model of dissipation for many physical systems and processes,
such as (complex-) fluid dynamics, chemical reactions, heat conduction, rarefied gas dynamics [Ött05,
Pel14, PKG18]. At the mathematical level, the theory of gradient structures is developing towards
a broader and broader generality: the case of quadratic dissipation potentials is very well developed
and allows us to treat evolution equations in abstract metric spaces [AGS08], and in particular in
spaces of probability measures. The non-quadratic situation, to date, has not reached such level of
abstraction (the latest attempt of a general theory in nonlinear situations is made in [PRST20]).
Since our case falls under this second category, we necessarily introduce the mathematical objects in
a heuristic way.

We denote the state space by Z, the space of rates at the point z by TzZ (the tangent space at
z), and the space of forces at the point z by T ∗z Z (the cotangent space at z). The disjoint union
of all tangent spaces is the tangent bundle TZ, and the one of all cotangent spaces is the cotangent
bundle T ∗Z.

In this paper, a gradient structure on the (possibly infinitely dimensional) state space Z, is a
pair (E,Ψ) of

• a driving function E : Z → R, a continuously differentiable function;

• a dissipation potential Ψ : TZ → [0,∞] that, for every z ∈ Z, has the following properties

1. Ψ(z, ·) : TzZ → [0,∞] is convex and lower-semicontinuous,

2. Ψ(z, 0) = 0,

3. Ψ(z, v) = Ψ(z,−v);

the last property, called symmetry, is sometimes replaced by the weaker condition

argmin
v∈TzZ

Ψ(z, v) = 0 ,

which plays the role of an integrability condition [MPR14].

A gradient structure uniquely induces the differential equation (20) and, conversely, we say that
a differential equation on the space Z has a gradient structure if it may be put in the form (20) for
at least one pair of functions (E,Ψ). Note that the latter characterization is not unique, since – even
for a fixed driving function E – many dissipation potentials Ψ lead to the same differential equation
[Mon19, MMP21]. Hence, assigning a gradient system to a differential equation means identifying
thermodynamic information that is not available in the differential equation itself.

The derivative operators d and ∂ in eq. (20) are abstract differential operators that, in specific
cases, assume concrete representations. In a linear finite-dimensional space, like for the RDME, they
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become the usual gradient and the gradient with respect to a subset of the variables. In infinite-
dimensional spaces, as for the RDPDE, they may be though of as total and partial functional deriva-
tives.

The properties of the dissipation potential allow us to introduce a related function, called a dual
dissipation potential, as the Legendre-Fenchel transform

Ψ∗(z, ξ) = sup
v∈TzZ

[〈ξ, v〉Z −Ψ(z, v)] , (21)

where 〈 , 〉Z : TzZ × T ∗z Z → R is a dual pairing between forces ξ and rates v. The dual dissipation
potential enjoys the same properties 1-3 above and allows us to express the gradient-flow equation (20)
in a different form. We apply the property of the Legendre-Fenchel transform

∂ξΨ
∗(z, ∂vΨ(z, v)

)
= v (22)

to eq. (20), obtaining
żt = ∂ξΨ

∗(zt,−dE(zt)
)
. (23)

It is normally much easier, and often the only possibility, to have an explicit form for the dual
dissipation potential Ψ∗ rather than for the (primal) potential Ψ (cf. for instance [MPPR17]), and
the same holds for the gradient-flow equation (23) compared to (20). This work will be no exception.
A sufficient condition for assigning a gradient structure to the RDME (10) and the RDPDE (19) is
detailed balance, which we explore in the next section.

3.2 Detailed balance

The RDME (10) and the RDPDE (19) have many stationary solutions, depending on the initial
condition. There are, in fact, conserved quantities that force the state of the system to evolve
within certain stoichiometric simplices [AK11]. General stationary states are solutions u and c of the
equations ∑

i∈ZdN

R∑
r=1

Rr
i (u) +

∑
i∈ZdN

S∑
s=1

d∑
`=1

Ds,`
i (u) = 0 (24)

and
R∑
r=1

rr(c)(βr −αr)− div d(c) = 0 , (25)

which result from setting (10) and (19) to zero, respectively.
The detailed-balanced states constitute a subset of the class of steady states. We begin with the

deterministic system and say that it satisfies deterministic detailed balance (DDB) if there exists a
state c such that

rr(c) = 0 for all r , (26a)

d(c) = 0 , (26b)

that is, for every x ∈ T d,

k+r c(x)αr = k−r c(x)βr =: κr(x) for all r , (27a)

D(x)∇c(x) = 0 . (27b)
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The existence of a DDB state depends on the reaction rate constants k+r and k−r and is characterized,
for the reaction part in a well-mixed system, in [MM20, sec. 2.2].

