A MULTI-FACETED STUDY OF NEMATIC ORDER
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Abstract. We study order reconstruction (OR) solutions in the Beris-Edwards framework for
nematodynamics, for both passive and active nematic flows in a microfluidic channel. OR solutions
exhibit polydomains and domain walls, and as such, are of physical interest. We show that OR
solutions exist for passive flows with constant velocity and pressure, but only for specific boundary
conditions. We prove the existence of unique, symmetric and non-singular nematic profiles, for
boundary conditions that do not allow for OR solutions. We compute asymptotic expansions for
OR-type solutions for passive flows with non-constant velocity and pressure, and active flows, which
shed light on the internal structure of domain walls. The asymptotics are complemented by numerical
studies that demonstrate the universality of OR-type structures in static and dynamic scenarios.
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1. Introduction. Nematic liquid crystals (NLCs) are mesophases that combine
fluidity with the directionality of solids [13]. The NLC molecules tend to align along
certain locally preferred directions, leading to a degree of long-range orientational
order. The orientational ordering results in direction-dependent physical properties
that render them suitable for a range of industrial applications, including optical
displays. When confined to thin planar cells and in the presence of fluid flow, applica-
tions of nematics are further extended, for example, to optofluidic devices and guided
micro-cargo transport through microfluidic networks [11, 35]. These hydrodynamic
applications are facilitated by the coupling between the fluidity and the orientational
ordering, leading to exceptional mechanical and rheological properties [31].

Flow-induced deformation of nematic textures in confinement are ubiquitous, both
in passive systems where the hydrodynamics are driven by external agents, as well
as in active systems. Active matter systems, composed of self-driven units, also
exhibit orientational ordering and collective motion, resulting in a wealth of intriguing
non-equilibrium properties [30]. We focus on passive and active nematodynamics in
microfluidic channels, with a view to model spatio-temporal pattern formation and
to analyse the stability of singular lines or domain walls in such channels.

We work with long, shallow, three-dimensional (3D) microfluidic channels of
width L, in a reduced Beris-Edwards framework [4]. Our domain is effectively one-
dimensional (1D), since we assume that structural details are invariant across the
length and height of the channel. We work with a reduced Landau-de Gennes (LdG)
Q-tensor for the nematic ordering. This reduced Q-tensor has two degrees of freedom
- the planar nematic director, n, in the two-dimensional (2D) channel cross-section,
and an order parameter, s, related to the degree of nematic ordering. The director n
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is parameterised by an angle, 6, which describes the in-plane alignment of the nematic
molecules. In a fully 3D framework, the LdG Q-tensor has five degrees of freedom
and there are exact connections between the reduced LdG and the 3D LdG descrip-
tions, as discussed in the next section. We consider steady unidirectional flows, which,
within the Beris-Edwards framework, are captured by a system of coupled differential
equations for s, 6, and the fluid velocity u. There are three dimensionless parameters,
two of which are related to the nematic fluidity (if these parameters are important to
mention, we should say what they are. Otherwise just focus on L* - which I think
we should do), and the third dimensionless parameter, L*, is inversely proportional
to L? and plays a key role in the stability of singular structures.

Our work is largely devoted to Order Reconstruction (OR) solutions (defined
precisely in section 3). OR solutions are nematic profiles with distinct director poly-
domains, separated by singular lines or singular surfaces, referred to as domain walls.
The domain walls are (‘show as’, not ‘are’? there might be confusion between the
horizontal and vertical planes here) simply disordered regions in the plane, and would
appear as singularities in 2D optical studies but in 3D, they describe a continuous
yet rapid rotation between distinct 3D NLC configurations in the two (adjacent?)
polydomains, as in the seminal paper [34]. OR solutions are relevant for modelling
chevron or zigzag patterns observed in pressure-driven flows [1, 10], as well as in active
nematics where aligned fibers can be controlled to display a laminar flow [23]. OR
solutions have been studied in purely nematic systems, for example in [26], [9] and
[8]. However, they are not limited to purely nematic systems: for instance, OR solu-
tions exist in ferronematic systems comprising magnetic nanoparticles in NLC media
[12]. Generalized OR solutions or OR-type solutions/instabilities (defined in section
4) are also observed in smectics and cholesterics. For example, when a cell filled with
a smectic-A liquid crystal is cooled to the smectic-C phase, a chevron texture is ob-
served and has been the impetus of considerable experimental and theoretical interest
[33, 32].

We thus speculate that OR solutions are a universal property of partially ordered
systems, especially small systems with conflicting boundary conditions. For systems
with constant velocity and constant pressure, we prove that OR solutions only exist
for mutually orthogonal boundary conditions imposed on 6. This is known, but we
rediscover this fact using new arguments. For all other choices of Dirichlet bound-
ary conditions for 6, we show that OR solutions do not exist and using geometric
and comparison principles, we prove the existence of a unique, symmetric and non-
singular (s, 6)-profile in these cases. For general flows with non-constant velocity and
pressure, in section 4, we work with large domains (L* — 0) and compute asymptotic
approximations for OR-type solutions, that exhibit a singular line or domain wall in
the channel centre, for both passive and active scenarios. For OR-type solutions, the
director is not constant away from the isotropic line, as in the case of OR solutions.
Our asymptotic methods are adapted from [7], where the authors investigate a chevron
texture characterised specifically by a 4+7/4 jump in 6, using an Ericksen model for
uniaxial NLCs. These asymptotic methods, now placed within the Beris-Edwards
framework, allow us to explicitly construct solutions characterised by a domain wall
as described above, with a planar jump discontinuity in €, which we refer to as an
OR-type solution. We also construct OR-type solutions for active nematodynamics,
by working in the reduced Beris-Edwards framework with additional non-equilibrium
active stresses [18], thus illustrating the universality of OR-type solutions.

We validate our asymptotics for passive and active nematodynamics (with non-
constant pressure and flow), with extensive numerical experiments, for large and small
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ORDER RECONSTRUCTION IN MICROFLUIDIC CHANNELS 3

values of L*. In both settings, we find OR-type solutions for all values of L*, with
mutually orthogonal Dirichlet conditions for # on the channel walls. OR-type solutions
are stable for large L*, and unstable for small L*. In fact, we observe multiple
unstable OR-type solutions for small values of L*. Our asymptotic expansions serve
as excellent initial conditions for numerically computing different branches of OR-
type solutions, characterised by different jumps in 6, and the numerics agree well
with the asymptotics. We speculate that unstable OR-type solutions can potentially
be stabilised by external controls and thus, play a role in switching and dynamical
phenomena.

The paper is organised as follows. In section 2, we describe the Beris-Edwards
model, our channel geometry and the imposed boundary conditions. In section 3,
we study flows with constant velocity and pressure, and identify conditions which
allow and disallow OR solutions, in terms of the boundary conditions. In section
4, we compute asymptotic expansions for OR-type solutions with passive and active
nematic flows for small L* or large channel widths, providing explicit limiting profiles
in these cases. We then supplement our analysis with detailed numerical experiments,
followed by some brief conclusions and future perspectives in section 5.

