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A DISCRETE-TIME SWITCHING SYSTEM ANALYSIS OF
Q-LEARNING*

DONGHWAN LEE\dagger , JIANGHAI HU\ddagger , AND NIAO HE\S 

Abstract. This paper develops a novel control-theoretic framework to analyze the nonasymp-
totic convergence of Q-learning. We show that the dynamics of asynchronous Q-learning with a
constant step size can be naturally formulated as a discrete-time stochastic affine switching system.
In particular, for a given Q-function parameter, Q, the greedy policy, \pi Q(s) := argmaxaQ(s, a), in
the Q-learning update plays the role of the switching policy, and is the key connection between the
switching system and Q-learning. Then, the evolution of the Q-learning estimation error is over- and
under-estimated by trajectories of two simpler dynamical systems. Based on these two systems, we
derive a new finite-time error bound of asynchronous Q-learning when a constant step size is used.
In addition, the new analysis sheds light on the overestimation phenomenon of Q-learning.
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1. Introduction. First introduced by Watkins and Dayan [20], Q-learning is
one of the most fundamental and important reinforcement learning algorithms. The
theoretical behavior of Q-learning has been extensively studied over the years. Classi-
cal analysis of Q-learning mostly focused on asymptotic convergence of asynchronous
Q-learning [18, 8] and synchronous Q-learning [3]. Substantial advances have been
made recently in the guarantee of their finite-time convergence; see [17, 10, 5, 1, 2,
19, 15, 13, 4].

To list a few, Szepesv\'ari in [17] gave the first nonasymptotic analysis of asynchro-
nous Q-learning under an independent and identically distributed (i.i.d.) sampling
setting. [5] first provided the nonasymptotic analysis for both synchronous and asyn-
chronous Q-learning with polynomial and linear step sizes under a single trajectory
Markovian sampling setting. Recently, [19] established the best known bound for
synchronous Q-learning under a rescaled linear step size. In a subsequent work, [15]
derived a matching bound for asynchronous Q-learning under the Markovian setting
using a similar decaying step size. The sample complexity is further improved with a
refined analysis based on constant step size in [13] and [4].
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1862 DONGHWAN LEE, JIANGHAI HU, AND NIAO HE

Existing results for the most part treat the Q-learning dynamics as a special
case of general nonlinear stochastic approximation schemes with Markovian noises.
In a different line of work, [12] discovered a close connection between Q-learning
and continuous-time switching systems. The switching system perspective captures
unique features of Q-learning dynamics and encapsulates a wide spectrum of Q-
learning algorithms including asynchronous Q-learning, averaging Q-learning [12],
and Q-learning with function approximation, etc. However, existing O.D.E. analy-
sis of such continuous-time switching systems yields only asymptotic convergences of
Q-learning algorithms and requires diminishing step sizes. Obtaining a finite-time
convergence analysis would require a departure of the switching systems from the
continuous-time domain to the discrete-time domain, which remains an open and
challenging question.

In this paper, we aim to close this gap and provide a new finite-time error bound of
Q-learning through the lens of discrete-time switching systems. In particular, we focus
on asynchronous Q-learning with constant step sizes for solving a discounted Markov
decision process with finite state and action spaces. We first show that asynchro-
nous Q-learning with a constant step size can be naturally formulated as a stochastic
discrete-time affine switching system. This allows us to transform the convergence
analysis into a stability analysis of the switching system. However, its stability analy-
sis is nontrivial due to the presence of the affine term and the noise term. The main
breakthrough in our analysis lies in developing upper and lower comparison systems
whose trajectories over- and under-estimate the original system's trajectory. The
lower comparison system is a stochastic linear system, while the upper comparison
system is a stochastic linear switching system [14], both of which have a much sim-
pler structure than the original system or general nonlinear systems. Our finite-time
error bound of Q-learning follows immediately by combining the error bounds of the
stochastic linear system (i.e., lower comparison system, which has no affine term)
and the error system (i.e., difference of the two comparison systems, which has no
noise term). Comparing this to existing analyses based on nonlinear stochastic ap-
proximation schemes, our analysis seems more intuitive and builds on simple systems.
It also sheds new light on the overestimation phenomenon in Q-learning due to the
maximization bias [7].

Last, we emphasize that our goal is to provide new insights and an analysis frame-
work to lay out a strong theoretical foundation for Q-learning via its unique connec-
tion to discrete-time switching systems, rather than improving existing convergence
rates. In particular, as opposed to classical ODE analysis/stochastic approximation
approaches, the proposed strategy adopts the idea of formulating the Q-learning al-
gorithm as a stochastic affine switching system, and directly conducting analysis in
discrete time, which is new in the literature. The switching system model of Q-
learning in this paper allows us to use already well-established tools in control theory
such as Lyapunov analysis, which make the analysis easier and more familiar to re-
searchers in control community. Therefore, we expect that, such a control-theoretic
analysis could promote more research activities of people with control backgrounds
for reinforcement learning, further stimulate the synergy between control theory and
reinforcement learning, and open up opportunities to the design of new reinforcement
learning algorithms and refined analysis for Q-learning, such as double Q-learning [7],
distributed Q-learning [9], and speedy Q-learning [1].

Moreover, the proposed analysis follows a particularly clean and simple strategy.
The core idea that leads to the simplicity is identifying two simpler dynamical systems:
a ``lower comparison system"" that is a stochastic linear system and ``upper comparison
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SWITCHING SYSTEM ANALYSIS OF Q-LEARNING 1863

system"" that is a stochastic switching system, which have favorable structures that
are easily analyzed via control theory; stability of a linear system can be used to derive
a finite-time error bound for Q-learning. Overall, we view our analysis technique as a
complement rather than a replacement of existing techniques for Q-learning analysis.
Moreover, our approach based on the comparison systems could be of independent
interest to the finite-time stability analysis of more general switching systems.

The overall paper consists of the following parts: section 2 provides preliminary
discussions including basics of Markov decision process, switching system, Q-learning,
and useful definitions and notations used throughout the paper; section 3 provides
the main results of the paper, including the switched system models of Q-learning,
upper and lower comparison systems, and the finite-time error bounds; we conclude
in section 4 with a discussion on potential extensions of this work.

2. Preliminaries.

2.1. Markov decision problem. We consider the infinite-horizon discounted
Markov decision problem (MDP), where a decision making agent sequentially takes
actions to maximize cumulative discounted rewards in environments called the Markov
decision process. The Markov decision process is a mathematical model of dynamical
systems with the state-space \scrS := \{ 1,2, . . . , | \scrS | \} and action-space \scrA := \{ 1,2, . . . , | \scrA | \} .
In a Markov decision process, the decision maker selects an action a\in \scrA with the cur-
rent state s, then the state transits to the next state s\prime with probability P (s\prime | s, a), and
the transition incurs a reward r(s, a, s\prime ). For convenience, we consider a deterministic
reward function and simply write r(sk, ak, sk+1) =: rk, k \in \{ 0,1, . . .\} .

A deterministic policy, \pi : \scrS \rightarrow \scrA , maps a state s \in \scrS to an action \pi (s) \in \scrA .
The objective of the MDP is to find a deterministic optimal policy, \pi \ast , such that the
cumulative discounted rewards over infinite-time horizons are maximized, i.e.,

\pi \ast := argmax
\pi \in \Theta 

\BbbE 

\Biggl[ \infty \sum 
k=0

\gamma krk

\bigm| \bigm| \bigm| \bigm| \bigm| \pi 
\Biggr] 
,

where \gamma \in [0,1) is the discount factor, \Theta is the set of all admissible deterministic
policies, (s0, a0, s1, a1, . . .) is a state-action trajectory generated by the Markov chain
indicated by the policy \pi , and \BbbE [\cdot | \pi ] is an expectation conditioned on the policy \pi .
The Q-function under policy \pi is defined as

Q\pi (s, a) =\BbbE 

\Biggl[ \infty \sum 
k=0

\gamma krk

\bigm| \bigm| \bigm| \bigm| \bigm| s0 = s, a0 = a,\pi 

\Biggr] 
, s\in \scrS , a\in \scrA ,

and the optimal Q-function is defined as Q\ast (s, a) =Q\pi \ast 
(s, a) for all s\in \scrS and a\in \scrA .

