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Abstract

In this paper, we are devoted to developing matrix-analytic methods for solving Poisson’s
equation for irreducible and positive recurrent discrete-time Markov chains (DTMCs). Two
special solutions, including the deviation matrix D and the expected additive-type functional
matrix K, will be considered. The results are applied to Markov chains of GI/G/1-type and
MAP/G/1 queues with negative customers. Further extensions to continuous-time Markov
chains (CTMCs) are also investigated.
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1 Introduction

Let P = (P (i, j))i,j∈E be the transition matrix of a DTMC Φ = {Φk, k ≥ 0} on a countable
state space E. It is assumed that P is irreducible and positive recurrent with the unique invariant
probability vector π such that πTP = πT and πTe = 1, where e is a column vector of ones. Let
g : E → R be a function (or vector) satisfying πT |g| < ∞. For a given transition matrix P and a
function g, Poisson’s equation is written as

(I − P )f = g, (1.1)

where I is the identity matrix and g = g − (πTg)e. In general, we refer to the functions g and f
as the forcing function and the solution of Poisson’s equation (1.1), respectively.
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Poisson’s equation has an important influence on the development of Markov chain theory. In
[1], Glynn and Ormoneit established a Hoeffding’s inequality, which provides an upper bound for
the tail probability of the law of large numbers, for strong ergodic DTMCs via the solution of
Poisson’s equation. Further progress along this direction can be found in [2, 3] and their references.
Poisson’s equation may also be associated to central limit theorems. In [4], Glynn and Meyn
pointed out that the solution of Poisson’s equation can be used to express the variance constant,
which is a key parameter in the central limit theorem. Please refer to [5, 6] and references therein
for recent developments in this filed. In Markov decision processes, Poisson’s equation was known
as the dynamic programming equation, see e.g., [7, 8], and the functions g and f were called the
cost function and the value function, respectively. Poisson’s equation is also applied to perturbation
theory [9, 10], augmented truncation approximations [11, 12], machine learning [13, 14] and others.

For real applications, it is crucial to solve or estimate the solution of Poisson’s equation. In the
literature, the solution of Poisson’s equation had been investigated for birth-death processes [15,
16], single-birth processes [17, 18], single-death processes [19, 20], M/G/1 queues [21], PH/PH/1
queues [22], among others. In addition, there are some approximate schemes for the solution of
Poisson’s equation, see e.g., [23, 13]. Recently, Liu et al. [20] established augmented truncation
approximations for the solution of Poisson’s equation.

In this paper, we use matrix-analytic methods to solve Poisson’s equation. Since Neuts [24, 25]
introduced and studied matrix-analytic methods for stochastic models, matrix-analytic methods
had been widely used in queueing theory, supply chain management, inventory theory, reliability,
telecommunications networks, risk and insurance analysis, finance mathematics, and biostatistics,
see e.g., [26, 27, 28]. In [29], Dendievel et al. used matrix-analytic methods to solve Poisson’s
equation for quasi-birth-and-death (QBD) processes. Further progress has been made in [5, 30, 31].
Here, we extend matrix-analytic methods in solving Poisson’s equation for general Markov chains.
Specifically, we try to find a matrix X, with which we may represent the solution f to Poisson’s
equation (1.1) in the form of f = Xg. In this sense, we rewrite Poisson’s equation (1.1) as the
following matrix form

(I − P )X = I − eπT . (1.2)

Our first main result, presented in Theorem 3.1, gives a general matrix solution X̃ that satisfies
Poisson’s equation (1.2). Moreover, the matrix X̃ is a unique solution in the sense of up to a
constant matrix under some additional conditions, i.e. X = X̃ + eβT , where β is an arbitrary
constant vector. Then, two special solutions, which are called the deviation matrix D, see e.g.,
[32, 29], and the expected additive-type functional matrix K, see e.g., [21, 31], will be investigated.
Particularly, we will focus on the latter because it needs a weaker existence condition than that for
the deviation matrix D.

To apply our results, we consider the matrix solution X̃ for Markov chains of GI/G/1-type,
which are class of block-structured Markov chians with many applications in queueing theory, see
e.g., [33, 34, 35, 28]. Mathematically, a DTMC Φ on state space E =

⋃∞
i=0 `(i) is called a Markov
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chain of GI/G/1-type if its transition probability matrix P is given by

P =


B0 B1 B2 B3 · · ·
B−1 A0 A1 A2 · · ·
B−2 A−1 A0 A1 · · ·
B−3 A−2 A−1 A0 · · ·

...
...

...
...

. . .

 , (1.3)

where `(i) := {(i, j), i ≥ 0, 1 ≤ j ≤ m} denotes the level set, the matrix sequences {Bi, i ∈ Z}
and {Ai, i ∈ Z} are non-negative matrices of size m < ∞, where Z := {0,±1,±2, · · · }. Suppose
that

∑∞
i=0Bi, B−j +

∑∞
i=−j+1Ai and

∑∞
i=−∞Ai are stochastic. Markov chains of GI/G/1-type

include QBD processes if Bi = B−i = Ai = A−i = 0 for i ≥ 2, Markov chains of GI/M/1 type if
Bi = Ai = 0 for i ≥ 2 and Markov chains of M/G/1 type if B−i = A−i = 0 for i ≥ 2.

The rest of this paper is organized in to 6 sections. Section 2 introduces preliminaries of
the solution of Poisson’s equation and the censored Markov chains, which play a key role for
the subsequently proposed matrix-analytic methods. In section 3, we present a general matrix
solution X̃ and specific matrix solution K of Poisson’s equation for DTMCs. Section 4 applies the
results in section 3 to Markov chains of GI/G/1-type. In section 5, we give numerical calculations
of MAP/G/1 queues with negative customers. Section 6 considers the extension of the matrix
solution X̃ for DTMCs to CTMCs and section 7 presents concluding remarks.

2 Preliminaries

2.1 The solution of Poisson’s equation

For a finite state Markov chain Φ, there exists a unique solution of Poisson’s equation (1.2), see
e.g., [29]. Moreover, the solution is given by

X = (I − P )# + eβT , (2.1)

where β is an arbitrary constant vector that requires additional information to be determined and
(I −P )# is the group inverse, see e.g., [36, 37]. The group inverse W# of a finite square matrix W
is defined to be the unique matrix such that

WW#W = W, W#WW# = W# and W#W = WW#.