2. Theory. We consider NLCs sandwiched inside a three-dimensional (3D) chan-
nel, Q = {(z,5,2) eR¥: —D <z <D,—~L<y<L0<z< H} where L, D, and H
are the (half) width, length and height of the channel, respectively. We assume that
D > L and H < L. We further assume planar surface anchoring conditions on the
top and bottom channel surfaces at z = 0 and z = H, which effectively means that
the NLC molecules lie parallel to the xzy-plane on these surfaces without a specified
direction, and Dirichlet or fixed boundary conditions on the lateral surfaces. Such
boundary conditions are used in experiments, see for example the planar bistable ne-
matic device in [36] and the experiments on fd-viruses in [27]. In the LdG framework,
the Q-tensor order parameter is a symmetric, traceless 3 x 3 matrix, with five degrees
of freedom. The physically relevant NLC configurations are modelled by minimizers of
an appropriately defined LdG free energy. In the H — 0 limit and applying Theorem
5.1 in [22] (also see Theorem 2.1 in [37]), one can show that the physically relevant
configurations are invariant in the z-direction and correspond to LdG Q-tensors with
a fixed eigenvector in the z-direction, with an associated constant eigenvalue. This
reduces the degrees of freedom from five to simply two degrees of freedom, as cap-
tured by the reduced LAG Q-tensor in (2.1) below. In fact, under these assumptions,
the full LAG Q-tensor is the sum of the reduced LdG Q-tensor and a constant 3 x 3
matrix, and it can be reconstructed from the reduced Q-tensor as needed. See the
supplementary material for an explicit example connecting the reduced and full LdG
Q-tensors. Furthermore, since D > L, we assume that the system is invariant in the
x-direction and this reduces our computational domain to a 1D channel, y € [-L, L].

There are two macroscopic variables in our reduced framework: the fluid velocity
u, and a reduced LdG Q-tensor order parameter that measures the NLC orientational
ordering in the zy-plane. More precisely, the reduced Q-tensor is a symmetric traceless

2 x 2 matrix i.e., Q € Sy == {Q € M**? : Q;; = Qji, Qi; = 0}, which can be written
as:

(2.1) Q:s(n@n—%).

Here, s is a scalar order parameter, n is the nematic director (a unit vector describing
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the average direction of orientational ordering in the zy-plane), and I is the 2 x 2
identity matrix. Moreover, s can be interpreted as a measure of the degree of order
about n, so that the nodal sets of s (i.e., where s = 0) define nematic defects in the

xy-plane. As a consequence of (2.1), the two independent components of Q are given
by

(2.2) Q11 = gcos 20, Q2= gsin 20,

when n = (cos6,sinf), and 0 is the angle between n and the z-axis. Conversely,
applying basic trigonometric identities, we have the following relationships,

1
(2:3) §= 2\/m and 0= §tan71 <gi) )

We work within the Beris-Edwards framework for nematodynamics [4]. There
are three governing equations: an incompressibility constraint for u, an evolution
equation for u (essentially the Navier—Stokes equation with an additional stress due
to the nematic ordering, o), and an evolution equation for Q which has an additional
stress induced by the fluid vorticity [31]. These equations are given below,

V-u=0, p%l:=—Vp+V~(u(Vu+(Vu)T)+U)=
P _q-act “H.

Here p and p are the fluid density and viscosity respectively, p is the hydrodynamic
pressure, ¢ is the anti-symmetric part of the velocity gradient tensor and < is the
rotational diffusion constant. The nematic stress is defined to be

s=QH-HQ and H=rV2Q- AQ - C|QQ,

where H is the molecular field related to the LdG free energy, k is the nematic elasticity
constant, A < 0 is a temperature dependent constant, C' > 0 is a material dependent
constant, and |Q| = 1/Tr(Q7TQ), is the Frobenius norm. Finally, we assume that all
quantities depend on y alone and work with a unidirectional channel flow, so that
u = (u(y),0). The incompressibility constraint is automatically satisfied. To render
the equations nondimensional, we use the following scalings, as in [31],

_ L? . /— Ko
y=1Lj t =4, I Qll—FQll’ Qu =1/ ~GQu, pr = T p5hn
K L

and then drop the tilde for simplicity. Our rescaled domain is Q = [—1,1] and the
evolution equations become

oQ 1
(2.4a) (‘%11 =uyQr2 + Qu1yy + ﬁQn(l - 4(Q1; + Q1)),

oQ 1
(2.4b) (%12 = —uyQ11 + Q2,yy + FQlQ(l —4(Q3, + Q1))

Ju

(2.4c) Ly o = Pe +tyy +2L2(Q11Q12,yy — Q12Q11,4y)ys
where L, = %, L* = 475, and Ly = %‘37 = %EE;* are dimensionless parameters.

Here, Er = ugLu/k is the Ericksen number and Er* = ugLvy/k (ug is the character-
istic length scale of the fluid velocity) is analogous to the Ericksen number in terms
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ORDER RECONSTRUCTION IN MICROFLUIDIC CHANNELS 5

of the rotational diffusion constant ~, rather than viscosity p. We interpret L* as a
measure of the domain size i.e. it is the square of the ratio of two length scales: the
nematic correlation length, £ = \/—k/A for A < 0 and the domain size L, so that the
L* — 0 limit is relevant for large channels or macroscopic domains. The parameter,
L is the product of the ratio of material and temperature-dependent constants and
the ratio of rotational to momentum diffusion [31]. In what follows, we fix L, = 1, and
as such do not comment on its physical significance. The static governing equations
for (s,0), can be obtained from (2.4) using (2.2):

1
(2.5a) Syy = 456‘2 + Es(s2 - 1),
1
(2.5b) 80y, = 35Uy ~ 25,0y,
(2.5¢) Uyy = Py — La(5°0y) yy-

The formulation in terms of (s,8) gives informative insight into the solution profiles
and avoids some of the degeneracy conditions coded in the Q-formulation.
We work with Dirichlet conditions for (s, ) as given below:

(2.6a) s(—1) =s(1) =1,
(2.6b) 0(—1) = —wm, 0(1) = wm,

where w € [—%, %} , is the winding number. This translates to the following boundary
conditions for Q:

(2.7) Q11(£1) = %cos(2w7r), Q12(—1) = —%sin(2w7r), Q12(1) = %sin(Qwﬂ').

The boundary conditions in (2.6a) imply that the nematic molecules are perfectly
ordered on the bounding plates. We consider asymmetric Dirichlet boundary condi-
tions in (2.6b) for the angle 6. A potential issue follows from (2.3): the range of 6 is
(=%, %), but our boundary conditions extend to £%. However, we circumvent this
issue by using the function atan2(y,z) € (—m, x|, which returns the angle between
the line connecting the point (x,y) to the origin and the positive x axis. For the flow

O0=wnr s=1 y=1

—7 ]

— N |

0=—-wn s=1 w=0 w=1/4 w=1/2 y=-1

Fic. 1. Boundary conditions for s and 6, and some example boundary conditions on the director.

field, we consider the typical no-slip boundary conditions, namely
(2.8) u(—1) =wu(l) =0,

and assume that the pressure p is uniform in the y-direction, depending on x only.

This manuscript is for review purposes only.
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3. Passive flows with constant velocity and pressure. In this section, we
study nematic flows with constant velocity and pressure without additional activity.
This framework, though somewhat artificial, allows for OR solutions, although OR-
type solutions exist in more generic situations with non-constant flows. We work with
both the Q- and (s, #)-frameworks in this section.

In our one-dimensional framework, OR solutions correspond to a partition of the
domain Q = [—1, 1] into sub-domains, 2 = 22‘;1 Q;, where each Q; is a polydomain.
These polydomains have constant 6 (recall that 6 is the orientation of the planar di-
rector, n), separated by domain walls (with s = 0) to account for planar jumps in 6
across polydomain boundaries. OR-type solutions are simply interpreted as solutions
of (2.4) that have a non-empty nodal set for s or exhibit domain walls, without the
constraint of constant 6 in each polydomain. In the reduced Q-framework, OR so-
lutions have distinct but less obvious signatures, the domain walls correspond to the
nodal set of the reduced Q-tensor. In a 3D LdG description, the corresponding ne-
matic director rapidly rotates between two distinct director profiles across the domain
wall, and the rotation is mediated by maximal biaxiality; see supplementary mate-
rial. We show, below, that OR-solutions are only compatible with specific boundary
conditions in the Q-framework.