Once Q\ast is known, then an optimal policy can be retrieved by the greedy policy
\pi \ast (s) = argmaxa\in \scrA Q

\ast (s, a). Throughout, we assume that the MDP is ergodic so
that the stationary state distribution exists and the MDP is well posed.

2.2. Switching system. Since the switching system is a special form of nonlin-
ear systems, we first consider the general nonlinear system

xk+1 = f(xk), x0 = z \in \BbbR n, k \in \{ 1,2, . . .\} ,(2.1)

where xk \in \BbbR n is the state and f : \BbbR n \rightarrow \BbbR n is a nonlinear mapping. An important
concept in dealing with the nonlinear system is the equilibrium point. A point x= x\ast 

in the state-space \BbbR n is said to be an equilibrium point of (2.1) if it has the property

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

07
/2

7/
23

 to
 1

95
.1

76
.1

13
.9

9 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



1864 DONGHWAN LEE, JIANGHAI HU, AND NIAO HE

that whenever the state of the system starts at x\ast , it will remain at x\ast [11]. For (2.1),
the equilibrium points are the real roots of the equation f(x) = x. The equilibrium
point x\ast is said to be globally asymptotically stable if for any initial state x0 \in \BbbR n,
xk \rightarrow x\ast as k\rightarrow \infty .

Next, let us consider the particular nonlinear system, the linear switching system,

xk+1 =A\sigma k
xk, x0 = z \in \BbbR n, k \in \{ 0,1, . . .\} ,(2.2)

where xk \in \BbbR n is the state, \sigma \in \scrM := \{ 1,2, . . . ,M\} is called the mode, \sigma k \in \scrM 
is called the switching signal, and \{ A\sigma , \sigma \in \scrM \} are called the subsystem matrices.
The switching signal can be either arbitrary or controlled by the user under a certain
switching policy. Especially, a state-feedback switching policy is denoted by \sigma k =
\sigma (xk). A more general class of systems is the affine switching system

xk+1 =A\sigma k
xk + b\sigma k

, x0 = z \in \BbbR n, k \in \{ 0,1, . . .\} ,

where b\sigma k
\in \BbbR n is the additional input vector, which also switches according to \sigma k.

Due to the additional input b\sigma k
, its stabilization becomes much more challenging.

2.3. Revisiting Q-learning. We now briefly review the standard Q-learning
and its convergence. Recall the Q-learning update:

Qk+1(sk, ak) =Qk(sk, ak)

+ \alpha k(sk, ak)

\biggl\{ 
rk + \gamma max

u\in \scrA 
Qk(sk+1, u) - Qk(sk, ak)

\biggr\} 
,

where 0\leq \alpha k(s, a)\leq 1, is called the learning rate or step size associated with the state-
action pair (s, a) at iteration k. This value is assumed to be zero if (s, a) \not = (sk, ak).
If

\infty \sum 
k=0

\alpha k(s, a) =\infty ,

\infty \sum 
k=0

\alpha 2
k(s, a)<\infty ,

and every state-action pair is visited infinitely often, then the iterate is guaranteed
to converge to Q\ast with probability one [16]. Note that the state-action pair can be
visited arbitrarily, which is more general than stochastic visiting rules.

In this paper, we focus on the following setting: \{ (sk, ak)\} \infty k=0 are i.i.d. samples
under a behavior policy \beta , where the behavior policy is the policy by which the
reinforcement learning agent actually behaves to collect experiences. For simplicity,
we assume that the state at each time is sampled from the state distribution p and,
in this case, the state-action distribution at each time is identically given by

d(s, a) = p(s)\beta (a| s), (s, a)\in \scrS \times \scrA .

2.4. Assumptions and definitions. Throughout, we make the following stan-
dard assumptions.

Assumption 2.1. d(s, a)> 0 holds for all s\in \scrS , a\in \scrA .

Assumption 2.2. The step size is a constant \alpha \in (0,1).

Assumption 2.3. The reward is bounded as follows:

max
(s,a,s\prime )\in \scrS \times \scrA \times \scrS 

| r(s, a, s\prime )| =:Rmax \leq 1.

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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SWITCHING SYSTEM ANALYSIS OF Q-LEARNING 1865

Assumption 2.4. The initial iterate Q0 satisfies \| Q0\| \infty \leq 1.

Remark 2.5. All the assumptions are standard and widely used in the reinforce-
ment learning literature. All these assumptions will be used throughout this paper
for the convergence proofs. Assumption 2.1 guarantees that every state-action pair is
visited infinitely often with probability one for sufficient exploration. This assump-
tion corresponds to the sufficient exploration condition in the standard Q-learning
analysis [8]: every state-action pair (s, a) is visited infinitely often. Moreover, this
assumption is used when the state-action visit distribution is given. It has also been
considered in [13] and [4]. The work in [2] considers another deterministic exploration
condition, called the cover time condition, which states that there is a certain time
period, within which all the state-action pairs are expected to be visited at least once.
Slightly different cover time conditions have been used in [5] and [13] for convergence
rate analysis. Assumption 2.3 is required to ensure the boundedness of Q-learning
iterates, which is applied in almost all reinforcement learning algorithms. The unit
bounds imposed on Rmax and Q0 are just for simplicity of analysis. The constant step
size in Assumption 2.2 has been also studied in [2] and [4] using different approaches.

The following quantities will be frequently used in this paper; hence, we define
them for convenience.

Definition 2.6.
1. Maximum state-action visit probability:

dmax := max
(s,a)\in \scrS \times \scrA 

d(s, a)\in (0,1).

2. Minimum state-action visit probability:

dmin := min
(s,a)\in \scrS \times \scrA 

d(s, a)\in (0,1).

3. Exponential decay rate:

\rho := 1 - \alpha dmin(1 - \gamma ).(2.3)

Under Assumption 2.2, the decay rate satisfies \rho \in (0,1).

Throughout the paper, we will use the following compact vector and matrix no-
tations for dynamical system representations:

P :=

\left[   P1

...
P| \scrA | 

\right]   , R :=

\left[   R1

...
R| \scrA | 

\right]   , Q :=

\left[   Q(\cdot ,1)
...

Q(\cdot , | \scrA | )

\right]   ,
Da :=

\left[   d(1, a) . . .

d(| \scrS | , a)

\right]   , D :=

\left[   D1

. . .

D| \scrA | 

\right]   ,(2.4)

where Pa = P (\cdot | a, \cdot ) \in \BbbR | \scrS | \times | \scrS | , Q(\cdot , a) \in \BbbR | \scrS | , a \in \scrA , and Ra(s) := \BbbE [r(s, a, s\prime )| s, a].
Note that P \in \BbbR | \scrS | | \scrA | \times | \scrS | , R \in \BbbR | \scrS | | \scrA | , Q \in \BbbR | \scrS | | \scrA | , and D \in \BbbR | \scrS | | \scrA | \times | \scrS | | \scrA | . In this
notation, the Q-function is encoded as a single vector Q \in \BbbR | \scrS | | \scrA | , which enumerates
Q(s, a) for all s \in \scrS and a \in \scrA . The single value Q(s, a) can be written as Q(s, a) =
(ea\otimes es)

TQ, where es \in \BbbR | \scrS | and ea \in \BbbR | \scrA | are sth basis vectors (all components are 0

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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1866 DONGHWAN LEE, JIANGHAI HU, AND NIAO HE

except for the sth component which is 1) and ath basis vectors, respectively. Note also
that under Assumption 2.1, D is a nonsingular diagonal matrix with strictly positive
diagonal elements.

