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Abstract. We address a large-scale and nonconvex optimization problem, involving an aggrega-
tive term. This term can be interpreted as the sum of the contributions of N agents to some common
good, with N large. We investigate a relaxation of this problem, obtained by randomization. The
relaxation gap is proved to converge to zeros as N goes to infinity, independently of the dimension of
the aggregate. We propose a stochastic method to construct an approximate minimizer of the origi-
nal problem, given an approximate solution of the randomized problem. McDiarmid’s concentration
inequality is used to quantify the probability of success of the method. We consider the Frank-Wolfe
(FW) algorithm for the resolution of the randomized problem. Each iteration of the algorithm re-
quires to solve a subproblem which can be decomposed into N independent optimization problems.
A sublinear convergence rate is obtained for the FW algorithm. In order to handle the memory
overflow problem possibly caused by the FW algorithm, we propose a stochastic Frank-Wolfe (SFW)
algorithm, which ensures the convergence in both expectation and probability senses. Numerical
experiments on a mixed-integer quadratic program illustrate the efficiency of the method.
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1. Introduction.
Problem formulation. This article is devoted to the theoretical analysis and the

numerical resolution of the following large-scale, aggregative, and nonconvex opti-
mization problem:

(P) inf
x∈X

J(x) := f(G(x)), where:


G(x) =

1

N

N∑
i=1

gi(xi)

X =
∏N

i=1 Xi.

Here, N can be seen as the number of agents and is assumed to be large. The mappings
gi : Xi → E are given and referred to as the contribution mappings. The space E is a
real Hilbert space. The main feature of this problem is the aggregative form of the
function G : X → E , which is defined as the average of the N mappings gi. We will call
G(x) the aggregate. Let us emphasize that the dimension q of the aggregate space E
can be arbitrarily large and possibly infinite. While very few structural assumptions
are made on the sets Xi and the mappings gi, we will assume that f is convex, with
a Lipschitz-continuous gradient and that the image sets gi(Xi) are all bounded. A
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central idea in this work is that the problem can be well approximated by a convex
problem when N is large.

In various examples of interest, the function f has a separable structure as defined
below. It turns out that taking into account the separability of f , when possible, allows
us to refine our theoretical results (more precisely, to reduce some of the constants of
interest, see Remark 2.7). From now on, we suppose that E is the Cartesian product
of M separable Hilbert spaces denoted Ej , for j = 1, . . . ,M . We assume that f is
additively separable, that is to say, we assume that

f(y) =

M∑
j=1

fj(yj), ∀(y1, . . . , yM ) ∈
M∏
i=1

Ej ,

where fj : Ej → R. Note that when f is not separable, one can take M = 1 and
E1 = E . We assume that the contribution mappings are of the form

gi(xi) =
(
gij(xi)

)
j=1,...,M

, where gij : Xi → Ej .

Hence the criterion J of problem (P) writes

(1.1) J(x) = f(G(x)) =

M∑
j=1

fj

( 1

N

N∑
i=1

gij(xi)
)
.

We present and discuss some motivating examples in Section 5, arising from social
welfare problems, optimal control problems and supervised learning.

Related works and methods. Let us return to the general problem (P). Classical
Lagrangian relaxation (Chapter XII of [26]) methods can be relevant here because
the dual problem is separable in the sense below, thanks to the aggregative form of
G. To see this, let us reformulate (P) as: inf(x,v)∈X×E f(v), subject to the constraint
that v = G(x). Its dual problem is:

(1.2) sup
λ∈E

(
− f∗(λ) + Φ(λ)

)
,

where f∗ is the Fenchel conjugate function of f , and Φ(λ) is defined by

(1.3) Φ(λ) := inf
x∈X

⟨λ,G(x)⟩ = 1

N

N∑
i=1

inf
xi∈Xi

⟨λ, gi(xi)⟩.

One sees that Φ(λ) can be evaluated by solving N independent sub-problems, one
for each i in {1, . . . , N}. Solving these sub-problems can be much easier than ad-
dressing frontally the original problem with N coupled variables. This approach has
been extensively employed in convex settings [41, 39]. However, the nonconvexity of
the problem raises two major difficulties: the potentially large duality gap and the
reconstruction of a primal solution from the dual optimal solution.

These two difficulties are addressed by Wang in [49]. She proposed a convex
relaxation of the problem, based on a geometrical approach, that allows to obtain
an estimate of the duality gap of order O(q2/N2). Her main tool was the Shapley-
Folkman lemma [45], which allows to show that the image of G is close to a convex set.
This idea was already present in the seminal work of Aubin and Ekeland in [2], dealing
with a different setting involving a coupling constraint. We refer the reader to [29] for
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LARGE-SCALE NONCONVEX OPTIMIZATION 3

the most recent improvements dealing with this class of problems. We also refer to [49]
for a more exhaustive of mathematical works dedicated to the estimation of the duality
gap, where a kind of convexification occurs. After having solved the dual problem by
a cutting plane method and then found an approximate solution to the relaxed primal
problem via a projection problem, Wang’s method recovers an approximate solution
to the original nonconvex problem, by computing a Shapley-Folkman decomposition
of the aggregate with a standard linear programming approach.

There exist another important class of methods for large-scale optimization prob-
lems which are the block coordinate descent algorithm and its variants [6, 20]. These
methods may not be applicable without additional assumptions on the sets Xi and the
maps gi (in the current framework, the sets Xi could be discrete). Even if we make
additional regularity assumptions, they may be inefficient, in particular because the
cost function J is not convex in general.

Contributions and organization of the paper. We first introduce in Section 2 a
convex relaxation of the original problem (P). The relaxed problem is obtained by
randomization, that is to say, we replace the variables xi by probability measures
µi on Xi. The contribution mappings gi(xi) are replaced by

∫
Xi

gi(xi)dµi(xi); these
terms are linear with respect to µi. The resulting randomized cost function, denoted
J , is convex, and so is the randomized problem. We give a first upper bound of the
relaxation gap of order O(1/N). The randomized problem has a stochastic interpre-
tation: it amounts to replace the variables xi by independent random variables Xi

of probability distribution µi, and to replace gi(xi) by the expectation of gi(Xi). To
derive a good candidate (for (P)), given an approximate solution to the randomized
problem µ = (µ1, ..., µN ), we propose to simulate random variables Xi with proba-
bility distribution µi. We will call this technique the selection method. We give a
sharp estimate of the probability of error for the selection method. More precisely,
we estimate the probability that J(X1, . . . , XN ) ≥ J (µ) +

(
C
N + ϵ

)
, given ϵ > 0. The

proof relies on McDiarmid’s inequality, a concentration inequality [35].
From a numerical point of view, our main contribution is a method which is par-

allelizable, which benefits from the convexity of the randomized problem, but avoids
the difficulty of the manipulation of probability measures (arising in the formulation
of the randomized problem). This could be achieved by combining the Frank-Wolfe
(FW) algorithm [17, 28], applied to the randomized problem, and the selection method
described previously. The resulting algorithm, called stochastic Frank-Wolfe (SFW)
algorithm, is described and analyzed in Section 3. Each iteration of the algorithm
requires to solve a subproblem of the form (1.3), which is decomposable into N sub-
problems. Resorting to the selection method, we avoid to manipulate explicitely
probability measures on the sets Xi, which may otherwise cause memory issues. The
SFW method is able to find an O(1/N)-solution to problem P. In addition, we esti-
mate the probability that the iterate xk is

(
C
k + ϵ

)
-optimal, for k ≤ 2N , where k is

the iteration counter. This result relies on concentration inequalities for martingales
[15] which generalize McDiarmid’s inequality.

Let us note that many articles in the literature are dedicated to stochastic variants
of the Frank-Wolfe algorithm. These variants are concerned with the situation where
the cost function is in the form of the expectation of a random cost and where its
gradient is evaluated by sampling. See for example [16, 24, 25, 38, 51], see also [18, 32]
and the references therein. Let us emphasize that the stochasticity of our algorithm
has another origin, namely the selection method. In all these articles, convergence
is established in expectation; to our knowledge, only the article [46] quantifies the
probability of success of some stochastic method based on the Frank-Wolfe algorithm.

This manuscript is for review purposes only.
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Our last theoretical contribution is a sharp estimate of the relaxation gap, of
order O(q ∧ N/N2), where q is the (potentially infinite) dimension of the aggregate
space E . It is proved in Section 4. It relies on a geometrical relaxation of problem
(P), shown to be equivalent to the relaxation by randomization. The relaxation gap
is estimated with the help of a measure of nonconvexity for sets (introduced in [10])
and with the help of the Shapley-Folkman lemma [45]. We also give an estimate of
the price of decentralization (as defined by Wang in [49]). We conclude the section
with a detailed comparison of our approach and the one of [49].

Section 5 is dedicated to examples and discussions on numerical aspects. We
provide in section 6 numerical results for a mixed-integer linear-quadratic program.

1.1. Notations.
On sets. For two sets A and B in a normed vector space X , we denote by d(A) : =

supx,y∈A ∥x−y∥X the diameter ofA, byA+B = {x+ y | x ∈ A, y ∈ B} the Minkowski
sum of A and B, by λA = {λx | x ∈ A} the scalar multiplication of A with λ ∈ R
and by conv(A) the convex hull of A. Note that conv(A+ B) = conv(A) + conv(B).

For all i ∈ {1, . . . , N}, we denote X−i =
(∏i−1

i′=1 Xi′
)
×
(∏N

i′=i+1 Xi′
)
. Given

x ∈ X , we denote x−i = (x1, . . . , xi−1, xi+1, . . . , xN ) ∈ X−i. From time to time, we
represent x by the pair (xi, x−i).

On functions. Let H be a real Hilbert space. Let ⟨·, ·⟩H and ∥ · ∥H denote the
corresponding scalar product and norm. Let F : H → R ∪ {+∞}. The domain of
F , denoted by dom(F ), is defined by dom(F ) = {x | F (x) ̸= +∞}. When F is
differentiable, we denote its gradient by ∇F . The gradient is defined as a function
from H to itself. We say that ∇F is L-Lipschitz on a subset A of H if for any x, y ∈ A,
we have

(1.4) ∥∇F (x)−∇F (y)∥H ≤ L∥x− y∥H.

The subgradient of F at some point x ∈ dom(F ) is denoted by ∂F (x) and defined by

∂F (x) = {p ∈ H | F (y) ≥ F (x) + ⟨p, y − x⟩,∀ y ∈ H}.

The Fenchel conjugate of F is denoted by F ∗ : H → R and defined by F ∗(p) =
supx∈H ⟨p, x⟩ − F (x).

On measures. Given a set Ω, we denote by δx the Dirac distribution at some point
x ∈ Ω. We denote by Pδ(Ω) the set of finitely supported probability distributions,
defined by

Pδ(Ω) :=

{
K∑

k=1

λkδxk

∣∣∣K ∈ N, (λk)
K
k=1 ∈ (R+)

K , (xk)
K
k=1 ∈ ΩK ,

K∑
k=1

λk = 1

}
.

Let µ =
∑K

k=1 λkδxk
∈ Pδ(Ω). Given a Hilbert space H and a mapping F : Ω → H,

we denote

Eµ

[
F
]
=

K∑
k=1

λkF (xk), σ2
µ

[
F
]
=

K∑
k=1

λk

∥∥F (xk)− Eµ

[
F
]∥∥2

H.