In the (s, §)-framework, OR solutions are characterised by sub-intervals with con-
stant 6. From (2.5b), constant 6 implies constant fluid velocity v and from (2.5c¢),
constant pressure, p. Therefore, we assume constant velocity and pressure to start
with. In what follows, / denotes differentiation with respect to y.

In this scenario the static version of (2.4a)-(2.4b) is

(3.1a) = 2 QuAQh + Q%) — 1),
(3.10) = 22 Qu(Qh + Q%) — 1),

From these equations it follows that (2.4c) is satisfied. The equations (3.1a)-(3.1b)
are the Euler-Lagrange equations associated with the energy

(3.2)

FrglQi1,Q12] = /Q ((Q’n)z + (Q/12)2> + !

;( 1+ 0QhL)2(Q1 + Q1) — 1) dy.
The admissible Q-tensors belong to the Sobolev space, W12 ([—1,1]; S), where Sy is
the space of symmetric and traceless 2 x 2 matrices, subject to appropriately defined
boundary conditions (see (2.7)). The stable and physically observable configurations
correspond to local or global minimizers of (3.2), in the prescribed admissible space.

In the static case, with constant u and p, the corresponding equations for (s, 8)
can be deduced from (2.5a), (2.5b) :

1
(3.3a) s = 4s(60')* + ES(SQ —1),
(3.3b) (s%0') =0, = s%0' = B,

whilst (2.5¢) is automatically satisfied. In the above, B is a fixed constant of integra-
tion; in fact

(3.4) B=0(-1)=0().

This manuscript is for review purposes only.
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When w > 0 and recalling the boundary conditions for 8, there exists a point yq
such that 6'(yo) > 0, hence B > 0, and ¢’ > 0 for all y € [—1,1]. Thus, we have

(3.5) —wr <0 <wm, Yy € [—-1,1] and Yw € {0, ;] .

Similar comments apply when w < 0, for which B < 0, and 6’ < 0 for all y € [—1,1].
If B = 0, we either have s = 0 or f#=constant almost everywhere, compatible with
the definition of an OR solution (unless w = 0, and (s,0) = (1,0), which is not an
OR solution). Conversely, an OR solution, by definition, has B = 0 since polydomain
structures correspond to piecewise constant #-profiles. In other words, if w # 0, OR
solutions exist if and only if B = 0. If B # 0, then OR solutions are necessarily
disallowed because a non-zero value of B implies that s # 0 on Q. The following
results show that the choice of B is in turn dictated by w, or the Dirichlet boundary
conditions, and this sheds beautiful insight into how the boundary datum manifests
in the multiplicity and regularity of solutions. In what follows, we let € := Ll , so that
€ < L? where L is the physical channel width.

Note that (3.3a) and (3.3b) are the Euler-Lagrange equations of the following
energy,

(3.6) Frgls, 0] = /Q (QZ)Q +32(9’)2) + % (822 — 1) dy,

but we only consider (s,0) € W2 (Q;R) and focus on smooth, classical solutions of
(3.3a) and (3.3b), subject to the boundary conditions in (2.6a)-(2.6b), and not OR
solutions. We first prove that OR solutions only exist for the special values, w = j:%,
in the Q-framework. If w = :I:%, then B can be either zero or non-zero for differ-
ent solution branches, especially for small values of € that admit multiple solution
branches. Once the correspondence between w, B and OR solutions is established
in the Q-framework, we proceed to prove several qualitative properties of the cor-
responding (s, 6)-profiles which are of independent interest, followed by asymptotics
and numerical experiments (also see supplementary material).

THEOREM 3.1. For all € > 0, there exists a minimizer of the energy (3.2), in the
admissible space

(3.7) A= {Q € Wh2([~1,1]; S9) ; Qi1 (£1) = C(’S(Qﬂ,
Qia(~1) = _siniwﬂ'lez(l) _ siniwﬂ-} .

Moreover, the system (3.1) admits an analytic solution for all ¢ > 0, in A. OR

solutions only exist for w = +1 in (2.7).

Proof. The existence of an energy minimizer for (3.2) in A, is immediate from the
direct methods in the calculus of variations, for all ¢ and w, and the minimizer is a
classical solution of the associated Euler-Lagrange equations (3.1), for all € and w. In
fact, using standard arguments in elliptic regularity, one can show that all solutions
of the system (3.1) are analytic [5].

The key observation is

(Q12Q11 — Q11Q12) = QQ11 + Q1Q11 — Q1L,Q4 — Q12QY, =0,
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and hence, Q}5Q11 — Q);Q12 is a constant. In fact, using (2.3), we see that

(s°0") = 2(Q1,Qu — Q11Q12) =0 = 5°0' = 2(Q1,Q11 — Q1,Q12) = B,
where B is as in (2.5b). Now let B = 0 (so that OR solutions are possible), then
(3.8) Q12Q11 = Q11 Q12 for all y € [-1,1].

There are two obvious solutions of (3.8) i.e. Q11 =0 (i.e., w = 1), or Q12 =0 (i.e.,
w=0, i%), everywhere on ). For the case Q12 =0 and w = i%, the Euler-Lagrange
equations for Q reduce to

Qllll = €Q11(4Q%1 - 1),
Qui(-1)=—3, Qu(1) =—3.

This is essentially the ODE considered in equation (20) of [26]. Applying the argu-
ments in Lemma 5.4 of [26], the solution Q11 of (3.9) must satisfy Q};(—1) =0, or
Q' is always positive. However, the latter is not possible since we have symmet-
ric boundary conditions. Hence, when w = j:%, the unique solution to (3.9) is the
constant solution (Q11,Q12) = (—%,0). This corresponds to s = 1 everywhere in {2,
which is not an OR solution. The same arguments apply to the case Q12 = 0 and
w = 0. In this case the boundary conditions are Q11(£1) = %, and the corresponding
(s,0) solution is simply, (s,6) = (1,0), which is again not an OR solution.
When Q11 =0 (w = :I:i), the Q system becomes

Q/1/2 = €Q12(4Q%2 - 1)a
Qu2(—1) = —3, Qu2(1) = 3.

Applying the arguments in Lemma 5.4 of [26], we see (3.10) has a unique solution
which is odd and increasing, with a single zero at y = 0 - the centre of the channel.
This is an OR solution, since Q11 = 0 implies that 6 is constant on either side of
y=0.

It remains to show that there are no solutions (Q11,@Q12) of (3.1), which satisfy
(3.8), other than the possibilities considered above. To this end, we assume that
we have non-trivial solutions, Q11 and @12 such that (3.8) holds. We recall that all
solution pairs, (Q11,Q12) of (3.1) are analytic and hence, can only have zeroes at
isolated interior points of 2 = [—1,1]. This means that there exists a finite number
of intervals (—1,y1),..., (yn, 1), such that Q11 # 0 and Q12 # 0 in the interior of
these intervals, whilst either Q11(y;), Q12(yi), or both, equal zero at each intervals
end-points. We then have that

(3.9)

(3.10)

/ /
12 — 11 — |Q11| = C'L‘Q12| fOr Yy € (yiflvyi)
Q12 Qu
for constants ¢; > 0 and @ = 1,...,n. Therefore, there exists an interval, (y;—1,¥;),

for which @17 and @12 have the same, or opposite signs. Assume without loss of
generality (W.L.O.G.) Q11 and Q12 have the same sign, then the analytic function

fy) = Qu(y) — ciQi2(y) =0, for y € (yi—1,9;).
Therefore, f(y) =0 for all y € [-1,1]. Evaluating at y = £1, we have

cos(2wm) = — sin(2wn)c; and cos(2wm) = sin(2wn)c;,

This manuscript is for review purposes only.
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ORDER RECONSTRUCTION IN MICROFLUIDIC CHANNELS 9

and this is only possible if cos(2wm) = 0 and sin(2wm)c; = 0, which implies w = +1
and ¢; = 0. Hence, there are only three possibilities for w = O,:l:%,:l:% that are
consistent with (3.8), of which OR solutions are only compatible with w = j:i. |

In what follows, we consider the solution profiles, (s, 6) of (3.3a) and (3.3b), from
which we can construct a solution of the system (3.1), using the definitions (2.2). The
first proposition below is adapted from [29], although some additional work is needed
to deal with the positivity of s; see the supplementary material.

