
Parabolic optimal control problems with

combinatorial switching constraints

Part II: Outer approximation algorithm∗

Christoph Buchheim, Alexandra Grütering and Christian Meyer†
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We consider optimal control problems for partial differential equations where the
controls take binary values but vary over the time horizon, they can thus be seen as
dynamic switches. The switching patterns may be subject to combinatorial constraints
such as, e.g., an upper bound on the total number of switchings or a lower bound on
the time between two switchings. In a companion paper [arXiv:2203.07121], we de-
scribe the Lp-closure of the convex hull of feasible switching patterns as intersection
of convex sets derived from finite-dimensional projections. In this paper, the resulting
outer description is used for the construction of an outer approximation algorithm in
function space, whose iterates are proven to converge strongly in L2 to the global min-
imizer of the convexified optimal control problem. The linear-quadratic subproblems
arising in each iteration of the outer approximation algorithm are solved by means of
a semi-smooth Newton method. A numerical example in two spatial dimensions illus-
trates the efficiency of the overall algorithm.

Keywords. PDE-constrained optimization, switching time optimization, outer
approximation

1 Introduction

This paper is concerned with the design of an outer approximation algorithm for tailored
convex relaxations of parabolic optimal control problems with combinatorial switching con-
straints, of the following form:

(P)



min J(y, u) = 1
2 ∥y − yd∥2L2(Q) +

α
2 ∥u− 1

2∥
2
L2(0,T ;Rn)

s.t. ∂ty(t, x)−∆y(t, x) =

n∑
j=1

uj(t)ψj(x) in Q := Ω× (0, T ),

y(t, x) = 0 on Γ := ∂Ω× (0, T ),

y(0, x) = y0(x) in Ω,

and u ∈ D.

Herein, T > 0 is a given final time and Ω ⊂ Rd, d ∈ N, is a bounded domain, i.e., a bounded,
open, and connected set, with Lipschitz boundary ∂Ω in the sense of [22, Def. 1.2.2.1]. The
form functions ψj ∈ H−1(Ω), j = 1, . . . , n, as well as the initial state y0 ∈ L2(Ω) are given.
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Moreover, yd ∈ L2(Q) is a given desired state and α ≥ 0 is a Tikhonov parameter weighting
the mean deviation from 1

2 . Finally,

D ⊂
{
u ∈ BV (0, T ;Rn) : u(t) ∈ {0, 1}n f.a.a. t ∈ (0, T )

}
denotes the set of feasible switching controls. The precise assumptions on D and examples
for such a set are given in Section 2 below.

Problems of type (P) arise in various applications such as shifting of gear-switches in auto-
motive engineering or valves in gas and water networks, see e.g., [19, 17, 32, 44, 24]. Thus,
there exists a variety of different approaches for their numerical solution and we give a brief
overview without claiming to be exhaustive. One approach is to discretize the optimal con-
trol problem, which typically leads to a large-scale mixed-integer nonlinear programming
problem that is then solved by standard methods, see, e.g., [19, 33, 3, 18, 45]. Other meth-
ods employ convexifications accompanied by subsequent tailored rounding strategies. We
exemplarily refer to [38, 39, 25, 29, 35, 34, 31, 41] and the references therein. If D imposes a
bound on the BV -seminorm (as will also be the case in our setting), then the elements in D
are determined by a finite number of switching times. Several approaches rely on this ob-
servation and aim at optimizing these switching times, see e.g., [20, 14, 28, 15, 37, 36, 46].
In yet another class of methods, non-smooth penalty techniques, partly in combination
with convexification, are used to account for the switching constraints in D. We refer
to [10, 11, 12, 9, 49] and the references therein.

In our companion paper [5], we propose an entirely different approach for the solution of (P).
This approach is based on a tailored convexification of (P), which is built by cutting planes
derived from finite-dimensional projections. The numerical experiments in [5] demonstrate
that our convexification generally provides better dual bounds than the naive relaxation,
which is obtained by replacing the binarity constraints u ∈ {0, 1}n by u ∈ [0, 1]n in the
definition of D. Even more, the prototypical example in [5, Counterexample 3.1] shows that
the naive relaxation does not give the closure of the convex hull of D in any Lp(0, T ;Rn)
in general. In addition, the naive relaxation may not benefit from the particular problem
structure, as the the investigation of the min-up/min-down polytope in [30] demonstrates.
The reason is that the number of facets depends heavily on the discretization as shown
by [40].

By contrast, our approach provably generates the closure of the convex hull in the limit.
To be more precise, it is shown in [5] that conv(D) =

⋂
k∈N Vk, with the closure taken

in Lp(0, T ;Rn), see Theorem 2.2 below. Herein, the sets Vk correspond to sets in RMk that,
for prominent examples, can be shown to be polytopes for which the separation problem is
tractable; see [5, Section 3.1 and 3.2]. In this paper, we will combine the separation algorithm
for Vk with the passage to the limit k → ∞ in order to obtain an outer approximation
algorithm whose iterates converge strongly in L2(0, T ;Rn) to the global minimizer of (P)
with D replaced by conv(D). Outer approximation algorithms are well-established methods
for the solution of mixed-integer nonlinear programs, see, e.g., the classical references [13,
16], and have also proven to work for combinatorial optimal control problems involving
PDEs [7]. It is to be underlined that the sets Vk are designed by means of finite dimensional
projections of the control variable only, without any discretization of the PDE in (P). Thus,
by addressing the PDE in function space, we avoid the curse of dimensionality caused by
the widely used first-discretize-then-optimize approach.

The plan of the paper reads as follows: In Section 2, we state the standing assumptions
on D and recall the main results of our companion paper [5] that will be needed for the
construction and the analysis of our outer approximation algorithm. Section 3 is devoted to
the convergence analysis of the outer approximation algorithm for k → ∞. In each iteration,
a linear-quadatic optimal control problem subject to additional inequality constraints is
solved. This is done by means of a semi-smooth Newton method in function space presented
in Section 4. The performance of the overall algorithm is tested in Section 5 based on a
finite element discretization of a prototypical optimal control problem. Finally, Section A
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is dedicated to an existence result for Lagrange multipliers required for the design of the
semi-smooth Newton method.

2 Preliminaries

The main objective of this paper is to develop an efficient solution approach for the convex-
ification of (P) given by

(PC)

{
min f(u) := J(Su, u)

s.t. u ∈ convD
Lp(0,T ;Rn)

.