In the special case of W = I − P , the group inverse (I − P )# can be easily determined by

(I − P )# = (I − P + eπT )−1 − eπT . (2.2)

For infinite state Markov chains, the uniqueness of the solution does not necessarily hold. From
Proposition 17.4.1 in [38], we obtain the following lemma, which presents a sufficient criterion for
the uniqueness of the solution of Poisson’s equation (1.2).

Lemma 2.1. Let Φ be an irreducible and positive recurrent Markov chain. Suppose that X1 and
X2 are two solutions of Poisson’s equation (1.2) with πT (|X1|+|X2|) <∞. Then for some constant
vector β, we have X1 = X2 + eβT .
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In general, the solution of Poisson’s equation (1.2) can be presented via the deviation matrix
D or the expected additive-type functional matrix K. It is well known that the deviation matrix
D is defined as

D :=
∞∑
n=0

(
Pn − eπT

)
, (2.3)

see e.g., [32]. It is not difficult to verify that D satisfies Poisson’s equation (1.2) and πTD = 0T ,
where 0 is the zero vector. Moreover, we know that the elements of D can be expressed in terms
of the expected first return times:

D(i, i) = π(i) (Eπ [τi]− 1) (2.4)

and
D(j, i) = D(i, i)− π(i)Ej [τi] , j 6= i, (2.5)

where τi := inf{k ≥ 1 : Φk = i} is the first return time to the state i ∈ E and Eπ[·] (or Ei[·])
denotes the conditional expectation with respect to the initial distribution π (or initial state i).

From (2.3)–(2.5) and [29], we know that if the deviation matrix D exists, then the chain must
be aperiodic and Eπ [τi] <∞ for some i ∈ E. In fact, we can construct the expected additive-type
functional matrix Kα = (Kα(i, j))i,j∈E , which is called the solution kernel in Glynn [21], that has
a weaker existence condition than that for the deviation matrix D. For a fixed state α ∈ E, we
define the matrix Kα such that

Kα(i, j) := Ei
[ τα−1∑
k=0

I(Φk = j)

]
, i, j ∈ E, (2.6)

where I(·) denotes the indicator function and I(Φk = j) = I(Φk = j) − π(j). For the convenience
of subsequent analysis, we simplify Kα to K.

Lemma 2.2. Let Φ be an irreducible and positive recurrent Markov chain. Then, the matrix K is
one solution of Poisson’s equation (1.2) with K(α, j) = 0 for any state j ∈ E.

Proof. We first prove K(α, j) = 0, j ∈ E. It follows form Theorem 10.4.9 in [38] that

π(α)Eα
[ τα−1∑
k=0

I(Φk = j)

]
= π(j).

From Kac’s Theorem, we obtain

π(α) =
1

Eα[τα]
.

Applying (2.6) yields K(α, j) = 0.

Now, we fix state j ∈ E. Combining (2.6) and the strong Markov property, we have for any
i ∈ E,

K(i, j) = Ī(i = j) +
∑
l 6=α

P (i, l)K(l, j).
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Since K(α, j) = 0, we obtain

K(i, j) = Ī(i = j) +
∑
i∈E

P (i, l)K(l, j),

from which, we have
(I − P )K = I − eπT .

The proof is completed.

Remark 2.1. For a given function g satisfying πT |g| <∞, the functions fD := Dg and fK := Kg
are solutions of Poisson’s equation (1.1), which are given by

fD(i) = Ei
[ ∞∑
k=0

g(Φk)

]
, i ∈ E, (2.7)

and

fK(i) = Ei
[ τα−1∑
k=0

g(Φk)

]
, i ∈ E, (2.8)

respectively. See Remark 4 in [39] and Theorem 3.3 in [21]. Moreover, combining (2.7)–(2.8) and
the strong Markov property, we have fD(i)− fK(i) = fD(α) for any i ∈ E.

2.2 The censored Markov chain

In the following, we introduce the censoring technique. Let A be a non-empty subset of E. Let
θk be the kth time that Φ successively visits a state in A, i.e. θ0 := inf{m ≥ 0 : Φm ∈ A} and

θk+1 := inf{m ≥ θk + 1 : Φm ∈ A}. The censored Markov chain Φ(A) = {Φ(A)
k , k ≥ 0} on A is

defined by Φ
(A)
k = Φθk , k ≥ 0, and its transition matrix and the invariant probability vector are

denoted by P (A) and π(A), respectively. Let PA1A2
= (PA1A2

(i, j))i∈A1,j∈A2 , where A1 and A2 are

subsets of E. According to A and its complement B := AC , we partition the transition matrix P
as

P =

[ A B

A PAA PAB
B PBA PBB

]
. (2.9)

From section 5 in [26], we have the following lemma of the censored Markov chain.

Lemma 2.3. Let Φ be an irreducible and positive recurrent Markov chain with the invariant prob-
ability vector π and let A be a non-empty subset of E. Then, the censored Markov chain Φ(A) is
also irreducible and positive recurrent, whose transition probability matrix is given by

P (A) = PAA + PABP̂BBPBA (2.10)

with P̂BB :=
∑∞

k=0 P
k
BB. Moreover, the invariant probability vector π(A) of Φ(A) is given by

π(A)(i) =
π(i)∑
j∈A π(j)

, i ∈ A. (2.11)
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Remark 2.2. (i) P̂BB is the minimal nonnegative solution of

X(I − PBB) = (I − PBB)X = I.

(ii) P̂BB is finite since PBB is strictly substochastic.

(iii) P̂BB(i, j) is the expected number of visits to state j ∈ B before entering A given that the
process starts from state i ∈ B, i.e.

P̂BB(i, j) = Ei
[ τA−1∑
k=0

I(Φk = j)

]
, i, j ∈ B, (2.12)

where τA := inf{k ≥ 1 : Φk ∈ A} is the first return time to the set A.

On the contrary, we can also obtain the invariant probability vector π when we know π(A) and
P̂BB. Let us partition πT as (πTA,π

T
B). From (2.9) and πTP = πT , we have

πTAPAB + πTBPBB = πTB.