The notion of stochastic detailed balance (SDB) for the RDME follows the usual definition of
detailed balance for a Markov process: there exists u ∈ P(N ) such that the jump rates between any
two states are equilibrated. This means that, for all n and i,

un+�ri k+r B
�ri(n + �ri ) = un+�ri k−r B

�ri(n + �ri ) =: νn,ri for every r, (28a)

un+esiD
s,+`
i Be

s
i(n + esi ) = un+esi+`

Ds,−`
i+` Be

s
i+`(n + esi+`) =: νn,s,`i for every s, `. (28b)

The relationship between the two notions of detailed balance is studied generally in [Jos15] for
purely reactive systems. If a reaction network satisfies DDB with respect to the concentration c, then
the corresponding Markov process satisfies SDB with respect to the Poisson-like distributions [MM20,
Theorem 3.1]

u = χc with χc(n) := e−|c|
cn

n!
=
∏
i∈ZdN

e−|c(i/N)| c(i/N)ni

ni!
, (29)

|c| :=
∑
i∈ZdN

|c(i/N)| , and cn :=
∏
i∈ZdN

c(i/N)ni .

We may see this directly by elaborating both sides of eq. (28a) when ni ∈ NS (otherwise both
terms vanish):

un+�ri k+r B
�ri(n + �ri ) = e−|c|

cn+�ri

(n + �ri )!
k+r

(n + �ri )!
n!

= un k+r c(i/N)αr ,

un+�ri k−r B
�ri(n + �ri ) = e−|c|

cn+�ri

(n + �ri )!
k−r

(n + �ri )!
n!

= un k−r c(i/N)βr .

If eq. (27a) is satisfied, the two expressions are both equal to unκr(i/N), and we conclude that
νn,ri = unκr(i/N).

We now turn to the diffusion sector. First, we assume that the diffusion rates for the forward and
backward paths between two lattice sites are equal to each other:

Ds,+`
i = Ds,−`

i+` . (30)

If we did not make this assumption, we would expect that, in the limit N → ∞, diffusion would be
overcome by transport governed by the difference Ds,+` −Ds,−` [KL99, Introduction]: diffusion is a
lower-order effect with respect to transport, and the N2-scaling should be replaced by an N -scaling.
As a consequence of (30), there is one diffusion rate for each direction ` and each point i, i.e., we have
a diagonal diffusion tensor. In other words, the d different directions ` are the principal directions of
diffusion. We thus define, in the (principal) basis {`}`=1,...,d,

Ds
``(x) := Ds,+`

Nx = Ds,−`
Nx+` for x ∈ T d . (31)

Following these observations, and assuming (29), let us develop both sides of eq. (28b):

un+esNx
Ds,+`
Nx Be

s
Nx(n + esNx) = unD

s
``(x) cs(x) ,

un+esNx+`
Ds,−`
Nx Be

s
Nx+`(n + esNx+`) = unD

s
``(x) cs(x+ `/N) .
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By eq. (28b) the left-hand sides agree. In order for the two expressions on the right-hand sides to be the
same as well, we thus need, at every point x, either a constant concentration or a vanishing diffusion
coefficient. Since the diffusion tensor, in the principal basis, is diagonal, this is equivalent to say that
D(x)∇c(x) = 0 for every x. We conclude that, even when reaction and diffusion are combined, DDB
implies SDB with respect to Poisson-like distributions parametrized by concentrations c that satisfy

k+r c(i/N)αr = k−r c(i/N)βr for every r, and (32)

Ds
``(x)

(
cs(x+ `/N)− cs(x)

)
= 0 for every s, `, and x. (33)

When a detailed-balance condition for a system is satisfied, by experience we always expect to be
able to assign a gradient structure to that system (cf., for instance, [Mie11, MM20]). This is true for
both the deterministic and the stochastic reaction-diffusion systems that we consider in this work.
The opposite implication does however not hold, since the detailed balance condition is in general only
sufficient. Nevertheless, there is a situation where the notions of a gradient structure and of detailed
balance are equivalent, namely when the gradient structure is derived from a large-deviation principle
[MPR14]: when the differential equation is the hydrodynamic limit of a certain stochastic system
and a large-deviation principle holds, a dissipation potential may uniquely be derived from the large-
deviation rate function if and only if the stochastic system satisfies detailed balance. Note, however,
that detailed balance is not considered for the differential equation itself, but for the underlying
stochastic process. This is exactly the case of the RDPDE, even if this is valid only formally since,
to date, no rigorous proofs of the hydrodynamic limit from the RDME nor of the corresponding
large-deviation principle have been established in full generality (partial results can be found in
[DMFL85, DMFL86, JLLV93, Per00, BL12, Mit18]).