Hereby, S : L2(0, T ;Rn) → W (0, T ) := H1(0, T ;H−1(Ω)) ∩ L2(0, T ;H1
0 (Ω)) denotes the

solution operator associated with the PDE in (P), which admits for every control func-
tion u ∈ D ⊂ L∞(0, T ;Rn) a unique weak solution; see, e.g., [48, Chapter 3]. Note that
the objective function f : L2(0, T ;Rn) → R is weakly lower semi-continuous because the
mappings u 7→ ∥Su− yd∥2L2(Q) and u 7→ ∥u− 1

2∥
2
L2(0,T ;Rn) are both convex and lower semi-

continuous, thus weakly lower semi-continuous, and the solution operator S is affine and
continuous, thus weakly continuous. The set

D ⊂
{
u ∈ BV (0, T ;Rn) : u(t) ∈ {0, 1}n f.a.a. t ∈ (0, T )

}
of feasible switching controls is supposed to satisfy the two following assumptions:

D is a bounded set in BV (0, T ;Rn),(D1)

D is closed in Lp(0, T ;Rn) for some fixed p ∈ [1,∞),(D2)

where BV (0, T ;Rn) denotes the set of all vector-valued functions with bounded variation,
i.e.,

BV (0, T ;Rn) := {u ∈ L1(0, T ;Rn) : ui ∈ BV (0, T ) for i = 1, . . . , n }
equipped with the norm

∥u∥BV (0,T ;Rn) := ∥u∥L1(0,T ;Rn) +

n∑
j=1

|uj |BV (0,T ) .

For controls u ∈ D the BV-seminorm |uj |BV (0,T ) agrees with the minimal number of switch-
ings of any representative of uj with values in {0, 1}. More details on the space of bounded
variation functions can be found in [2, Chap. 10].

The set D covers a wide range of combinatorial switching constraints, for instance, in the
case of an upper bound on the total number of switchings the set is given as

(2.1)
Dmax :=

{
u ∈ BV (0, T ;Rn) : u(t) ∈ {0, 1}n f.a.a. t ∈ (0, T ),

|uj |BV (0,T ) ≤ σmax ∀ j = 1, . . . , n
}
,

where σmax ∈ N is a given number.

Under the assumptions (D1) and (D2) on the set D, the control problem (P) admits a global
minimizer and the convex hull of the feasible switching patterns can be fully described by
cutting planes lifted from finite-dimensional projections; see [5]. For the latter, the set D is
projected, by means of

(2.2) Π: BV (0, T ;Rn) ∋ u 7→
(
⟨Φi, u⟩

)M
i=1

∈ RM ,

to the finite-dimensional space RM , where Φi ∈ Lp(0, T ;Rn)∗, i = 1, . . . ,M , are linear and
continuous functionals, e.g., local averaging operators of the form

(2.3) ⟨Φ(j−1)N+i, u⟩ := 1
λ(Ii)

∫
Ii

uj dt
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for j = 1, . . . , n with suitably chosen subintervals Ii ⊂ (0, T ), i = 1, . . . , N , and M := nN .
Each projection Π then gives rise to a relaxation of the closed convex hull of the set D
in Lp(0, T ;Rn), which we will use to derive outer approximations by linear inequalities.

Lemma 2.1 ([5, Lemma 3.2]). For any Π as in (2.2), we have

conv(D)
Lp(0,T ;Rn)

⊆ {v ∈ Lp(0, T ;Rn) : Π(v) ∈ CD,Π} ,

where
CD,Π := conv{Π(u) : u ∈ D} ⊂ RM .

Note that, based on the general assumptions (D1) and (D2), it is easy to see that the
finite dimensional set CD,Π is closed in RM for any projection and consequently, the set
{v ∈ Lp(0, T ;Rn) : Π(v) ∈ CD,Π} is convex and closed in Lp(0, T ;Rn).

In addition, projections Πk, for increasing k, can be designed in such a way that an outer
description of all finite-dimensional convex hulls CD,Πk

also leads to an outer description of
the convex hull of D in function space.

Theorem 2.2 ([5, Thm. 3.5]). For each k ∈ N, let Ik1 , . . . , IkNk
, Nk ∈ N, be disjoint open

intervals in (0, T ) such that

(i)
⋃Nk

i=1 I
k
i = [0, T ] for all k ∈ N,

(ii) maxi=1,...,Nk
λ(Iki ) → 0 for k → ∞, and

(iii) for each r ∈ {1, . . . , Nk+1} there exists i ∈ {1, . . . , Nk} such that Ik+1
r ⊆ Iki , i.e., the

intervals form a nested sequence.

Set Mk := nNk and define projections Πk : BV (0, T ;Rn) → RMk , for k ∈ N, by

(2.4) ⟨Φk
(j−1)Nk+i, u⟩ := 1

λ(Ik
i )

∫
Ik
i

uj(t) dt

for j = 1, . . . , n and i = 1, . . . , Nk. Moreover, set

Vk := {v ∈ Lp(0, T ;Rn) : Πk(v) ∈ CD,Πk
} .

Then Vk ⊇ Vk+1 for all k ∈ N and

(2.5) conv(D)
Lp(0,T ;Rn)

=
⋂
k∈N

Vk .

Compared to Theorem 3.5 in [5], the assumption (iii) in the above theorem is additional. It
is easy to see that it guarantees Vk ⊇ Vk+1 for all k ∈ N, considering that each entry of Πk is
a convex combination of entries of Πk+1. The second assertion (2.5) has been proven in [5].

3 Outer approximation algorithm

In the following, we explain how to address the convexified problem (PC) by an outer
approximation approach. We use the outer descriptions of the sets CD,Π appearing in (2.5)
to cut off any control u ∈ Lp(0, T ;Rn) violating some of the conditions Π(u) ∈ CD,Π.

More formally, we first fix an operator Π: BV (0, T ;Rn) ∋ u 7→
(
⟨Φi, u⟩

)M
i=1

∈ RM such that

Π(u) /∈ CD,Π holds. Since the convex set CD,Π is closed in RM , it is the intersection of its
supporting half spaces and can be described by linear inequality constraints. The number of
necessary half spaces can be infinite in general [5, Ex. 3.6], but for many practically relevant
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constraints D, it turns out to be finite; see [5, Sect. 3.1 and 3.2]. Let us define the set of all
valid linear inequalities for CD,Π as

HD,Π = {(a, b) ∈ [−1, 1]M × R : a⊤w ≤ b ∀w ∈ CD,Π} ,

where a ∈ [−1, 1]M can be assumed without loss of generality by scaling. To cut off the
infeasible control u, we choose a violated linear inequality constraint and add this constraint
to the problem. For the rest of this section, we assume that the local averaging operators
satisfy the conditions (i)–(iii) of Theorem 2.2. Our outer approximation algorithm for (PC)
then reads as follows:

Algorithm 1 Outer approximation algorithm for (PC)

1: Set k = 0, T0 = ∅, I01 = (0, T ) and N0 = 1.
2: Solve

(PCk)


min f(u)

s.t. u ∈ [0, 1]n a.e. in (0, T ),

a⊤Π(u) ≤ b ∀ (Π, a, b) ∈ Tk .

Let uk be the optimal solution.

3: if uk ∈ convD
Lp(0,T ;Rn)

then
4: return uk as optimal solution.
5: else
6: Determine intervals Ik+1

i , 1 ≤ i ≤ Nk+1, such that Πk+1(u
k) /∈ CD,Πk+1

.
7: Find an optimizer (ak+1, bk+1) ∈ argmax(a,b)∈HD,Πk+1

(a⊤Πk+1(u
k)− b).