Then,
πTB(I − PBB) = πTAPAB. (2.13)

Postmultiplying both sides of (2.13) by P̂BB, we obtain

πTB = πTAPABP̂BB. (2.14)

According to πTe = 1, we have

πTA

[
I, PABP̂BB

]
e = 1. (2.15)

Lemma 2.3 and (2.15) yield

∑
i∈A

π(i) =

((
π(A)

)T [
I, PABP̂BB

]
e

)−1
. (2.16)

Thus, the invariant probability vector π can be obtained by using (2.11), (2.14) and (2.16).

3 General Markov chains

In this section, we will use matrix-analytic methods to solve Poisson’s equation (1.2) for general
Markov chains. Let O denote the zero matrix with appropriate numbers of rows and columns.
Similar, the matrix I and vector e defined previously will adapt to the dimensions in the following
analysis. Furthermore, let us partition the matrix X as

X =

[
XA

XB

]
. (3.1)

6



Theorem 3.1. Let Φ be an irreducible and positive recurrent Markov chain and let A be a finite
non-empty subset of E. Then, the matrix X̃, given by

X̃A =
(
I − P (A)

)# ([
I, PABP̂BB

]
−
(
e+ PABP̂BBe

)
πT
)

(3.2)

and
X̃B = P̂BBPBAX̃A +

[
O, P̂BB

]
− P̂BBeπT , (3.3)

is one solution of Poisson’s equation (1.2). Moreover, if Eπ [τi] < ∞ for some i ∈ E, then the
matrix X̃ is the unique matrix solution of Poisson’s equation (1.2) in the set of matrices X such
that πT |X| <∞.

Proof. We first prove that X̃ satisfies Poisson’s equation (1.2). From (2.9) and (3.1), we rewrite
Poisson’s equation (1.2) as[

I − PAA −PAB
−PBA I − PBB

] [
XA

XB

]
= I − eπT .

We obtain
(I − PAA)XA = PABXB + [I,O]− eπT (3.4)

and
(I − PBB)XB = PBAXA + [O, I]− eπT . (3.5)

Premultiplying both sides of (3.5) by P̂BB gives us

XB = P̂BBPBAXA + P̂BB [O, I]− P̂BBeπT . (3.6)

Substituting (3.6) into (3.4), we have

(I − PAA)XA = PABP̂BBPBAXA +
[
O,PABP̂BB

]
− PABP̂BBeπT + [I,O]− eπT

= PABP̂BBPBAXA +
[
I, PABP̂BB

]
−
(
e+ PABP̂BBe

)
πT .

Thus, we have (
I − P (A)

)
XA =

[
I, PABP̂BB

]
−
(
e+ PABP̂BBe

)
πT . (3.7)

It follows from (2.1) and (3.7) that

XA =
(
I − P (A)

)# ([
I, PABP̂BB

]
−
(
e+ PABP̂BBe

)
πT
)

+ eβT = X̃A + eβT . (3.8)

From (3.6) and (3.8), we obtain

XB = P̂BBPBA

(
X̃A + eβT

)
+ P̂BB [O, I]− P̂BBeπT .

According to Remark 2.2 (iii), we know that P̂BBPBA denotes the probability of first hitting A
from B. We thus have

P̂BBPBAe = e.
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Then, we obtain

XB = P̂BBPBAX̃A +
[
O, P̂BB

]
− P̂BBeπT + eβT = X̃B + eβT . (3.9)

Combining (3.8) with (3.9), we find that X = X̃ + eβT , i.e. the matrix X̃ is one solution of
Poisson’s equation (1.2).

Now, we prove that under the condition of Eπ[τi] <∞, X̃ defined by (3.2–3.3) satisfies πT |X̃| <
∞, i.e. ∑

i∈E
π(i)

∣∣∣X̃(i, n)
∣∣∣ <∞, n ∈ E.

Since A is a finite set, we can find large enough positive constant γn for any n ∈ E, such that∑
i∈A

∣∣∣X̃(i, n)
∣∣∣ < γn <∞.

Since Φ is irreducible and Eπ[τi] <∞, this shows that Eπ[τA] <∞. Thus, we have∑
i∈E

π(i)
∣∣∣X̃(i, n)

∣∣∣ ≤ γnπ
T
Ae+

∑
i∈B

π(i)
∣∣∣X̃(i, n)

∣∣∣
≤ γnπ

T
Ae+

∑
i∈B

π(i)
∑
j∈A

Pi(τA = j)
∣∣∣X̃(j, n)

∣∣∣
+
∑
i∈B

π(i)Ei [τA] +
∑
i∈B

π(i)Ei
[ τA−1∑
k=0

I(Φk ∈ B)

]
≤ γnπ

T
Ae+ γnπ

T
Be+ 2Eπ[τA]

= γn + 2Eπ[τA] <∞,

where Pi(·) denotes the conditional probability with respect to the initial state i.

By Lemma 2.1, all matrix solutions X of (I − P )X = I − eπT such that πT |X| <∞ are given
by X = X̃ + eβT for some constant vector β. This completes the proof of Theorem 3.1.

Remark 3.1. For an irreducible and positive recurrent Markov chain Φ, Eπ[τi] < ∞ for some
(then for every) i ∈ E is equivalent to Ei[τ2i ] <∞, see Lemma 2.6 in [29].

Under the uniqueness assumption, we can use the matrix solution X̃ to characterize the devia-
tion matrix D.

Corollary 3.1. Let Φ be an irreducible, positive recurrent and aperiodic Markov chain. If Eπ [τi] <
∞ for some i ∈ E, then D = (I − eπT )X̃, where X̃ is determined by (3.2)–(3.3).

Proof. Since Eπ [τi] <∞, we know that D exists and D is one solution of Poisson’s equation (1.2).
Moreover, it follows from (2.4)–(2.5) that∑

i∈E
π(i)|D(i, n)| ≤ |D(n, n)|+ π(n)Eπ [τn] <∞

8



for any n ∈ E, i.e. π|D| <∞. From Theorem 3.1, we have

D = X̃ + eβT .

Since πTD = 0, we obtain β = −πT X̃. Thus, this proof is completed.

In fact, we could have derived the matrix K under the same condition Eπ [τi] < ∞ by using
the same averments of Corollary 3.1. However, we can derive the matrix K without the condition
Eπ [τi] <∞ by using different arguments.

For a finite non-empty subset A of E, let N = (N(i, j))i,j∈E denote a matrix such that

N(i, j) := Ei
[ τA−1∑
k=0

I(Φk = j)

]
, i, j ∈ E.