THEOREM 3.2. (Maximum Principle) Let s and 0 be solutions of (3.3a) and
(3.3b), where s is at least C? and 0 is at least C*, then

(3.11) 0<s<1 Wyel-1,1].

For the next batch of results, we omit the case B = 0 and focus on the (s,6)-
profiles of non OR-solutions, which are necessarily smooth. We exploit this fact
to prove that there exists a unique solution pair, (s,6) of (3.3), such that s has a
symmetric even profile about y = 0, for every B # 0.

THEOREM 3.3. Any non-constant and non-OR solution, s, of the Fuler-Lagrange
equations (3.3), has a single critical point which is necessarily a non-trivial global
minimum at some y* € (—1,1).

Proof. For clarity, we denote a specific solution of (3.3a) and (3.3b), by (Sso1, Osor)
in this proof. Recall that for non-OR solutions, we necessarily have B = 6'(+1) # 0
and s # 0 anywhere. Using the definition of B in (3.3), we have

(3.12) s = -+ e(s® — s).

The right hand side of (3.12) is well-defined and continuous for s € (0, 1], and as such,
a solution, ss, will be C2. In fact, the right hand side of (3.12) is smooth, hence
any solution, ss.;, will be smooth. The boundary conditions, s (+1) = 1, imply that

a non-trivial solution has s’ _;(y*) = 0 for some y* € [—1, 1], where s’ is defined as,

(3.13) s = j:\/(4B232 +e <824 - 52) + J).

Here, A is a constant of integration and J = 4B% 4 § + s/(+1)?, hence, we must have

(3.14) J>4B% + %

Since s’ is defined in terms of s and not ¥, solutions of s’ = 0 give us the extrema
of a solution sgy (i-e., maxima or minima), rather than the location of the critical
points on the y-axis. The condition s’ = 0 is equivalent to

s4
(3.15) J=4B%s"? —¢ (2 - 52> .
Clearly if € = 0, we can only have one extremum, namely s = #, which in view

of the boundary conditions and maximum principle, must be a minimum. For € > 0,
solving (3.15) is equivalent to computing the roots of f(s) = 0 where

2J 8 B2
(3.16) f(s) =80 — 28" + 552 — —.
€
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Firstly, note that f has a root for s € (0, 1], since f(0) = =8B° () and f(1) =

€

—1+ 22— g >0, by (3.14). Differentiating (3.16), we obtain

af
ds

4
(5) = 65° — 85 + —Js,
€

and the critical points of f are given by

(317) s = Oa S+ =

provided that A < 2¢. There are now three cases to consider.

Case 1: If J > %e, f(s) has one critical point at s = 0, which is a negative global
minimum. Hence, f has one root in the range, s € (0, 1].

Case 2: Let J = %e, so that the two critical points s4+ coincide. The point s =0
is still a minimum of f(s) and the coefficient of s° is positive (so f — co as s — o0),
so we deduce that sy is a stationary point of inflection (this can be checked via direct
computation). So again, f has one root for s € (0,1].

Case 3: Finally, let J < %e, so that s4 are distinct critical points of f. The point,
s = 0, is still a minimum of f(s) and the coefficient of s® is positive, so that there
are two possibilities: (a) sy are distinct saddle points, and since f is increasing for
s > 0, we see f has a single root for s € (0,1], or (b) s_ is a local maximum and s
is a local minimum of f(s). In the latter case, s = 0 is still a global minimum for
f(s), because f(sy) > f(0). Using this information, we can produce a sketch of f(s)
(shown in Figure 2), and there are 5 cases to consider for the number of roots of f.

In cases (i) and (v) of Figure 2, f has only one root for s € (0, 1]. Next, in order
for the derivative s/, to be real, the term under the square root in (3.13), has to be
non-negative. This requires that f(s) > 0 for all s € [¢, 1], for some ¢ > 0. Applying
this argument to cases (ii) and (iii) in Figure 2 by omitting regions with f(s) < 0, we
deduce that f has a single non-trivial root for s € (0, 1].

For case (iv), we have two distinct roots in an interval such that f(s) > 0, one of
which is sy, and the other root is labelled as s;. Recalling that s, is also a solution
of f'(s) = 0, we deduce that s, is a repeated root of f. Then, f can be factorised as:

F(s) = (s = 551)(s +54)%(s = s1)(5 + 51)
(3.18) =50 — (283 + s7)s? + (s + 25757 )s? — sist.

Comparing the coefficient of s* and " in (3.16), with (3.18), we have s = 2(1 — s%)

2 . . .
and s? = %5(7 which implies
+

(3.19) 4B* + st (s1 —1) = 0.

Comparing (3.12) with (3.19), we deduce that, s”(s;) = 0. By the uniqueness theory
for Cauchy problems, this implies that ss,; = 54, which is inadmissible and this case
is excluded.

In cases 1, 2 and 3, we have demonstrated that s, has a unique positive critical
value, which must be the minimum value. The unique minimum value is attained at
a unique interior point (if there were two interior minima at say y* and y™*, a non-
constant solution would exhibit a local maximum between the two minima, which is
excluded by a unique critical value for sz, ). This completes the proof. 0
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Case 1 Case 2

F1G. 2. The horizontal lines represent f(s) = 0.

THEOREM 3.4. For a given B = 0'(£1) # 0, the system (3.3), subject to the
boundary conditions (2.6), admits a unique solution for a fixed € and w. Hence, for
any value of w that does not permit OR solutions, the system (3.3) always has a
unique solution.

Proof. Recall, for w # 0, OR solutions exist if and only if B = 0. When w = 0,
(3.3b) implies we must have B = 0, the proof of Theorem 3.2 (see supplementary
material) then shows the unique solution in W12 is (s,6) = (1,0). For B # 0, the
system (3.3) can be written as

4B?
(3.20a) s = -t es(s? — 1),

(3.20b) 520’ = B.

Throughout this proof we take B > 0, so that s # 0 and hence, the right hand side
of (3.20a) is analytic. The case B < 0 can be tackled in the same manner.

In the first step, we show that (3.20) has a unique solution for fixed B, ¢ and
w. Assume for contradiction that (s1,61) and (s2,62) are distinct solutions pairs of
(3.20), which satisfy (2.6). As such, they must have distinct derivatives at y = —1
(otherwise they would satisfy the same Cauchy problem). Suppose W.L.O.G.

(3.21) s1(—1) < sh(-1) <.

Since s1(1) = s2(1) = 1, there exists yo = min{y > —1 : s1(yo) = s2(yo) := So}-
Therefore, s1 < so for all y € (—1,yp). Further, since s; and sy have one non-trivial
global minimum (Theorem 3.3), there are four possibilities for the location of yo: (i)
Case I yp = 1; (ii) Case II: yp < min {«, 5} where s; attains its unique minimum at
y = « and sy attains its unique minimum at y = §; (iii) Case III: o < yo < S, or
B8 < yo < a; and (iv) Case IV: yp > max{«, 8}. In case I, s1 < so implies 6] > 6}
for all y € (—1,1), since both solution pairs satisfy (3.20b). Hence, 61(y) — 02(y)
is increasing, and cannot vanish at y = 1, contradicting the boundary condition at
y=1.
For Case II, we have
s5(yo) < 51(yo) <0

so that

(s5(=1))* = (s3(y0))* < (51(=1))* = (s1(10))*.
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Using (3.13), this is equivalent to

4B? 52
—AB S 4 T - (82+es§ (201>+J2> <
0
9 € 4B? 9 s%
— 4B —2+J1—(—8(2)+650(2—1 —|—J1 s

where J; and Jo are constants of integration associated with s; and ss respectively,
and may not be equal. However, the left and right hand sides are in fact equal,
yielding the desired contradiction.