8: Set Tk+1 = Tk ∪ {(Πk+1, ak+1, bk+1)}, k = k + 1 and go to 2.
9: end if

Some remarks on Algorithm 1 are in order. First note that, by the standard direct method
of calculus of variations, one can easily show the existence of a global minimizer for (PCk)
and its uniqueness if the Tikhonov parameter α is positive. Step 7 of the algorithm is well
defined since CD,Πk+1

̸= ∅ and hence b is bounded from below. Moreover, Step 6 is well
defined due to (2.5). Consequently, an important subproblem in the outer approximation
algorithm consists in determining appropriate intervals Ii of the local averaging operators,
such that for a given uk it holds Π(uk) /∈ CD,Π. In view of Theorem 2.2, the desired property
Π(uk) /∈ CD,Π follows as soon as Π is defined by a large enough number of small enough
intervals, and remains valid for all further refinements. Note, however, that Step 6 does
not exclude to set Πk+1 = Πk if this suffices to cut off uk. Finally, we emphasize that the
stopping criterion in Step 3 is rather symbolic; in general, it can be verified only by showing
that no further violated cutting planes exist, for any projection.

From a practical point of view, we obtain uk by solving the parabolic optimal control
problem (PCk), so that we know uk only subject to a given discretization of (0, T ); see
Section 4 for more details on the numerical solution of (PCk). One could thus argue that
the best possible approach is to choose the intervals Ii exactly as given by this discretization.
This may be a feasible approach provided that the finite-dimensional separation algorithm
for CD,Π, needed in Step 7, is fast enough to deal with problems of large dimension M ,
as it is the case for a switch-wise upper bound on the total number of shiftings as defined
in (2.1); see Section 5. However, one cannot expect such a fast separation algorithm for
general switching constraints, so that it may be necessary to restrict oneself to a smaller
number of intervals.

We now investigate the convergence behavior of Algorithm 1. It turns out that choosing
the most violated inequality in Step 7 is crucial to guarantee convergence; this is a common
choice in semi-infinite programming [23]. In addition, we have to require additional assump-
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tions on the partitions of (0, T ) used for the construction of the local averaging operators:
besides the hypotheses (i)–(iii) from Theorem 2.2, we have to assume that the partitions
are quasi-uniform. For this purpose, we introduce

τk := min
1≤i≤Nk

λ(Iki ) and hk := max
1≤i≤Nk

λ(Iki ),

and require

Assumption 3.1. There exists κ > 0 such that hk ≤ κ τk for every k ∈ N.

Given this assumption, we can prove the following

Theorem 3.2. Assume that Algorithm 1 does not stop after a finite number of iterations
and the sequence Ik1 , . . . , I

k
Nk

resulting from Step 6 is constructed such that it meets the
assumptions (i)–(iii) from Theorem 2.2 and Assumption 3.1. Suppose in addition that
the Tikhonov parameter α is positive. Then the sequence {uk}k∈N converges strongly in
L2(0, T ;Rn) to the unique global minimizer of (PC).

Proof. Thanks to the box constraint u ∈ [0, 1]n a.e in (0, T ), the sequence {uk}k∈N is
bounded in L∞(0, T ;Rn) so that there exists a weakly-∗ converging subsequence, denoted
by ukm ⇀∗ u⋆ in L∞(0, T ;Rn). Since weak-∗ convergence implies weak convergence in
Lp(0, T ;Rn) and the local averaging operators are clearly weakly continuous, we thus get
Π(ukm) → Π(u⋆) for m→ ∞ and any projection Π occurring in Algorithm 1. Additionally,
the set

{u ∈ Lp(0, T ;Rn) : u ∈ [0, 1]n a.e. in (0, T )}
is convex and closed, hence weakly closed, and therefore u⋆(t) ∈ [0, 1]n a.e. in (0, T ).
Consequently, u⋆ is feasible for all problems (PCk), k ∈ N. The optimality of ukm for (PCkm

)
now implies f(ukm) ≤ f(u⋆) and the weak lower semi-continuity of f thus gives

(3.1) f(u⋆) ≤ lim inf
m→∞

f(ukm) ≤ lim sup
m→∞

f(ukm) ≤ f(u⋆),

i.e., f(ukm) → f(u⋆). Since u 7→ ∥Su − yd∥2L2(Q) and u 7→ ∥u − 1
2∥

2
L2(0,T ;Rn) are both

convex and lower semi-continuous, thus weakly lower semi-continuous, the convergence of
the objective and the assumption α > 0 imply

∥ukm − 1
2∥

2
L2(0,T ;Rn) → ∥u⋆ − 1

2∥
2
L2(0,T ;Rn).

Since weak and norm convergence in Hilbert spaces imply strong convergence, this gives the
strong convergence of {ukm}m∈N to u⋆ in L2(0, T ;Rn).

We next prove

(3.2) u⋆ ∈ Vℓ = {v ∈ Lp(0, T ;Rn) : Πℓ(v) ∈ CD,Πℓ
} ∀ℓ ∈ N.

To this end, let ℓ ∈ N be arbitrary, but fixed, and choose

(ā, b̄) ∈ argmax(a,b)∈HD,Πℓ
(a⊤Πℓ(u

⋆)− b).

Then we obtain for every k ≥ ℓ and every u ∈ Lp(0, T ;Rn) that

(3.3)

ā⊤Πℓ(u) =

n∑
j=1

Nℓ∑
i=1

ā(j−1)Nℓ+i
1

λ(Iℓ
i )

∫
Iℓ
i

uj(t) dt

=

n∑
j=1

Nℓ∑
i=1

ā(j−1)Nℓ+i
1

λ(Iℓ
i )

∑
Ik
r ⊆Iℓ

i

∫
Ik
r

uj(t) dt

=

n∑
j=1

Nℓ∑
i=1

∑
Ik
r ⊆Iℓ

i

ā(j−1)Nℓ+i
λ(Ik

r )

λ(Iℓ
i )︸ ︷︷ ︸

=: (ãk)(j−1)Nk+r

1
λ(Ik

r )

∫
Ik
r

uj(t) dt = ã⊤k Πk(u) .
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Note that the vector ãk = ((ãk)1, . . . , (ãk)Mk
) ∈ RMk , Mk = nNk, is well defined, since the

intervals are nested by assumption (iii) in Theorem 2.2. Thus the convergence of ukm to u⋆

yields

(3.4)

ā⊤Πℓ(u
⋆)− b̄ = lim

m→∞
ā⊤Πℓ(u

km)− b̄

= lim
m→∞

ã⊤km+1Πkm+1(u
km)− b̄

= lim
m→∞

hkm+1

τℓ

[
τℓ

hkm+1

(
ã⊤km+1Πkm+1(u

km)− b̄
)]
.