In other words, Eµ

[
F
]
is the integral of F with respect to the measure µ and σ2

µ

[
F
]

is the variance of the probability measure
∑J

j=1 λjδF (xj), in the sense of [48, Remark
7.5]. Finally, the Bernoulli distribution with parameter ω ∈ [0, 1] is denoted by
Bern(ω).

This manuscript is for review purposes only.
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On numbers and real-valued random variables. We denote by m∧n the minimum
of the numbers m and n in R∪ {+∞}. Let X be a real-valued random variable. The
expectation of X is denoted by E[X], the variance of X is denoted by Var(X) and the
conditional expectation of X w.r.t. some σ−algebra F is denoted by E[X | F ]. Given
µ ∈ Pδ(Ω) and a random variable X in Ω, the notation X ∼ µ indicates that µ is the
probability distribution of X.

2. Relaxation by randomization and gap estimation. In this section we
first make a structural assumption on the general problem of interest, problem (P).
Next we introduce a relaxation of the problem, obtained by randomization. We give
an upper bound of the randomization gap in Proposition 2.6. Finally we propose a
method to recover an approximate solution to (P), given an approximate solution to
the randomized problem. Its performance is investigated in Theorem 2.10.

2.1. Assumptions and constants. We recall that E is the Cartesian product
of M separable real Hilbert spaces Ej . We denote by ⟨·, ·⟩Ej

the associated scalar
products and by ∥ · ∥Ej

the corresponding norms. Let us emphasize that we will not
consider any other norm in the spaces Ej . We equip E with the scalar product ⟨·, ·⟩,
defined by ⟨(y1, . . . , yM ), (y′1, . . . , y

′
M )⟩ =

∑M
j=1⟨yi, y′i⟩Ej

and we denote by ∥ · ∥ the
corresponding norm.

For any i = 1, . . . , N and for any j = 1, . . . ,M , we denote

Sij :=
{
gij(xi) | xi ∈ Xi

}
and Sj :=

1

N

N∑
i=1

Sij .

The following regularity assumption will be in force all along the article.

Assumption A. For i = 1, 2, . . . , N and j = 1, 2 . . . ,M :
1. The range set Sij in Ej has finite diameter dij := d(Sij).
2. The function fj is Lj-Lipschitz on conv (Sj).
3. The function fj is continuously differentiable on a neighborhood of conv (Sj),

and ∇fj is L̃j−Lipschitz on conv (Sj), in the sense of (1.4).

We next define two constants C0 > 0 and C1 > 0 by

C0 =

M∑
j=1

(
Lj max

1≤i≤N
{dij}

)
, and C1 =

1

N

M∑
j=1

(
L̃j

N∑
i=1

d2ij

)
.

Remark 2.1. We will regularly employ notations of the form O(h(N, q, k)), where
h is an explicit function of N , q (the dimension of E), and k (some iteration counter).
We use it to express the fact that some variable is bounded by C h(N, q, k), where
the constant C only depends on

(
max1≤i≤N dij

)
j=1,...,M

and the Lipschitz moduli

(Lj)j=1,...,M and (L̃j)j=1,...,M . With this convention in mind, we have

C0 = O(1) and C1 = O(1).

Remark 2.2. Our results can be applied to aggregative problems of the form

inf
x∈X

M∑
j=1

fj

( N∑
i=1

ĝij(xi)
)
,

This manuscript is for review purposes only.



6 J.F. BONNANS, K. LIU, N. OUDJANE, L. PFEIFFER, C. WAN

i.e. of the same form as in (P), but without the coefficient 1
N . Indeed, it suffices

to define gij = Nĝij to come down to the formulation (P) and to use the fact that
d(gij(Xi)) = Nd(ĝij(Xi)). The introduction of the coefficient 1

N induces a natural
scaling of the problem as N increases. It also enables to us to highlight the convex-
ification of the problem as N becomes large, assuming that the coefficients dij are
uniformly bounded.

We state in the following lemma a straightforward inequality, exhibiting the role
of the constant C0. Note that the role of the constant C1 will be revealed in Lemma
2.6.

Lemma 2.3. Let Assumption A be satisfied. For all i ∈ {1, . . . , N}, for all x−i ∈
X−i, xi and x′

i in Xi, it holds:

|J(x′
i, x−i)− J(xi, x−i)| ≤

C0

N
.

2.2. The randomized problem. The randomized problem is obtained by re-
placing each optimization variable xi by a probability measure µi ∈ Pδ(Xi). The con-
tribution mappings gi(xi) are replaced by their integral with respect to µi, Eµi

[
gi
]
.

Denoting Pδ =
∏N

i=1 Pδ(Xi), we obtain

(PR) inf
µ∈Pδ

J (µ) := f
( 1

N

N∑
i=1

Eµi

[
gi
])

=

M∑
j=1

fj

( 1

N

N∑
i=1

Eµi

[
gij
])

.

The following equality justifies the denomination of the relaxed problem: given µ ∈ Pδ

and given N random variables Xi in Xi such that Xi ∼ µi, we have

(2.1) J (µ) = f
( 1

N

N∑
i=1

E
[
gi(Xi)

])
.

Remark 2.4. Working with probability measures with finite support, we do not
need to equip the sets Xi with a topology and to consider regularity assumptions on
the mappings gi. Note that the original problem and the randomized one do not
necessarily have a solution under the standing assumptions of the article.

Let J∗ and J ∗ denote the values of the primal problem (P) and the randomized
problem (PR) respectively. One is interested in comparing J∗ and J ∗. The next
lemma gives a direct result for one direction of this comparison.

Lemma 2.5. Let Assumption A hold true. Then −∞ < J ∗ ≤ J∗.

Proof. By the definitions of Eµi
[gij ] and Sj , we have that 1

N

∑N
i=1 Eµi

[gij ] ∈
conv(Sj). Since fj is Lipschitz-continuous over the bounded set conv(Sj), we deduce
that J ∗ > −∞. Let x ∈ X . Define µ = (δx1 , . . . , δxN

) ∈ Pδ. Then J (µ) = J(x). As
a consequence, inequality J ∗ ≤ J∗ follows.

The randomization gap is then defined as

randomization gap = J∗ − J ∗ ≥ 0.

Next we prove a first upper bound of the randomization gap, of order O( 1
N ).

This manuscript is for review purposes only.
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Proposition 2.6. Let Assumption A hold true. Let µ ∈ Pδ and let (Xi)i=1,...,N

denote N independent random variables such that Xi ∼ µi. Then,

(2.2) E[J(X)]− J (µ) ≤ 1

2N2

M∑
j=1

(
L̃j

N∑
i=1

σ2
µi

[
gij
])

≤ C1

2N
,

where X = (X1, . . . , XN ). As a consequence, J∗ − J ∗ ≤ C1

2N .

Proof. Let us define Yj = 1
N

(∑N
i=1 gij(Xi)

)
, for j = 1, . . . ,M . Let us set Y =

(Yj)j=1,...,M . We have

E
[
J(X)

]
= E

[
f(Y )

]
and J (µ) = f

(
E[Y ]

)
.

Since the variables Xi are independent, the random variables gij(Xi) are also inde-
pendent (for fixed j). It follows that

E
[∥∥Yj − E

[
Yj

]∥∥2
Ej

]
=

1

N2

N∑
i=1

E
[∥∥gij(Xi)− E[gij(Xi)]

∥∥2
Ej

]
=

1

N2

N∑
i=1

σ2
µi

[
gij
]
.

By Assumption A, we have

f(Y ) ≤ f
(
E[Y ]

)
+
〈
∇f(E[Y ]), Y − E[Y ]

〉
Ej

+
1

2

M∑
j=1

(
L̃j

∥∥Yj − E
[
Yj

]∥∥2
Ej

)
.

Taking the expectation of the above inequality and recalling the definition of C1, we
deduce (2.2).

Remark 2.7. As we explained in the introduction, our analysis covers the case of
a non-separable cost f (when M = 1), however, when f is separable, it is useful to
take this property into account. The aim of this remark is to justify this fact. Let
us assume (in this remark only) that f is indeed separable, i.e. M > 1. Let us treat
f as a non-separable function. It is easy to verify that the mapping ∇f is Lipschitz
continuous with modulus

(
maxj=1,...,M L̃j

)
; this estimate is tight. If we do not take

into account the additive structure of f in the proof of Proposition 2.6, we end up
with the following estimate:

E
[
J(X)

]
≤ J (µ) +

1

2N2

(
max

j=1,...,M
L̃j

) N∑
i=1

M∑
j=1

σ2
µi

[
gij
]
,

which is less precise than inequality (2.2). The same kind of comment could be made
for the constants appearing afterwards in the convergence results of our numerical
method.

We finish this subsection with an equivalent relaxed problem in the situation
when the sets Xi (resp. the contribution functions gi) are identical. We refer to this
situation as the symmetric case.

Lemma 2.8. Suppose that there exists a set X and a function g : X → E such that
Xi = X and gi = g, for all i. Then,

(2.3) J ∗ = inf
ν∈Pδ(X )

f
(
Eν [g]

)
.

This manuscript is for review purposes only.
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Proof. Let ν ∈ Pδ(X ). Take µ = (ν, . . . , ν) ∈ Pδ. It follows that f (Eν [g]) =
J (µ). As a consequence, infν∈Pδ(X ) f (Eν [g]) ≤ infµ∈Pδ

J (µ). On the other hand,

let µ̄ = (µ̄1, . . . , µ̄N ) ∈ Pδ. Take ν̄ =
∑N

i=1 µ̄i/N ∈ Pδ(X ). Then, we deduce that
J (µ̄) = f (Eν̄ [g]). The conclusion follows.

The relaxed problem in (2.3) has a natural interpretation as a mean field relax-
ation: instead of considering an optimization problem with N symmetric agents, we
consider an arbitrarily large number of agents and optimize their distribution ν.

2.3. Selection method. Suppose that a minimizer or an approximate mini-
mizer µ of the randomized problem (PR) has been obtained. We address in this
subsection the issue of recovering an approximate minimizer of the original problem
(P) from µ.

A naive approach would consist in averaging the measures µi, assuming that the
sets Xi are convex. In such a case, one can define the point xi = Eµi

[Id]. Another ap-
proach, motivated by Proposition 2.6, consists in sampling µ, that is, in simulating N
independent random variables (X1, . . . , XN ), with distributions Xi ∼ µi. This can be
done without additional structural assumption on the sets Xi, moreover, Proposition
2.6 ensures that for any ε > 0,

(2.4) P
[
J(X1, . . . , XN ) < J (µ) +

C1

2N
+ ε
]
> 0.

Of course, one can realize several samplings of µ to increase the probability of finding
a good candidate for the original problem. We will refer to this approach as the
selection method.

Example 2.9. Consider the following instance of the problem (P), where N is a
large even number:

(2.5)

 minimize

{
J(x1, x2, . . . , xN ) = − 1

N

∑N
i=1 x

2
i +

(
1
N

∑N
i=1 xi

)2}
;

subject to xi ∈ [−1, 1], i = 1, . . . , N.

It is easy to see that x∗ is a minimizer of (2.5) if and only if x∗ has N/2 coordinates
equal to 1 and the others equal to −1. In this example, the original and the relaxed
problem have the same value, J∗ = J ∗ = −1. The relaxed problem does not have a
unique solution. One of them is µ̃i =

1
2

(
δ−1 + δ1

)
. Averaging µ̃ as suggested above

yields x̃ = (0, . . . , 0) and J(x̃) = 0. Thus in this example, the averaging method yields
a poor candidate, whatever the value of N .