The following lemma reveals a relationship between the matrix K and the matrix N .

Lemma 3.1. Let Φ be an irreducible and positive recurrent Markov chain and let A be a finite
non-empty subset of E. Then, for any fixed state α ∈ A, we have

K(i, j) = N(i, j) +
∑
l∈A

Pi(ΦτA = l)K(l, j), i, j ∈ E. (3.10)

Proof. Since α ∈ A, τα = max{τα, τA}. Using (2.6) and the strong Markov property, we obtain

K(i, j) = Ei
[max{τα,τA}−1∑

k=0

I(Φk = j)

]

= Ei
[ τA−1∑
k=0

I(Φk = j)

]
+

Ei
[ τα−1∑
k=τA

I(Φk = j)

] I(τα > τA)

= N(i, j) +
∑

l∈A,l 6=α
Pi(ΦτA = l)

(
El
[ τα−1∑
k=0

I(Φk = j)

])
= N(i, j) +

∑
l∈A,l 6=α

Pi(ΦτA = l)K(l, j).

From Lemma 2.2, we have
K(α, j) = 0.

Thus,

K(i, j) = N(i, j) +
∑
l∈A

Pi(ΦτA = l)K(l, j).

The proof is completed.

Theorem 3.2. Let Φ be an irreducible and positive recurrent Markov chain and let A be a finite
non-empty subset of E. Then, for any fixed state α ∈ A, we have K = X̃ − eβT , where β(j) =
X̃(α, j) for any j ∈ E and X̃ is determined by (3.2)–(3.3).

9



Proof. In (3.10), we consider the two cases of i ∈ A and i ∈ B = AC , separately. For the former
case, let MA = (MA(i, j))i,j∈A denote the matrix such that

MA(i, j) := Pi(ΦτA = j).

It is easy to verify that

MA = PAA + PAB

∞∑
n=0

PnBBPBA

= PAA + PABP̂BBPBA

= P (A). (3.11)

Combining (3.10) and (3.11), we have

(I − P (A))KA = NA. (3.12)

It follows from (2.1) and (3.12) that

KA = (I − P (A))#NA + eβT .

Our task now is to solve the matrix NA. For any state j ∈ A, we have

Ei
[ τA−1∑
k=0

I(Φk = j)

]
= I(i = j). (3.13)

If j ∈ B, it follows from the strong Markov property and Remark 2.2 (iii) that

Ei
[ τA−1∑
k=0

I(Φk = j)

]
=
∑
l∈B

PAB(i, l)P̂BB(l, j). (3.14)

From the strong Markov property, we have for i ∈ A,

Ei [τA] = 1 +
∑
l∈B

PAB(i, l)El [τA] . (3.15)

According to Remark 2.2 (iii), it is clear that for i ∈ B,

Ei [τA] =
∑
j∈B

Ei
[ τA−1∑
k=0

I(Φk = j)

]
=
∑
j∈B

P̂BB(i, j). (3.16)

Combining (3.13)–(3.16), we obtain

NA =
[
I, PABP̂BB

]
−
(
e+ PABP̂BBe

)
πT , (3.17)

from which, we have

KA =
(
I − P (A)

)# ([
I, PABP̂BB

]
−
(
e+ PABP̂BBe

)
πT
)

+ eβT = X̃A + eβT . (3.18)

10



Now, we consider the case of i ∈ B. Let MB = (MB(i, j))i∈B,j∈A denote the matrix such that

MB(i, j) := Pi(XτA = j),

and

MB =
∞∑
n=0

PnBBPBA = P̂BBPBA. (3.19)

From (3.10) and (3.18), we have

KB = NB + P̂BBPBA

(
K̃A + eβT

)
= NB + P̂BBPBAK̃A + P̂BBPBAeβ

T

= NB + P̂BBPBAK̃A + eβT .

For any state j ∈ A, it is easy to see that

Ei
[ τA−1∑
k=0

I(Φk = j)

]
= 0. (3.20)

According to (3.20), Remark 2.2 (iii) and (3.16), it follows that

NB =
[
O, P̂BB

]
− P̂BBeπT , (3.21)

from which, we have

KB =
[
O, P̂BB

]
− P̂BBeπT + P̂BBPBAX̃A + eβT = X̃B + eβT .

Finally, we obtain β(j) = −X̃(α, j) for any j ∈ E by Lemma 2.2. This completes the proof of
Theorem 3.2.

Remark 3.2. (i) Combining Theorem 3.1 and (3.17) and (3.21), we have

X̃A =
(
I − P (A)

)#
NA, (3.22)

X̃B = P̂BBPBA

(
I − P (A)

)#
NA +NB. (3.23)

From (3.22)–(3.23), we find that the matrix X̃ consists of the group inverse
(
I − P (A)

)#
and the

matrix N . According to (2.1), we know that
(
I − P (A)

)#
is the solution of Poisson’s equation for

the censored Markov chain Φ(A). Thus, we connect the solution X̃ of Poisson’s equation for Φ and

the solution
(
I − P (A)

)#
of Poisson’s equation for Φ(A) through the matrix N .

(ii) In addition, if the set A is an atom, i.e. P (i, k) = P (j, k) for any i, j ∈ A and k ∈ E, the
matrix N = K is a solution of Poisson’s equation (1.2) and satisfies NA = O. For this case, we
have X̃ = K = N .
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4 Markov chains of GI/G/1-type

In this section, we apply our results to Markov chains of GI/G/1-type with the transition matrix
given by (1.3). For simplicity, we write

L≤i =
i⋃

k=0

`(k),

and L≥i for the complement of L≤(i−1). For the block-structured matrix M , we write M`i`j =
(M`i`j (k, l))k∈`i,l∈`j as Mij for convenience.

We now introduce R-measures Ri,j and G-measures Gi,j , which are helpful to studying Markov
chains of GI/G/1-type, see e.g., [34, 40]. For 0 ≤ i < j, Ri,j is defined as a matrix of size m ×m
whose (k, l)th entry is the expected number of visits to state (j, l) before hitting any state in L≤(j−1),
given that the process starts in state (i, k), i.e

Ri,j(k, l) := E(i,k)

[ τL≤j−1∑
t=0

I(Φt = (j, l))

]
.