Moreover, for every u ∈ D and every k ≥ ℓ, we deduce from (3.3) and (ā, b̄) ∈ HD,Πℓ
that

ã⊤k Πk(u) = ā⊤Πℓ(u) ≤ b̄, such that (ãk, b̄) induces a valid inequality for CD,Πk
. Hence, for

k sufficiently large, τℓ
hk

(ãk, b̄) induces a valid inequality as well, where the coefficients satisfy

τℓ
hk

|(ãk)(j−1)Nk+r| = τℓ
λ(Iℓ

i )

λ(Ik
r )

hk
|ā(j−1)Nℓ+i| ≤ |ā(j−1)Nℓ+i| ≤ 1

for all j = 1, . . . , n and all r = 1, . . . , Nk. Thus
τℓ

hkm+1
(ãkm+1, b̄) ∈ HD,Πkm+1

, provided that

m is sufficiently large, which in turn gives

τℓ
hkm+1

(
ã⊤km+1Πkm+1(u

km)− b̄
)
≤ a⊤km+1Πkm+1(u

km)− bkm+1,

because the most violated cutting plane is chosen in Step 7 of Algorithm 1. Together
with (3.4), the latter yields

(3.5) ā⊤Πℓ(u
⋆)− b̄ ≤ 1

τℓ
lim inf
m→∞

hkm+1(a
⊤
km+1Πkm+1(u

km)− bkm+1).

Since u⋆ is feasible for all (PCk) as seen above, we obtain for the right hand side

hkm+1 (a
⊤
km+1Πkm+1(u

km)− bkm+1)

= hkm+1 (a
⊤
km+1Πkm+1(u

⋆)− bkm+1) + hkm+1 a
⊤
km+1Πkm+1(u

km − u⋆)

≤ hkm+1 a
⊤
km+1Πkm+1(u

km − u⋆)

and, since akm+1 ∈ [−1, 1]Mkm+1 , we can further estimate

(3.6)

|hkm+1 a
⊤
km+1Πkm+1(u

km − u⋆)|

≤ hkm+1

n∑
j=1

Nkm+1∑
i=1

1

λ(Ikm+1
i )

∫
Ikm+1
i

|ukm
j − u⋆j |dt

≤ hkm+1

τkm+1

n∑
j=1

Nkm+1∑
i=1

∫
Ikm+1
i

|ukm
j − u⋆j |dt

≤ κ

n∑
j=1

∥ukm
j − u⋆j∥L1(0,T ) → 0, as m→ ∞,

where we used Assumption 3.1 and the strong convergence of ukm to u⋆. From (3.5) we now
obtain ā⊤Πℓ(u

⋆)− b̄ ≤ 0 and thus a⊤Πℓ(u
⋆)− b ≤ 0 for all (a, b) ∈ HD,Πℓ

due to the choice
(ā, b̄) ∈ argmax(a,b)∈HD,Πℓ

(a⊤Πℓ(u
⋆)− b). This gives u⋆ ∈ Vℓ, as claimed.

Since ℓ ∈ N was arbitrary, we finally arrive at

u⋆ ∈
⋂
ℓ∈N

Vℓ = convD
Lp(0,T ;Rn)

,

where the equality was shown in Theorem 2.2, i.e., u⋆ is feasible for (PC). To show opti-
mality, consider any u ∈ Lp(0, T ;Rn) feasible for (PC). Then u is also feasible for (PCkm)
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for every m ∈ N, and the optimality of ukm implies f(ukm) ≤ f(u). Due to f(ukm) → f(u⋆)
by (3.1), we thus have the optimality of u⋆.

Now, since α > 0 by assumption,(PC) is a strictly convex problem such that u⋆ is the unique
global minimizer of (PC). A well-known argument by contradiction then shows the strong
convergence of the whole sequence {uk}k∈N.

Remark 3.3. An inspection of the above proof allows the following modification of the quasi-
uniformity condition in Assumption 3.1: since the subsequence {ukm}m∈N is bounded in
L∞(0, T ;Rn), Lebesgue’s dominated convergence theorem gives that ukm converges strongly
to u⋆ in Lq(0, T ;Rn) for every q < ∞. With an estimate analogous to (3.6) and Hölder’s
inequality, one then sees that the condition

(3.7)

Nk∑
i=1

hq
′

k λ(I
k
i )

1−q′ ≤ C <∞ for all k ∈ N

is sufficient for the convergence result in (3.6). Herein, q′ is the conjugate exponent and can
thus be chosen arbitrarily close to 1. It is easily seen that Assumption 3.1 implies (3.7).
Nevertheless, we decided to require the stronger Assumption 3.1, since it is more elementary
and certainly more relevant from a practical point of view.

4 Solution of OCP-relaxations

It remains to explain how we solve the optimal control problems (PCk) appearing in the
outer approximation algorithm numerically. We first set down the KKT-condition for (PCk).
For this purpose, we introduce the linear and continuous (and thus Fréchet differentiable)
operator

Ψ: L2(0, T ;Rn) → L2(0, T ;H−1(Ω)), (Ψu)(t) =

n∑
j=1

uj(t)ψj

as well as the solution operator Σ : L2(0, T ;H−1(Ω)) → W (0, T ) of the heat equation with
homogeneous initial condition, i.e., given w ∈ L2(0, T ;H−1(Ω)), y = Σ(w) solves

∂ty −∆y = w in L2(0, T ;H−1(Ω)), y(0) = 0 in L2(Ω).

Moreover, we introduce the function ζ ∈W (0, T ) as solution of

∂tζ −∆ζ = 0 in L2(0, T ;H−1(Ω)), ζ(0) = y0 in L2(Ω).

The solution mapping S : u 7→ y in Section 2 is then given by S = Σ ◦ Ψ + ζ. In the
following, we will consider S, Σ, and Ψ with different domains and ranges. With a little
abuse of notation, we will always use the same symbols.

With Σ and Ψ at hand, the reduced objective in (PCk) reads

f(u) = 1
2 ∥ΣΨu+ ζ − yd∥2L2(Q) +

α
2 ∥u− 1

2∥
2
L2(0,T ;Rn)

such that, by the chain rule, its Fréchet derivative at u ∈ L2(0, T ;Rn) is given by

(4.1) f ′(u) = Ψ∗Σ∗(ΣΨu+ ζ − yd) + α(u− 1
2 ) ∈ L2(0, T ;Rn),

where we identified L2(0, T ;Rn) with its dual using the Riesz representation theorem. By
standard methods, see e.g., [48, Sect. 3.6], one shows that the adjoint π = Σ∗g, for given
g ∈ L2(0, T ;H−1(Ω)) ↪→W (0, T )∗, is the solution of the backward-in-time problem

(4.2) −∂tπ −∆π = g in L2(0, T ;H−1(Ω)), π(T ) = 0 in L2(Ω)
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and is therefore an element ofW (0, T ), i.e., Σ∗ : L2(0, T ;H−1(Ω)) →W (0, T ) is the solution
operator of (4.2). Furthermore, the adjoint of Ψ is given by

Ψ∗ : L2(0, T ;H1
0 (Ω)) → L2(0, T ;Rn),

(Ψ∗w)(t) =
(
⟨ψj , w(t)⟩H−1(Ω),H1

0 (Ω)

)n
j=1

f.a.a. t ∈ (0, T ).