For any stochastic policy, \pi : \scrS \rightarrow \Delta | \scrA | , where \Delta | \scrA | is the set of all probability
distributions over \scrA , we define the corresponding action transition matrix as

\Pi \pi :=

\left[     
\pi (1)T \otimes eT1
\pi (2)T \otimes eT2

...
\pi (| S| )T \otimes eT| \scrS | 

\right]     \in \BbbR | \scrS | \times | \scrS | | \scrA | ,(2.5)

where es \in \BbbR | \scrS | . Then, it is well known that P\Pi \pi \in \BbbR | \scrS | | \scrA | \times | \scrS | | \scrA | is the transition
probability matrix of the state-action pair under policy \pi . If we consider a determin-
istic policy, \pi : \scrS \rightarrow \scrA , the stochastic policy can be replaced with the corresponding
one-hot encoding vector \vec{}\pi (s) := e\pi (s) \in \Delta | \scrA | , where ea \in \BbbR | \scrA | , and the corresponding
action transition matrix is identical to (2.5) with \pi replaced with \vec{}\pi . For any given
Q\in \BbbR | \scrS | | \scrA | , denote the greedy policy w.r.t. Q as

\pi Q(s) := argmax
a\in \scrA 

Q(s, a)\in \scrA .(2.6)

We will frequently use the following shorthand:

\Pi Q := \Pi \pi Q .

We note that this notation, \Pi Q := \Pi \pi Q , will play an important role in the derivation
of the switching system model in this paper. In particular, the matrix appears in the
system parameters, and switches as the greedy policy \pi Q(s) := argmaxa\in \scrA Q(s, a)\in \scrA 
is changed according to Q.

The boundedness of Q-learning iterates [6] plays an important role in our analysis.

Lemma 2.7 (boundedness of Q-learning iterates [6]). If the step size is less than
one, then for all k\geq 0,

\| Qk\| \infty \leq Qmax :=
max\{ Rmax,max(s,a)\in \scrS \times \scrA Q0(s, a)\} 

1 - \gamma 
.

From Assumptions 2.3 and 2.4, we can easily see that Qmax \leq 1
1 - \gamma .

3. Finite-time analysis of Q-learning from switching system theory.
In this section, we study a discrete-time switching system model of Q-learning and
establish its finite-time convergence based on the stability analysis of switching sys-
tems. We consider a version of Q-learning given in Algorithm 3.1. Compared to
the original Q-learning, the step size, \alpha , does not depend on the state-action pair
and is constant in this paper. Moreover, the output of Algorithm 3.1 is the average,
\~Qk =

1
k

\sum k - 1
i=0 Qk, k\geq 1, instead of the final iteration Qk.

3.1. Q-learning as a stochastic affine switching system. Using the nota-
tion introduced, the update in Algorithm 3.1 can be rewritten as

Qk+1 =Qk + \alpha \{ DR+ \gamma DP\Pi Qk
Qk  - DQk +wk\} ,(3.1)

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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SWITCHING SYSTEM ANALYSIS OF Q-LEARNING 1867

Algorithm 3.1 Q-learning with a constant step size.

1: Initialize Q0 \in \BbbR | \scrS | | \scrA | randomly such that \| Q0\| \infty \leq 1.

2: Set \~Q0 =Q0

3: Sample s0 \sim p
4: for iteration k= 0,1, . . . do
5: Sample ak \sim \beta (\cdot | sk)
6: Sample s\prime k \sim P (\cdot | sk, ak) and rk = r(sk, ak, s

\prime 
k)

7: Update Qk+1(sk, ak)=Qk(sk, ak)+\alpha \{ rk+\gamma maxu\in \scrA Qk(s
\prime 
k, u) - Qk(sk, ak)\} 

8: Update \~Qk+1 = \~Qk +
1

k+1 (Qk  - \~Qk)

9: end for

where

wk =(eak
\otimes esk)rk + \gamma (eak

\otimes esk)(es\prime k)
T\Pi Qk

Qk

 - (eak
\otimes esk)(eak

\otimes esk)
TQk  - (DR+ \gamma DP\Pi Qk

Qk  - DQk),(3.2)

and (sk, ak, rk, s
\prime 
k) is the sample in the kth time step.

Remark 3.1. Note that in Algorithm 3.1, (sk, ak, s
\prime 
k) is sampled from the joint

distribution

P (s\prime k| sk, ak)p(sk)\beta (ak| sk) = P (s\prime k| sk, ak)d(sk, ak),

which is represented by the matrix multiplication, DP , in (3.1). By the definition of
matrix D in (2.4), it is a diagonal matrix whose diagonal entries are an enumeration
of d(s, a) = p(s)\beta (a| s), (s, a)\in \scrS \times \scrA . Therefore, it is easy to see that an entry of DP
is a joint distribution of a certain (s, a, s\prime )\in \scrS \times \scrA \times \scrS . Moreover, from the definition
of matrix \Pi \pi in (2.5) and the greedy policy in (2.6), the multiplication \Pi Qk

Qk in
(3.2) represents that max operator in the Q-function update in (3.1).

In more details, a vector form of the Q-function update in (3.1) can be written as

Qk+1 =Qk + \alpha ((eak
\otimes esk)rk + \gamma (eak

\otimes esk)(esk\prime )
T\Pi Qk

Qk  - (eak
\otimes esk)

TQk).(3.3)

Taking the conditional expectation conditioned on Qk leads to the mean dynamic

\BbbE [Qk+1| Qk] =Qk + \alpha (DR+ \gamma DP\Pi Qk
Qk  - DQk),(3.4)

where D=\BbbE [(eak
\otimes esk)(eak

\otimes esk)
T | Qk] and DP =\BbbE [(eak

\otimes esk)(esk\prime )
T | Qk]. Adding

the right-hand side of (3.4) to (3.3) and subtracting it from (3.3), we obtain (3.1).

Moreover, by definition, the noise term has the zero mean conditioned on Qk, i.e.,
\BbbE [wk| Qk] = 0. Recall the definitions of \pi Q(s) and \Pi Q. Invoking the optimal Bellman
equation (\gamma DP\Pi Q\ast  - D)Q\ast +DR= 0, (3.1) can be further rewritten as

(Qk+1  - Q\ast ) =\{ I + \alpha (\gamma DP\Pi Qk
 - D)\} (Qk  - Q\ast ) + \alpha \gamma DP (\Pi Qk

 - \Pi Q\ast )Q\ast + \alpha wk,
(3.5)

which is a linear switching system with an extra affine term, \gamma DP (\Pi Qk
 - \Pi Q\ast )Q\ast ,

and stochastic noise wk. For notational simplicity, given any Q\in \BbbR | \scrS | | \scrA | , define

AQ := I + \alpha (\gamma DP\Pi Q  - D), bQ := \alpha \gamma DP (\Pi Q  - \Pi Q\ast )Q\ast .
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1868 DONGHWAN LEE, JIANGHAI HU, AND NIAO HE

Using the notation, the Q-learning iteration can be concisely represented as the sto-
chastic affine switching system

Qk+1  - Q\ast =AQk
(Qk  - Q\ast ) + bQk

+ \alpha wk,(3.6)

where AQk
and bQk

switch among matrices from \{ I + \alpha (\gamma DP\Pi \pi  - D) : \pi \in \Theta \} and
vectors from \{ \alpha \gamma DP (\Pi \pi  - \Pi \pi \ast 

)Q\ast : \pi \in \Theta \} respectively. Note that in the switching
system in (3.6), the switching signal is not arbitrary, and the switching signal follows
a switching rule associated with the greedy policy \pi Qk

(s) := argmaxa\in \scrA Qk(s, a)\in \scrA ,
which changes according to Qk.