For i > j ≥ 0, Gi,j is defined as a matrix of size m ×m whose (k, l)th entry is the probability of
hitting state (j, l) when the process enters L≤(i−1) for the first time, given that the process starts
in state (i, k), i.e.

Gi,j(k, l) := P(i,k)

[
τL≤(i−1)

<∞,ΦτL≤(i−1)
= (j, l)

]
.

Due to the property of repeating rows, we can write simply Ri,n = Rn−i and Gn,i = Gn−i for i ≥ 1.

Let P (n) = P (L≤n) and π(n) be the transition matrix and the invariant probability vector of the
censored Markov chain with censoring set L≤n for n ≥ 0, respectively. Then, we know from [34]
that

P
(n)
i,j = P

(n+1)
i+1,j+1 = · · · , for all i, j = 1, 2, · · · , n.

Thus, for any i ≥ 0, we can define

Ψi = P
(n)
n−i,n and Ψ−i = P

(n)
n,n−i, for n > i. (4.1)

Furthermore, we have

Ri = Ψi(I −Ψ0)
−1, Gi = (I −Ψ0)

−1Ψ−i, i ≥ 1.

In fact, the matrices Ri, Gi, R0,i and Gi,0 can be used to represent the matrix Ψ0. From
Theorem 10 and Theorem 12 in [34] , we have the following lemma.

Lemma 4.1. Let Φ be an irreducible and positive recurrent Markov chain of GI/G/1-type. Then,
we have

Ri(I −Ψ0) = Ai +
∞∑
k=1

Ri+k(I −Ψ0)Gk, i ≥ 1,

12



(I −Ψ0)Gi = A−i +

∞∑
k=1

Rk(I −Ψ0)Gi+k, i ≥ 1,

Ψ0 = A0 +

∞∑
k=1

Rk(I −Ψ0)Gk,

and

R0,i(I −Ψ0) = Bi +
∞∑
k=1

R0,i+k(I −Ψ0)Gk, i ≥ 1,

(I −Ψ0)Gi,0 = B−i +
∞∑
k=1

Rk(I −Ψ0)Gi+k,0, j ≥ 1,

Ψ0 = B0 +
∞∑
k=1

R0,k(I −Ψ0)Gk,0.

If the Markov chain of GI/G/1-type Φ is irreducible and positive recurrent, then the invariant
probability vector π can be expressed in terms of R-measures, see [33]:

πTn = πT0 R0,n +
n−1∑
k=1

πTk Rn−k, n ≥ 1, (4.2)

where we denote π`n by πn for simplicity.

The matrix H, which is obtained by deleting the first block row and the first block column of
P for Markov chains of GI/G/1-type, is given by

H =


A0 A1 A2 A3 · · ·
A−1 A0 A1 A2 · · ·
A−2 A−1 A0 A1 · · ·
A−3 A−2 A−1 A0 · · ·

...
...

...
...

. . .

 . (4.3)

From Theorem 9 in [40], we have the following Lemma.

Lemma 4.2. For the matrix H defined by (4.3), the matrix Ĥ is recursively given by

Ĥij=



i−1∑
n=1

Gi−nĤnj , i > j,

Ĥ11 +
i−1∑
n=1

Gi−nĤnj = Ĥ11 +
j−1∑
n=1

ĤinRj−n, i = j,

j−1∑
n=1

ĤinRj−n, i < j,

where Ĥ11 = (I −Ψ0)
−1.
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Theorem 4.1. Let Φ be an irreducible and positive recurrent Markov chain of GI/G/1-type and
let A = `(0). Then, we have

X̃ij =



(
I − P (0)

)#(
I −

(
I +

∞∑
m=1

∞∑
n=1

BnĤnm

)
eπT0

)
, i = 0, j = 0,

X̃00

∞∑
n=1

BnĤnj , i = 0, j > 1,( ∞∑
m=1

ĤimB−m

)
X̃00 −

( ∞∑
m=1

Ĥim

)
eπT0 , i > 1, j = 0,( ∞∑

m=1

ĤimB−m

)
X̃0j + Ĥij −

( ∞∑
m=1

Ĥim

)
eπTj , i > 1, j > 1.

Proof. Since A = `(0), it is easy to see that

PAA = B0, PAB = [B1, B2, B3, · · · ],

PBA =


B−1
B−2
B−3

...

 , PBB = H =


A0 A1 A2 · · ·
A−1 A0 A1 · · ·
A−2 A−1 A0 · · ·

...
...

...
. . .

 .
(4.4)

Moreover, according to (3.1), we write

X̃A = [X̃00, X̃01, X̃02, · · · ], X̃B =


X̃10 X̃11 X̃12 · · ·
X̃20 X̃21 X̃22 · · ·
X̃30 X̃31 X̃32 · · ·

...
...

...
. . .

 .
From Lemma 4.2, it is easy to obtain

PABP̂BB =

[ ∞∑
n=1

BnĤn1,
∞∑
n=1

BnĤn2,
∞∑
n=1

BnĤn3, · · ·

]
.

According to Theorem 3.1, it follows that

X̃A =
(
I − P (0)

)#([
I,

∞∑
n=1

BnĤn1,

∞∑
n=1

BnĤn2, · · ·

]
−

(
I +

∞∑
m=1

∞∑
n=1

BnĤnm

)
eπT

)
.

Furthermore, we obtain

X̃00 =
(
I − P (0)

)#(
I −

(
I +

∞∑
m=1

∞∑
n=1

BnĤnm

)
eπT0

)
(4.5)
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and

X̃0j =
(
I − P (0)

)#( ∞∑
n=1

BnĤnj −

(
I +

∞∑
m=1

∞∑
n=1

BnĤnm

)
eπTj

)
. (4.6)

From (2.14) and Lemma 4.2, we obtain

πTj = πT0

∞∑
n=1

BnĤnj . (4.7)

Substituting (4.7) into (4.6), we have, for j ≥ 1,

X̃0j =
(
I − P (0)

)#( ∞∑
n=1

BnĤnj −

(
I +

∞∑
m=1

∞∑
n=1

BnĤnm

)
eπT0

∑
n=1

BnĤnj

)

=
(
I − P (0)

)#(
I −

(
I +

∞∑
m=1

∞∑
n=1

BnĤnm

)
eπT0

)∑
n=1

BnĤnj

= X̃00

∞∑
n=1

BnĤnj .