On the other hand, the selection method yields good candidates when N is large.
Indeed, assume that P[Xi = −1] = P[Xi = 1] = 1/2. When N is large, by the law of
large numbers [47], nearly half of the random variables Xi are equal to 1 while the
others are equal to −1, with probability close to 1. Then in such a case X is almost
a minimizer of (2.5).

The next theorem provides a sharp estimate of the probability in (2.4) and con-
firms the interest of the selection method for large values of N . It relies on a concen-
tration inequality, McDiarmid’s inequality [35], and its variant [15] (cf. Corollary A.2)
of “variance type”. It is quite intuitive that if the probability measures µi have a small
variance (in a sense to be specified), then the selection method will be more efficient.
The interest of taking into account the variances of the probability distributions will
be revealed in the analysis of the stochastic Frank-Wolfe algorithm in Subsection 3.3.
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Theorem 2.10. Let Assumption A be satisfied. Let µ ∈ Pδ and let X1, . . . , XN

be N independent random variables such that Xi ∼ µi. Let X = (X1, . . . , XN ). Then,
for all ϵ > 0,

(2.6) P
[
J(X) < J (µ) +

C1

2N
+ ϵ

]
≥ 1− exp

(
−2Nϵ2

C2
0

)
.

Assume further that for all i = 1, . . . , N , there exists a constant vi such that

(2.7) σ2
µi

[
J(·, x−i)

]
≤ v2i ,

for all x−i ∈ X−i. Then (2.6) can be strengthened as:
(2.8)

P

J(X) < J (µ) +

M∑
j=1

N∑
i=1

L̃j

2N2
σ2
µi

[
gij
]
+ ϵ

 ≥ 1− exp

− Nϵ2

2
(∑N

i=1 Nv2i +
C0ϵ
3

)
 .

Proof. Combining Lemma 2.3 and McDiarmid’s inequality [35], we obtain

P
[
J(X) < E

[
J(X)

]
+ ϵ
]
≥ 1− exp

(
−2Nϵ2

C2
0

)
.

Combining this estimate with the second inequality of Proposition 2.6, we obtain
(2.6).

Estimate (2.8) is proved similarly, combining McDiarmid’s inequality of “variance
type” proved in Corollary A.2 and the first inequality of Proposition 2.6.

We provide in the next lemma an explicit candidate for (2.7).

Lemma 2.11. Inequality (2.7) is satisfied with v2i = 1
N2

(∑M
j=1 L

2
j

)
σ2
µi
(gi).

Proof. We first state a general following property: given a probability measure µ
and two maps h1 and h2 suitably defined, we have the inequality

(2.9) σ2
µ

[
h1 ◦ h2

]
≤ L2σ2

µ

[
h2

]
,

assuming that h1 is L-Lipschitz continuous. Let us prove this property. For any x,
we have ∥∥h1 ◦ h2(x)− Eµ[h1 ◦ h2]

∥∥2 =
∥∥h1 ◦ h2(x)− h1(Eµ[h2])

∥∥2
+ 2
〈
h1 ◦ h2(x)− h1(Eµ[h2]), h1(Eµ[h2])− Eµ[h1 ◦ h2]

〉
+
∥∥h1(Eµ[h2])− Eµ[h1 ◦ h2]

∥∥2.
Taking the expectation, we obtain that

σ2
µ[h1 ◦ h2] = Eµ

[∥∥h1 ◦ h2 − h1(Eµ[h2])
∥∥2]− ∥∥h1(Eµ[h2])− Eµ[h1 ◦ h2]

∥∥2.
Since h1 is L-Lipschitz continuous, we have Eµ

[
∥h1 ◦h2−h1(Eµ[h2])∥2] ≤ L2σµ[h2]

2.
Inequality (2.9) follows immediately. Next, it is easy to verify that the function f is

L-Lipschitz continuous, with L =
(∑M

j=1 L
2
j

)1/2
. Using (2.9), we conclude that

σ2
µi

[
J(·, x−i)

]
≤ L2σ2

µi

[ 1
N

gi(·) + C
]
=

L2

N2
σ2
µi

[
gi
]
,

where C = 1
N

∑
i′ ̸=i gi′(xi′) is regarded as a constant. The estimate follows.

This manuscript is for review purposes only.



10 J.F. BONNANS, K. LIU, N. OUDJANE, L. PFEIFFER, C. WAN

3. Stochastic Frank-Wolfe algorithm.

3.1. Assumptions. We introduce two new assumptions, which will be in force
until the end of the article.

Assumption B. For all j = 1, . . . ,M , the function fj : Ej → R is convex over
conv(Sj).

Let µ1 and µ2 lie in Pδ. Take ω ∈ [0, 1]. Let µ = (µ1, . . . , µN ) be defined, for
any i = 1, . . . , N , by µi = (1−ω)µ1

i +ωµ2
i . Here, the addition and the multiplication

by a scalar are understood as usual in the set of signed measures. In the sequel,
we simply denote µ = (1 − ω)µ1 + ωµ2. We have µ ∈ Pδ; moreover, Eµi

[gi] =
(1 − ω)Eµ1

i
[gi] + ωEµ2

i
[gi], for any i = 1, . . . , N . Then, Assumption B implies that

J (µ) ≤ (1− ω)J (µ1) + ωJ (µ2). In words, the randomized problem (PR) is convex.
In this section, we address the numerical resolution of the randomized problem

(and the original problem) under Assumption B. Let us mention that this convexity
assumption is natural for the application problems described in the introduction. It
allows the application of the Frank-Wolfe algorithm (also called conditional gradient
algorithm) [17], for which convergence can be established. The Frank-Wolfe algorithm
requires to solve at each iteration a subproblem. Here, the subproblems can be de-
composed in N optimization problems, which can be solved in parallel. This property
is particularly interesting, since we aim at solving instances of (P) with large values
of N . We do not detail here the practical resolution of the subproblems, which can
only be investigated case by case. Instead, we make the following assumption. Let
us set A := {∇f(y) | y ∈ conv(G(X ))} ⊂ E .

Assumption C. For all i = 1, . . . , N , for all λ ∈ A, the problem

(3.1) inf
xi∈Xi

⟨λ, gi(xi)⟩

has at least a solution. For all i = 1, . . . , N , we fix a map Si : A 7→ Xi such that for
any λ ∈ A, Si(λ) is a solution to (3.1).

The map Si can be understood as a best-response function corresponding to agent
i. The involved cost function is a linear combination of the contribution mappings
gij , with j = 1, . . . ,M . In problem (3.1), λ can be interpreted as a price variable
associated with gi(xi).

Remark 3.1. It is easy to find assumptions which ensure the existence of the map
Si. For example, one can assume that Xi is a compact set in a topological vector
space and that gi is continuous. Let us emphasize that Assumption C is essentially
an assumption of numerical nature: Si should be understood as the output of an
(efficient) numerical procedure for the resolution of (3.1). The algorithms described
afterwards largely rely on evaluations of Si.

3.2. Basic Frank-Wolfe algorithm. We first describe a rather direct appli-
cation of the Frank-Wolfe algorithm, which is referred to as the basic Frank-Wolfe
algorithm. The starting point of our numerical approach is the following lemma, the
proof of which is straightforward.

Lemma 3.2. Let λ ∈ A and let µ̄ = (µ̄1, . . . , µ̄N ) ∈ Pδ. Then, µ̄ is a solution to

(3.2) inf
µ∈Pδ

〈
λ,

1

N

N∑
i=1

Eµi
(gi)

〉
.

if and only if for all i = 1, . . . , N , µ̄i is supported in argminxi∈Xi
⟨λ, gi(xi)⟩.
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The cost function in (3.2) should be regarded as a linearization of J , as needed in
the abstract formulation of the Frank-Wolfe algorithm in [17]. An immediate conse-
quence of Lemma 3.2 is that (δS1(λ), . . . , δSN (λ)) is a solution to (3.2). The resolution
of problem (3.2) is a key step in the numerical procedures developed afterwards; let
us emphasize that the maps Si(y) can be evaluated independently from each other,
i.e. the resolution of (3.2) can be parallelized.

Algorithm 1 Frank-Wolfe Algorithm

Initialization: µ0 ∈ Pδ.
for k = 0, 1, . . . ,K do

Step 1: Resolution of the subproblems.
Set yk = 1

N

∑N
i=1 Eµk

i

[
gi
]
and set λk = ∇f(yk).

for i = 1, . . . , N do
Compute x̄k

i = Si(λk).
end for
Set µ̄k = (δx̄k

1
, . . . , δx̄k

N
).

Step 2: Update.
Set ωk = 2/(k + 2).
Set µk+1 = (1− ωk)µ

k + ωkµ̄
k.

end for

The convergence analysis performed afterwards relies on standard arguments
(compare our proof with [28]). We introduce the primal gap γk and the primal-dual
gap βk, defined by

(3.3) γk = J (µk)− J ∗, βk = ⟨∇f(yk), yk − ȳk⟩, where: ȳk =
1

N

N∑
i=1

gi(x̄
k
i ).

Note that βk can be evaluated numerically. The following lemma shows that βk is an
upper bound of the primal gap γk.

Lemma 3.3. For all k ∈ N, γk ≤ βk.

Proof. Let k ∈ N. Let µ ∈ Pδ and let y = 1
N

∑N
i=1 Eµi

[gi]. By Lemma 3.2, we
have ⟨∇f(yk), ȳk⟩ ≤ ⟨∇f(yk), y⟩. Thus, using the convexity of f , we obtain

(3.4) βk = ⟨∇f(yk), yk − ȳk⟩ ≥ ⟨∇f(yk), yk − y⟩ ≥ f(yk)− f(y) = J (µk)− J (µ).

Since µ is arbitrary, we deduce that βk ≥ J (µk)− J ∗ = γk.

We have the following convergence result.

Proposition 3.4. Let Assumptions A, B, and C hold. Then, in Algorithm 1, for
any K ∈ N∗,

γK ≤ 2C1

K
.

Proof. As we will see, the result is a consequence of Lemma A.3, with C = C1

2
and uk = 0. By Assumption A,

f(yk+1) ≤ f(yk) + ⟨∇f(yk), yk+1 − yk⟩+
M∑
j=1

L̃j

2
∥yk+1

j − ykj ∥2.
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We have yk+1 − yk = ωk(ȳ
k − yk). Therefore, by definition of βk,

(3.5) f(yk+1) ≤ f(yk)− ωkβk + ω2
k

M∑
j=1

L̃j

2
∥ȳkj − ykj ∥2.

By definition, ∥ȳkj −ykj ∥2 = 1
N2

∥∥∑N
i=1 Eµk

i

[
gij(x̄

k
i )−gij(·)

]∥∥2, thus by Cauchy-Schwarz
inequality,

∥ȳkj − ykj ∥2 ≤ 1

N

N∑
i=1

∥∥Eµk
i

[
gij(x̄

k
i )− gij(·)

]∥∥2 ≤ 1

N

N∑
i=1

d2ij .

Combining the above estimate with (3.5) and using the inequality γk ≤ βk proved in
Lemma 3.3, we obtain that γk+1 ≤ (1 − ωk)γk + C1

2 ω2
k. Thus Lemma A.3 applies,

which concludes the proof.

In the following remark, we give an alternative value of ωk in Step 2 of Algorithm
1, while preserving the convergence rate from the previous proposition.