3.3 Gradient structures for the RDPDE

It is a well-known fact that, if a detailed-balance condition is satisfied, a well-mixed reaction-rate
equation can be cast as a gradient flow (cf. references below), and the same is true for a diffusion
equation [Grm86, Ott01]. The notion (27) of DDB that we introduced above combines reaction and
diffusion [Mie11].

The choice of a gradient structure, however, is not unique, even with the same driving function
(cf. [Mon19, Example 4.3] and [MM20] for reaction rate equations). In this paper, we make a particular
choice of a gradient structure. As a driving function, we select a relative entropy with respect to the
stationary concentrations. For the dissipation potential, we choose a quadratic form for the diffusion
sector, and a cosh-type form for the reaction sector:

e(c) =

∫
Td

S∑
s=1

(
cs(x) log

cs(x)

cs(x)
− cs(x) + cs(x)

)
dx , (34a)

ψ∗(c,�) =

∫
Td

R∑
r=1

κr(x)

(
c(x)

c(x)

)αr+βr
2

C*
(
(βr −αr) · µ(x)

)
dx

+
1

2

∫
Td

S∑
s=1

cs(x)
(
∇µs(x)

)ᵀ
Ds(x)∇µs(x) dx , (34b)

where

C*(ζ) := 4

(
cosh

ζ

2
− 1

)
, (35)

11



m

n
:=

(
ms

ns

)
s=1,...,S

, (36)

and

m · n :=

S∑
s=1

ms ns (37)

for m,n ∈ RS . We deliberately avoid specifying the spaces, but only write symbolically that c ∈ C,
s ∈ TcC, � ∈ T ∗c C, and 〈�, s〉C :=

∫
Td µ(x) · s(x) dx. A possible choice for the state space, in the case

we expect classical solutions of the RDPDE, is C = C2(Td,RS+), but this surely does not cover the
general situation, where a weaker notion of a solution is certainly needed [Pie10]. If we think of the
limit from the RDME, which evolves measures, the most natural choice would be C =M+(Td)S , the
space of positive, finite vector measures on Td, which, however, brings difficulties in the definition of
the gradient structure and in the interpretation of the RDPDE itself. We suggest the review paper
[Pie10] on the well-posedness of RDPDEs for a discussion of these issues from the purely deterministic
side.

The cosh-type structure is advocated in [Grm93] and motivated by a connection between gradient
flows and large deviations [MPR14, MPPR17], in contrast to the quadratic dissipation potential that
is studied in [ÖG97, Mie11, MM20]. One may verify (Appendix A.2) that the associated gradient
flow

ċt =
δψ∗

δ�

(
ct,−

δe

δc
(ct)

)
(38)

is indeed the RDPDE (19). Note that the abstract derivatives have taken the concrete expressions of
functional derivatives.

3.4 Gradient structures for the RDME

A master equation, which governs the evolution of the probabilities of all states of a Markov process, is
a special case of a reaction rate equation, one where all the reactions are of first order: the probability
of each state is equivalent to the concentration of a species, and there is one “reaction” for each
pair of different states. The “stoichiometric coefficients” are unit vectors in N . This observation
[Maa11, Erb14, PRST20] leads us to formulate the gradient structure for the RDME

EN (u) = N−d
∑
n∈N

(
un log

un
un
− un + un

)
, (39a)

Ψ∗N (u,�) = N−d
∑
n∈N

∑
i∈ZdN

R∑
r=1

νn,ri

(
un+�ri

un+�ri

un+�ri

un+�ri

)1
2

C*
(
Nd(ηn+�ri − ηn+�ri )

)

+N2−d
∑
n∈N

∑
i∈ZdN

S∑
s=1

d∑
`=1

νn,s,`i

(
un+esi

un+esi

un+esi+`

un+esi+`

)1
2

C*
(
Nd(ηn+esi+`

− ηn+esi )
)
, (39b)

where u ∈ P(N ) and � ∈ T ∗uP(N ). The tangent and cotangent spaces to P(N ), since N is countable,

can be both identified with the space T (N ) :=
{
� ∈ RN

∣∣∣ ∑
n∈N

ηn = 0
}

with the pairing 〈�, v〉P(N ) :=∑
n∈N

ηnvn.
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Again, we verify in Appendix A.1 that this pair of function generates the RDME (10) in the
gradient-flow form

u̇t =
∂Ψ∗N
∂�

(
ut,−

∂EN
∂u

(ut)

)
. (40)

In this finite-dimensional situation, the abstract derivatives become gradients, which we denote as
partial derivatives with respect to vectors.