Now we have everything at hand to apply the results of Appendix A to obtain the following
KKT conditions:

Proposition 4.1. Denote the inequality constraints associated with the cutting planes in (PCk)
by Gu ≤ b with G : Lp(0, T ;Rn) → Rk and b ∈ Rk. Assume moreover that a function
û ∈ L∞(0, T ;Rn) and a number δ > 0 exist such that

δ ≤ ûi(t) ≤ 1− δ for all i = 1, . . . , n and f.a.a. t ∈ (0, T ),(4.3)

Gû ≤ b.(4.4)

Then a function ū ∈ L∞(0, T ;Rn) with associated state ȳ = S(ū) ∈ W (0, T ) is optimal
for (PCk) if and only if Lagrange multipliers λ ∈ Rk and µa, µb ∈ L2(0, T ;Rn) and an
adjoint state p ∈W (0, T ) exist such that the following optimality system is fulfilled:

−∂tp−∆p = ȳ − yd in L2(0, T ;H−1(Ω)), p(T ) = 0 in L2(Ω),(4.5)

Ψ∗p+ α (ū− 1
2 ) + µb − µa +G∗λ = 0 a.e. in (0, T ),(4.6)

µa ≥ 0, µaū = 0, ū ≥ 0 a.e. in (0, T ),(4.7)

µb ≥ 0, µb(ū− 1) = 0, ū ≤ 1 a.e. in (0, T ),(4.8)

λ ≥ 0, λ⊤(Gū− b) = 0, Gū ≤ b .(4.9)

Proof. In view of (4.1) and (4.2), the necessity of (4.5)–(4.9) immediately follows from
Theorem A.2. Due to the convexity of the optimal control problem (PCk), these conditions
are also sufficient for (global) optimality.

It is easily verified that the Slater condition (4.3) and (4.4) is satisfied when the switches
must additionally satisfy certain combinatorial conditions at any point in time [5, Sect. 3.1]
or in the presence of linear constraints on the switching points [5, Sect. 3.2], e.g., with
u ≡ 1/2. Consequently, in most of the practically relevant classes of constraints D the
Slater conditions are fulfilled.

The pointwise resp. componentwise complementarity systems can equivalently be expressed
by nonlinear complementarity functions such as, e.g., the max- or min-function, which leads
to the following equivalent system to (4.6)–(4.9):

Ψ∗p+ α(ū− 1
2 ) +G∗λ

+min
(
−Ψ∗p−G∗λ+ α

2 , 0
)

+max
(
−Ψ∗p−G∗λ− α

2 , 0
)
= 0 a.e. in (0, T ),

ρλ+max(0, Gū+ ρλ− b) = 0,

where ρ > 0 can be chosen arbitrarily. Herein, we use the same symbol for the componen-
twise mapping Rk ∋ v 7→ (max(vi, 0))

k
i=1 ∈ Rk and the max-operator in function space. In

view of p = Σ∗(ΣΨū+ ζ − yd) the optimality system is thus equivalent to F (ū, λ) = 0 with
F : L2(0, T ;Rn)× Rk → L2(0, T ;Rn)× Rk defined by

(4.10)

F1(u, λ) := Ψ∗Σ∗(ΣΨu+ ζ − yd) + α(u− 1
2 ) +G∗λ

+min
(
−Ψ∗Σ∗(ΣΨu+ ζ − yd)−G∗λ+ α

2 , 0
)

+max
(
−Ψ∗Σ∗(ΣΨu+ ζ − yd)−G∗λ− α

2 , 0
)
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and

(4.11) F2(u, λ) = −ρλ+max(0, Gu+ ρλ− b).

We now use the concept of semi-smoothness as developed in [8], see also the work of [26],
to solve the above optimality system by means of a semi-smooth Newton method. For this
purpose, we need the following

Assumption 4.2. In addition to our standing assumptions, there are exponents q > 2 and
0 < s < 2/q such that the form functions satisfy ψj ∈ Hs

0(Ω)
∗, j = 1, . . . , n, and the linear

functionals from (2.3) fulfill Φi ∈ Lq′(0, T,Rn)∗, i = 1, . . . ,M , where q′ is the conjugate
exponent, i.e., 1/q + 1/q′ = 1.

Note that this mild additional regularity assumption on the functionals Φi is satisfied by
the local averaging operators considered throughout this paper.

Lemma 4.3. Under Assumption 4.2, the function F given by (4.10) and (4.11) is Newton
(or slant) differentiable.

Proof. The proof is standard, but for convenience of the reader, we sketch the arguments.
The operator Π is linear and continuous with respect to u such that

L2(0, T ;Rn)× Rk ∋ (u, λ) 7→ Gu+ ρλ− b ∈ Rk

is continuously Fréchet differentiable. Exploiting the chain rule [27, Lemma 8.15] and the
Newton differentiability of Rk ∋ w 7→ max(0, w) ∈ Rk [26, Lemma 3.1], we have that the
second component F2 is Newton differentiable.

Furthermore, according to [26, Prop. 4.1(ii)], the mapping v 7→ max(0, v) is Newton dif-
ferentiable from Ls(0, T ;Rn) to Lr(0, T ;Rn) for 1 ≤ r < s ≤ ∞. We obtain the required
norm gap with s = q and r = 2 by utilizing the smoothing properties of the PDE solution
operators Σ and Σ∗, respectively. For all θ satisfying 0 < θ − 1/2 < 1/q, there holds

W (0, T ) ↪→ Lq(0, T ; (H−1(Ω), H1
0 (Ω))θ,1),

where (H−1(Ω), H1
0 (Ω))θ,1 denotes the real interpolation space, see e.g., [1, Sect. 1]. For

the latter, [47, Chap. 4.6.1] yields

(H−1(Ω), H1
0 (Ω))θ,1 ↪→ [H−1(Ω), H1

0 (Ω)]θ = H2θ−1
0 (Ω).

Consequently, if we now choose θ = 1/2(s + 1) (which is feasible due to our assumptions
on s), then Σ and Σ∗ map L2(0, T ;H−1(Ω)) linearly and continuously into Lq(0, T ;Hs

0(Ω)).

According to Assumption 4.2, Ψ: v 7→
∑n

j=1 vjψj maps Lq′(0, T ;Rn) linearly and continu-

ously to Lq′(0, T ;Hs
0(Ω)

∗). Thus, the Radon-Nikodým property of Hs
0(Ω) implies

Ψ∗ : Lq(0, T ;Hs
0(Ω)) =

(
Lq′(0, T ;Hs

0(Ω)
∗)
)∗ → Lq(0, T ;Rn),

and therefore

L2(0, T ;Rn) ∋ u 7→ Ψ∗Σ∗(ΣΨu) + ζ − yd) ∈ Lq(0, T ;Rn)

is affine and continuous and hence continuously Fréchet differentiable. Moreover, if we
identify Φℓ

i ∈ Lq′(0, T ;Rn)∗, i = 1, . . . ,Mℓ, for a projection Πℓ occurring in (PCk) with its
Riesz representative, denoted by the same symbol, then its adjoint operator Π∗

ℓ is given by

RMℓ ∋ v 7→
∑Mℓ

i=1 viΦ
ℓ
i ∈ Lq′(0, T ;Rn)∗, such that G∗λ is given as

G∗λ =

k∑
ℓ=1

Mℓ∑
i=1

λℓ a
ℓ
iΦ

ℓ
i ∈ Lq′(0, T ;Rn)∗ ∼= Lq(0, T ;Rn)
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and
Rk ∋ λ 7→ G∗λ ∈ Lq(0, T ;Rn)

is linear and continuous, too. Hence, owing to the Newton differentiability of max and the
chain rule, F1 is also Newton differentiable.