Remark 3.5. For any k ∈ N, denote hk(ω) = −ωβk + Ck

2 ω2, where the constant

Ck is defined by Ck =
∑M

j=1 L̃j∥ȳkj − ykj ∥2. In view of inequality (3.5), the result
of Proposition 3.4 remains true if the sequence (ωk)k∈N is chosen such that for any
k ∈ N, h(ωk) ≤ h(ω̄k). The result remains in particular true for

(3.6) ωk = argmin
ω∈[0,1]

h(ω) = min
( βk

Ck
, 1
)
.

The above proposition shows the convergence of the Frank-Wolfe algorithm. Yet
the algorithm only provides a relaxed solution. In order to get a solution to the
original problem, one can use the selection method introduced in Subsection 2.3. A
first direct application of Proposition 2.6 yields the following. Let (X1, . . . , XN ) be
N independent random variables such that Xi ∼ µk

i , for all i. Then,

E
[
J(X)

]
≤ J∗ +

2C1

k
+

C1

2N
.

Therefore, from a theoretical point of view, there is no guaranty of improvements when
k ≫ N since, then, the error term 2C1

k becomes negligible in comparison with C1

2N . The
following lemma provides a convergence result (in probability) for the combination
of the Frank-Wolfe algorithm and the selection method, for a number of iterations
k ≤ N .

Lemma 3.6. Let (µk)k∈N be the output of Algorithm 1. Let k ≤ N . Let ζ ∈ (0, 1).
Let n ∈ N∗ and let (Xj

i )
j=1,...,n
i=1,...,N be Nn independent random variables such that Xj

i ∼
µk
i . Let Xj = (Xj

1 , . . . , X
j
N ). Then,

(3.7) P
[

min
j=1,...,n

J(Xj) < J ∗ +
3C1

k

]
≥ 1− ζ, if n ≥ 2C2

0

C2
1

k2

N
ln
(1
ζ

)
.

Proof. Since k ≤ N , we have C1

2N ≤ C1

2k . Therefore, by Theorem 2.10,

P
[

min
j=1,...,n

J(Xj) < J ∗ +
2C1

k
+

C1

2k
+ ϵ

]
≥ 1− exp

(
− 2Nϵ2n

C2
0

)
,

for any ϵ > 0. Take ϵ = C1

2k . If n satisfies (3.7), then exp
(
− 2Nϵ2n

C2
0

)
≤ ζ.
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3.3. Stochastic Frank-Wolfe algorithm. At each iteration of Algorithm 1, a
new point x̄k

i is added to the support of each distribution µk
i . Therefore, if at iteration

K, the points (x̄k
i )k=0,...,K−1 are distinct from each other (for each i), then KN places

are needed to store the iterate µK , which can be prohibitive as K becomes large. We
propose in this subsection a variant of Algorithm 1 which significantly mitigates the
risk of memory overflow. We call it the Stochastic Frank-Wolfe (SFW) algorithm, it
is given in Algorithm 2 below.

Algorithm 2 Stochastic Frank-Wolfe Algorithm

Initialization: x0 ∈ X
for k = 0, 1, 2, . . . ,K do

Step 1: Resolution of the subproblems.
Compute yk = 1

N

∑N
i=1 gi(x

k
i ) and λk = ∇f(yk).

for i = 1, 2, . . . , N do
Compute x̄k

i = Si(λk).
end for
Step 2: Update.
Choose nk ∈ N∗. Set ωk = 2/(k + 2).
for j = 1, 2, . . . , nk do

for i = 1, 2, . . . , N do
Simulate P k,j

i ∼ Bern(ωk), independently of all previously defined
random variables.
Set x̂k,j

i = (1− P k,j
i )xk

i + P k,j
i x̄k

i .
end for
Define x̂k,j = (x̂k,j

i )i=1,...,N .
end for
Find xk+1 ∈ argmin

{
J(x)

∣∣x ∈ {x̂k,j , j = 1, 2, . . . , nk}
}
.

end for

Starting from an initialization x0 ∈ X , Algorithm 2 generates a sequence (xk)k∈N
in X . Let us emphasize that there is no probability distribution involved in the
practical implementation of Algorithm 2. However, for the analysis of the algorithm
and for its description, it is convenient to introduce µk = (δxk

1
, . . . , δxk

N
). With this

notation at hand, we first observe that yk, as defined in Step 1 of Algorithm 2, satisfies
yk = 1

N

∑N
i=1 Eµk

i
[gi]. Thus the Steps 1 of Algorithms 1 and 2 play exactly the same

role. Let us focus next on Step 2 of Algorithm 2 and let us define µ̄k = (δx̄1
i
, . . . , δx̄k

N
)

and µ̂k = (1−ωk)µ
k +ωkµ̄

k. In contrast with Algorithm 1, we do not directly use µ̂k

at the next iteration but instead employ our selection method so that µ̂k is reduced to
an N -uplet of Dirac measures. The application of the selection method is here simple
since µ̂k

i = (1−ωk)δxk
i
+ωkδx̄k

i
. Thus, to simulate a random variable with distribution

µ̂k
i , it suffices to simulate a random variable P with Bernoulli distribution Bern(ωk)

and to consider (1 − P )xk
i + Px̄k

i . Using this method, Step 2 consists in simulating
nk random variables (x̂k,j)j=1,...,nk

such that their probability distribution is equal to
µ̂k (to be rigorous, their probability distribution conditionally to xk). Finally, Step 2
selects a random variable x̂k,j which minimizes J .

It is important to keep in mind that all variables involved in the algorithm (xk,
x̄k, x̂k,j) and all variables defined above (µk, µ̄k, µ̂k) are themselves random vari-

ables, since they depend on the Bernoulli random variables P k,j
i . For the analysis of
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the algorithm, we need to consider the filtration generated by the Bernoulli random
variables. We introduce the set of indices I defined by

I =
{
(k, j, i) | k ∈ N, j ∈ {1, . . . nk}, i ∈ {1, . . . , N}

}
∪
{
(0, 0, 0)

}
.

We equip the set I with the lexicographic order: given (k1, j1, i1) and (k2, j2, i2) in
I, we write (k1, j1, i1) < (k2, j2, i2) if and only if

[k1 < k2] or [k1 = k2 and j1 < j2] or [(k1, j1) = (k2, j2) and i1 < i2].

We further write (k1, j1, i1) ≤ (k2, j2, i2) if and only if (k1, j1, i1) < (k2, j2, i2) or
(k1, j1, i1) = (k2, j2, i2). Note that this order coincides with the simulation order of

the random variables P k,j
i in the algorithm. The relation ≤ defines a total order with

minimal element (0, 0, 0). For any (k, j, i) ̸= (0, 0, 0), we denote by (k, j, i) − 1 the
maximal element of the set {(k′, j′, i′) ∈ I | (k′, j′, i′) < (k, j, i)}. Finally, we consider
the filtration (G)(k,j,i)∈I defined by

G(k,j,i) =

{
trivial σ−algebra, if (k, j, i) = (0, 0, 0),

σ
(
G(k,j,i)−1, P

k,j
i

)
, otherwise,

where σ
(
G(k,j,i)−1, P

k,j
i

)
denotes the σ-algebra generated by G(k,j,i)−1 and P k,j

i . Note

that x̂k,j
i is G(k,j,i)-adapted and that xk and x̄k are G(k,1,1)−1-adapted.

Theorem 3.7. Let Assumptions A, B, and C hold true. Then, for all K =
1, . . . , 2N ,

E[γK ] ≤ 4C1

K
, where γK = J(xK)− J ∗.

Moreover, for all ϵ > 0,

(3.8) P
[
γK <

4C1

K
+ ϵ
]
≥ 1− exp

(
−ϵ2N

2(vK + ϵmK/3)

)
,

where vK =
2C2

0

K2(K+1)2

(
K−1∑
k=1

k(k+1)2

nk

)
and mK = C0

K(K+1)

(
max

k=1,...,K−1

(k+1)(k+2)
nk

)
.

Finally, the following estimates quantify the variability of γK :

(3.9) Var
[
γK
]
≤ 16C2

1

K2
+

vK
N

and E
[(

max
(
γK − 4C1

K
, 0
))2 ]

≤ vK
N

.

The proof is postponed to Section 3.4. Let us note that the constants mK and
vK involved in the theorem depend on the sequence (nk)k=0,1,... but do not depend
on N .

Corollary 3.8. Let A > 0. Assume that nk ≥ max
(
Ak2

N , 1
)
, for any k. Then,

for all K = 1, . . . , 2N ,

P
[
γK <

4C1 + C0

K

]
≥ 1− exp

(
− A

12

)
.
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Proof. Using k + 1 ≤ 2k, we obtain

vK ≤ 2C2
0

K2(K + 1)2

(
K−1∑
k=1

Nk(k + 1)2

Ak2

)
≤ 8NC2

0

AK2(K + 1)2

(
K−1∑
k=1

k

)

=
4NC2

0 (K − 1)K

AK2(K + 1)2
≤ 4NC2

0

AK2

and mK ≤ C0

K(K+1)

(
max

k=1,...,K−1

N(k+1)(k+2)
Ak2

)
≤ 6NC0

AK2 . Applying Theorem 3.7 with

ϵ = C0

K , we obtain that P
[
γK < 4C1+C0

K

]
≥ 1− p, with

p ≤ exp

 −(C0/K)2N

2
(

4NC2
0

AK2 +
6NC2

0

3AK3

)
 ≤ exp

(
−A

12

)
,

as was to be proved.

Remark 3.9. A variant of Algorithm 2 consists in setting xk+1 = xk if J(x̂k,j) ≥
J(xk) for all j = 1, . . . , nk. Theorem 3.7 is still satisfied under this modification.

3.4. Proof of Theorem 3.7 and comments.
Step 1: proof of the convergence in expectation. We make use of the notations µk,

µ̄k, and µ̂k, introduced right after Algorithm 2. We also introduce βk = ⟨∇f(yk), yk−
ȳk⟩, where ȳk = 1

N

∑N
i=1 gi(x̄

k
i ). By construction, we have

J(xk+1) = min
j=1,...,nk

J(x̂k,j) ≤ 1

nk

nk∑
j=1

J(x̂k,j).

Recalling that J (µk) = J(xk), we deduce that γk+1 ≤ γk + ak + bk + ck, where

ak =
1

nk

nk∑
j=1

(
J(x̂k,j)− E

[
J(x̂k,j) | G(k,1,1)−1

])
,

bk =
1

nk

nk∑
j=1

(
E
[
J(x̂k,j) | G(k,1,1)−1

]
− J (µ̂k)

)
,

ck = J (µ̂k)− J (µk) = J (µ̂k)− J(xk).

The term ak does not play a significant role at the moment since its expectation is
null. The term bk must be understood as a relaxation cost, induced by the use of
the selection method. The term ck is estimated exactly as in Proposition 3.4: as was
seen in its proof, we have ck ≤ −ωkβk + ω2

k
C1

2 . A direct adaptation of Proposition
2.6 shows that

bk ≤ 1

2N2

M∑
j=1

N∑
i=1

L̃jσ
2
µ̂k
i
[gij ] ≤

1

2N2

M∑
j=1

N∑
i=1

L̃jωk(1− ωk)d
2
ij = ωk(1− ωk)

C1

2N
.

Combining the above estimates, we obtain

(3.10) γk+1 ≤ γk + ak +
(
− ωkβk + ω2

k

C1

2

)
+ ωk(1− ωk)

C1

2N
.
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For the choice ωk = ω̄k, we have (1− ωk)/N = k/(N(k + 2)) ≤ ωk, since k ≤ 2N . It
follows that

ωk(1− ωk)
C1

2N
≤ ω2

k

C1

2

and finally, since γk ≤ βk, we have γk+1 ≤ (1− ωk)γk + ω2
kC1 + ak. Next by Lemma

A.3,

(3.11) γK ≤ 4C1

K
+ SK , where: SK =

K−1∑
k=0

(k + 1)(k + 2)

K(K + 1)
ak.