From Theorem 3.1 again, we have

X̃B = ĤPABX̃A + [O, Ĥ]− ĤeπT .

Thus, for i ≥ 1,

X̃i0 =

( ∞∑
m=1

ĤimB−m

)
X̃00 −

( ∞∑
m=1

Ĥim

)
eπT0

Similarly, we have

X̃ij =

( ∞∑
m=1

ĤimB−m

)
X̃0j + Ĥij −

( ∞∑
m=1

Ĥim

)
eπTj , i, j ≥ 1.

This completes the proof of Theorem 4.1.

Remark 4.1. For Markov chains of GI/M/1-type, we denote R1 by R for simplicity. From Lemma
4.1, the matrices R and Ψ0 satisfy

R = Ψ1(I −Ψ0)
−1, Ψ0 =

∞∑
k=0

RkA−k, i ≥ 1,

where Ψ1 = A1. Moreover, equation (4.2) becomes

πT0 e+ πT1 (I −R)−1e = 1,

πTj = πT1 R
j−1, j ≥ 1.
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Thus, the matrix X̃0j , j ≥ 0 in Theorem 4.1 is given by

X̃00 =
(
I − P (0)

)# (
I −

(
I +B1(I −Ψ0)

−1(I −R)−1
)
eπT0

)
,

X̃0j =
(
I − P (0)

)# (
B1(I −Ψ0)

−1 (I − (I −R)−1eπT1
)
− eπT1

)
Rj−1, j ≥ 1.

Please refer to [5] for more details about the matrix solution X̃ of Markov chains of GI/M/1-type.
In particular, for QBD processes, the matrix solution X̃ is given by Theorem 4.2 in [29].

Remark 4.2. For Markov chains of M/G/1-type, we denote G1 by G for simplicity. From Lemma
4.1, the matrices R0,i and Ri are given by

Ri =

∞∑
n=i

AnG
n−i(I −Ψ0)

−1, i ≥ 1,

R0,i =
∞∑
n=i

BnG
n−i(I −Ψ0)

−1, i ≥ 1,

where Ψ0 =
∑∞

n=0AnG
n. Furthermore, from Lemma 4.2, we have

Ĥj1 = Gj−1(I −Ψ0)
−1.

5 MAP/G/1 Queues with Negative Customers

In this section, we give numerical calculations of the matrix X̃ for MAP/G/1 queues with negative
customers. Queueing systems with negative arrivals have a lot of applications in various areas, such
as computer, manufacturing systems, neural and communication networks, see e.g., [41, 42].

For a single-server FIFO queue, we suppose that there are two types of independent arrivals,
positive and negative. Positive arrivals correspond to customers who upon arrival, join the queue
with the intention of being served and then leaving the system. When a negative customer arrives
at the queue, it immediately removes one or more positive customers if present. Here, we consider
the RCA rule, i.e. arrival of a negative customer which removes all the customers in the system.
Furthermore, we assume that the arrivals of both positive and negative customers are Markovian
arrival processes (MAP) and the service times are independent of the two arrival processes of
positive and negative customers and obey a general distribution. Then the above queueing model
is a MAP/G/1 queue with negative customers.

In [42], Li and Zhao analyzed MAP/G/1 queues with negative customers by introducing sup-
plementary variables and constructing the differential equations. For a stable RCA system, they
related the boundary conditions of the system of differential equations to a GI/G/1 type Markov
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chain, which is given by

P =



B0 B1 B2 B3 B4 · · ·
B−1 A0 A1 A2 A3 · · ·
B−2 A−1 A0 A1 A2 · · ·
B−2 0 A−1 A0 A1 · · ·
B−2 0 0 A−1 A0 · · ·

...
...

...
...

...
. . .


. (5.1)

It follows from (4.3) that the matrix H of the transition matrix P defined by (5.1) is of the
M/G/1-type structure. Thus, we can combine Remark 4.2 and Theorem 4.1 to calculate the matrix
solution X̃ of (5.1). From Remark 4.2, we know that the key step is to calculate G. By Proposition
3.5.1 in [28], the matrix G can be computed recursively as follows,

G[0] = O, G[k + 1] =
∞∑

n=−1
An(G[k])n+1, k ≥ 0. (5.2)

It can be shown that the sequence {G[k], k ≥ 0} is nondecreasing and converges to G. The
computation of G is stopped when

‖G[k + 1]−G[k]‖∞ < ε, (5.3)

where ‖M‖∞ = maxi
∑

j |M(i, j)| denotes the ∞-norm of matrix M .

Our analysis leads to the algorithm in Algorithm 5.1

Algorithm 5.1. Computing the matrix solution X̃ of (5.1).

INPUT the matrices {Bi, i ≥ −2}, {Ai, i ≥ −1} and the error ε.

OUTPUT the matrix solution X̃.

COMPUTATIONS:

Step1: use (5.2) and (5.3) to compute G.

Step2: use Remark 4.2 to compute Ψ0, Ri and R0,i.

Step3: use Lemma 4.2 to compute Ĥ.

Step4: use Lemma 2.3 to compute P (0) and π(0).

Step5: use (2.2) to compute (I − P )#.

Step6: use (2.11), (2.16) and (4.2) to compute π.

Step6: use Theorem 4.1 to compute X̃.

Example 5.1. Consider a Markov chain of GI/G/1-type with transition matrix P given by (5.1).
Let Bi = Ai = 0, i ≥ 3 and

B0 =

 0.2 0.1 0.2
0 0.4 0.1
0 0.2 0.1

 , B1 =

 0.2 0 0.2
0.3 0.1 0
0.4 0.2 0

 , B2 =

 0.1 0 0
0 0.1 0
0 0 0.1

 ,
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B−1 =

 0.1 0 0.4
0.3 0.2 0.1
0 0.1 0.3

 , B−2 =

 0 0 0.2
0.1 0.1 0
0 0 0.1

 , A−1 =

 0.1 0 0.2
0.2 0.1 0.1
0.1 0.1 0.1



A0 =

 0 0.1 0.2
0.1 0.1 0
0 0.1 0.2

 , A1 =

 0.1 0 0
0 0.1 0
0 0.1 0.1

 , A2 =

 0 0.1 0
0 0.1 0
0 0 0.1

 .
It is obvious that P is irreducible and aperiodic. From Theorem 4.1 in [35], we know that the

chain is strong ergodic, which implies Eπ [τi] <∞ for every i ∈ E. Here, we take ε = 0.0001. From
(5.2)–(5.3), we obtain the numerical result of G as follows,