Now, as F is Newton differentiable, we choose

(4.12) Hm(δu, δλ) :=

(
χIm

Ψ∗Σ∗ΣΨδu+ α δu+ χIm
G∗δλ

−ρχNmδλ+ χBmGδu

)
as a generalized derivative of F at a given iterate zm := (um, λm) with the active and
inactive sets for the box constraints defined (up to sets of zero Lebesgue measure) by

A+
m :=

{
(t, j) ∈ (0, T )× {1, . . . , n} : −(Ψ∗pm)(t)j − (G∗λ)(t)j − α

2 > 0
}
,

A−
m :=

{
(t, j) ∈ (0, T )× {1, . . . , n} : −(Ψ∗pm)(t)j − (G∗λ)(t)j +

α
2 < 0

}
,

Im := (0, T )× {1, . . . , n} \ {A+
m ∪ A−

m},

where pm := Σ∗(ΣΨum + ζ − yd), and the active and inactive cutting planes

Bm := {i ∈ {1, . . . , k} : (Gum) i + ρλmi > bi},
Nm := {1, . . . , k} \ Bm.

Moreover, by χIm
, χA±

m
: L2(0, T ;Rn) → L2(0, T ;Rn) and χNm

, χBm
: Rk → Rk, we denote

the respective characteristic functions.

To compute the next iterate, we solve the following semi-smooth Newton equation

(4.13) Hm(zm+1 − zm) = −F (zm).

For the sake of simplicity, we omit the indexm at the inactive and active sets in the following.
By definition of the active sets, the restriction of the first block in (4.13) to A+ and A−,
respectively, yields

um+1 = 1 a.e. in A+ and um+1 = 0 a.e. in A−

and the second block of (4.13) restricted to N implies λm+1
|N = 0. Therefore, we can restrict

the semi-smooth Newton equation (4.13) to the active components λm+1
|B and the inactive

part of the optimal control um+1
|I ∈ L2(I;Rn) only, which leads to

(4.14)
(αI +Ψ∗Σ∗ΣΨχ∗

I)u
m+1
|I +G∗χ∗

Bλ
m+1
|B

= Ψ∗Σ∗(yd − ΣΨχ∗
A+ u

m+1
|A+ − ζ

)
+
α

2
a.e. in I

and

(4.15)
(
Gχ∗

Iu
m+1
|I
)
B = bB −

(
Gχ∗

A+ u
m+1
|A+

)
B .

Note that χ∗
I and χ∗

A+ are the extension-by-zero operators mapping from L2(I;Rn) and
L2(A+;Rn), respectively, to L2(0, T ;Rn), while (Gu)B denotes the restriction to indices
in B. The semi-smooth Newton algorithm is now given as follows.

Algorithm 2 Semi-smooth Newton method for (PCk)

1: Choose (u0, λ0) ∈ L2(0, T ;Rn)× Rk, set A+ = A− = B = ∅ and m = 0.
2: Update the active and inactive sets Im, A+

m, A−
m, Bm and Nm.

3: if A+
m = A+ ∧ A−

m = A− ∧ Bm = B ∧ m > 0 then
4: return (um, λm).
5: else
6: Compute (um+1, λm+1) by solving the linear system (4.14) and (4.15).
7: Set A+ = A+

m, A− = A−
m, B = Bm and m = m+ 1, return to 2.

8: end if
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It is well known (see, e.g., [27, Chap. 8]) that the algorithm converges locally superlinearly
if all generalized derivatives appearing in the iteration are continuously invertible and their
inverses admit a common uniform bound. In our case however, it is very likely that G
becomes rank deficient if the number k of cutting planes is large, such that the system
(4.14)–(4.15) is no longer uniquely solvable. In our numerical experiments, however, a
moderate number of cutting planes always sufficed and the semi-smooth Newton equation
in Step 6 of the algorithm always admitted a unique solution for sufficiently large α. In the
case that α > 0 is small, one can only expect local superlinear convergence of the algorithm
and no longer global convergence, this was also observed in our numerical experiments and
a globalization would be needed for such instances.

After each iteration of the outer approximation algorithm presented in the previous section,
one has to solve a parabolic control problem (PCk) with an additional cutting plane by
Algorithm 2. Due to this iterative structure, it is crucial to speed up the algorithm by
reoptimization. More precisely, we exploit the solution of the prior outer approximation
iteration to initialize the active and inactive sets in Algorithm 2.

The value of the Tikhonov parameter is crucial for the performance of numerical methods
for the solution of optimal control problems, as already indicated above. This concerns
discretization error estimates as well as convergence of optimization algorithms and con-
ditioning of linear systems of equations arising in the latter. In case of (P) however, the
choice of α has no impact on the set of minimizers, as u ∈ {0, 1}n a.e. in (0, T ) and hence
the Tikhonov term is constant. However, the convex relaxations of (P) considered in this
paper as well their optimal values are influenced by α. Thus, in order to improve the per-
formance of Algorithm 2, a large value of α is favorable, but we expect that the quality of
the dual bounds in a branch-and-bound framework will become worse for larger values of α.
A detailed investigation of this interplay is subject to future research.

5 Performance of the algorithm

We test the potential of our approach presented in the previous sections by an experimental
study. For this, we concentrate on the case of a single switch with an upper bound σmax on
the number of switchings, i.e., we consider

D :=
{
u ∈ BV (0, T ) : u(t) ∈ {0, 1} f.a.a. t ∈ (0, T ), |u|BV (0,T ) ≤ σmax

}
.

However, we assume that u is fixed to zero before the time horizon, so that we count it as
a shift if u is 1 at the beginning. The most violated inequality for a Π(u) /∈ CD,Π, needed
in Step 7 of Algorithm 1, can then be computed in time O(M) [6]. This is fast enough
to allow choosing as intervals I1, . . . , IM for the projection exactly the ones given by the
discretization in time. In particular, we do not need to refine the intervals in the course
of the outer approximation algorithm. For given w ∈ CD,Π, we thus compute the most
violated inequality of the form

m∑
j=1

(−1)j+1wij ≤
⌊σmax

2

⌋
,

where i1, . . . , im ∈ {2, . . . ,M} is an increasing sequence of indices with m − σmax odd
and m > σmax, by choosing {i1, i3, . . . } as the local maxima of w and {i2, i4, . . . } as the
local minima of w (excluding 1).