We have E[ak] = 0, thus E[SK ] = 0 and finally E
[
γK
]
≤ 4C1

K .
Step 2: proof of the probability and variance estimates. We next need to find

an estimate of P[SK ≥ ϵ]. For this purpose, we need to further decompose the
term ak as a sum of random variables. A first observation is the following equality:
E
[
J(x̂k,j) | G(k,1,1)−1

]
= E

[
J(x̂k,j) | G(k,j,1)−1

]
, which easily follows from Lemma A.5.

As a consequence,

J(x̂k,j)− E
[
J(x̂k,j) | G(k,1,1)−1

]
=

N∑
i=1

U(k,j,i),

where

U(k,j,i) = E
[
J(x̂k,j) | G(k,j,i)

]
− E

[
J(x̂k,j) | G(k,j,i)−1

]
.

We obtain the following decomposition of SK :

SK =

K−1∑
k=1

nk∑
j=1

N∑
i=1

(k + 1)(k + 2)

nkK(K + 1)
U(k,j,i).

Note that the index k starts at 1. Indeed, ω0 = 1, thus x̂0,j = x̄0 and then a0 = 0.
Let us apply Proposition A.1 to SK . We have E

[
U(k,j,i) | G(k,j,i)−1

]
= 0. Viewing

the term J(x̂k,j) as a function F of the random variables A := (P k′,j′

i′ )(k′,j′,i′)<(k,j,i),

B := P k,j
i , and C := (P k′,j′

i′ )(k,j,i)<(k′,j′,i′), we can apply Lemma A.4 to U(k,j,i), with
δ = C0/N (by Lemma 2.3). This yields

U(k,j,i) ≤
C0

N
and E

[
U2
(k,j,i) | G(k,j,i)−1

]
≤ ωk(1− ωk)C

2
0

N2
.

Therefore, Proposition A.1 applies to P[SK ≥ ϵ], where the constants m and v are
given by

m = max
k=1,...,K−1

(k + 1)(k + 2)

nkK(K + 1)

C0

N
=

mK

N
,

v =

K−1∑
k=1

nk∑
j=1

N∑
i=1

( (k + 1)(k + 2)

nkK(K + 1)

)2 2kC2
0

(k + 2)2N2
=

vK
N

.
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This proves estimate (3.8). Recalling that γK ≤ 4C1

K + SK a.s., we obtain

Var
[
γK
]
≤ E

[
γ2
K

]
≤ E

[(4C1

K
+ SK

)2 ]
=

16C2
1

K2
+ E

[
S2
K

]
.

Next by Proposition A.1, E
[
S2
K

]
≤ vK/N . The first inequality in (3.9) follows. The

second inequality follows from the inequality: max
(
γK − 4C1

K , 0)2 ≤ S2
K .

Remark 3.10. Let us set hk(ω) = −ωβk + ω2C1

2 + ω(1 − ω) C1

2N . If for all k ∈ N,
we have hk(ωk) ≤ hk(2/(k+2)), then the convergence in expectation of Theorem 3.7
still holds, i.e. E

[
γK
]
≤ 4C1/K, in view of inequality (3.10). In particular, one can

take

(3.12) ωk = argmin
ω∈[0,1]

hk(ω) = max

(
min

(
βk − C1/2N

C1(1− 1/N)
, 1

)
, 0

)
.

3.5. A speed-up of the SFW algorithm. Step 1 of Algorithm 2 requires to
solve N independent subproblems. It turns out that only a subset of those subprob-
lems need to be solved for the implementation of Step 2. At iteration k consider the
following set:

Ik =
⋃

j=1,2,...,nk

{
i ∈ {1, . . . , N} |P k,j

i = 1
}
.

If i /∈ Ik, then x̂k,j
i = xk

i , in other words, for such an index i, it is not necessary
to evaluate Si(λk). A speed-up of the SFW algorithm can therefore be obtained by
simulating the Bernoulli random variables before Step 1, next by evaluating Si(λk)
only for the indices i in Ik, and finally by computing x̂k,j and xk+1 as before. The
expectation of the number of subproblems to be solved at iteration k is given by

E
[
|Ik|
]
=

N∑
i=1

P
[
i ∈ Ik

]
= N

(
1− P

[
1 /∈ Ik

])
= N

(
1− P

[
P k,j
1 = 0, ∀j = 1, . . . , nk

])
= N

(
1−

( k

k + 2

)nk
)
.

Note that this speed-up technique cannot be applied if ωk is chosen according to
formula (3.12). Indeed, this formula requires to evaluate βk, which implies that the
N subproblems must all be solved.

3.6. Stopping time strategy. In Algorithm 2, the number of samplings nk is
chosen at the beginning of Step 2. We consider here a variant: we generate a sequence
of random variables x̂k,j with probability distribution equal to µ̂k (conditionally to
G(k,1,1)−1); the variables are constructed via Bernoulli variables independent from
each other. We define nk as the first index j such that

(3.13) J(x̂k,j) ≤ J (µ̂k) +
(C1

2
+ C0

)
ω2
k,

or, equivalently,

(3.14) f(ŷk,j) ≤ f
(
(1− ωk)y

k + ωkȳ
k
)
+
(C1

2
+ C0

)
ω2
k,

where ȳk = 1
N

∑N
i=1 gi(x̄

k
i ) and ŷk,j = 1

N

∑N
i=1 gi(x̂

k,j
i ). The next iterate is defined

by xk+1 = x̂k,nk .
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Lemma 3.11. Let (xk)k∈N denote the sequence obtained with the stopping rule
(3.13). Then

J(xK+1)− J ∗ ≤ 4(C1 + C0)

K
, ∀K = 1, . . . 2N, a.s.

Moreover,

E
[
nk

]
≤
(
1− exp

(
− 4N

(k + 2)3

))−2

, ∀k = 1, . . . ,K.

Proof. Let x̂ be a random variable with probability distribution equal to µ̂k,
conditionally to G(k,1,1)−1. Then, for all ϵ > 0, estimate (2.8) of Theorem 2.10 yields:

(3.15) P
[
J(x̂) ≥ J (µ̂k) +

C1

2N
ωk(1− ωk) + ϵ

∣∣∣G(k,1,1)−1

]
≤ pϵ

where pϵ = exp
(

−Nϵ2

2(ωk(1−ωk)C2
0+

C0
3 ϵ)

)
. For ϵ = C0ω

2
k, we have

pϵ = exp

(
−NC2

0ω
4
k

2
(
ωkC2

0 − 2
3ω

2
kC

2
0

)) ≤ p := exp

(
−Nω3

k

2

)
= exp

(
−4N

(k + 2)3

)
.

Recalling that C1

2N ωk(1− ωk) ≤ C1

2 ω2
k, we deduce that

P
[
J(x̂) ≥ J (µ̂k) +

(C1

2
+ C0

)
ω2
k

∣∣∣G(k,1,1)−1

]
≤ p.

Now, let us consider a sequence of independent random variables (x̂k,j)j=1,... (con-
ditionally to G(k,1,1)−1), with conditional probability distribution µ̂k. By estimate
(3.15),

P
[
nk = j

]
≤ P

[
J(x̂k,j′) ≥ J (µ̂k) +

(C1

2
+ C0

)
ω2
k, ∀j′

∣∣∣G(k,1,1)−1

]
≤ pj−1.

We finally deduce that E
[
nk

]
≤
∑∞

n=1 jp
j−1 = 1

(1−p)2 , which proves the second part

of the lemma. For the first part of the lemma, it suffices to observe that

J(xk+1) ≤ J (µ̂k) +
(C1

2
+ C0

)
ω2
k ≤ J(xk)− βkωk + (C1 + C0)ω

2
k,

and to conclude with Lemma A.3.

3.7. Distributed algorithm. In this subsection we present a privacy-preserving
implementation of Algorithm 2. The Algorithm 3 is equivalent to Algorithm 2; the
instructions are distributed over an operator, N agents, a simulator, and an ag-
gregator, who communicate with each other. Roughly speaking, the operator sets
up prices that are sent to the agents, which compute independently from each other
their best-response. The aggregator computes in a confidential fashion the aggregate
associated with a given value of (xi)i=1,...,N . The simulator implements the random

variables P j,k
i of the Stochastic Frank-Wolfe algorithm.
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Algorithm 3 Distributed SFW Algorithm

[Agents] Initialization: x0 ∈ X .

[Aggregator] Compute and send y0 = 1
N

∑N
i=1 gi(x

0
i ) to Operator.

for k = 0, 1, 2, . . . ,K do
[Operator] Compute and send λk = ∇f(yk) to the Agents.
for i = 1, 2, . . . , N do

[Agent i] Compute x̄k
i ∈ Si(λk).

end for
[Aggregator] Compute and send ȳk = 1

N

∑N
i=1 gi(x̄

k
i ) to Operator.

[Operator] Compute βk = ⟨λk, yk − ȳk⟩.
[Operator] Compute, send ωk with (3.12) or with ωk = 2

k+2 to Simulator.
[Operator] Set j = 0 and send test = true to Simulator.
while test do

[Operator] Increment j.
for i = 1, 2, . . . , N do

[Simulator] Simulate and send P k,j
i ∼ Bern(ωk) to Agent i.

[Agent i] Set x̂k,j
i = (1− P k,j

i )xk
i + P k,j

i x̄k
i .

end for
[Aggregator] Compute, send ŷk,j = 1

N

∑N
i=1 gi(x̂

k,j
i ) to Operator.

[Operator] Update and send test to Simulator.
end while
[Operator] Find j∗ ∈ argmin

j′=1,...,j
f(ŷk,j

′
). Set yk+1 = ŷk,j

∗
.

[Operator] Send j∗ to the Agents.
for i = 1, 2, . . . , N do

[Agent i] Set xk+1
i = x̂k,j∗

i .
end for

end for

More precisely, at the beginning of iterattion k of Algorithm 3, the operator sends
a price λk to the agents, who calculate their best-response. The aggregator sends the
corresponding aggregate ȳk to the operator, who can compute the primal-dual gap
βk and can fix the value of the stepsize ωk. Next the simulator realizes stochastic
simulations, communicated to the agents. Only the aggregate associated with each
simulation, ŷk,j , is communicated to the operator. The operator decides when to stop
the simulation phase through the logical variable test. For example, test can be set
to true as long as j < nk, for predefined values of nk. The variable test can also be
designed so as to implement the stopping rule (3.14) of Subsection 3.6. Finally, the
operator identifies the number j∗ of the simulation that has yielded the best aggregate
and communicates it to the agents.

The key point in this algorithm is that the operator never receives information
that is specific to a given agent: it only collects aggregates (the variables ȳk, ŷk,j ,
and yk). Similarly, the agents have only access to the prices λk and to j∗. We do not
detail here algorithms used by the aggregator to compute the aggregate and refers
the reader to [4], which investigates a similar approach for preserving privacy, with an
operator that only has access to aggregates (note that the underlying mathematical
method is different from ours). It is proposed in that reference to use a cryptographic
protocol called secure multiparty computation for the non-intrusive computation of
aggregates, taken from [43] and [1].
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4. Refined gap estimates.

4.1. Nonconvexity measure and gap estimate. We give in this subsection a
refinement of the randomization gap obtained in Proposition 2.6. Our analysis relies
on the concept of nonconvexity measure, introduced in [10].