Therefore, the convergence of Q-learning is now reduced to analyzing the stability
of the above switching system. A main obstacle in proving the stability arises from
the presence of the affine and stochastic terms. Without these terms, we can easily
establish the exponential stability of the corresponding deterministic switching system
under an arbitrary switching policy. Specifically, we have the following result.

Proposition 3.2. For arbitrary Hk \in \BbbR | \scrS | | \scrA | , k\geq 0, the linear switching system

Qk+1  - Q\ast =AHk
(Qk  - Q\ast ), Q0  - Q\ast \in \BbbR | \scrS | | \scrA | ,

is exponentially stable with

\| Qk  - Q\ast \| \infty \leq \rho k\| Q0  - Q\ast \| \infty , k\geq 0,

where \rho is defined in (2.3).

The above result follows immediately from the key fact that \| AQ\| \infty \leq \rho , which
is formally stated in the next lemma.

Lemma 3.3. For any Q\in \BbbR | \scrS | | \scrA | ,

\| AQ\| \infty \leq \rho .

Here the matrix norm \| A\| \infty :=max1\leq i\leq m

\sum n
j=1 | Aij | and Aij is the element of A in

the ith row and jth column.

Proof. Note the following identities\sum 
j

| [AQ]ij | =
\sum 
j

| [I  - \alpha D+ \alpha \gamma DP\Pi Q]ij | 

= [I  - \alpha D]ii +
\sum 
j

[\alpha \gamma DP\Pi Q]ij

= 1 - \alpha [D]ii + \alpha \gamma [D]ii
\sum 
j

[P\Pi Q]ij

= 1 - \alpha [D]ii + \alpha \gamma [D]ii

= 1+ \alpha [D]ii(\gamma  - 1),

where the second line is due to the fact that AQ is a nonnegative matrix. Taking the
maximum over i, we have

\| AQ\| \infty = max
i\in \{ 1,2,...,| \scrS | | \scrA | \} 

\{ 1 + \alpha [D]ii(\gamma  - 1)\} 

= 1 - \alpha min
(s,a)\in \scrS \times \scrA 

d(s, a)(1 - \gamma )

= \rho ,

which completes the proof.
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SWITCHING SYSTEM ANALYSIS OF Q-LEARNING 1869

Fig. 1. Overview of the proposed analysis.

However, because of the additional affine term and stochastic noises in the original
switching system (3.6), it is not obvious how to directly derive its finite-time conver-
gence. To circumvent the difficulty with the affine term, we will resort to two simpler
comparison systems, whose trajectories upper and lower bound that of the original
system, and can be more easily analyzed. These systems will be called the upper and
lower comparison systems depicted in Figure 1, which capture important behaviors of
Q-learning. The upper comparison system, denoted by QU

k , upper bounds Q-learning
iterate Qk, while the lower comparison system, denoted by QL

k , lower bounds Qk.
The construction of these comparison systems is partly inspired by [12] and exploits
the special structure of the Q-learning algorithm. Unlike [12], here we focus on the
discrete-time domain directly and a finite-time analysis. To address the difficulty
with the stochastic noise, we introduce a two-phase analysis: the first phase captures
the noise effect of the lower comparison system, while the second phase captures the
difference between the two comparison systems when the noise effect vanishes.

3.2. Lower comparison system. Consider the stochastic linear system

QL
k+1  - Q\ast =AQ\ast (QL

k  - Q\ast ) + \alpha wk, QL
0  - Q\ast \in \BbbR | \scrS | | \scrA | ,(3.7)

where the stochastic noise wk is the same as the original system (3.5). We call it the
lower comparison system.

Proposition 3.4. Suppose QL
0  - Q\ast \leq Q0  - Q\ast , where \leq is used as the elemen-

twise inequality. Then,

QL
k  - Q\ast \leq Qk  - Q\ast 

for all k\geq 0.

Proof. The proof is done by an induction argument. Suppose the result holds for
some k\geq 0. Then,

(Qk+1  - Q\ast )

=AQ\ast (Qk  - Q\ast ) + (AQk
 - AQ\ast )(Qk  - Q\ast ) + bQk

+ \alpha wk

=AQ\ast (Qk  - Q\ast ) + \alpha \gamma DP (\Pi Qk
 - \Pi Q\ast )Qk + \alpha wk

\geq AQ\ast (Qk  - Q\ast ) + \alpha wk

\geq AQ\ast (QL
k  - Q\ast ) + \alpha wk

=QL
k+1  - Q\ast ,
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1870 DONGHWAN LEE, JIANGHAI HU, AND NIAO HE

where the first inequality is due to DP (\Pi Qk
 - \Pi Q\ast )Qk \geq DP (\Pi Q\ast  - \Pi Q\ast )Qk = 0 and

the second inequality is due to the hypothesis QL
k  - Q\ast \leq Qk  - Q\ast and the fact that

AQ\ast is a nonnegative matrix (all elements are nonnegative). The proof is completed
by induction.

Remark 3.5. Rearranging terms, the original system (3.6) can be written as

Qk+1  - Q\ast =AQ\ast (Qk  - Q\ast ) + \alpha \gamma DP (\Pi Qk
 - \Pi Q\ast )Qk\underbrace{}  \underbrace{}  

=:hQk

+\alpha wk,

where one can easily prove that hQk
\geq 0 using the definition of \Pi Qk

, i.e., \Pi Qk
Qk \geq 

\Pi Q\ast Qk. Intuitively, removing this nonnegative bias term, hQk
, leads to the lower

comparison system. The vector hQk
represents a portion of the gap between the

original and lower systems incurred at a single time step.

Note that the mean dynamics of the lower comparison system is simply a linear
system. By Proposition 3.2, we have the exponential stability of the mean dynamics:

\| \BbbE [QL
k ] - Q\ast \| \infty \leq \rho k\| QL

0  - Q\ast \| \infty \forall k\geq 0.(3.8)

Furthermore, we can conclude that AQ\ast is Schur, i.e., the magnitude of all its en-
genvalues is strictly less than one, and from the Lyapunov theory for linear systems,
there exists a positive definite matrix M \succ 0 and \beta \in (0,1) such that

AT
Q\ast MAQ\ast \preceq \beta M.

The parameter \beta \in (0,1) determines the convergence speed of the state to the origin,
and it depends on the structure of the matrix AQ\ast . We prove that in our case, an
upper bound on \beta can be expressed in terms of \rho . In fact, we can set \beta = (\rho + \epsilon )2 for
arbitrary \epsilon > 0 such that \beta \in (0,1).

Proposition 3.6. For any \epsilon > 0 such that \rho + \epsilon \in (0,1), there exists the corre-
sponding positive definite M \succ 0 such that

AT
Q\ast MAQ\ast = (\rho + \epsilon )2(M  - I)

and

\lambda min(M)\geq 1, \lambda max(M)\leq | \scrS | | \scrA | 

1 - 
\Bigl( 

\rho 
\rho +\epsilon 

\Bigr) 2 .
The above result can be easily verified by setting

M =

\infty \sum 
k=0

\biggl( 
1

\rho + \epsilon 

\biggr) 2k

(Ak
Q\ast )TAk

Q\ast .

We defer the detailed proof to Appendix 5.1. Based on this result, we can derive a
finite-time error bound for the lower comparison system.