For Cases III and IV, there must exist another point of intersection, y = y; €
(max {a, 8}, 1], such that

(s1—52) (y1) =0; (51— s2) (311) <O

and
0 < s1(y1) < s3(y1).

In this case, we can use

(s5(=1))% = (s3(y1))* < (s1(=1))* = (51 (31))?

to get the desired contradiction. We therefore conclude that for fixed B, € and w, the
solution of (3.3) is unique.

Next, we show the constant B is unique for fixed € and w. We assume that there
exist two distinct solution pairs, (s1,61) and (sg,62), which by the first part of the
proof, are the unique solutions of

4B2 4B2
s :sigl—l—esl(s%—l), 5’2':8—324—652(83—1)
1 2

and s20] = By, s30}, = Ba, respectively, subject to (2.6), for the same value of w. Let
0 < B; < Bs. Using a change of variable u;, = 1 — s € [0,1), for &k = 1,2 so that
ug(£1) = 0, we can use the method of sub- and supersolutions to deduce that

(3.22) s < s for all y € [-1,1].
This implies

By
2
1

B
<22 =0, wyel-1,1].

(3.23) 0, = 2

S

If 0] < 6, anywhere, then 6;(1) = wm does not hold, hence we must have equality
ie., 0 = 6. It therefore follows that Bjs3 = Bys?, but the boundary conditions
necessitate that By = By := B and hence, s; = so := s. Finally, integrating 0] =
B/s?, it follows that 67 is unique and is given by
'B Lo\
(3.24) 01(y) = wm —/ 2 dy, where B = 2wm (/ 2 dy)
y

-1

The preceding arguments show that #; = 6> and the proof is complete. 0
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THEOREM 3.5. For B = 0'(£1) # 0, the unique solution, (s,0) of (3.3), has the
following symmetry properties:

for ally € [-1,1]. Then s has a unique non-trivial minimum at y = 0.

Proof. Tt can be readily checked that for B # 0 , the system of equations (3.3)
admits a solution pair, (s, §) such that s is even, and 6 is odd for y € [—1, 1], compatible
with the boundary conditions. Combining this observation with the uniqueness result
for B # 0, the conclusion of the theorem follows. d

The preceding results apply to non OR-solutions. OR solution-branches have
been studied in detail, in a one-dimensional setting, in the Q-framework [26]. Using
the arguments in [26], one can prove that for w = :I:%, OR solutions exist for all
€ > 0 and are globally stable as e — 0, but lose stability as € increases. In particular,
non-OR solutions emerge as € increases, for w = ii, and these non-OR solutions do
not have polydomain structures. More precisely, we can explicitly compute limiting
profiles in the € — 0 and € — oo limits. These calculations (which yield good insight
into the more complex cases of non-constant velocity and pressure for passive and
active nematodynamics considered next) can be found in the supplementary material
([16],[24],[6] are associated new references appearing in the supplementary material).

4. Passive and Active flows. In this section, we compute asymptotic expan-
sions for OR-type solutions of the system (2.5), in the L* — 0 limit (¢ — oo limit)
relevant to micron-scale channels. We consider conventional passive nematodynamics
and active nematodynamics (with additional stresses generated by internal activity),
and generic scenarios with non-constant velocity and pressure. We follow the asymp-
totic methods in [7] to construct OR-type solutions, strongly reminiscent of chevron
patterns seen in experiments [1, 10]. Recall an OR-type solution is simply a solution
of (2.5) with a non-empty nodal set for the scalar order parameter, such that 6 has a
planar jump discontinuity at the zeroes of s. Unlike OR solutions, OR-type solutions
need not have polydomains with constant #-profiles.

4.1. Asymptotics for OR-type solutions in passive nematodynamics, in
the L* — 0 limit. Consider the system, (2.5), in the L* — 0 limit. Motivated by
the results of section 3, and for simplicity, we assume s attains a single minimum at
y =0, s is even and 0 is odd, throughout this section. The first step is to calculate
the flow gradient u,. We multiply (2.5b) by s so that

82

(4.1) (5°0y)y = o Uy

Substituting (s26,), from (4.1) into (2.5¢), we obtain
L
(42) (1 +25) =
y

Both sides of (4.2) equal a constant, since the left hand side is independent of z, and
p. is independent of y. Integrating (4.2), we find

_ Py Bo
(4.3) =gt Tl
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14 J. DALBY, Y. HAN, A. MAJUMDAR, L. MRAD
where By is another constant and
Ly ,
(4.4) g(s) =1+ 55 > 0, Vs € R.
Integrating (4.3), we have

(Y Y Bo
(4.5) u(y) = /_1 g T g0 4

since u(—1) = 0 from (2.8). Using the no-slip condition, u(1) = 0 and the fact
that fil m dY = 0, we obtain By = 0 so that the flow velocity is given by

u(y) = fi’l % dY, and the corresponding velocity gradient is

_ b2y
Following the method in [7], we assume
(4.7a) s(y) = S(y) + IS(A) + O(L),
(4.7b) 0(y) = O(y) + I6(N\) + O(L"),

where S, © represent the outer solutions away from the jump point at y = 0, 1.5, I©
represent the inner solutions around y = 0, and A is our inner variable. Substituting
these expansions into (2.5a) and (2.5b) yields

(4.8a)  L*S,, + L*IS,, = 4L*(S +IS5)(0, +10,)* + (S + IS)((S + I5)* - 1),
1
(4.8D) (S +I8)(Oyy +I0yy) = 5(S + IS)uy(y) = 2(Sy + 19,)(Oy + 16),).

It is clear that (4.8a) is a singular problem in the L* — 0 limit, and as such we rescale
y and set

(4.9) A=

to be our inner variable.

The outer solution is simply the solution of (4.8a) and (4.8b), away from y = 0,
for L* = 0 and when internal contributions are ignored. In this case, (4.8a) reduces
to

(4.10) S(S? —1) =0,

which implies

(4.11) S(y) =1, forye[-1,0)N(0,1]

is the outer solution. Here we have ignored the trivial solution S = 0, and S = —1,

as these solutions do not satisfy the boundary conditions.
Ignoring internal contributions, (4.8b) reduces to

(4.12) Ou(y) = guyly) fory e [-1,0)0(0,1]
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From the above, s = 1 for y € [-1,0)N (0, 1], therefore, integrating (4.6) and imposing
the no-slip boundary conditions (2.8), we obtain

(4.13) uly) = 51— 1),

We take u(0) = — 524, consistent with the above expression. Solving for 0 <y <1,
we integrate (4.12) to obtain

0,(y) = /Oy a4y +e,00)

u(y) — u(0
(4.14) = O,(y) = % + 0,(0+).
Similarly, for —1 < y < 0, integrating (4.12) yields
u(y) — u(0
(4.15) 0,0 = W0 Lo, 0-)

Since ©,(0=£) is unknown, we enforce the following boundary conditions at y = 0
to give us an explicitly computable expression

(4.16a) O0(04+) = wrr — ]%T, keZ,
(4.16b) 0(0-) = —wr + ]%T, keZ.