Definition 4.1. Given a subset K of E, we call nonconvexity measure of K the
number ρ(K) defined by

ρ(K) =

(
sup

y∈conv(K)

inf
µ∈Pδ,

Eµ[Id]=y

σµ

[
Id
]2)1/2

,

where Id : E → E denotes the identity mapping.

The ”nonconvexity measure” terminology is motivated by the following: if K
is convex, then obviously ρ(K) = 0 and conversely, if ρ(K) = 0, then K is dense
into conv(K). We have the following two properties, easily verified. The map ρ is
homogeneous in the following sense: given a ∈ R, we have ρ(aK) = |a|ρ(K). Moreover
ρ(K) ≤ d(K), where d(K) is the diameter of K. Another particularly interesting
property for our aggregative problem is the sub-additivity of ρ(·)2: given two subsets
K1 and K2, we have ρ(K1 + K2)

2 ≤ ρ(K1)
2 + ρ(K2)

2, see [10, Theorem 1]. We will
use an improvement of this inequality in the proof of Theorem 4.4, based on the
Shapley-Folkman theorem.

The next lemma provides a general relaxation estimate based on the nonconvexity
measure of the feasible set. Let us emphasize that the central idea behind this result
is the same as the one in the proof of Proposition 2.6. The only difference is the point
of view, which is here geometric while it was previously probabilistic.

Lemma 4.2. Let K be a subset of E. Let F be a differentiable real-valued function
defined on some neighborhood of conv(K). Assume that ∇F is L̃-Lipschitz continuous
over conv(K). Then,

inf
y∈K

F (y) ≤
(

inf
y∈conv(K)

F (y)
)
+

L̃

2
ρ(K)2.

Proof. Let y ∈ conv(K). Let µ ∈ Pδ(K) be such that Eµ[Id] = y. Then, since

∇F is L̃-Lipschitz continuous, we have

inf
y′∈K

F (y′) ≤ Eµ[F ] ≤ F (y) +
L̃

2
σ2
µ

[
Id
]
.

Minimizing the right-hand side with respect to µ, we obtain that

inf
y′∈K

F (y′) ≤ F (y) +
L̃

2
ρ(K)2.

Minimizing the result with respect to y yields the announced estimate.

Some notations are needed for the application of Lemma 4.2 to (P). We set

g̃ij(xi) =
√
L̃j gij(xi), g̃i(xi) =

(
g̃ij(xi)

)
j=1,...,M

f̃j(yj) = fj

(
yj√
L̃j

)
, f̃(y) =

M∑
j=1

f̃j(yj).
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Obviously, J(x) = f̃
(

1
N

∑N
i=1 g̃i(xi)

)
=
∑M

j=1 f̃j
(

1
N

∑N
i=1 g̃ij(xi)

)
. Finally we denote

Yi = g̃i(Xi) and Y =
1

N

N∑
i=1

Yi.

We give next two new formulations of problems (P) and (PR), revealing the
geometric nature of the relaxation technique employed so far.

Lemma 4.3. We have

J∗ = inf
y∈Y

f̃(y),(PG)

J ∗ = inf
y∈conv(Y)

f̃(y).(PGR)

Proof. The first equality is straightforward. For the second one, it suffices to ob-
serve that conv(Y) = 1

N

∑N
i=1 conv(Yi) and that conv(Yi) =

{
Eµi [g̃i] | µi ∈ Pδ(Xi)

}
.

We introduce the following constants:

(4.1) Di =

M∑
j=1

L̃jd
2
ij , D[k] = max

K⊆{1,...,N}
|K|=k

∑
i∈K

Di.

Theorem 4.4. Let Assumption A hold true. It holds:

(4.2) J∗ − J ∗ ≤ 1

2N2

(
max

Q⊆{1,...,N}
|Q|=q∧N

∑
i∈Q

ρ(Yi)
2

)
≤ D[q ∧N ]

2N2
.

Note thatD[N ] = NC1, thus the new gap estimate is the same as the one obtained
in Proposition 2.6 when q ≥ N and it is strictly better when q < N .

Proof of Theorem 4.4. We let the reader verify that ∇f̃ is 1-Lipschitz. Then
Lemma 4.3 and the homogeneity of ρ yield

J∗ − J ∗ ≤ 1

2
ρ(Y)2 ≤ 1

2N2
ρ

(
N∑
i=1

Yi

)2

.

Applying [10, Theorem 2], we obtain that

ρ

(
N∑
i=1

Yi

)2

≤ max
Q⊆{1,...,N}
|Q|=q∧N

∑
i∈Q

ρ(Yi)
2,

which proves the first inequality. Observing that

ρ(Yi)
2 ≤ d(Yi)

2 ≤
M∑
j=1

d
(
g̃ij(Xi)

)2
=

M∑
j=1

L̃jd
(
gij(Xi)

)2
= Di,

we obtain the second inequality.
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4.2. Duality and price of decentralization. In this subsection we introduce
a dual problem (we work again under Assumption B) and investigate its connection
with the geometric relaxed problem (PGR). This allows us to obtain a last refinement
of the randomization gap. For all i = 1, . . . , N and for all λ ∈ E , we introduce

Φi(λ) = inf
xi∈Xi

⟨λ, g̃i(xi)⟩, Yi(λ) = argmin
yi∈Yi

⟨λ, yi⟩, Xi(λ) = argmin
xi∈Xi

⟨λ, g̃i(xi)⟩.

We refer to the following problem as the dual problem:

(D) sup
λ∈E

(
− f̃∗(λ) +

1

N

N∑
i=1

Φi(λ)
)
.

Let D∗ denote the value of Problem (D).

Assumption D. The function f : E → R is lower semi-continuous and convex,
and the set conv(Y) is closed.

Remark 4.5. Assume that E is finite-dimensional. If the sets Xi are compact and
the maps g̃i continuous, then the sets Yi = g̃i(Xi) are also compact. It is then easy to
verify with Carathéodory’s theorem that conv(Yi) is also compact, thus closed, which
finally implies Assumption D.

Lemma 4.6. The problem (PGR) has a solution.

Proof. This is a direct application of [3, Theorem 11.9].

The next lemma provides a duality result and a characterization of optimal solu-
tions for problem (PGR).

Lemma 4.7. Let Assumptions A, B, C, and D hold true. Then, J ∗ = D∗ and the
dual problem (D) has at least one solution. Fix a solution λ to Problem (D). Let y ∈ E.
Then, y is a solution to (PGR) if and only if y ∈ ∂f̃∗(λ) and y ∈ 1

N

∑N
i=1 conv

(
Yi(λ)

)
.

Proof. Let h denote the indicatrix function of conv(Y). By Assumption A, the
domain of f̃ contains a neighborhood of conv(Y). By Assumption D, h is lower
semi-continuous. Therefore, the Fenchel-Rockafellar theorem [40] applies and yields

J ∗ = inf
y∈E

(
f(y) + h(y)

)
= sup

λ∈E

(
− f̃∗(λ)− h∗(−λ)

)
.

Moreover, the supremum in the right-hand side is a maximum. We have

−h∗(−λ) = inf
y∈conv(Y)

⟨λ, y⟩ = inf
y∈Y

⟨λ, y⟩ = 1

N

N∑
i=1

Φi(λ).

As a consequence, J ∗ = D∗ and problem (D) has at least one solution.
Now let us fix a solution λ to the dual problem (D). Let y ∈ E . Then y is a

solution if and only if (i) f̃(y)+ f̃∗(λ) = ⟨λ, y⟩ and (ii) h(y)+ h∗(−λ) = −⟨λ, y⟩. The
condition (i) is equivalent to y ∈ ∂f̃(λ). The condition (ii) is equivalent to

y ∈ conv(Y) and ⟨λ, y⟩ = −h∗(−λ) = inf
y′∈Y

⟨λ, y′⟩.

Thus (ii) ⇐⇒ y ∈ Y , where Y = argmin
y′∈conv(Y)

⟨λ, y′⟩. We further have

Y = conv

(
argmin
y′∈Y

⟨λ, y′⟩

)
= conv

( 1

N

N∑
i=1

Yi(λ)
)
=

1

N

N∑
i=1

conv
(
Yi(λ)

)
,
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which concludes the proof.

Remark 4.8. If f̃ is differentiable on E , with a Lipschitz-continous gradient, then
f̃∗ is strongly convex (see [3, Theorem 18.15]), which implies that (D) has a unique
solution.

Let us fix a solution λ to the dual problem until the end of the subsection. Let
us consider

Jdec = inf
x∈X

J(x), subject to: xi ∈ Xi(λ), ∀i = 1, . . . , N.

In words, we restrict Xi to the best-responses corresponding to the dual variable λ.
Following the terminology of [49], we call price of decentralization the real number
p = Jdec − J∗.

Proposition 4.9. Let Assumptions A, B, C, and D hold true. It holds:

p ≤ Jdec − J ∗ ≤ 1

2N2

(
max

Q⊆{1,...,N}
|Q|=q∧N

∑
i∈Q

ρ
(
Yi(λ)

)2)
.

Proof. The definition of Jdec and Lemma 4.7 respectively yield:

Jdec = inf
y∈ 1

N

∑N
i=1 Yi(λ)

f̃(y) and J ∗ = inf
y∈ 1

N

∑N
i=1 conv(Yi(λ))

f̃(y).

The announced estimate follows then from Lemma 4.2 and [10, Theorem 2], as in the
proof of Theorem 4.4.

Remark 4.10. The randomization gap is bounded from above by Jdec−J ∗. More-
over, one can show that ρ(Yi(λ)) ≤ ρ(Yi). Thus Proposition 4.9 provides a last
refinement of the gap estimate (4.2).

5. Comments on numerical aspects and examples.

5.1. Literature comparison. Let us compare our results and our method with
the work of Wang [49]. Our gap estimate, as well as our estimate of the price of decen-
tralization, are of order O(min(q,N)/N2), while the estimates obtained by applying
[49, Theorem 3.5] are of order O(q2/N2). We emphasize that our first gap estimate,
of order O(1/N), already improves [49] when q ≫

√
N . Note that the geometric

relaxation employed in Section 4.1 is the same as the one used in [49].
Let us compare our algorithmic approaches. At a general level, one can observe

that we have a primal approach, while Wang solves the dual problem to the relaxed
problem. Our approach is restricted to the case where f is differentiable, while the
dual approach allows to tackle the case of hard constraints (for example when f is the
indicator function of some convex set). Both approaches leverage the decomposability
of the problem into N problems and require that the subproblems can be easily solved.
Let us emphasize however that we only need to be able to compute a single solution for
those problems, while [49, Algorithm 2] requires to compute the full set of ξ-optimal
solutions, which may be much more difficult. Our algorithm does not require to
perform Shapley-Folkman decompositions, contrary to [49]. This is a major advantage
when the dimension of the aggregate q is very large. Also, we do not need to evaluate
f∗. As a counterpart, we are only able to find O(1/N)-optimal solutions, while the
algorithm of [49] can find O(q2/N2)-optimal solutions. The design of a method for
the computation of O(q ∧N/N2)-solutions will be the topic of future research.
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5.2. Social welfare example. A particularly interesting instance of (P) is the
social welfare optimization problem investigated in a closely related paper by Mengdi
Wang [49]. The cost function is the following:

(5.1) inf
xi∈Xi

f0

(
1

N

N∑
i=1

hi(xi)

)
+

1

N

N∑
i=1

li(xi).