Theorem 3.7. Under Assumptions 2.1--2.4, for any N \geq 0, it holds that

\BbbE 

\Biggl[ \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

N

N - 1\sum 
k=0

QL
k  - Q\ast 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

\Biggr] 
\leq 

\sqrt{} 
32\alpha | \scrS | 2| \scrA | 2
dmin(1 - \gamma )3

+
1

N

2| \scrS | 2| \scrA | 2
\alpha dmin(1 - \gamma )

\BbbE [\| Q0  - Q\ast \| 2\infty ].(3.9)
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SWITCHING SYSTEM ANALYSIS OF Q-LEARNING 1871

Proof. Define the Lyapunov function V (x) = xTMx, the history set

\scrF k := \{ QL
0 ,Q0,w0,Q

L
1 ,Q1,w1, . . . ,Q

L
k - 1,Qk - 1,wk - 1,Q

L
k ,Qk\} ,

and also denote A = AQ\ast for simplicity of the presentation, where the matrix M
satisfies the conditions in Proposition 3.6. Then, we have

\BbbE [V (QL
k+1  - Q\ast )| \scrF k]

=\BbbE [(A(QL
k  - Q\ast ) + \alpha wk)

TM(A(QL
k  - Q\ast ) + \alpha wk)| \scrF k]

=\BbbE [(QL
k  - Q\ast )TATMA(QL

k  - Q\ast ) + \alpha 2wT
k Mwk| \scrF k]

\leq (\rho + \epsilon )2V (QL
k  - Q\ast ) - (\rho + \epsilon )2\| QL

k  - Q\ast \| 2 + \lambda max(M)\alpha 2\BbbE [wT
k wk| \scrF k].

Here \epsilon > 0 is such that \rho + \epsilon < 1. The first inequality comes from Proposition 3.6.
The second equality is due to the fact that

\BbbE [wk| \scrF k]

=\BbbE [(eak
\otimes esk)rk + \gamma (eak

\otimes esk)(esk\prime )
T\Pi Qk

Qk

 - (eak
\otimes esk)(eak

\otimes esk)
TQk  - (DR+ \gamma DP\Pi Qk

Qk  - DQk)| \scrF k]

=\BbbE [(eak
\otimes esk)rk + \gamma (eak

\otimes esk)(esk\prime )
T\Pi Qk

Qk  - (eak
\otimes esk)(eak

\otimes esk)
TQk| Qk]

 - (DR+ \gamma DP\Pi Qk
Qk  - DQk)

=DR+ \gamma DP\Pi Qk
Qk  - DQk  - (DR+ \gamma DP\Pi Qk

Qk  - DQk)

= 0.

Therefore, we have

\BbbE [\alpha wT
k MA(QL

k  - Q\ast )| \scrF k] =\BbbE [\alpha wT
k MA(QL

k  - Q\ast )| QL
k ,Qk]

= \alpha \BbbE [wT
k | Qk]MA(QL

k  - Q\ast )

= 0.

Subtracting V (QL
k  - Q\ast ) from both sides and using \lambda min(M) \geq 1 in Proposition 3.6

lead to

\BbbE [V (QL
k+1  - Q\ast )| \scrF k] - V (QL

k  - Q\ast )

\leq (\rho + \varepsilon )2V (QL
k  - Q\ast ) - V (QL

k  - Q\ast ) - (\rho + \varepsilon )2\| QL
k  - Q\ast \| 2

+ \alpha 2\lambda max(M)\BbbE [wT
k wk| \scrF k]

= ((\rho + \varepsilon )2  - 1)V (QL
k  - Q\ast ) - (\rho + \varepsilon )2\| QL

k  - Q\ast \| 2

+ \alpha 2\lambda max(M)\BbbE [wT
k wk| \scrF k]

\leq ((\rho + \varepsilon )2  - 1)\| QL
k  - Q\ast \| 2  - (\rho + \varepsilon )2\| QL

k  - Q\ast \| 2

+ \alpha 2\lambda max(M)\BbbE [wT
k wk| \scrF k]

= - \| QL
k  - Q\ast \| 2 + \alpha 2\lambda max(M)\BbbE [wT

k wk| \scrF k],

where the last inequality uses the facts, (\rho + \varepsilon )2  - 1< 0 and \lambda min(M)\geq 1. Therefore,
we have

\BbbE [V (QL
k+1  - Q\ast )| \scrF k] - V (QL

k  - Q\ast )

\leq  - \| QL
k  - Q\ast \| 2 + \alpha 2\lambda max(M)\BbbE [wT

k wk| \scrF k].
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1872 DONGHWAN LEE, JIANGHAI HU, AND NIAO HE

Taking the expectation \BbbE [\cdot ] on both sides and rearranging terms yield

\BbbE [\| QL
k  - Q\ast \| 2]

\leq \BbbE [V (QL
k  - Q\ast )] - \BbbE [V (QL

k+1  - Q\ast )] + \alpha 2\lambda max(M)\BbbE [wT
k wk].

Next, we show that the variance of wk is bounded as follows:

\BbbE [wT
k wk| \scrF k]\leq W :=

16| \scrS | | \scrA | 
(1 - \gamma )2

.

This is because

\| wk\| \infty \leq \| ((ea \otimes es) - D)rk\| \infty 
+ \gamma \| (ea \otimes es)(es\prime )

T  - DP\| \infty \| \Pi Qk
\| \infty \| Qk\| \infty 

+ \| ((ea \otimes es)(ea \otimes es)
T  - D)\| \infty \| Qk\| \infty 

\leq 2Rmax + 2\gamma Qmax + 2Qmax

\leq 4

1 - \gamma 
,

where the last inequality comes from Assumptions 2.3--2.4 and Lemma 2.7. Hence,
\BbbE [wT

k wk| \scrF k]\leq W .
Summing both sides from k= 0 to k=N  - 1 and dividing by N > 0 leads to

1

N

N - 1\sum 
k=0

\BbbE [\| QL
k  - Q\ast \| 2]

\leq \alpha 2\lambda max(M)W +
\lambda max(M)

N
\BbbE [\| QL

0  - Q\ast \| 2],

where we use \lambda min(M)\| x\| 22 \leq V (x) \leq \lambda max(M)\| x\| 22. We use the bound \lambda max(M) \leq 
| \scrS | | \scrA | 

1 - ( \rho 
\rho +\epsilon )

2 in Proposition 3.6, let QL
0 =Q0, and set \varepsilon = 1 - \rho 

2 so that \rho + \varepsilon = 1+\rho 
2 \in (0,1)

to have

N - 1\sum 
k=0

1

N
\BbbE [\| QL

k  - Q\ast \| 2]

\leq \alpha 2| \scrS | | \scrA | W

1 - 
\Bigl( 

\rho 
\rho +\varepsilon 

\Bigr) 2 +
1

N

| \scrS | | \scrA | 

1 - 
\Bigl( 

\rho 
\rho +\varepsilon 

\Bigr) 2\BbbE [\| Q0  - Q\ast \| 2]

\leq \alpha 2 (1 + \rho )| \scrS | | \scrA | W
1 - \rho 

+
1

N

(1 + \rho )| \scrS | | \scrA | 
1 - \rho 

\BbbE [\| Q0  - Q\ast \| 2]

\leq 2\alpha | \scrS | | \scrA | W
dmin(1 - \gamma )

+
1

N

2| \scrS | | \scrA | 
\alpha dmin(1 - \gamma )

\BbbE [\| Q0  - Q\ast \| 2].

Taking the square root on both sides, using the subadditivity of the square root,
and combining with the relations\sqrt{}    N - 1\sum 

k=0

1

N
\BbbE [\| QL

k  - Q\ast \| 22]

\geq 
N - 1\sum 
k=0

1

N
\BbbE [\| QL

k  - Q\ast \| 2]\geq 
N - 1\sum 
k=0

1

N
\BbbE [\| Qk  - Q\ast \| \infty ]
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SWITCHING SYSTEM ANALYSIS OF Q-LEARNING 1873

and

\| Q0  - Q\ast \| 22 \leq | \scrS | | \scrA | \| Q0  - Q\ast \| 2\infty ,

which applies the concavity of the square root function and Jensen`s inequality, we
further have

N - 1\sum 
k=0

1

N
\BbbE [
\bigm\| \bigm\| QL

k  - Q\ast \bigm\| \bigm\| 
\infty ]\leq 

\sqrt{} 
32\alpha | \scrS | 2| \scrA | 2
dmin(1 - \gamma )3

+
1

N

2| \scrS | 2| \scrA | 2
\alpha dmin(1 - \gamma )

\BbbE [\| Q0  - Q\ast \| 2\infty ].(3.10)

Using the Jensen inequality again yields the desired result.