4 Hydrodynamic limit using gradient structures

In the Introduction, we showed that the hydrodynamic limit of the RDME to the RDPDE has been
studied by various authors at different levels of complication. To our knowledge, the most recent work
in this direction is [Mit18], which, however, cannot deal with the reaction-diffusion system itself, but
with a reaction-exclusion process, where the number of particles on each lattice site is bounded from
above. The a priori locally unbounded concentrations in the deterministic reaction-diffusion system
create technical difficulties that have still to be overcome.

In this paper, we consider the general case of a RDME and perform the hydrodynamic limit with
a novel technique and no claim of rigor. The idea, which we sketch below, is based on the coarse-
graining strategy for gradient systems that Maas and Mielke developed in [MM20, sec. 6.1]. We
will see how this method, in contrast to what happens in [MM20] for the well-mixed scenario, is not
sufficient to recover all information about the RDPDE: a further limit has to be taken. A central
role in the success of the coarse-graining procedure is played by the local-equilibrium Poisson-like
distributions (29).

4.1 The coarse-graining method of Maas and Mielke

Let us consider a gradient system (Z,EZ ,ΨZ) and its associated gradient flow

żt = ∂ξΨ
∗
Z

(
zt,−dEZ(zt)

)
. (41)

Let us suppose that the solutions, for sufficiently large times, approach an exact or approximate
invariant manifold M . On that manifold, we expect to be able to describe the system with a simplified
set of variables y. We thus introduce another manifold Y and embed it into Z,

ι : Y ↪→ Z , (42)

in such a way that ι(Y ) approximates M . The embedding ι is called a reconstruction mapping by
Maas and Mielke, since it is the opposite of a coarse-graining map: to every coarse-grained state y,
it associates a fine-grained state z.

In the approach of [MM20], the gradient system (Z,EZ ,ΨZ) is pulled back by the reconstruction
mapping ι to obtain the gradient system (Y,EY ,ΨY ):

EY (y) := EZ
(
ι(y)

)
, (43a)

ΨY (y, s) := ΨZ

(
ι(y),dι(y)(s)

)
. (43b)

We expect that the gradient flow associated with the gradient system (Y,EY ,ΨY ) approximates the
gradient flow of (Z,EZ ,ΨZ) in the vicinity of the invariant manifold M . The key step in this procedure
is to find a reconstruction mapping ι that allows us to perform this approximation successfully. The
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choice usually requires a great deal of experience on the system. For instance, in [MM20], where the
authors consider the coarse-graining passage from the chemical master equation to the corresponding
reaction rate equation, the knowledge of the stationary states is crucial.

Even once we have chosen a reconstruction mapping, the definitions (43) cannot generally be used
in practice, since the primal dissipation potential Ψ is usually not known explicitly, whereas the dual
dissipation potential is. Maas and Mielke show how the pullback (43b) may be expressed in the dual
formulation

Ψ∗Y (y, µ) = inf
η∈T∗

ι(y)
Z

{
Ψ∗Z(ι(y), η)

∣∣ dι(y)ᵀ(η) = µ
}
, (44)

where dι(y)ᵀ : T ∗ι(y)Z → T ∗y Y is the transpose map of dι(y) : TyY → Tι(y)Z, namely a map that
satisfies

〈dιᵀ(y)(η), s〉Z = 〈η,dι(y)(s)〉Y for all s ∈ TyY and η ∈ T ∗ι(y)Z . (45)

Normally, the minimization (44) is extremely complicated and has to be performed approximately,
namely one searches for approximate minimizers η = m̃(y, µ), sometimes even in the linear form
η = m̂(y)µ. An approximation may indeed be sufficient, since the whole procedure is only an approx-
imation.

4.2 Application to the passage from the RDME to the RDPDE

In the hydrodynamic limit of the RDME, the parameter N controls the number of lattice points.
When N increases, the number of particles at each point i remains of the same order of magnitude,
which means that, globally, the total number of particles scales with N (cf. Figure 2). Mathematically,
this fact has to be encoded in the initial condition uN0 .

We now apply the coarse-graining method to the reaction-diffusion systems, starting from the
choice of a reconstruction mapping. In their work [MM20], Maas and Mielke study the passage from
the chemical master equation to the reaction rate equation. When detailed balance is satisfied, the
stationary states of the chemical master equation are in the form of product Poisson distributions pa-
rametrized by a positive real number that represents an equilibrium concentration. The authors then
choose a reconstruction mapping that takes a generic concentration and gives a Poisson distribution
parametrized by it.