Following her terminology, the function hi is the contribution of agent i to some com-
mon goods, f0 is a social cost function of the common goods, and li describes the
individual preference of agent i. There are various applications fitting into the frame-
work of (5.1), see [49]. In particular, some power system management problems can
be modeled as (5.1). Such a problem is investigated in [41]: xi represents the produc-
tion profile of the generator i, li(xi) is its individual production cost, f0 denotes the
demand elasticity or, equivalently, a penalty function that depends on the difference
between the average production and some inflexible demand D (e.g. f0 := ∥ · −D∥2)
so as to penalize the deviation of the overall production from the inflexible demand.

Let us also mention the resource allocation problems, investigated in [4], for ex-
ample. These problems are of the form (5.1), where f0 is the indicator function (as
defined in [3, Example 1.25]) of a given point y ∈ E , modelling the resource to be al-
located over the agents. These problems find applications in energy management (see
for example [22] and [27]). They do not fit to the current framework, since the indica-
tor function is not differentiable, but can be reasonably well approximated, replacing
the indicator by a penalty function.

5.3. Discussion on the case of finite feasible sets. The stochastic Frank-
Wolfe algorithm investigated in the previous sections was motivated by the difficulty
of manipulating probability measures, from a numerical point of view. However, when
the sets Xi are finite, with relatively low cardinality, it is possible to store probability
measures with possibly full support and some other numerical methods can be used
to solve the randomized problem. Let us assume (in this subsection only) that the
sets Xi are of cardinality ni ∈ N and that Xi = {x1

i , . . . ,x
ni
i }. Then the randomized

problem reads:

(5.2) min
ν=(ν1,...,νN )

f
( 1

N

N∑
i=1

ni∑
ℓ=1

νℓi gi(x
ℓ
i)
)
, subject to: νi ∈ ∆(ni),

where ∆(ni) denotes the (ni − 1)-simplex, i.e.

∆(ni) =
{
ν ∈ Rni

∣∣∣ ni∑
ℓ=1

νℓ = 1 and νℓ ≥ 0, ∀ℓ = 1, . . . , ni

}
.

The problem is a convex program on a Cartesian product of N simplices. Let us first
note that in this framework, Assumption C is trivially verified, since problem (3.1) is
just a minimization problem over Xi which can be solved by enumeration. Moreover
any variant of the Frank-Wolfe algorithm can be implemented, in order to solve the
randomized problem in a faster way. We refer the reader to [28, 31]. Some other
methods could also be implemented. The problem could be solved with the projected
gradient descent algorithm, but the projection on the simplices is expensive (see [13]).
Instead, the problem can be naturally addressed with the mirror descent algorithm [5]
(see in particular the entropic descent algorithm in Section 5), and with accelerated
versions of the entropic descent algorithm [30].
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Let us observe that if we require ν to have integer entries in the problem (5.2),
then we are back to the original problem. Indeed, the elements of the simplex with
integer entries are its vertices, that is, the vectors of the form (0, . . . , 0, 1, 0, . . . , 0).
Therefore the original problem can be viewed as a mixed-integer convex program
(MICP) and can be addressed numerically with combinatorial techniques, see [8, 12]
and the references therein.

5.4. Aggregative optimal control. We describe here a large-scale optimal
control problem of the form of problem (P), with an infinite-dimensional aggregate
space. We verify Assumptions A, B, and C and we discuss the applicability of the
Stochastic Frank-Wolfe algorithm.

Let us first fix the data of the problem. For any i = 1, . . . , N , we consider: an
initial condition z0i ∈ Rn, a control set Ui ⊆ Rm, a dynamics Fi : (zi, ui) ∈ Rn×Ui 7→
Fi(zi, ui) ∈ Rn, and a contribution function ϕi : Rn × Ui → Rk. We also consider a
social cost ℓ : Rk → R. We make the following assumptions:

1. Regularity and boundedness. For any i = 1, . . . , N ,
• Ui is non-empty and compact
• Fi is continuous, Lipschitz continuous with respect to zi, uniformly
with respect to ui; moreover, there exists a constant Ki such that
∥Fi(zi, ui)∥ ≤ Ki(1 + ∥zi∥), for any (zi, ui) ∈ Rn × Ui

• ϕi is continuous; moreover, there exists a function Ri : R+ → R+ such
that ∥ϕi(zi, ui)∥ ≤ Ri

(
∥zi∥+ ∥ui∥

)
, for any (zi, ui) ∈ Rn × Ui.

2. Regularity of the social cost. The function ℓ is continuously differentiable,
moreover, ℓ and ∇ℓ are Lipschitz continuous with moduli Lℓ and L∇ℓ, re-
spectively.

3. Convexity assumption. For any i = 1, . . . , N , for any y ∈ Rk, for any zi ∈ Rn,
we define Zi(y, zi) the set of all elements (z̄1, z̄2) in Rn+1, where there exists
ui ∈ Ui, such that z̄1 = Fi(zi, ui) and z̄2 ≥ ⟨∇ℓ(y), ϕi(zi, ui)⟩. The set
Zi(y, zi) is convex.

Let us mention a particular case in which the above convexity assumption is true:
for any i = 1, . . . , N , for any y ∈ Rk, for any zi ∈ Rn,

• For any zi, the map ui 7→ Fi(zi, ui) is affine.
• The set Ui is convex and the function ui ∈ Ui 7→ ⟨∇ℓ(y), ϕi(zi, ui)⟩ is convex.

For any i = 1, . . . , N , consider the set Xi of pairs (zi, ui) ∈ W 1,∞(0, T ;Rn) ×
L∞(0, T ;Rm) satisfying

żi(t) = Fi(zi(t), ui(t)), zi(0) = z0i , ui(t) ∈ Ui, for a.e. t ∈ (0, T ).

A direct application of Gronwall’s lemma shows that for any (zi, ui) ∈ Xi, we have
∥zi∥L∞(0,T ;Rn) ≤ K̃i, where K̃i = (1 + ∥yi0∥) exp(KiT )− 1.

The aggregative optimal control problem of interest is defined as follows:

(5.3) inf
(zi,ui)Ni=1∈

∏N
i=1 Xi

∫ T

0

ℓ
( 1

N

N∑
i=1

ϕi

(
zi(t), ui(t)

))
dt.

It is a special case of problem (P) with m = 1, E1 = E = L2(0, T ;Rk), and

gi : (zi, ui) ∈ Xi 7→
(
t ∈ (0, T ) 7→ ϕi(zi(t), ui(t))

)
∈ L2(0, T ;Rk)

f : y ∈ L2(0, T ;Rk) 7→
∫ T

0
ℓ(y(t)) dt.
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Problem (5.3) can be seen as a nonconvex optimal control problem with state variable
(zi)

N
i=1. It finds application in energy management, in the situations mentioned in the

introduction and in particular those involving storage devices, for which the dynamics
of the state-of-charge must be taken into account. Once again we refer the reader to
[41], which considers a convex stochastic aggregative optimal control problem. In
general, only dynamic-programming-based methods can provide global solutions to
nonlinear optimal control problems. They are not applicable here because of the high
dimension of the state variable, equal to Nn.

It is easy to verify that ∇f is continuously differentiable and that f and ∇f are
Lipschitz-continuous with moduli

√
TLℓ and L∇ℓ, respectively. Let K̂i be an upper

bound of supui∈Ui
∥ui∥, for all i ∈ 1, . . . , N . Then gi(Xi) is bounded in L2(0, T ;Rk),

with diameter bounded by 2
√
TRi(K̃i + K̂i). Therefore, Assumption A is satisfied.

If ℓ is convex, then f is also convex and then Assumption B holds true. Let us verify
Assumption C. Given y ∈ G(X ), the problem (3.1) to be solved at each iteration of
the SFW algorithm reads

(5.4) inf
(zi,ui)∈Xi

∫ T

0

〈
∇ℓ(y(t)), ϕi(zi(t), ui(t))

〉
dt.

This is an optimal control with state variable zi, which falls into the class of problems
introduced in [21, Chapter III, Theorem 4.1] and therefore possesses a solution. It
the dimension of the state variable, n, is small, then it can be solved by dynamic
programming. We refer the reader to [19].

5.5. Supervised learning problems. We describe and discuss here two appli-
cations of problem (P) in the context of supervised learning.

Neural networks with one hidden layer. We refer the reader to [11, 37, 36]. Con-

sider a neural network of the form 1
N

∑N
i=1 σ∗(a, xi), where a ∈ Rd is the feature

vector, x = (xi)
N
i=1 ∈ (RD)N are the network parameters (to be optimized), and

σ∗ : Rd × RD → R an activation function. We consider a loss function φ : R → R+.
Given a data set (aj , bj)

M
j=1 ∈ (Rd × R)M , the learning problem of interest writes

(5.5) inf
(xi)Ni=1∈(RD)N

1

M

M∑
j=1

φ
(
bj −

1

N

N∑
i=1

σ∗(aj , xi)
)
.

It is of the form (P), with E = RM , Ej = R, fj(yj) = φ(bj − yj)/M , gij(xi) =
σ∗(aj , xi). Assume that the set {σ∗(aj , x) |x ∈ RD, j ∈ {1, . . . ,M}} has a bounded
diameter d̄. Assume moreover that φ is continuously differentiable and that ∇φ is
L∇φ-Lipschitz continuous. Then Assumption A is satisfied and we have Di = L∇φd̄

2,
for the coefficients Di introduced in (4.1). Therefore, by Theorem 4.4, the optimality
gap is bounded by

(M ∧N)L∇φd̄
2

2N2
.

Moreover, if φ is convex, then Assumption B holds true. The resolution of the sub-
problems (3.1) is not easy in general, we refer the reader to [14] where the linearized
problems are shown to be solvable by second-order cone programming in the case of
ReLu activation functions.

Note that we are here in the symmetric case, as defined at the end of Section
2.2. The mean-field relaxation proposed in Lemma 2.8 was also utilized in [36, 37] for
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learning problems of the form (5.5). A gap estimate of order O(1/N) is demonstrated,
in the case of a quadratic loss function φ, see [37, Prop. 1]. Our gap estimate is more
general since ∇φ is only supposed to be Lipschitz; moreover, it is more precise in
the case of an overparametrized network (i.e. when M < N), since then it is of order
O(M/N2).

Sparse reconstruction. Another important learning example is the sparse recon-
struction with the ℓ0-penalty, see [34, 33]. Let D be a M by N dictionary matrix.
The objective is to approximate the observed vector x ∈ RM by a sparse linear combi-
nation of the columns of D. Following [33, Eq. 5.6], we are interested in the following
least square problem with the ℓ0-penalty:

inf
α∈RN

1

2

∥∥x−Dα
∥∥2 + β∥α∥ℓ0 = inf

α∈RN

1

2

M∑
j=1

(
xj −

N∑
i=1

Djiαi

)2
+ β

N∑
i=1

1R\{0}(αi),

where β is a constant and ∥α∥ℓ0 counts the number of non-zero entries in a vector
α. Adding constraints of the form αi ∈ [ui, vi] to the problem, it is easy to see that
Assumptions A and B are satisfied. The subproblems (3.1) are here of the form

inf
αi∈[ui,vi]

zαi + 1R\{0}(αi)

for some real number z. One can show that there is a solution that necessarily lies in
{ui, vi, 0}, thus it is easy to compute.

Finally, let us mention other applications of the problem (P) in a convex frame-
work, for instance, the “sharing problem” in [9], Lasso regression in [20] and the dual
problem of a linear support vector machine (SVM) in [42, 20].