Before closing this subsection, we provide a simple example which shows the case
that the gap between the lower comparison system and the original system is tight.

Example 3.8. Consider an MDP with \scrS = \{ 1\} , \scrA = \{ 1\} , \gamma = 0.9, where a
reward is one at every time instances. In this case, the optimal policy is defined with
\pi \ast (1) = 1, and the corresponding optimal Q-function is Q\ast = 1

1 - \gamma . The overall system
is deterministic. In this case, D = P = 1 and \Pi Q = 1 for any Q \in \BbbR . Then, we have
AQ = 1+ \alpha (0.9 - 1), bQ = 0, and the switching system in (3.6) is given as

Qk+1  - Q\ast = (1 - 0.1\alpha )(Qk  - Q\ast ).

On the other hand, since AQ\ast = 1+ \alpha (0.9 - 1), the lower system in (3.7) is the same
as the original system, i.e.,

QL
k+1  - Q\ast = (1 - 0.1\alpha )(QL

k  - Q\ast ).

Therefore, with Q0 =QL
0 , the lower bound is tight in the sense that Qk - Q\ast =QL

k  - Q\ast 

for all k\geq 0.

3.3. Upper comparison system. Now, let us consider the stochastic linear
switching system

QU
k+1  - Q\ast =AQk

(QU
k  - Q\ast ) + \alpha wk, QU

0  - Q\ast \in \BbbR | \scrS | | \scrA | ,(3.11)

where the stochastic noise wk is kept the same as the original system. We will call it
the upper comparison system.

Proposition 3.9. Suppose QU
0  - Q\ast \geq Q0  - Q\ast , where \geq is used as the elemen-

twise inequality. Then,

QU
k  - Q\ast \geq Qk  - Q\ast 

for all k\geq 0.

Proof. Suppose the result holds for some k\geq 0. Then,

(Qk+1  - Q\ast ) =AQk
(Qk  - Q\ast ) + bQk

+ \alpha wk

\leq AQk
(Qk  - Q\ast ) + \alpha wk

\leq AQk
(QU

k  - Q\ast ) + \alpha wk

=QU
k+1  - Q\ast ,

where we used the fact that bQk
= D(\gamma P\Pi Qk

Q\ast  - \gamma P\Pi Q\ast Q\ast ) \leq D(\gamma P\Pi Q\ast Q\ast  - 
\gamma P\Pi Q\ast Q\ast ) = 0 in the first inequality. The second inequality is due to the hypothesis
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1874 DONGHWAN LEE, JIANGHAI HU, AND NIAO HE

QU
k  - Q\ast \geq Qk  - Q\ast and the fact that AQk

is a nonnegative matrix. Then, the proof
is completed by induction.

Remark 3.10. In the original system (3.6), one can easily prove that bQk
:=

\gamma DP (\Pi Qk
 - \Pi Q\ast )Q\ast \leq 0 using the definition of \Pi Qk

, i.e., \Pi Qk
Q\ast \leq \Pi Q\ast Q\ast . In-

tuitively, removing this nonpositive bias term, bQk
, leads to the upper comparison

system. The vector bQk
represents a portion of the gap between the original and

upper systems incurred at a single time step.

Hence, the trajectory of the stochastic linear switching system (3.11) bounds
that of the original system from above. Note that the system matrix, AQk

, switches
according to the change of Qk, which depends probabilistically on QU

k . Therefore, if
we take the expectation on both sides of (3.11), it is not possible to separate AQk

and the state QU
k  - Q\ast unlike the lower comparison system, making it much harder

to analyze the stability of the upper comparison system.
To circumvent such a difficulty, we instead study the following error system by

subtracting the lower comparison system (3.7) from the upper comparison system
(3.11):

QU
k+1  - QL

k+1 =AQk
(QU

k  - QL
k ) +BQk

(QL
k  - Q\ast ),(3.12)

where

BQk
:=AQk

 - AQ\ast = \alpha \gamma DP (\Pi Qk
 - \Pi Q\ast ).

Here, the stochastic noise, \alpha wk, is canceled out in the error system. Moreover, matri-
ces (AQk

,BQk
) switch according to the external signal, Qk, and QL

k  - Q\ast can be seen
as an external disturbance.

The key insight is as follows: if we can prove the stability of the error system, i.e.,
QU

k  - QL
k \rightarrow 0 as k\rightarrow \infty , then since QL

k \rightarrow Q\ast as k\rightarrow \infty , we have QU
k \rightarrow Q\ast as well.

Example 3.11. Consider Example 3.8 again. The upper system in (3.11) is the
same as the original system, i.e.,

QU
k+1  - Q\ast = (1 - 0.1\alpha )(QU

k  - Q\ast ).

Therefore, withQ0 =QU
0 , the upper bound is tight in the sense thatQU

k  - Q\ast =Qk - Q\ast 

for all k\geq 0.

Example 3.12. Consider an MDP with \scrS = \{ 1\} , \scrA = \{ 1,2\} , \gamma = 0.9, where the
reward is one when a = 1 and zero otherwise. In this case, the optimal policy is
defined with \pi \ast (1) = 1, and the corresponding optimal Q-function is Q\ast (s,1) = 1

1 - \gamma =

10,Q\ast (s,2) = \gamma 
1 - \gamma = 9. We consider the behavior policy \beta (\cdot | 1) = [ 0.5 0.5 ]T . Then,

we have

Q=

\biggl[ 
Q(1,1)
Q(1,2)

\biggr] 
, R=

\biggl[ 
1
0

\biggr] 
, P =

\biggl[ 
1
1

\biggr] 
, D=

\biggl[ 
0.5 0
0 0.5

\biggr] 
and \Pi Q = [ 1 0 ] if Q(1,1)\geq Q(1,2) and \Pi Q = [ 0 1 ] otherwise. In this case,

AQ =

\biggl[ 
1 0
0 1

\biggr] 
+ \alpha 

\biggl( 
0.9

\biggl[ 
0.5
0.5

\biggr] 
\Pi Q  - 

\biggl[ 
0.5 0
0 0.5

\biggr] \biggr) 
and

bQ = 0.9

\biggl[ 
0.5
0.5

\biggr] \bigl( 
\Pi Q  - 

\bigl[ 
1 0

\bigr] \bigr) \biggl[ 10
9

\biggr] 
.
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SWITCHING SYSTEM ANALYSIS OF Q-LEARNING 1875

From the result, the gap, QU
k+1  - Qk+1, between the upper and original systems

incurred at each time step is bQ = [ 00 ] when Q(1,1) \geq Q(1,2), and bQ =  - 0.9[ 0.50.5 ]
when Q(1,1)<Q(1,2). Similar results can be obtained for the lower system.

3.4. Finite-time error bound of Q-learning. In this subsection, we provide
a finite-time error bound of Q-learning, which is the main result of this paper. We
obtain the following main result.

Theorem 3.13. Under Assumptions 2.1--2.4, for any N \geq 0, we have the follow-
ing error bound for Q-learning iterates,

\BbbE [\| \~QN  - Q\ast \| \infty ]\leq 

\Biggl( 
4\gamma dmax + dmin(1 - \gamma )

d
3/2
min(1 - \gamma )5/2

| \scrS | | \scrA | 

\Biggr) \sqrt{} 
32\alpha +

1

N

4

\alpha 
,(3.13)

where \alpha \in (0,1) is the constant step size and \~QN = 1
N

\sum N - 1
i=0 Qk.