Inspired by this idea, we also try the product Poisson distributions parametrized by a generic
concentration, that is,

ιN : CN → P(N ) ,

c 7→ χcN ,
(46)

where CN is a set of functions (or measures) on the rescaled discrete lattice TdN := N−1ZdN , and we
have introduced an index N to remark the N -dependence. Note that (TdN )N∈N is a sequence of sets
that becomes denser and denser in Td. We indicate the tangent and cotangent spaces by TcCN and
T ∗c CN , and their dual pairing by

〈�, s〉CN := N−d � • s := N−d
∑
i∈ZdN

µ(i/N) · s(i/N) . (47)

The choice (46) presents the same feature of entailing the correct stationary distributions χc when
c = c, but shows an even more interesting phenomenon. In the limit N → ∞, the distribution χc

embodies the concept of local equilibrium: since diffusion is N2 times faster than reaction (cf. the
scaling in eqs. (10b)-(10c) and (39b)), for large N , diffusion locally equilibrates the particles between
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1
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Figure 2: Portions of the rescaled torus TdN := N−1ZdN for two values of N . In the hydrodynamic limit,
the number of lattice sites is increased and the order of magnitude of the number of particles per lattice
site is kept constant.

neighboring lattice sites. This means that, as soon as a reaction pushes the system away from a
local product Poisson distribution, diffusion immediately restores that distribution locally. In other
words, the space of product Poisson distributions is an attractive invariant manifold for the RDME.
This phenomenon of local equilibration, for reaction-exclusion processes, is examined rigorously in
the replacement lemma, Theorem 3.5, of [Mit18].

Let us now consider the gradient structure (EN ,ΨN ) of the RDME and pull back the driving
function EN under the reconstruction mapping:

EN (ιN (c)) = N−d
∑
i∈ZdN

S∑
s=1

(
cs(i/N) log

cs(i/N)

cs(i/N)
− cs(i/N) + cs(i/N)

)
. (48)

We immediately note that, as anticipated, the parameter N has not disappeared from the expression.
To find the dual dissipation potential, we first have to search for an approximate solution of

inf
�∈T∗

ιN (c)P(N )

{
Ψ∗N (ιN (c),�)

∣∣∣∣ (∂ιN (c)
∂c

)T
� = �

}
. (49)

We thus need the derivative ∂ιN (c)/∂c : TcCN → TιN (c)P(N ) and its transpose map (∂ιN (c)/∂c)ᵀ :
T ∗ιN (c)P(N )→ T ∗c CN : (

∂ιN (c)
∂c

s

)
n

= χcN (n)
(n
c
− 1
)
• s , (50)((∂ιN (c)

∂c

)T
�

)
(i/N) = Nd

∑
n∈N

χcN (n)

(
ni

c(i/N)
− 1

)
�n . (51)

The following calculations completely reproduce the analogous calculations in [MM20, sec. 6.2], apart
from the additional spatial dependence. We look for a minimizer of (49) in the linear form � = m̂N (c)�
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that approximates the true minimizer as N →∞. We then try �
n

= a • n with a ∈ T ∗c CN and obtain((∂ιN (c)
∂c

)T
�

)s
(i/N)

= Nd
∑
n∈N

χcN (n)
nsi

cs(i/N)

(
as(i/N)nsi +

∑
(j,u)6=(i,s)

au(j/N)nuj

)
−N−d

∑
n∈N

χcN (n) a • n

= +Nd
(
as(i/N)

(
cs(i/N) + 1

)
+

∑
(j,u)6=(i,s)

au(j/N) cu(j/N)
)
−Nd

∑
j

a(j/N) · c(j/N)

= Nd as(i/N) . (52)

Hence, we conclude that (
m̂N (c)�

)
n

= N−d (� • n) (53)

and, inserting this result into (49),

Ψ∗N (ιN (c), m̂N (c)�) = N−d
∑
i∈ZdN

R∑
r=1

κr(i/N)

(
c(i/N)

c(i/N)

)αr+βr
2

C*
(
(βr −αr) · µ(i/N)

)
(54)

+N2−d
∑
i∈ZdN

S∑
s=1

d∑
`=1

Ds
``(i/N) cs(i/N)

(
cs(i/N)

cs(i/N)

cs((i+ `)/N)

cs((i+ `)/N)

)1
2

C*
(
µs((i+ `)/N)− µs(i/N)

)
.

We note, as expected, that the macroscopic reaction-rate factors are the expected values of the micro-
scopic ones with respect to the local Poisson distributions, as the following calculation demonstrates:

b
(c) = Eχc [B
] =
∑
n∈N

e−|c|
cn

n!

n!