The outer approximation algorithm devised in Section 3 is implemented in C++, using the
DUNE-library [42] for the discretization of the PDE. The source code can be downloaded
at https://github.com/agruetering/dune-MIOCP. The spatial discretization uses a stan-
dard Galerkin method with continuous and piecewise linear functionals. For the state y and
the desired temperature yd we also use continuous and piecewise linear functionals in time,
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while the temporal discretization for the controls chooses piecewise constant functionals.
The resulting linear, symmetric systems (4.14) and (4.15) in each semi-smooth Newton it-
eration are solved by the minimum residual solver Min-Res [21] equipped with a suitable
scalar product, induced by the temporal mass matrix, reflecting the norm of L2(0, T,Rn)
and the Euclidean scalar product in Rk, and preconditioned with

P =

(
αI 0
0 1

αGG
⋆

)
.

Hereby, we approximate the spatial integrals in the weak formulation of the state and
adjoint equation, respectively, by applying a Gauss-Legrendre rule with order 3. The discrete
systems, arising by the discretization of the state and adjoint equation, are solved by a
sequential conjugate gradient solver preconditioned with AMG smoothed by SSOR.

We consider exemplary the square domain Ω = [0, 1]2, the end time T = 2 and the form
function ψ(x) = 1.5− 2(x1− 0.5)2− 2(x2− 0.5)2. Moreover, in order to produce challenging
instances, we generate a control ud : [0, T ] → [0, 1] with a total variation |ud|BV (0,T ) ≫ σmax

and choose the desired state yd in such a way that ud is the optimal solution of our relaxation
as long as no cutting planes are added. More specifically, we randomly choose σ = 11 jump
points 0 < t1 < t2 < · · · < tσ < T on the time grid. Then, we choose ud : [0, T ] → [0, 1] as
cubic spline on [ti−1, ti], for 1 ≤ i ≤ σ + 1, where t0 := 0 and tσ+1 := T , with ud(t0) = 0
and ud(tσ+1) = 0.5. The latter condition guarantees p⋆(T ) = 0 for the adjoint state

p⋆(t, x) = −αc(ud(t)− 1
2 ) sin(πx1) sin(πx2),

where c is the inverse of the value
∫
Ω
ψ(x) sin(πx1) sin(πx2) dx and α is the Tikhonov pa-

rameter. By setting
yd(t, x) := S(ud) + ∂tp

⋆(t, x) + ∆p⋆(t, x),

the optimal solution of our relaxation without cutting planes is given as u⋆ = ud and p⋆

represents the optimal adjoint state. In the generation of the instance, we compute S(ud)
on a time grid with Nt = 400 time intervals, whereas the outer approximation is performed
on a coarser grid.

In all experiments, we use a uniform spatial triangulation of Ω with 30 × 30 nodes, while
experimenting with different temporal resolutions. The Tikhonov parameter was always set
to α = 10−2. For the update of active cutting planes we chose ρ = 10−5; see Section 4. The
cutting plane algorithm stops as soon as the violation of the most violated cutting plane
falls below 1% of the right hand side, the control is considered feasible for (PC) in this case.
Note that the validity of the lower bound is not compromised by this.

All computations have been performed on a 64bit Linux system with an Intel Xeon E5-2640
CPU @ 2.5 GHz and 32 GB RAM.

We first illustrate the development of lower bounds over time; see Figure 1. Here, we used
a typical instance with σmax = 2 and a time grid with Nt = 100 intervals. Each cross
corresponds to the lower bound (y-axis) obtained after adding another cutting plane, where
the x-axis represents the time needed (in CPU hours) to obtain this bound. It can be seen
that the bounds improve very quickly in the first cutting plane iterations and then continue
to increase slowly. When using the lower bounds within a branch-and-bound scheme, this
suggests to generate only few cutting planes before resorting to branching. For comparison,
we also show the development of lower bounds in case no reoptimization is used; this is
marked by circles. It can be observed that reoptimization significantly decreases running
times.

The Tikhonov term has an impact on the performance of Algorithm 1, as well as on the
quality of the bounds. The larger α is, the worse the bounds become, but the faster the
convex relaxations can be solved. This can also be observed in Figure 2, where we solved the
same instance of Figure 1, i.e., we used the same desired state yd, with different Tikhonov
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Figure 1: Temporal development of bounds.

parameters. The results show that choosing a small α is generally favorable, but for very
small α there occurs a trade-off between the quality of the dual bounds and the convergence
rate. Within a branch-and-bound framework, one needs to empirically investigate whether a
good quality or a quick computation of the dual bounds for small α have a greater influence
on the overall performance.
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Figure 2: Temporal development of bounds for different α.

We next show the typical behavior of the optimal solutions of the relaxation when adding
more and more cutting planes. For the example shown in Figure 3, we again have Nt = 100
and σmax = 2. Before adding the first cutting plane, the total variation is not bounded by
any constraint; we have |u0|BV (0,T ) = 8.74 then. Adding cutting planes quickly changes the
shape of the optimal solutions ui as well as their total variation, which however does not
necessarily decrease monotonously. We emphasize that neither the shape of ui nor its total
variation is directly relevant for our approach, since we only aim at computing as tight lower
bounds as possible.

Finally, we investigate the impact of the number of time intervals chosen for the discretiza-
tion. Figure 4 demonstrates the temporal development of lower bounds for different num-
bers Nt and σmax = 2. For a better comparison, we recalculate the resulting lower bounds
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|u0|BV (0,T ) = 8.74 |u1|BV (0,T ) = 14.25 |u2|BV (0,T ) = 11.44

|u3|BV (0,T ) = 10.35 |u4|BV (0,T ) = 8.24 |u5|BV (0,T ) = 6.08

|u6|BV (0,T ) = 4.60 |u7|BV (0,T ) = 3.59 |u8|BV (0,T ) = 3.42

Figure 3: Development of optimal solutions.

(y-axis) with a finer temporal discretization, namely Nt = 400; note that this may lead
to non-monotonous bounds. We observe that a coarser time grid quickly leads to better
bounds, however, the accuracy of the lower bounds suffers enormously. In fact, the bounds
obtained for a given discretization may not remain valid for a finer temporal grid.
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Nt = 25
Nt = 50
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Figure 4: Development of lower bounds for refined time grid.

In a branch-and-bound scheme, where larger parts of the switching structure will be fixed by
the branching decisions, an adaptive discretization of the problem may be rewarding. Such
an approach could be practicable within our outer approximation algorithm in function
space, this is left as future work.
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A Existence of Lagrange multipliers

This appendix shows the existence of Lagrange-multipliers for box constraints and finitely
many linear inequality constraints, as appearing in the relaxation (PCk). A similar result
under slightly less restrictive assumptions is shown in [50], but, for convenience of the reader
we present a proof based on standard arguments in detail. For that, we consider problems
of the form

(A.1)


min f(u)

s.t. ua(ξ) ≤ u(ξ) ≤ ub(ξ) f.a.a. ξ in Λ

Gu ≤ b

where Λ ⊂ Rd, d ∈ N, is bounded and Lebesgue-measurable and f : L2(Λ) → R is continu-
ously Fréchet differentiable. Moreover, G : L2(Λ) → Rm, m ∈ N is linear and bounded and
b ∈ Rm is given. Finally, ua, ub ∈ L∞(Λ) satisfy

(A.2) ua(ξ) + δ ≤ ub(ξ) f.a.a. ξ ∈ Λ

with some δ > 0.