We now justify this jump condition. In the case of constant flow and pressure, OR
solutions jump by 2w, but OR-type solutions could have different jump conditions
across the domain walls, hence the inclusion of the %’T term. (Other jump terms are
also possible.) Substituting (4.13) into (4.14), integrating, and imposing the boundary
conditions, we have that

3
Da km
Analogously, (4.15) yields
3
Pz km

We now compute the inner solution. Substituting the inner variable (4.9) into
(4.8a) and (4.8b), they become

* S = * ﬂ i 2
L*Syy + 15 = 4L*(5 +15) <®y+ ﬁ> +(S+I8)((S+18)* — 1),
(5 +18)(L"0y, +10) = (S + 1), (WE) = 21° (sy - ff*) (Qv + f?i) ,

where () denotes differentiation w.r.t A. Letting L* — 0, we have that the leading
order equations are

(4.19a) IS =4(S+1S)(I0)* + (S +IS)((S+1S)*—1),
(4.19b) (S+18)I6 = —2ISI0,

This manuscript is for review purposes only.



586

587

588
589

590
591

592
593
594
595
596
597
598

599

16 J. DALBY, Y. HAN, A. MAJUMDAR, L. MRAD

or equivalently, after recalling S = 1,
IS =2IS+ q(IS,10), 10 =q(IS,1S,10,10),
where ¢1, g2 represent the nonlinear terms of the equation. The linearised system is

(4.20a) IS =2IS,
(4.20b) 16 =0,

subject to the boundary and matching conditions

(4.21a) lim IS(\) = 0, IS(0) = spin — 1,
A—+too
(4.21b) lim 16(3) =0,

where 8., € [0,1], is the minimum value of s. We note that the second condition in
(4.21a) ensures $(0) = S$yin.Using the conditions (4.21a), the solution of (4.20a) is

i — 1)e” V2V <y<
(4.22) s(y) = {1 + (Smin — 1)e L for0<y<1

s (Smin — l)eﬁ# for —1 <y <0.

With IS determined, we calculate 10. Solving (4.20b) subject to the limiting condi-
tions (4.21b), it is clear that 7@ = 0. Hence,

P 3>
(2+L2) 6
Yy

(y—1)+wr for0<y<1
(423 0(y) =

+
3
+

o o

ﬁ & (y+1)—wr for —1<y<O.
The expressions, (4.22) and (4.23), are consistent with our definition of an OR-type
solution.

4.2. Asymptotics for OR-type solutions in active nematodynamics, in
the L* — 0 limit. Next, we consider an active nematic system in a channel geom-
etry, i.e., a system that is constantly driven out of equilibrium by internal stresses
and activity [20]. There are three dependent variables to solve for: the concentra-
tion, ¢, of active particles, the fluid velocity u, and the nematic order parameter Q.
The corresponding evolution equations are taken from [18, 17], with additional active
stresses from the self-propelled motion of the active particles and the non-equilibrium
intrinsic activity:

(4.24a) % =V (DVe+a13(V-Q)),

(4.24D) Vou=o0, p% VP4 V- (u(Vu+ (V)T + 6),
pQ o

(4.24¢) Dp =MW +(Q-QC+

where W is the symmetric part of the velocity gradient tensor, D;; = Dod;; + D1Qi;
is the anisotropic diffusion tensor (Do = (D +D1)/2, D1 = Dj—D_ and D) and D
are, respectively, the bare diffusion coefficients along the parallel and perpendicular
directions of the director field), oy is an activity parameter, and A is the nematic
alignment parameter, which characterizes the relative dominance of the strain and
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the vorticity in affecting the alignment of particles with the flow [14]. For |A| < 1, the
rotational part of the flow dominates, while for |\| > 1, the director will tend to align
at a unique angle to the flow direction [15]. The value of \ is also determined by the
shape of the active particles [19]. The stress tensor, & = ¢¢ 4+ ¢® [21], is the sum of
an elastic stress due to nematic elasticity

(4.25) c®=-AsH+ QH — HQ,
and an active stress defined by
(4.26) 0% = axc’Q.

Here ay is a second activity parameter, which describes extensile (contractile) stresses
exerted by the active particles when ay < 0 (ag > 0). H, u, & p and p, are as
introduced in Section 2.

We again consider a one-dimensional static problem, with a unidirectional flow
in the z direction and take A = 0. Then the evolution equations for Q are the
same as those considered in the passive case, hence, making it easier to adapt the
calculations in section 4.1 and draw comparisons between the passive and active cases.
The isotropic to nematic phase transition is driven by the concentration of active
particles and as such, we take A = k(c* — ¢)/2 and C = ke, where ¢* = /37/2L? is
the critical concentration at which this transition occurs [20, 18]. As in the passive
case, we work with A < 0 i.e. with concentrations that favour nematic ordering.

The continuity equation (4.24a), follows from the fact that the total number of
active particles must remain constant [20]. This is compatible with constant concen-
tration, ¢, although solutions with constant concentration do not exist for a; # 0. We
consider the case of constant concentration ¢, which is not unreasonable for small val-
ues of o; and certain solution types (see supplementary material for further details),
and do not consider the concentration equation, (4.24a), in this work. We nondimen-
sionalise the system as before, but additionally scale ¢ and ¢* by L=? (e.g, ¢ = L~2¢,
where ¢ is dimensionless). In terms of Q, the evolution equations are given by

(4.27a) 322;1 = uyQi2 + Qu1,yy + %Qn(l —4Q1, + Q1),

(4.27Db) 822;2 = —uyQ11 + Q12,yy + %Qm(l —4(Q7, + Q12)),

(4.27¢) ngi; = —ps + Uyy + 2L2(Q11Q12,yy — Q12Q11,4y)y + L(Q12¢%)y,

where ' = :l‘fgz —% is a measure of activity. In the steady case, and in terms of

(s,0), the system (4.27) reduces to

(4.28a) Syy = 403 + = (s* = 1),
1
(4.28b) 50y, = 58Uy ~ 25,0y,
2
(4.28c¢) Uyy = P — La(520,)yy — T (028 sin(20)> .
y

Regarding boundary conditions, we impose the same boundary conditions on s, 6 and
u, as in the passive case.
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The equations, (4.28a) and (4.28b), are identical to the equations, (2.5a) and
(2.5b), respectively. Hence, the asymptotics in subsection 4.1 remain largely un-
changed, with differences coming from (4.28c), due to the additional active stress.
Skipping technical details which are analogous to those in Subsection 4.1, we find the
fluid velocity is given by

[V 2p,Y —Tc?s(Y)sin(20(Y))
=/ 24(5(V)

Following methods in subsection 4.1, we pose asymptotic expansions as in (4.7a)
and (4.7b), for s and 6 respectively in the L* — 0 limit, which yields (4.8a) and
(4.8b). In fact, the expression for s is given by (4.22), in the active case as well. For
O, we again solve (4.12) and find an implicit representation as given below:

(4.30)

(4.29) dy.

1 w(0)—u(Y T 1 w(Y)—u
I der(%— Ode)(y—1)+w7r,O<y§1

Oy) =
J7, OOy (K 0, OOy ) (y 1) —wm, —1 <y <0

-1

where u(y) is given by (4.29). Moving to the inner solution IO, we need to solve
(4.20b), subject to the matching condition (4.21b). As before, we find IO = 0, and
our composite expansion for 6 is just the outer solution presented above. We deduce
that OR-type solutions are still possible in an active setting, for the case A = 0.