Proof. Taking the norm on both sides of the error system (3.12), we have for any
k\geq 0

\| QU
k+1  - QL

k+1\| \infty 
\leq \| AQk

\| \infty \| QU
k  - QL

k \| \infty + \| BQk
\| \infty \| QL

k  - Q\ast \| \infty 
\leq (\rho + \varepsilon )\| QU

k  - QL
k \| \infty + \| BQk

\| \infty \| QL
k  - Q\ast \| \infty 

\leq (\rho + \varepsilon )\| QU
k  - QL

k \| \infty + 2\alpha \gamma dmax\| QL
k  - Q\ast \| \infty .

Here, the last inequality uses the fact that

\| BQk
\| \infty \leq \alpha \gamma dmax\| P (\Pi Qk

 - \Pi Q\ast )\| \infty \leq 2\alpha \gamma dmax.

Rearranging terms leads to

(1 - \rho  - \varepsilon )\| QU
k  - QL

k \| \infty 
\leq \| QU

k  - QL
k \| \infty  - \| QU

k+1  - QL
k+1\| \infty + 2\alpha \gamma dmax\| QL

k  - Q\ast \| \infty , k\geq 0.

Summing both sides from k = 0 to k = N  - 1, dividing by N > 0, and letting
QU

0 =QL
0 =Q0 lead to

N - 1\sum 
k=0

1

N
\| QU

k  - QL
k \| \infty \leq 2\alpha \gamma dmax

1 - \rho  - \varepsilon 

N - 1\sum 
k=0

1

N
\| QL

k  - Q\ast \| \infty .(3.14)

Next, we will express the left-hand side in terms of Qk. By the triangle inequality,
we have

\| Qk  - Q\ast \| \infty \leq \| Q\ast  - QL
k \| \infty + \| Qk  - QL

k \| \infty 
\leq \| Q\ast  - QL

k \| \infty + \| QU
k  - QL

k \| \infty .

The second inequality comes from

0\leq Qk  - QL
k \leq QU

k  - QL
k .

This leads to

\| Qk  - Q\ast \| \infty  - \| Q\ast  - QL
k \| \infty \leq \| QU

k  - QL
k \| \infty .
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Combining this inequality with (3.14), one gets

N - 1\sum 
k=0

1

N
(\| Qk  - Q\ast \| \infty  - \| Q\ast  - QL

k \| \infty )

\leq 4\gamma dmax

dmin(1 - \gamma )

N - 1\sum 
k=0

1

N
\| QL

k  - Q\ast \| \infty ,

where we let \varepsilon = 1 - \rho 
2 so that \rho + \varepsilon = 1+\rho 

2 and 1
1 - \rho  - \varepsilon =

2
1 - \rho = 2

\alpha d\mathrm{m}\mathrm{i}\mathrm{n}(1 - \gamma ) . Rearranging

terms again, taking the expectation on both sides, and combining it with (3.10), we
obtain

N - 1\sum 
k=0

1

N
\BbbE [\| Qk  - Q\ast \| \infty ]

\leq 5dmax

dmin(1 - \gamma )

N - 1\sum 
k=0

1

N
\BbbE [\| QL

k  - Q\ast \| \infty ]

\leq 5dmax

dmin(1 - \gamma )

\sqrt{} 
32\alpha | \scrS | 2| \scrA | 2
dmin(1 - \gamma )3

+
1

N

2| \scrS | 2| \scrA | 2
\alpha dmin(1 - \gamma )

\BbbE [\| Q0  - Q\ast \| 2\infty ].

From Lemma 2.7,  - 1Qmax \leq Qk \leq 1Qmax holds for all k \geq 0, where 1 denotes a
column vector where all elements are one. Applying Qmax = 1/(1 - \gamma ) from Lemma
2.7 together with Assumptions 2.4 and 2.3, \| Q0\| \infty \leq 1 from Assumption 2.4, the
Jensen inequality, and, after simplifications, we can obtain the desired conclusion.

Remark 3.14. Lyapunov theory [4] has been applied for the lower comparison
system, which is a linear time-invariant system. On the other hand, the techniques
used for the error system between the upper and lower comparison systems more
resemble those used in the optimization community rather than leveraging the nature
of a switching dynamical system. However, the switching system formulation captures
essential behaviors of Q-learning algorithm, and itself is mainly used in combination
with the lower comparison system in the overall derivation process.

3.5. Remarks. Overestimation and maximization bias. Our analysis provides
an intuitive explanation of the well-known overestimation phenomenon in Q-learning
[7]. In particular, Qk(s, a) tends to overestimate Q\ast (s, a) due to the maximization
bias in the Q-learning updates. This becomes severe especially when the action-space
is large. In particular, it can be problematic when the action spaces depending on
states are heterogeneous and the current estimate Qk is used for the exploration, e.g.,
the \varepsilon -greedy behavior policy; in this case, since argmaxa\in \scrA Qk(s, a) tends to choose
actions with larger maximization biases, thus degrading the quality of exploration and
leading to slower convergence. Moreover, the overestimation error could be amplified
at each iteration k when it passes through the max operator.

In fact, assuming that the initial Q0(s, a) - Q\ast (s, a) is a zero mean random vari-
able, namely, \BbbE [Q0  - Q\ast ] = 0, we can easily see through our analysis that

\BbbE [Qk  - Q\ast ]\geq 0 \forall k\geq 0.

This is because the lower comparison system (which is a stochastic linear system)
satisfies that
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SWITCHING SYSTEM ANALYSIS OF Q-LEARNING 1877

\BbbE [QL
k  - Q\ast ] =Ak

Q\ast \BbbE [QL
0  - Q\ast ] +

k - 1\sum 
i=0

Ak - 1 - i
Q\ast \alpha \BbbE [wi] = 0

provided that QL
0 =Q0, namely, there exists no biases in the lower system state. On

the other hand, since QL
k  - Q\ast \leq Qk  - Q\ast , \BbbE [Qk  - Q\ast ] \geq 0 holds. Moreover, for

(s, a) \in \scrS \times \scrA such that QL
k < Qk holds strictly, then \BbbE [Qk(s, a)] > Q\ast (s, a), which

potentially explains the overestimation phenomenon.

3.6. Sample complexity. Based on the finite-time error bound on the Q-
learning iterates in Theorem 3.13, we can derive an upper bound on the sample or
iteration complexity of Q-learning: to find an \varepsilon -optimal solution such that \BbbE [\| \~QN  - 
Q\ast \| \infty ]< \varepsilon , we need at most

\scrO 
\biggl( 

d4max| \scrS | 4| \scrA | 4

\varepsilon 4\delta 4d6min(1 - \gamma )10

\biggr) 
samples. Moreover, if the state-action pair is sampled uniformly from \scrS \times \scrA , then
d(s, a) = 1

| \scrS | | \scrA | \forall (s, a) \in \scrS \times \scrA and dmin = dmax = 1
| \scrS | | \scrA | . In this case, the sample

complexity becomes \scrO ( | \scrS | 6| \scrA | 6
\varepsilon 4\delta 4(1 - \gamma )10 ). The proof is given in Appendix 5.2.

The finite-time analysis of asynchronous Q-learning with constant step size was
first considered in [2], and has been recently studied in [13] and the concurrent work [4].

Based on the cover time assumption, which is deterministic, [2] provides \~\scrO (
t3\mathrm{c}\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}| \scrS | | \scrA | 
(1 - \gamma )5\varepsilon 2 ),

where tcover is the cover time and \~\scrO ignores the polylogarithmic factors. The results
in [13] provide \~\scrO ( 1

d\mathrm{m}\mathrm{i}\mathrm{n}(1 - \gamma )5\varepsilon 2 + t\mathrm{m}\mathrm{i}\mathrm{x}

d\mathrm{m}\mathrm{i}\mathrm{n}(1 - \gamma ) ) with a single Markovian trajectory, where
tmix is the mixing time. Note that the mixing time and cover time assumptions are
adopted in [13]. The complexity \~\scrO ( 1

d3
\mathrm{m}\mathrm{i}\mathrm{n}(1 - \gamma )5\varepsilon 2

) is given in [4] with a single Markovian

trajectory. Note that the bounds in [4] and [2] are the expected error bounds, and
those in [13] are the concentration error bounds. Besides, [15] offers a sharper bound
using a diminishing step size. Based on the analysis, we summarize advantages and
limitations of the proposed approach. A limitation of the proposed method lies in that
the corresponding sample complexity is not tighter than the existing approaches. On
the other hand, the main advantage is the proposition of a unique switching system
and control perspectives, which inherit simplicity, and provides additional insights on
Q-learning.