G =

 0.1802 0.0536 0.2690
0.2610 0.1268 0.1610
0.1925 0.1591 0.1813

 .
From Remark 4.2, we have

Ψ0 =

 0.0291 0.1109 0.2389
0.1372 0.1183 0.0281
0.0565 0.1345 0.2453

 ,
R1 =

 0.1398 0.0422 0.0671
0.0492 0.1404 0.0421
0.0537 0.1656 0.1797

 , R2 =

 0.0171 0.1171 0.0098
0.0171 0.1171 0.0098
0.0111 0.0223 0.1368


and

R0,1 =

 0.2609 0.0979 0.3869
0.3722 0.1970 0.1465
0.4904 0.3358 0.1918

 , R0,2 =

 0.1077 0.0189 0.0348
0.0171 0.1171 0.0098
0.0111 0.0223 0.1368

 .
It follows form Lemma 2.3 that

P (0) =

 0.2907 0.1935 0.5158
0.1389 0.4967 0.3644
0.1952 0.3318 0.4730

 ,
from which

(π(0))T = (0.1931, 0.3653, 0.4416).

By (4.2), we have

πTn = c(π(0))TR0,n +
n−1∑
k=1

πTk Rn−k, n ≥ 1,

where c is a constant such that c = π0(0) + π0(1) + π0(2). From (2.16), we obtain that c = 0.3563
and the invariant probability vector which is given as follows,
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Table 1: The invariant probability vector of Example 5.1.

state value state value state value state value state value

(0,1) 0.0688 (3,1) 0.0156 (6,1) 0.0025 (9,1) 0.0004 (12,1) 0.0001
(0,2) 0.1302 (3,2) 0.0459 (6,2) 0.0076 (9,2) 0.0014 (12,2) 0.0002
(0,3) 0.1574 (3,3) 0.0268 (6,3) 0.0049 (9,3) 0.0009 (12,3) 0.0002

(1,1) 0.1436 (4,1) 0.0080 (7,1) 0.0014 (10,1) 0.0002 (13,1) 0.0000
(1,2) 0.0852 (4,2) 0.0233 (7,2) 0.0043 (10,2) 0.0008 (13,2) 0.0001
(1,3) 0.0759 (4,3) 0.0158 (7,3) 0.0027 (10,3) 0.0005 (13,3) 0.0001

(2,1) 0.0397 (5,1) 0.0045 (8,1) 0.0008 (11,1) 0.0001 (14,1) 0.0000
(2,2) 0.0506 (5,2) 0.0140 (8,2) 0.0024 (11,2) 0.0004 (14,2) 0.0001
(2,3) 0.0521 (5,3) 0.0086 (8,3) 0.0015 (11,3) 0.0003 (14,3) 0.0000

From Theorem 4.1, we obtain the matrix solution X̃ as follows,

X̃ =



0.931 −0.587 −0.333 −0.139 −0.136 0.210 0.072 −0.049 0.004 · · ·
−0.237 0.854 −0.480 0.021 −0.016 −0.059 −0.017 0.074 −0.075 · · ·
−0.211 −0.449 0.542 0.044 0.073 −0.044 −0.017 −0.040 0.061 · · ·
−0.160 −0.684 −0.227 0.669 −0.038 0.142 0.068 −0.042 0.026 · · ·
0.100 −0.431 −0.516 −0.216 0.922 −0.026 0.011 0.056 −0.052 · · ·
−0.283 −0.585 −0.376 −0.365 −0.046 1.101 −0.039 0.078 0.104 · · ·
−0.318 −0.812 −0.487 −0.391 −0.198 0.100 0.964 0.049 0.246 · · ·
−0.142 −0.642 −0.649 −0.274 −0.125 0.050 0.096 1.057 −0.017 · · ·
−0.296 −0.851 −0.648 −0.457 −0.151 −0.033 −0.016 0.057 1.218 · · ·

...
...

...
...

...
...

...
...

...
. . .


.

Now, we take g(i, j) = i× j in this model. By our calculations, we have πT |g| = 2.9356 < ∞.
Thus, the solutions fD and fK exist simultaneously. Taking α = (0, 1), from Corollary 3.1 and
Theorem 3.2, we obtain the values of fD and fK , and the values of those solutions are plotted in
Figure 1. From Remark 2.1, we know that fD(i) − fK(i) = −10.3247 for every i ∈ E. Note that
the x-axis represents the state space, in which the origin is the state (0, 1), and n represents state
(i, j) such that n = 3i+ j − 1, 0 ≤ j ≤ 2.

For a scalar-valued Markov chain of GI/G/1-type, we can present the analytic expression of the
matrix solution X̃.

Example 5.2. Consider a DTMC with the following stochastic transition matrix:

P =



b0 b1 b2 b3 b4 · · ·
b−1 a1 a2 a3 a4 · · ·
b−2 a0 a1 a2 a3 · · ·
b−2 0 a0 a1 a2 · · ·
b−2 0 0 a0 a1 · · ·

...
...

...
...

...
. . .


, (5.4)

where 0 < b−1, b−2 < 1.
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Figure 1: The values of the solutions fD and fK with α = (0, 1) of Example 5.1.

Clearly P is irreducible and aperiodic. From Theorem 16.0.2 in [38], we know that the chain is
strong ergodic, which implies Eπ [τi] <∞ for every i ∈ E. Now, let G be the minimal nonnegative
solution of equation G =

∑∞
i=0 aiGi. Moreover, we let

ψ0 =
∞∑
i=0

ai+1Gi

rn = (1− ψ0)
−1
∞∑
i=1

ai+nGi−1, n ≥ 1,

and

H =


a1 a2 a3 a4 · · ·
a0 a1 a2 a3 · · ·
0 a0 a1 a2 · · ·
0 0 a0 a1 · · ·
...

...
...

...
. . .

 .