(n− 
)!
=
∑
n∈N

e−|c|
cn−


(n− 
)!
c
 = c
 . (55)

4.3 The limit N →∞
As we had announced, the pair given by (48) and (54) does not give us the gradient structure (34)
associated with the RDPDE: the expressions still contain the discreteness of the lattice. The above
procedure, nevertheless, has produced something useful once it is combined with the limit N → ∞.
The limit of the driving function follows immediately from the definition of a definite integral:

lim
N→∞

EN
(
ιN (c)

)
= e(c) (56)

with e given in (34a).
The analogous limit for the dissipation potential requires some more case. The difference in the

N -scaling in the two factors (reaction and diffusion) plays a central role. While we can carry out the
limit immediately in the reaction part, in the diffusion one we calculate the Maclaurin expansion

N2

(
cs(i/N)

cs(i/N)

cs((i+ `)/N)

cs((i+ `)/N)

)1
2

C*
(
µs((i+ `)/N)− µs(i/N)

)
=
cs(i/N)

cs(i/N)

∥∥∂`µs(i/N)
∥∥2 + o(1) . (57)

By performing the summations, we thus obtain the dissipation potential (34b) with a diagonal diffu-
sion tensor, namely

lim
N→∞

Ψ∗N
(
ιN (c), m̂N (c)�

)
= ψ(c,�) . (58)
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While the coarse-graining procedure could not produce the RDPDE from the RDME directly, it
still proved a valuable tool: its combination with the limit N → ∞ gives us the correct answer, the
expected gradient structure for the RDPDE. The coarse-graining method appears to facilitate the
limit procedure, and the choice of the reconstruction mapping, which encodes the important property
of local equilibrium, is the key step to ensure the success. Two important remarks are in order at
this point.

(1) At least at a heuristic level – which is the one at which we conducted all calculations and
“proofs” – using a gradient structure to perform the hydrodynamic limit is not necessary. A weaker
variational structure would be enough, namely a functional that is minimized at the solutions of the
RDME and is in the form

IN
(
ut|[t∈[0,T ]

)
= IN0 (u0) +

∫ T

0

L(ut, u̇t) dt . (59)

The dissipation potential is replaced by the Lagrangian L and the dual dissipation potential by the
Hamiltonian H, the Legendre-Fenchel transform of L. The use of variational structures does not
require, in principle, the assumption of detailed balance, although its absence would likely complicate
the rigorous proofs.

(2) We have seen that the coarse-graining method of Maas and Mielke, in the hydrodynamic
limit of reaction-diffusion systems, has to be supplied with a limit procedure. Coarse-graining and
limit, indeed, are two ingredients of the same recipe and fit well together in a variational framework
[DLPS17, HPST20]. In a future work, we will demonstrate how the variational framework of these
two papers can be applied to the hydrodynamic limit of reaction-diffusion systems.

5 Conclusions

The hydrodynamic limit of reaction-diffusion master equations to corresponding PDEs is rather clear
from the formal standpoint, but a rigorous proof is still lacking. The aim of the present work is not to
fill this gap, but to suggest an alternative route through the use and strengthening of a coarse-graining
strategy proposed by Maas and Mielke in [MM20]. This path may represent, on the one hand, the
first step towards a rigorous proof and, on the other hand, a valuable tool for the scaling limits of
different systems in physical, biological, and social sciences.

Let us review our results in more detail. In a first step, we formulate the two models in a
common language. The reaction-diffusion master equation (RDME) describes the stochastic dynamics
of particle numbers on a d-dimensional lattice with Nd sites. The reaction-diffusion PDE (RDPDE)
deals with concentrations that evolve deterministically on a d-dimensional continuous space. Our
notation clarifies how, at the stochastic level, reaction and diffusion may be both described as reactions
in a suitably abstract sense: reaction occurs at the same lattice site, whereas diffusion involves
neighboring sites. At the deterministic level, conversely, reaction and diffusion are qualitatively
different.

If one looks more closely, the difference emerges already quantitatively at the stochastic level once
we vary the number of lattice sites: reaction and diffusion are indeed scaled differently with respect
to N , and in particular diffusion happens at rates that are N2 times faster than reaction. This means
that, at small spatial scales and for large N , reaction loses the competition with diffusion, which tends
to restore local-equilibrium distributions very quickly. These local-equilibrium distributions are in a
Poisson-like form and play a central role in this paper.

The second step of this work is to introduce gradient-flow structures for the RDME and the
RDPDE in the case where both satisfy detailed balance. Such structures are defined in terms of
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a driving function and a (dual) dissipation potential. The driving function is in a relative-entropy
form. For the dissipation potential, although there exist multiple choices for both models, we select
cosh-type functional forms, which are compatible with the large deviations of the RDME according to
the connection between large deviations and gradient flows that was proven in [MPR14]. Any other
gradient structure, however, would work as well.

Our last, main step is to study the limit passage from the RDME to the RDPDE through the
coarse-graining method for gradient structures introduced in [MM20]. Instead of studying the limit
directly, the aim is to infer, by a simplification argument, the driving function and the dissipation
potential for the RDPDE from the corresponding objects associated with the RDME. The procedure
starts by introducing a map, called reconstruction mapping, that takes a coarse-grained state (a
concentration for the RDPDE model) and gives a fine-grained one (a probability measure for the
RDME model). A clever choice for this map is the local-equilibrium Poisson-like distribution.