4. Conclusion. In this paper, we introduced a novel control-theoretic frame-
work based on discrete-time switching systems to derive finite-time error bounds of
Q-learning algorithm. By sandwiching the dynamics of asynchronous Q-learning be-
tween two simpler stochastic (switched) linear systems, a new finite-time analysis of
the Q-learning can be easily derived. We believe it is important to emphasize that the
proposed control-theoretic analysis can be viewed as a new analysis which gives addi-
tional insights into Q-learning rather than a replacement or improvement of existing
convergence rate analysis. The proposed analysis has simplicity, novelty, and more
intuition. We expect that such a control-theoretic analysis could further stimulate
the synergy between control theory and reinforcement learning, and open up oppor-
tunities for the design of new reinforcement learning algorithms and refined analysis
for Q-learning. Moreover, our approach based on the comparison systems could be
of independent interest to the finite-time stability analysis of more general switching
systems.

As promising next steps, the proposed bounds can be further tightened, and the
analysis can be extended to more general Markovian settings. The proposed analysis
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1878 DONGHWAN LEE, JIANGHAI HU, AND NIAO HE

framework can potentially be applied to derive finite-time error bounds for other
variants of Q-learning, such as double Q-learning [7], averaging Q-learning [12], speedy
Q-learning [1], and multiagent Q-learning [9], as well as their function approximation
counterparts. We will leave these topics for future investigations.

5. Appendix.

5.1. Proof of Proposition 3.6.
Proof. For simplicity, denote A=AQ\ast . Consider matrix M such that

M =

\infty \sum 
k=0

\biggl( 
1

\rho + \epsilon 

\biggr) 2k

(Ak)TAk.(5.1)

Noting that

(\rho + \epsilon ) - 2ATMA+ I =
1

(\rho + \epsilon )2
AT

\Biggl( \infty \sum 
k=0

\biggl( 
1

\rho + \epsilon 

\biggr) 2k

(Ak)TAk

\Biggr) 
A+ I

=M,

we have

(\rho + \epsilon ) - 2ATMA+ I =M,

resulting in the desired conclusion. Next, it remains to prove the existence of M by
proving its boundedness. Taking the norm on M leads to

\| M\| 2 =
\bigm\| \bigm\| I + (\rho + \varepsilon ) - 2ATA+ (\rho + \varepsilon ) - 4(A2)TA2 + \cdot \cdot \cdot 

\bigm\| \bigm\| 
2

\leq \| I\| 2 + (\rho + \varepsilon ) - 2
\bigm\| \bigm\| ATA

\bigm\| \bigm\| 
2
+ (\rho + \varepsilon ) - 4

\bigm\| \bigm\| (A2)TA2
\bigm\| \bigm\| 
2
+ \cdot \cdot \cdot 

= \| I\| 2 + (\rho + \varepsilon ) - 2 \| A\| 22 + (\rho + \varepsilon ) - 4
\bigm\| \bigm\| A2

\bigm\| \bigm\| 2
2
+ \cdot \cdot \cdot 

= 1+ | \scrS | | \scrA | (\rho + \varepsilon ) - 2 \| A\| 2\infty + | S| | A| (\rho + \varepsilon ) - 4
\bigm\| \bigm\| A2

\bigm\| \bigm\| 2
\infty + \cdot \cdot \cdot 

= 1 - | \scrS | | \scrA | + | \scrS | | \scrA | 

1 - 
\Bigl( 

\rho 
\rho +\varepsilon 

\Bigr) 2 .
Finally, we prove the bounds on the maximum and minimum eigenvalues. From

the definition (5.1), M \succeq I and, hence, \lambda min(M)\geq 1. On the other hand, one gets

\lambda max(M) = \lambda max(I + (\rho + \epsilon ) - 2ATA

+ (\rho + \epsilon ) - 4(A2)TA2 + \cdot \cdot \cdot )
\leq \lambda max(I) + (\rho + \epsilon ) - 2\lambda max(A

TA)

+ (\rho + \epsilon ) - 4\lambda max((A
2)TA2) + \cdot \cdot \cdot 

= \lambda max(I) + (\rho + \epsilon ) - 2\| A\| 22 + (\rho + \epsilon ) - 4\| A2\| 22 + \cdot \cdot \cdot 
\leq 1 + | \scrS | | \scrA | (\rho + \epsilon ) - 2\| A\| 2\infty 
+ | \scrS | | \scrA | (\rho + \epsilon ) - 4\| A2\| 2\infty + \cdot \cdot \cdot 

\leq | \scrS | | \scrA | 

1 - 
\Bigl( 

\rho 
\rho +\epsilon 

\Bigr) 2 .
The proof is completed.
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5.2. Sample complexity.
Proposition 5.1 (sample complexity). To achieve

\| \~QN  - Q\ast \| \infty < \varepsilon 

with probability at least 1 - \delta , we need the number of samples/iterations to be at most

\scrO 
\biggl( 

d4max| \scrS | 4| \scrA | 4

\varepsilon 4\delta 4d6min(1 - \gamma )10

\biggr) 
.

Proof. For convenience, we first find a simplified overestimate on the right-hand
side of (3.13) as

\BbbE [\| \~QN  - Q\ast \| \infty ]

\leq 20dmax| \scrS | | \scrA | 
dmin(1 - \gamma )2

\Biggl( \sqrt{} 
2\alpha 

dmin(1 - \gamma )
+

\sqrt{} 
1

N

2

\alpha dmin(1 - \gamma )

\Biggr) 
=:C.

Applying the Markov inequality

\BbbP [\| \~QN  - Q\ast \| \infty \geq \varepsilon ]\leq C

\varepsilon 
,

we conclude that \| \~QN  - Q\ast \| \infty < \varepsilon with probability at least 1 - \delta , i.e.,

\BbbP [\| \~QN  - Q\ast \| \infty < \varepsilon ]\geq 1 - \delta ,

where

\delta =
1

\varepsilon 

20dmax| S| | A| 
dmin(1 - \gamma )2

\Biggl( \sqrt{} 
2\alpha 

dmin(1 - \gamma )
+

\sqrt{} 
1

N

2

\alpha dmin(1 - \gamma )

\Biggr) 
.

N , and \alpha are appropriately chosen so that \delta \in (0,1). One concludes that to satisfy
\| QN  - Q\ast \| \infty < \varepsilon with probability at least 1 - \delta , we should have

\delta \geq 1

\varepsilon 

20dmax| \scrS | | \scrA | 
dmin(1 - \gamma )2

\sqrt{} 
2\alpha 

dmin(1 - \gamma )\underbrace{}  \underbrace{}  
\Phi 1

+
1

\varepsilon 

20dmax| \scrS | | \scrA | 
dmin(1 - \gamma )2

\sqrt{} 
1

N

2

\alpha dmin(1 - \gamma )\underbrace{}  \underbrace{}  
\Phi 2

which is achieved if \delta /2\geq \Phi 1 and \delta /2\geq \Phi 2.
The first inequality is satisfied if

\alpha =
\delta 2\varepsilon 2

8

d3min(1 - \gamma )5

400d2max| \scrS | 2| calA| 2
(5.2)

and the second inequality holds if

N \geq 3200d2max| \scrS | 2| \scrA | 2

\alpha \varepsilon 2\delta 2d3min(1 - \gamma )5
.

Plugging (5.2) into the last inequality, we can arrive at the desired conclusion.
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