We now consider a simple case for which (4.30) can be solved explicitly. In (4.29),
we assume s = 1 and sin20 = 1 for —1 < y < 0, and sin(20) = -1 for 0 <y <1
i.e., we assume an OR solution with 0 = 7 and w = —i. Under these assumptions,
(4.29) yields

(4.31) uly) = { 2.222 (yz —1)+ {H (y—1), for0<y<1
(v = 1) — 5+ 1), for —1<y<0.
Substituting the above into (4.30), we find
(4.32)
0(y) = 2-2:@ Z{_E +2EZL;(Z4:—§)+’;2:(9—1)+0J77, for0<y<1
2+L; \ 6 6) 2+L2(T+Z)+7(y+1)7w7r for -1 <y <0.

We expect (4.31) and (4.32) to be good approximations to OR-type solutions with
i, in the limit of small I' (small activity) and small pressure gradient, when
the outer solution is well approximated by an OR solution.

w=—

4.3. Numerical results. We solve the dynamical systems (2.4) and (4.27) with
finite element methods, and all simulations are performed using the open-source pack-
age FEniCS [28]. The details of the numerical methods are given in the supplementary
material. In the numerical results that follow, we extract the s profile from Q, using
(2.3).

4.3.1. Passive flows. We begin by investigating whether OR-type solutions
exist for the passive system (2.4) when L* is large (small €), that is, for small nano-
scale channel domains. When w = i% and p, = —1, we find profiles which are small
perturbations of the limiting OR solutions reported in the supplementary material,
for large L* and p, = 0, i.e., (2.7a), (2.7b) in the supplementary material when

w = :i:% (see Fig. 3). We regard these profiles as being OR-type solutions although
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s(0) # 0 but s(0) < 1, as the director profile resembles a polydomain structure and 6
jumps around y = 0, to satisfy its boundary conditions. As |p.| increases, we lose this
approximate zero in s, i.e., we lose the domain wall and s — 1 almost everywhere.

p=-1 pyx=-10 px = -20
(a) 1.0 N 1.0 N 10 N
w=-1/4 — s N ~ : — s N
Qu : N - Qu =
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F1G. 3. The stable solutions of (2.4) for L* = oo (i.e., we remove the bulk contributions) and
Ly = 1le — 3. The values of pz and w, are indicated in the plots (the same comments apply to all
other figures where values are included in the plots).

We now proceed to study solutions of (2.4) in the L* — 0 limit, relevant for
micron-scale channel domains. We study the stable equilibrium solutions, the ex-
istence of OR-type solutions in this limit, and how well the OR-type solutions are
approximated by the asymptotic expansions in Section 4.1. As expected, in Fig. 4
we find stable equilibria which satisfy s = 1 almost everywhere and report unstable
OR-type solutions in Fig. 5, when w = *i' We again consider these to be OR-type
solutions despite s(0) # 0, since their behaviour is consistent with the asymptotic
expressions (4.22) and (4.23), and we also have approximate polydomain structures.
We also find these OR-type solutions for w = %, but do not report them as they are
similar to the w = —% case (the same is true in the next subsection). In fact, w = +1
are the only boundary conditions for which we have been able to identify OR-type
solutions (identical comments apply to the active case).

In Fig. 5, we present three distinct OR-type solutions which vary in their ()11 and
Q12 profiles, or equivalently the rotation of 6 between the bounding plates at y = +1.
These numerical solutions are found by taking (4.22) (with $;., = 0) and (4.23) with
different values of k (k = 0,1,2), as the initial condition in our Newton solver. We
conjecture that one could build a hierarchy of OR-type solutions corresponding to
arbitrary integer values of k in (4.16), or different jumps in 6 at y = 0 in (4.16),
when w = i%. OR-type solutions are unstable, and we speculate that the solutions
corresponding to different values of k in (4.16) are unstable equilibria with different
Morse indices, where the Morse index is a measure of the instability of an equilibrium
point [25]. A higher value of k could correspond to a higher Morse index or informally
speaking, a more unstable equilibrium point with more directions of instability. A
further relevant observation is that according to the asymptotic expansion (4.23),
Q11(0£) = 0 and Q12(04+) = +%, and hence the energy of the domain wall does
not depend strongly on k. The far-field behavior does depend on k in (4.23), and
we conjecture that this k-dependence generates the family of k-dependent OR-type

This manuscript is for review purposes only.



-~

=W NN R O O 000Ut RWN RO © 0Ot

W W W W W W wWwNNNDNDILNIDNINILNNDNLDLD = = = 2

b B B s B B B B B S B B B BN B B S B B B B

IR TS B BT BN B

20 J. DALBY, Y. HAN, A. MAJUMDAR, L. MRAD

solutions. We note that OR-type solutions generally do not satisfy s(0) = 0, but
s(0) — 0 as L* decreases, for a fixed p, (see Fig. 6).

(a) px=-1 px=-10 px=-20
w=-1/4
1.0

1.0{ 7"—7-—-—1-—7-—

1.0

0.0 0.0 ————— -~ 0.0 \ s

- 7
Ne— Qu

/
NN\t

/.
N\NAVLLrrrrrnnrrr s

=

!
NNULLTrrrvNNN 7z

1.0

1.0

0.5 . r—— - 0.5 R -

0.0 0.0{ . / 0.0

\
/7777 1T1T1TTVVANNNNN

o

s

N
222777111V ANNNNNNN

o

1

~
srrrr// 1L ANNSSSNN

0.5 — S
1.0 -1.0 -0.5 0.0 0.5

0.5{ — —-—"

|
=
°
|
°
w
o
(=}
=]
w
Iy
°
|
-
°
|
°
wu
o
o
o
wn
Iy
°

F1G. 4. Some example stable solutions of (2.4) for L* = le — 3 and Ly = 1le — 3.

To conclude this section on passive flows, we assess the accuracy of our asymptotic
expansions in section 4.1. In Fig. 7, we plot the error between the asymptotic
expressions ((4.22) and (4.23)) and the corresponding numerical solutions of (2.4),
for the parameter values L* = le — 4, Ly = le — 3, p, = —20 and w = —%. More
precisely, we use these parameter values along with & = 1,2,3 in (4.23), and (4.22)
with s, = 0, to construct the asymptotic profiles. We then use these asymptotic
profiles as initial conditions to find the corresponding numerical solutions. Hence, we
have three comparison plots in Fig. 7, corresponding to k = 1,2, 3 respectively. By
error, we refer to the difference between the asymptotic profile and the corresponding
numerical solution. We label the asymptotic profiles using the superscript 0, in the
L* — 0 limit, whilst a nonzero superscript identifies the numerical solution along
with the value of L* used in the numerics (these comments also apply to the active
case in the next section). We find good agreement between the asymptotics and
numerics, especially for the s profiles, where any error is confined to a narrow interval
around y = 0 and does not exceed 0.07 in magnitude. Using (2.2), (4.22), and (4.23),
we construct the corresponding asymptotic profile Q°. Looking at the differences
between QY and the numerical solutions Q'¢~* (for k = 1,2,3), the error does not
exceed 0.06 in magnitude. This implies good agreement between the asymptotic and
numerically computed @-profiles, at least for the parameter values under consideration.
While the fluid velocity u is not the focus of this work, we note that our asymptotic
profile (4.13), gives almost perfect agreement with the numerical solution for w.

4.3.2. Active flows. As explained previously, we consider active flows with
constant concentration ¢, and take ¢ > ¢*. To this end, we fix ¢ = V27 in the
following numerical experiments. For L* large (small nano-scale channel domains),
we find OR-type solutions when w = ii, and these are stable. In Fig. 8, we plot
these solutions when p, = —1 and for three different values of I', which we recall is
proportional to the activity parameter as. We only have s(0) < 0.5 when I' = 1, in

which case the director profile exhibits polydomain structures. As I' increases, s(0)
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F1G. 5. Three unstable OR-type solutions (in the sense that they have transition layer profiles
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Fic. 6. Plot of an OR-type solution for L* = 5e — 4, 3e — 4, 1le — 4 (from left to right). The

remaining parameter values are Lo = le — 3, py = —20 and w = 75 The initial conditions used
are (4.22) (with smin = 0) and (4.23) with k = 2, along with the parameter values just stated.

increases and s — 1 almost everywhere, so that OR-type solutions are only possible
for small values of p, and I'. Increasing |p,| for a fixed value of T, also drives s — 1
everywhere.