6. Numerical test. In this section we provide numerical results for a mixed-
integer linear quadratic problem of the form (P). Let A be a real M ×N matrix and
let ȳ ∈ RM . Consider the following problem:

(MIQP) min
x∈{0,1}N

J(x) :=
1

N2
∥Ax− ȳ∥2RM =

M∑
j=1

(
1

N

N∑
i=1

Ajixi −
ȳj
N

)2

.

Problem (MIQP) has the form (P), with fj(yj) =
(
yj − ȳj

N

)2
for 1 ≤ j ≤ M , and

gij(xi) = Ajixi for 1 ≤ i ≤ N , 1 ≤ j ≤ M . Moreover, Assumption A is satisfied with

L̃j = 2 and dij = |Aji|. Thus C1 = 2
N

∑N
i=1

∑M
j=1 |Aji|. Due to the linearity of gij , the

randomized problem coincides with the minimization problem of J on [0, 1]N , which
is a convex linear-quadratic program that can be solved with independent methods;
thus it is easy here to obtain a precise estimate of J ∗.

In the numerical simulation, we draw the parameters Aji according to the uni-
form distribution on the interval [0, 1] while yj is drawn according to the uniform
distribution on [0, N/2]. Thus, C1 ≈ M and the gap estimate is given by C1

2N ≈ 0.5.
We perform our numerical experiments on a laptop with one Intel Core i5-8250U
processor (4 cores) at 1.60 GHz and 8 GB RAM.

The first experiment is a comparison of Algorithm 2 with an open source solver,
SCIP, [7] and a commercial solver, GUROBI, [23]. As mentioned before, the dual
(randomized) problem is a convex linear-quadratic program. We can compute J ∗

easily by solver GUROBI. Table 1 shows the value J ∗ and results of (MIQP) obtained
from SCIP, GUROBI and Algorithm 2, for different values of M,N ranging from 100
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to 3200. In Table 1, “Nan” indicates that the solver has failed to return a result or
that computation time has exceeded one hour. Denote by vs the result of Algorithm
2. The indicated gap is a relative gap, in percent, defined by (vs − J ∗)/J ∗. We
can observe that the relative gap decreases as N increases, which is consistent with
the randomized gap (2.2). The last three columns of Table 1 show that Algorithm 2
is competitive in terms of execution time, in comparison with SCIP and GUROBI.
Finally, observe that for N = M = 3200, none of the two solvers could solve the
problems while Algorithm 2 has provided a solutions in approximately 6 minutes.

N = M J ∗ SCIP GUR. SFW SCIP GUR. SFW

value value value
gap
in %

time in seconds

100 2.077 2.077 2.077 2.136 2.870 0.88 0.20 0.03
200 4.120 4.120 4.120 4.159 0.956 5.99 0.69 0.09
400 7.871 7.871 7.871 7.904 0.430 87.78 7.90 0.91
800 15.953 Nan 15.954 15.966 0.079 Nan 10.63 6.18
1600 32.045 Nan 32.048 32.0585 0.042 Nan 81.41 42.51
3200 64.717 Nan Nan 64.724 0.012 Nan Nan 330.95

Table 1: Comparison of the approximate values and execution times obtained with
SCIP, GUROBI and Algorithm 2 for problem (MIQP) with M = N = 100, 200, 400,
800, 1600 and 3200. In Algorithm 2, we take nk = 1 and K = 2N iterations.

The second experiment is on the basic Frank-Wolfe algorithm 1 and its stochastic
version 2. In this experiment, we fix M = N = 1000. Figure 1 shows the outcome of
the basic Frank-Wolfe algorithm 1 with 200 iterations. The left sub-figure shows the
evolution of γk for ωk = 2/(k+2) (green curve) and for ωk determined by line search
(3.6) (red curve). A sub-linear rate of convergence is observed (note that logarithmic
scales are employed for both axes). The right sub-figure represents the evolution of
J(Xk) − J ∗, where Xk is a random variable with distribution µk. For both choices
of ωk, approximate solutions to the problems are simulated, with a gap smaller than
10−3, significantly smaller than the gap estimate C1

2N . The line search approach is
quicker than the approach with ωk = 2

k+2 .
Figure 2 shows the outcome of Algorithm 2 (with the modification suggested in

Remark 3.9), for different (constant) choices of nk with 200 iterations, for two different
stepsize rules (ωk = 2/(k+2) on the left, line search on the right). Since the algorithm
is stochastic, we have tested it 50 times to evaluate its efficiency; the curves represent
the average value of γk. The standard deviation (for these 8 instances of the SFW
method) is displayed on Figure 3. In all cases, an average value of the gap significantly
smaller than C1

2N can be reached; the standard deviation is also significantly smaller

than C1

2N at the last iterations. There is a benefit (both in expectation and standard
deviation) in increasing the number of simulations nk (note that the choice nk = 1000
is much smaller the rule suggested by Corollary 3.8). Yet the convergence is slower
in comparison with the basic Franck-Wolfe algorithm, which can be explained by the
use of the selection method at each iteration.

7. Conclusion. We have investigated a large-scale and aggregative optimiza-
tion problem and its relaxation. New error bounds for the relaxation gap have been
obtained. We have proposed a tractable algorithm for its resolution with a detailed
convergence analysis relying on concentration inequalities. Assuming that an efficient
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Fig. 1: MIQP by Algorithm 1, 2000 iterations, with ωk = 2/(k + 2) and line search
(3.6).

method for the resolution of the subproblems is available, the implementation of our
stochastic Frank-Wolfe method is easy.

Future research will focus on refinements of the selection method, allowing the
computation of O(q ∧ N/N2)-solutions. We also aim at working on more complex
problems, involving for example convex constraints on the aggregate, as for example
the resource allocation problems mentioned in the introduction. Such constraints
could be handled with extensions of the Frank-Wolfe algorithm for non-smooth costs
as those proposed in [44, 50]. Finally, we intend to apply our method to large-scale
optimal control problems, such as nonconvex variants of the problem investigated in
[41].

Appendix A. Concentration inequalities and other technical lemmas.

Proposition A.1. Consider T real-valued random variables (Yt)t=1,...,T . Let
(Ft)t=1,...,T denote the associated filtration (F0 is the trivial σ-algebra). Let Zt =

E[Y 2
t |Ft−1] and let ST =

∑T
t=1 Yt. Assume the following:

(A.1) (i) E[Yt | Ft−1] = 0, (ii) Yt ≤ m, (iii)

T∑
t′=1

Zt′ ≤ v, a.s.

for all t = 1, ..., T and for some constants m and v. Then, E[S2
T ] ≤ v. Moreover, for

any ϵ > 0,

(A.2) P
[
ST ≥ ϵ

]
≤ exp

(
− ϵ2

2 (v + ϵm/3)

)
.

Proof. The estimate of E[S2
T ] can be easily obtained by induction. For the esti-

mate of P
[
ST ≥ ϵ

]
, see [15, Theorem 7].

As a corollary, we obtain the following McDiarmid’s inequality of “variance type”.

Corollary A.2. Let (Ω,F ,P) be a probability space and let (Ωi)i=1,...,n be n
measurable subsets of Ω. Let X = (Xi)i=1,...,n be n independent random variables
valued respectively in (Ωi)i=1,...,n. Consider a measurable function f :

∏n
i=1 Ωi → R

and real constants m ∈ R and (vi)i=1,...,n such that

Var
[
f(Xi, x−i)

]
≤ v2i , a.s.,

∣∣f(Xi, x−i)− E
[
f(Xi, x−i)

]∣∣ ≤ m, a.s.,
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Fig. 2: MIQP by Algorithm 2 with 2000 iterations, expectation of the gap.
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Fig. 3: MIQP by Algorithm 2 with 2000 iterations, standard deviation of the gap.

for all i = 1, ..., n and for all x−i ∈
(∏i−1

j=1 Ωi

)
×
(∏n

j=i+1 Ωj

)
. Then, for any ϵ > 0,

(A.3) P
[
f(x)− E

[
f(x)

]
≥ ϵ
]
≤ exp

(
− ϵ2

2
(∑n

i=1 v
2
i +

mϵ
3

)).
Proof. Define Yt = E [f(X) | X1, . . . , Xt] − E [f(X) | X1, . . . , Xt−1] and apply

Proposition A.1.

Lemma A.3. For all k ∈ N, denote ωk = 2
k+2 . Let (uk)k∈N and (γk)k∈N be two

sequences of real numbers. Assume that there exists a positive number C such that

(A.4) γk+1 ≤ (1− ωk)γk + Cω2
k + uk,

for all k ∈ N. Then, for all K ∈ N∗,

(A.5) γK ≤ 4C

K
+

K−1∑
k=0

(k + 1)(k + 2)

K(K + 1)
uk.

Proof. We proof this lemma by induction on K. We have ω0 = 1, thus taking
k = 0 in (A.4), we obtain that γ1 ≤ C + u0, which proves the claim for K = 1. Let
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us assume that the claim holds true for some K ∈ N∗. We deduce from (A.4) that

γK+1 ≤
( 1

K + 2
+

1

(K + 2)2

)
4C +

K

K + 2

(K−1∑
k=0

(k + 1)(k + 2)

K(K + 1)
uk

)
+ uK

≤ 4C

K + 1
+

K∑
k=0

(k + 1)(k + 2)

(K + 1)(K + 2)
uk.

Therefore the claim holds for K + 1. This concludes the proof.

Lemma A.4. Let A, B, and C be three random variables. Assume that B is
independent of (A,C) and that B ∼ Bern(ω) for some ω ∈ [0, 1]. Let F be a real-
valued function of (A,B,C). Assume that |F (A, 1, C)− F (A, 0, C)| ≤ δ, a.s. Finally,
define U = E[F (A,B,C) | A,B]− E[F (A,B,C) | A]. Then,

E[U | A] = 0, U ≤ δ, E[U2 | A] ≤ ω(1− ω)δ2, a.s.

Proof. The equality E[U | A] = 0 is trivial. We have U = E[Z | A,B], where

Z = F (A,B,C)− E[F (A,B,C) | A,C].

It is easy to verify that Z ≤ δ, a.s., which implies that E[U | A] = E[Z | A] ≤ δ. The
first inequality is proved. For the second inequality, we first note that

E[Z2 | A,C] = ω(1− ω)(F (A, 1, C)− F (A, 0, C))2,

as can be easily verified. Thus E[Z | A] ≤ ω(1 − ω)δ2. Next by Jensen’s inequality,
we have U2 ≤ E[Z2 | A,B]. Therefore,

E[U2 | A] ≤ E
[
E[Z2 | A,B] | A

]
= E[Z2 | A] ≤ ω(1− ω)δ2,

as was to be proved.

The following lemma is an elementary property of the conditional expectation. For
the sake of simplicity, we only state it (and prove it) with discrete random variables.

Lemma A.5. Let X, Y , and Z be three random variables. Assume that Y and Z
are discrete and that Z is independent of (X,Y ). Then, E

[
X | Y,Z

]
= E

[
X | Y

]
.

Proof. By definition, E
[
X | Y, Z

]
= ϕ(Y, Z), where ϕ is defined as follows: for

any pair (y, z) such that P
[
Y = y and Z = z

]
̸= 0,

ϕ(y, z) =
E
[
X1Y=y1Z=z

]
P
[
Y = y and Z = z

] = E
[
X1Y=y

]
P
[
Y = y

] ,

since Z is independent of (X,Y ). Thus ϕ does not depend on Z and the result follows.
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