Once the choice has been made, we perform two operations. First, we pull back the driving
function of the RDME by the reconstruction mapping. Second, we approximately solve a constrained
minimization for the dissipation potential of the RDME on the same lines of [MM20, sec. 6.2]. In
contrast to this reference, the reduced objects are not yet the driving function and dissipation potential
of the RDPDE, which can only be recovered after performing a further limit. We remark, however,
that this limit is much simpler than the direct limit of the initial gradient-flow structure, which may
be performed, for instance, by EDP-convergence techniques [SS04, MMP21]. The “coarse-graining”
step has greatly simplified the limit procedure.

Hence, in the application presented in this paper, we give more light to the coarse-graining strategy
proposed by Maas and Mielke by disentangling the “simplification” passage from the “limit” one. The
simplification method, indeed, does not produce, in general, the gradient-flow structure of the coarse-
grained system directly. It does, however, constitute a great advantage when we wish to take a limit.
The reason for the success lies in the choice of the reconstruction mapping, which encodes the key
information of local-equilibrium. This property interacts nicely with the difference in the N -scaling
in reaction and diffusion, leading to the correct gradient-flow structures in the limit. No such a
phenomenon is seen in [MM20, sec. 6].

Although this work does not provide a rigorous proof of the limit RDME → RDPDE, it shows an
example where a coarse-graining step may formally simplify the limit passage. This brings the method
of [MM20] closer to similar methods, such as the variational approach to coarse-graining presented in
[DLPS17], which show both benefits of being rigorous and of not being restricted to detailed-balanced
systems. Exploring the relation between the methods is certainly one of our next major goals, one
that would help us to construct a clearer picture on the available methods for the simplification of
complex systems, especially with regard to a wide range of applications in physics (chemical reaction
systems), biology (signaling processes), social science (agent-based modeling).
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A Gradient flows for the RDPDE and the RDME

A.1 RDME

We show that the gradient-flow

u̇t =
∂Ψ∗N
∂�

(
ut,−

∂EN
∂u

(ut)

)
given in (40) generates the RDME (10).

At first, we note that the gradient of the driving function EN defined in (39a) is given component-wise by(
∂EN
∂u

(u)

)
m

= N−d log
um
um

. (60)

To determine the partial gradient
∂Ψ∗

N
∂� of the dissipation potential Ψ∗N (u,�) given in (39b), we need the

derivative of C* defined in (35), which is given by

d

dζ
C*(ζ) = 2 sinh

ζ

2
= exp

(ζ
2

)
− exp

(
−ζ

2

)
. (61)

Reaction part

Starting with the reaction part (i.e., the first line of (39b)) and fixing i ∈ ZdN and r ∈ {1, ..., R}, we calculate

∂

∂ηm
C*(Nd(ηn+�ri

− ηn+�ri
)
)

= 2Nd(δm,n+�ri
− δm,n+�ri

)
sinh

Nd
(
ηn+�ri

− ηn+�ri

)
2
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for any m ∈ N , where δ is the Kronecker delta. Inserting − ∂EN
∂u (u) given in (60) for �, i.e., replacing ηm by

−N−d log um
um

, we obtain

2Nd (δm,n+�ri
− δm,n+�ri

)
sinh

[
−1

2

(
log

un+�ri

un+�ri

− log
un+�ri

un+�ri

)]
= 2Nd (δm,n+�ri

− δm,n+�ri

)
sinh

[
1

2
log

(
un+�ri

un+�ri

un+�ri

un+�ri

)]
(35)
= Nd (δm,n+�ri

− δm,n+�ri

) [(un+�ri

un+�ri

un+�ri

un+�ri

)1
2

−
(
un+�ri

un+�ri

un+�ri

un+�ri

)1
2

]
.

With this, the contribution to the gradient flow from the reaction part is

∑
n∈N

νn,ri

(
un+�ri

un+�ri

un+�ri

un+�ri

)1
2

[(
un+�ri

un+�ri

un+�ri

un+�ri

)1
2

−
(
un+�ri

un+�ri

un+�ri

un+�ri

)1
2

](
δm,n+�ri

− δm,n+�ri

)
=

∑
n∈N

νn,ri

(
un+�ri

un+�ri

−
un+�ri
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)(
δm,n+�ri

− δm,n+�ri

)
(28a)

=
∑
n∈N

[
k+r B

�ri (n + �ri )un+�ri
− k−r B�ri (n + �ri )un+�ri

](
δm,n+�ri

− δm,n+�ri

)
= k+r

[
Bαr(ni +αr − βr)um+�ri−�

r
i
− Bαr(ni)um

]
+ k−r

[
Bβr(ni −αr + βr)um+�ri−�

r
i
− Bβr(ni)um

]
=
(
Rr
i (u)

)
m
,

which is the vector field Rr
i (u) defined in (10b).