Note that L∞(Λ) ↪→ L2(Λ), since Λ is bounded. We will frequently regard G and f as
mappings with domain L∞(Λ) and, with a little abuse of notation, these maps are denoted
by the same symbols. Clearly, they are also Fréchet differentiable as mappings with domain
in L∞(Λ).

In the following, let ū ∈ L∞(Λ) be a locally optimal solution of (A.1). If we define the
convex set C := {u ∈ L∞(Λ) : Gu ≤ b}, then (A.1) is equivalent to

(A.1) ⇐⇒

{
min f(u)

s.t. u− ua ∈ K, ub − u ∈ K, u ∈ C

with K := {v ∈ L∞(Λ) : v ≥ 0 a.e. in Λ}. Note that K admits a non-empty interior as
subset of L∞(Λ). Furthermore, due to the linearity and continuity of the mapping G from
L∞(Λ) ↪→ L2(Λ) to Rm, the set C is convex and closed.

In addition to (A.2), we suppose that the Slater condition is fulfilled, i.e., we assume that
there is a function û ∈ L∞(Λ) such that

(A.3) Gû ≤ b, ua(ξ) + ρ ≤ û(ξ) ≤ ub(ξ)− ρ

with ρ > 0. Since Slater’s condition implies Robinson’s constraint qualification, [4, Theo-
rem 3.9] yields the existence of Lagrange multipliers µa, µb ∈ L∞(Λ)∗ such that

⟨f ′(ū) + µb − µa, u− ū⟩L∞(Λ)∗,L∞(Λ) ≥ 0 ∀u ∈ C,(A.4)

µb ∈ K+, ⟨µb, ū− ub⟩L∞(Λ)∗,L∞(Λ) = 0, ū ≤ ub a.e. in Λ,(A.5)

µa ∈ K+, ⟨µa, ua − ū⟩L∞(Λ)∗,L∞(Λ) = 0, ua ≤ ū a.e. in Λ ,(A.6)

where the dual cone is given by

K+ := {ν ∈ L∞(Λ)∗ : ⟨ν, v⟩L∞(Λ)∗,L∞(Λ) ≥ 0 ∀ v ∈ K} .

In view of the definition of C, the gradient equation in (A.4) is equivalent to

(A.7) ⟨f ′(ū) + µb − µa, s⟩L∞(Λ)∗,L∞(Λ) ≥ 0 ∀ s ∈ G−1 cone(Rm
− − (Gū− b)) ,

where cone denotes the conic hull and Rm
− := {v ∈ Rm : v ≤ 0}. The conic hull is given by

cone(Rm
− − (Gū− b)) = cone

(
{−e1, . . . ,−em,−Gū+ b}

)
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and, as the conic hull of finitely many points in Rm, it is therefore closed. For its polar cone
we find by elementary calculus that

(A.8) cone(Rm
− − (Gū− b))◦ = cone

(
{ei : i ∈ A}

)
,

where A := {i ∈ {1, . . . ,m} : (Gu)i = bi} and ei ∈ Rm, i = 1, . . . .,m, denote the Euclidean
unit vectors. Moreover, the following holds true:

Lemma A.1. The set G∗ cone(Rm
− − (Gū− b))◦ is a weakly-∗ closed subset of L∞(Λ)∗.

Proof. Because G maps L2(Λ) linearly and continuously to Rm, there exist functionals
gi ∈ L2(Λ)∗ ∼= L2(Λ), i = 1, . . . ,m, such that

Gu =
(
⟨gi, u⟩

)m
i=1

.

With a slight abuse of notation, we denote the application of gi to functions in L∞(Λ) by
the same symbol. Direct computation shows that

(A.9) G∗ : Rm → L∞(Λ)∗, G∗λ =

m∑
i=1

λigi

such that (A.8) implies G∗ cone(Rm
− − (Gū− b))◦ = cone

(
{gi : i ∈ A}

)
. By [4, Prop. 2.41],

the set cone
(
{gi : i ∈ A}

)
is weak-* closed, so that the assertion follows.

Thanks to Lemma A.1, all prerequisites of the generalized Farkas lemma are fulfilled, see
e.g., [43, Prop. 2.4.2]. Therefore, (A.7) is equivalent to the existence of a multiplicator
λ ∈ cone(Rm

− − (Gū− b)) = cone({ei : i ∈ A}), cf. (A.8), such that

(A.10) −f ′(ū)− µb + µa −G∗λ = 0 in L∞(Λ)∗ .

Now, we are in the position to prove the desired multiplier theorem:

Theorem A.2. Suppose that a Slater point fulfilling (A.3) exists and let ū be a locally
optimal solution to (A.1). Then there exist Lagrange multipliers λ ∈ Rm and µa, µb ∈ L2(Λ)
such that

f ′(ū) + µb − µa +G∗λ = 0 a.e. in Λ,(A.11)

µa ≥ 0, µa(ū− ua) = 0, ū ≥ ua a.e. in Λ,(A.12)

µb ≥ 0, µb(ū− ub) = 0, ū ≤ ub a.e. in Λ,(A.13)

λ ≥ 0, λ⊤(Gū− b) = 0, Gū ≤ b .(A.14)

Proof. Let u ∈ L∞(Λ) with ua ≤ u ≤ ub a.e. in Λ be arbitrary. Inserting v = u−ū in (A.10),
we obtain

0 = ⟨f ′(ū) +G∗λ, u− ū⟩+ ⟨µb, u− ub⟩+ ⟨µb, ub − ū⟩+ ⟨µa, ua − u⟩+ ⟨µa, ū− ua⟩
≤ ⟨f ′(ū) +G∗λ, u− ū⟩ ,

where we used (A.5) and (A.6) for the last estimate. Since f ′(ū) ∈ L2(Λ)∗ ∼= L2(Λ) and G∗

maps Rm to L2(Λ) by the regularity of gi, i = 1, . . . ,m, the last inequality is equivalent to

(A.15)

∫
Ω

(f ′(ū) +G∗λ)(u− ū) dξ ≥ 0 ∀u ∈ L∞(Λ) : ua ≤ u ≤ ub a.e. in Λ.

Now, we introduce the functions µa, µb ∈ L2(Λ) by

µa(ξ) := max{(f ′(ū) +G∗λ)(ξ), 0}, µb(ξ) := −min{(f ′(ū) +G∗λ)(ξ), 0} a.e. in Λ

and denote them by µa and µb, too, with a little abuse of notation. Then, by means of
standard arguments as e.g., in [48, Thm. 2.29], one deduces (A.11), (A.12), and (A.13)
from (A.15). Finally, (A.14) follows from λ ∈ cone({ei : i ∈ A}) and (Gu − b)i = 0 for
all i ∈ A.
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Remark A.3. Theorem A.2 readily carries over to vector valued box constraints in Rn as
in (PCk), but in order to keep the discussion concise, we restricted it to the scalar case here.
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