In (5.4), let ai = 2−i−2, i ≥ 0; bi = 2−i−1, ≥ 0; b−1 = 3
4 and b−2 = 1

2 . Here we take A = {0, 1}.
Then, we have

PAA =

[
1/2 1/4
3/4 1/8

]
, PAB =

[
1/8 1/16 1/32 · · ·
1/16 1/32 1/64 · · ·

]
,

PBA =


1/2 1/4
1/2 0
1/2 0

...
...

 , PBB = H =


1/8 1/16 1/32 · · ·
1/4 1/8 1/16 · · ·
0 1/4 1/8 · · ·
...

...
...

. . .

 .
(5.5)

By calculations, we obtain

G =
2−
√

2

2
, ψ0 =

2−
√

2

4
, rn =

(2−
√

2)2

2n+1
.
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From Lemma 4.2, we have

Ĥ(1, 1) = 2(2−
√

2); Ĥ(i, i) = Ĥ(1, 1) + GĤ(i− 1, i), i ≥ 2; Ĥ(i, j) = Gi−jĤ(j, j), i > j;

Ĥ(i, i+ 1) = r1

i∑
n=1

(
1

2

)i−n
Ĥ(i, n); Ĥ(i, j) = (2−

√
2)j−i−1Ĥ(i, i+ 1), j − i > 1.

It follows form Lemma 2.3 that

P (A) =

[
0.7071 0.2929
0.8536 0.1464

]
,

from which, we have
(π(A))T = (0.7445, 0.2555).

By (2.11), (2.16) and (2.14), we obtain the invariant probability vector which is given as follows,

Table 2: The invariant probability vector of Example 5.2.

state 0 1 2 3 4 5 6 7 8

value 0.5469 0.1877 0.1099 0.0644 0.0377 0.0221 0.0129 0.0076 0.0044

state 9 10 11 12 13 14 15 16 17

value 0.0026 0.0015 0.0009 0.0005 0.0003 0.0002 0.0001 0.0001 0.0000

It follows form Theorem 3.1 that

X̃ =



0.198 −0.231 0.014 0.008 0.005 0.003 0.002 0.001 0.001 · · ·
−0.576 0.675 −0.041 −0.024 −0.014 −0.008 −0.005 0.003 −0.002 · · ·
−0.802 −0.231 1.014 0.008 0.005 0.003 0.002 0.001 0.001 · · ·
−0.869 −0.497 0.151 1.089 0.052 0.030 0.018 0.010 0.006 · · ·
−0.888 −0.575 −0.101 0.234 1.137 0.080 0.047 0.028 0.016 · · ·
−0.894 −0.597 −0.175 −0.017 0.283 1.166 0.097 0.057 0.033 · · ·
−0.896 −0.604 −0.197 −0.090 0.033 0.312 1.183 0.107 0.063 · · ·
−0.896 −0.606 −0.203 −0.112 −0.040 0.062 0.329 1.193 0.113 · · ·
−0.896 −0.607 −0.205 −0.118 −0.062 −0.011 0.079 0.339 1.199 · · ·

...
...

...
...

...
...

...
...

...
. . .


.

Letting g(i) =
√
i, we get πT |g| = 0.6641 <∞ and the solutions fD, fK exist simultaneously.

Taking α = 0, from Corollary 3.1 and Theorem 3.2, we obtain the solutions fD and fK and the
values of those solutions are plotted in Figure 2. From Remark 2.1, we know that fD(i)−fK(i) =
−0.7079 for every i ∈ E.

6 Continuous-time Markov chains

It is of the same feasibility to investigate continuous-time Markov chains (CTMCs) by using matrix-
analytic methods. Let Q = (Q(i, j))i,j∈E be a totally stable and regular generator of the CTMC
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Figure 2: The values of the solutions fD and fK with α = 0 for Example 5.2.

Φ = {Φt, t ≥ 0} on a countable state space E. It is assumed that Φ is irreducible and positive
recurrent with the unique invariant probability vector π. For a given Q, Poisson’s equation is
written as

−QX = I − eπT . (6.1)

For a non-empty subset A of E, let Φ(A) = {Φ(A)
t , t ≥ 0} be the censored Markov chain on A

with the generator Q(A). According to section 5 in [26], the generator Q(A) is given by

Q(A) = QAA +QABQ̂BBQBA, (6.2)

where B is the complement of set A , and Q̂BB, defined by

Q̂BB :=

∫ ∞
0

exp(QBBt)dt,

is the minimal nonnegative solution of

X(−QBB) = (−QBB)X = I.

Using the similar arguments in the proof of Theorem 3.1 leads the following results. The proof
will be omitted.

Theorem 6.1. Let Φ be an irreducible and positive recurrent CTMC and let A be a finite subset
of E. Then, the matrix X̃, given by

X̃A =
(
−Q(A)

)# ([
I,QABQ̂BB

]
−
(
e+QABQ̂BBe

)
πT
)

(6.3)

and
X̃B = Q̂BBQBAX̃A +

[
O, Q̂BB

]
− Q̂BBeπT , (6.4)

is one solution of Poisson’s equation (6.1).
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Remark 6.1. For CTMCs, we can also define the deviation matrix D and the expected integrable-
type functional matrix K, see e.g., [7, 11]. By using Theorem 6.1, we can obtain D and K in term
of similar arguments in Corollary 3.1 and Theorem 3.2, respectively. For CTMCs of GI/G/1type,
we can also obtain parallel results to that in sections 4 and 5.

7 Concluding remarks

In the previous sections, we have investigated the matrix solution X̃ of Poisson’s equation for
general DTMCs by developing matrix-analytic methods. Interestingly, we obtain the connection

between the matrix solution X̃ and the matrix solution
(
I − P (A)

)#
of Poisson’s equation for the

censored Markov chain Φ(A) in the process of solving the matrix solution K. Furthermore, we derive
an explicit expression of the matrix solution X̃ for Markov chains of GI/G/1-type, which includes
results of QBD processes, Markov chains of GI/M/1-type and Markov chains of M/G/1-type.

There are other areas in which one might extend our studies. The first possible extension is to
consider level dependent Markov chains of GI/G/1-type. It can be expected that the calculations
of the R-measures and G-measures will become more challenging for the level dependent case. The
other possible extension is to consider Poisson’s equation for positive recurrent fluid queues. The
arguments in this paper and Soares and Latouche [43] may be modified to use, but evidently it
requires essentially different arguments to deal with the case of non-countable state space.
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