Diffusion part

Equivalently, we obtain for the diffusion part (second line of (39b))

N2
∑
n∈N

νn,s,`i

(
un+esi

un+esi
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i+`
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i+`

)1
2
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i+`

un+esi

un+esi
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i+`

)1
2

] (
δm,n+es
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)
= N2

∑
n∈N
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−
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(28b)

= N2
∑
n∈N
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)
= N2Ds,+`
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[
(ms
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s
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i um
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+N2Ds,−`
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[
(ms

i+` + 1)um−esi+es
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−ms

i+` um
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=
(
Ds,`
i (u)

)
m
,

the vector field Ds,`
i (u) defined in (10c). In combination with the reaction part, this delivers the RDME in

the form (10).

A.2 RDPDE

We show that the gradient flow

ċt =
δψ∗

δ�

(
ct,−

δe

δc
(ct)

)
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given in (38) generates the RDPDE (19).
The functional derivative of the driving function e defined in (34a) is given by

δe

δc
(c)(x) = log

c(x)

c(x)
,

where definition (36) applies and the log-function acts component-wise according to

log c := (log cs)s=1,...,S .

Functional derivative (in general)

Given a function f : R3 → R, f(x, y, z), and a function g : R → R, consider the functional F (g) =∫
f(x, g(x),∇g(x)) dx. Then the functional derivative of F with respect to g is given by

δF

δg
(g)(x) =

∂

∂y
f
(
x, g(x),∇g(x)

)
− div

∂

∂z
f
(
x, g(x),∇g(x)

)
.

More generally, given g : Td → RS , y ∈ RS , z ∈ Rd×S and f : Td × RS × Rd×S → R, we have

δF

δg
(g)(x) =

∂

∂y
f
(
x, g(x),∇g(x)

)
− div

∂

∂z
f
(
x, g(x),∇g(x)

)
,

where ∇g = (∇gs)s=1,...,S ∈ Rd×S and div was defined analogously in (17).
In the following, we write ψ∗(c,�) = F reac

c (�) + F diff
c (�) to distinguish between the reaction and diffusion

part of ψ∗(c,�) given in (34b).

Reaction part

According to the first line of (34b) we have F reac
c (�) =

∫
Td f

reac
c (x,µ(x),∇µ(x)) dx with

f reac
c (x,y,z) =

R∑
r=1

κr(x)

(
c(x)

c(x)

)αr+βr
2

C*((βr −αr) · y) .
Using again Eq. (61), we obtain

∂
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c (x,y,z) =

R∑
r=1

κr(x)

(
c(x)

c(x)

)αr+βr
2

2(βr −αr) sinh
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2
,

while ∂
∂z
f reac
c = 0. Hence, the functional derivative

δF reac
c
δ� is given by

δF reac
c

δ�
(�)(x) = 2

R∑
r=1

κr(x)

(
c(x)

c(x)

)αr+βr
2

(βr −αr) sinh
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2
.

Inserting − δe
δc for � and using the equality

2 sinh

(
−βr −αr

2
· log

c(x)

c(x)

)
=

(
c(x)

c(x)

)αr−βr
2

−
(
c(x)

c(x)

)βr−αr
2

,
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we get

δF reac
c

δ�
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− δe
δc

(c)

)
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(
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(
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)
(βr −αr)

=

R∑
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rr(c)(x)(βr −αr) .

Diffusion part

Given the second line of (34b), we set F diff
c (�) =

∫
Td f

diff
c (x,µ(x),∇µ(x)) dx with

fdiff
c (x,y,z) =

1

2

S∑
s=1

cs(x)
(
zs
)ᵀ
Ds(x)zs .

This time, we have that ∂
∂y
fdiff
c = 0, while

∂

∂z
fdiff
c (x,y,z) = (cs(x)Ds(x) zs)s=1,...,S ∈ Rd×S ,

where zs ∈ Rd, Ds(x) ∈ Rd×d. Replacing z by ∇µ(x) and inserting − δe
δc (c) for �, we get

δF diff
c

δ�

(
− δe
δc

(c)

)
(x) =

(
div

(
cs(x)Ds(x)∇ log

cs(x)

cs(x)

))
s=1,...,S

(27b)
= div

(
D(x)∇c(x)

)
= −div ds(c)(x) .

In combination with the reaction part, we obtain the RDPDE (19).
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