As in the passive case, we also find unstable OR-type solutions consistent with
the limiting asymptotic expression (4.22), for small values of L* that correspond to
micron-scale channels. The stable solutions have s ~ 1 almost everywhere (see Fig.
9). In Fig. 10, we find unstable OR-type solutions when L* = le—3, Ly = le — 3 and
w = *iv for a range of values of p, and I". To numerically compute these solutions,
we use the stated parameter values in (4.22) (with Sy, = 0) and (4.32), along with
k = 0, as our initial condition. We only have s(0) =~ 0 provided |p,| and T' are not
too large, however, s(0) — 0 in the L* — 0 limit for fixed values of p, and T". This
illustrates the robustness of OR-type solutions in an active setting. In Fig. 11, we plot
three further distinct OR-type solutions, obtained by taking (4.22) (with Sy = 0)
and (4.32) with k = 1,2,3, as our initial condition. Hence, for the same reasons as
in the passive case, we believe there may be multiple unstable OR-type solutions,
corresponding to different values of k in (4.16).

By analogy with the passive case, we now compare the asymptotic expressions
(4.22), (4.31) and (4.32), with the numerical solutions. The error plots are given in
Fig. 12. Once again, there is good agreement between the limiting s-profile (4.22) and
the numerical solutions, where any error is confined to a small interval around y = 0.
There is also good agreement between the asymptotic and numerically computed 6-
profiles (coded in terms of Q11 and Q12) and flow profile u, provided |p.|, T, or both,
are not too large. When |p,| and T are large (say much greater than 1), the accuracy of
the asymptotics breaks down, especially for the u-profile. However, OR-type solutions
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is given by (4.22) and s'©~* is extracted from Q'~%. The numerical solutions are found by using
QO as the initial condition. Identical comments apply to u® — u'®=4, where u° is given by (4.13)

and u'®™* is the numerical solution of (2.4).
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F1G. 8. The stable solutions of (4.27) for L* = oo , Ly = le — 3, ¢ = V27 and py = —1.

are still possible for large values of |p,| and T, as elucidated by Fig. 10.

5. Conclusions. In this article, we have demonstrated the universality of OR-
type solutions in NLC-filled microfluidic channels. Section 3 focuses on the simple
and idealised case of constant flow and pressure to give some preliminary insight into
the more complex systems considered in section 4. We prove a series of results that
lead to the interesting and non-obvious conclusion, that the multiplicity of observable
equilibria depends on the boundary conditions. We employ an (s, §)-formalism for the
NLC state, and impose Dirichlet conditions for (s, ) coded in terms of w, where w is
a measure of the director rotation between the bounding plates y = £1. We always
have a unique smooth solution in this framework, provided an OR solution does not
exist (Theorem 3.4). Additionally, in the Q-framework for w = j:i, i.e., when the
boundary conditions are orthogonal to each other, OR solutions with polydomain
structures exist for all values of L* or €, they are globally stable for large L* (small
€), and there are multiple solutions for small values of L* (large €) or large channel
geometries. In fact, for all three scenarios considered in this paper, we have found OR
and OR-type solutions to be compatible with w = j:i only, or orthogonal boundary
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Fi1G. 9. The stable solutions of (4.27) for L* =1le —3, Lo =1le — 3, ¢ = V27 and p, = —1.

conditions. We note that in Theorem 7 of [3], the author proves that minimizers of
an Oseen-Frank energy in three dimensions are unique for non-orthogonal boundary
conditions. This result is clearly different from ours, based on different arguments, but
has a similar physical flavour. As has been noted in [2] amongst others, orthogonal
boundary conditions allow for solutions in the Q-formalism (solutions of (3.1)) that
have a constant set of eigenvectors in space. These solutions, with a constant set of
eigenvectors, are precisely the OR solutions, which are disallowed for non-orthogonal
boundary conditions. Thus, whilst the conclusion of Theorem 3.1 is not surprising,
we recover the same result with different arguments in the (s, 8)-framework, which is
of independent interest.

In section 4, we calculate useful asymptotic expansions for OR-type solutions in
the limit of large domains, for both passive and active nematics. The asymptotics are
validated by numerically-computed OR-type solutions for small and large values of
L*, using the asymptotic expansions as initial conditions. There is good agreement
between the asymptotics and the numerical solutions, and the asymptotics give good
insight into the internal structure of domain walls of OR-type solutions and the outer
far-field solutions. These techniques can be further embellished to include external
fields, other types of boundary conditions, and more complex geometries as well.

In section 4.3, the OR-type solutions are unstable for small L* or large channels.
However, they may still be observable and hence, physically relevant. In the exper-
imental results in [1] for passive NLC-filled microfluidic channels, the authors find
disclination lines at the centre of a microfluidic channel filled with the liquid crystal
5CB, with flow, both with and without an applied electric field. Moreover, the au-
thors are able to stabilise these disinclination lines by applying an electric field. So,
while the OR-type solutions are unstable mathematically, they can be stabilised or
controlled /exploited for transport phenomena and cargo transport in experiments. In
the active case, there are similar experimental results in [23]. Here the authors apply
a magnetic field to 8CB in the smectic-A phase placed on top of an aqueous gel of
microtubules cross-linked by ATP-activated kinesin motor clusters (constituting the
active nematic system), and observe the formation of parallel lanes of defect cores in
the active nematic, aligned perpendicularly to the magnetic field. These defect cores
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Fic. 11. Three unstable OR-type solutions of (4.27) for L* = 1le — 3, Ly = le — 3, pz = —1,
I'=07 andw:—i.

and disclination lines can be modelled by OR-type solutions, as we have studied in
this paper. In general, we argue that unstable solutions are of independent interest
since they play crucial roles in the connectivity of solution landscapes of complex
systems [25]. Unstable solutions steer the dynamics of a system and dictate the selec-
tion of the steady state for multistable systems (with multiple stable states). Hence,
OR-type solutions are unstable for large domains, but can influence non-equilibrium
properties or perhaps be stabilised for tailor-made applications.

To conclude this article, we argue why OR-type solutions maybe universal in
variational theories, with free energies that employ a Dirichlet elastic energy for the
unknowns, e.g. y; ...y, for n € N. Working in a one-dimensional setting, consider an
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FIG. 12. Plot of Q'*=* — Q0, s'** — 59, and u'®=* —u®. Here, Q° is given by (4.22) and
(4.32) with, $min =0, k=0, c=+v2m, L* =1e — 4, Ly = le — 3, pz and I’ as stated in the figure,
and w = —1/4, whilst Q'™ is the numerical solution of (4.27), with the same parameter values.

energy of the form

(5.1) /lel(:z:)2 + .yl (@) + %h(yl,yn)(x) dz,

subject to Dirichlet boundary conditions, for a material-dependent positive elastic
constant L*. The function, h, models a bulk energy that only depends on y,...,ys.
As L* — oo, the limiting Euler-Lagrange equations admit unique solutions of the
form y; = ax + b, for constants a and b. For specific choices of {) and asymmetric
boundary conditions, we can have domain walls at © = z* such that y;(z*) = 0 for
j=1,...,n. Writing each y; = |y;|sgn(y;), the domain wall separates polydomains
with phases differentiated by different values of sgn(y;). Moreover, we believe this
argument can be extended to systems in two and three-dimensions.
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