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Abstract. This article introduces HODLR2D, a new hierarchical low-rank representation for a
class of dense matrices arising out of N body problems in two dimensions. Using this new hierarchi-
cal framework, we propose a new fast matrix-vector product that scales almost linearly. We apply
this fast matrix-vector product to accelerate the iterative solution of large dense linear systems
arising out of radial basis function interpolation and discretized integral equation. The space and
computational complexity of HODLR2D matrix-vector products scales as O(pN log(N)), where p is
the maximum rank of the compressed matrix subblocks. We prove that p ∈ O (log (N) log (log (N))),
which ensures that the storage and computational complexity of HODLR2D matrix-vector products
remain tractable for large N . Additionally, we also present the parallel scalability of HODLR2D as
part of this article.
Key words. Hierarchical matrices, Low-rank approximations, N-body problems, Iterative meth-
ods, Radial basis functions

1. Introduction

This article considers a class of dense rank structured matrices that have a hierarchical low-rank
structure [1, 2]. Hierarchical matrices frequently arise in applications such as radial basis function
interpolation [3], electromagnetic scattering [4], geostatistics [5], machine learning [6], Gaussian
process regression [7], etc. In this article, we focus on a new class of hierarchical matrices arising
out of two-dimensional problems. We term this new class of Hierarchical matrices as HODLR2D.
For this new class of hierarchical matrices, HODLR2D, we propose a fast matrix-vector product
that scales as O (pN logN), where p is the maximum rank of the compressed matrix submatrices.
Further, we prove that the rank p can only grow at most as O (logN log (logN)).

Fast matrix-vector products for N body problems have been studied even before the advent
of hierarchical matrices. Chronologically, Barnes and Hut [8] reduced the computational cost
of the matrix-vector product arising out of three dimensional N-body problem from O(N2) to
O(N log(N)) by using an oct tree to hierarchically sub-divide the domain and then efficiently ap-
proximating "far-away" interactions. The Fast Multipole Method (FMM) [9] brought the cost for
matrix-vector product further down to O(N). The literature on the Barnes and Hut algorithm [8]
and FMM [9] is extensive, and we direct readers to articles [10, 11, 12, 13, 14, 15] and the references
therein. Although these methods are specific to the N-body problem, they form the foundation for
the hierarchical matrices (from now on, termed as H-matrices). Hackbusch et al. [1, 2] formally
defined these H-matrices by hierarchically sub-dividing the underlying matrix using an appropriate
tree structure and representing certain off-diagonal blocks at different levels in the tree, based on
certain admissibility criterion, as low-rank matrices. The Hierarchically Off-Diagonal Low Rank
(HODLR) [16] matrix relies on hierarchically sub-dividing the matrix using a binary tree and repre-
sents all off-diagonal blocks at each level in the tree as low-rank matrices. The computational cost
of matrix-vector product using HODLR matrix scales as O(pN log(N)), where p is the maximum
rank of the off-diagonal blocks. One disadvantage of HODLR matrices is that p remains almost
constant only for 1D problems and grows significantly with N for higher dimensions (roughly as
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O
(√

N
)
in 2D and as O

(
3√
N2
)
in 3D) [17]. There are also other hierarchical matrix structures

such as HSS [18], HBS [19], H2 [20], etc. These different hierarchical matrix structures differ based
on the following three criteria.

(1) Choice of tree structure to sub-divide the matrix
(2) Identifying submatrices that are efficiently represented as low-rank matrices
(3) Whether the row and column basis of the low-rank submatrices are nested or not (i.e.,

whether the row and column basis for the identified low-rank submatrices can be constructed
from the row and column basis of its children) [21, 22, 23]

The new HODLR2D matrix representation for N -body problems in 2D is based on the following
choices.

(1) A quadtree is used to sub-divide the underlying two dimensional domain, which in turn
sub-divides the matrix

(2) The matrix corresponding to the interaction between the sub domains that share a vertex
is efficiently represented as a low-rank matrix

(3) The row and column basis of the low-rank submatrices are not nested
(4) The low-rank representation of the desired low-rank submatrices are obtained using Adap-

tive Cross Approximation (from now on abbreviated as ACA) [24, 25].
These are discussed in detail in Sections 4. Once the HODLR2D representation is obtained the
computational cost to perform matrix-vector product scales as O (pN logN), where p is the rank
of compressed submatrices and scales O (logN log logN). A detailed analysis, including the proof
that p ∈ O (logN log logN), is presented in Section 3. Section 5 uses this fast HODLR2D matrix-
vector product to accelerate iterative solver for dense linear systems arising out of radial basis
function interpolation and a discretized integral equation. Finally, Section 6 illustrates the parallel
scalability of these HODLR2D matrix-vector products.

The main highlights of this article are as follows:
• New class of Hierarchical matrix (HODLR2D) for N -body problems in 2D is proposed.
• Bounds on rank of interaction between neighboring sub-domains in 2D is proved.
• Storage and computational complexity of HODLR2D matrix-vector products scales as
O (pN log (N)), where p ∈ O (log (N) log (log (N))).
• Fast HODLR2D matrix-vector product is leveraged to accelerate dense matrix solvers and
compared against HODLR and H-matrix with standard admissibility criterion.
• HODLR2D is not only significantly better than HODLR but also provides an attractive
alternative to H-matrices with standard admissibility criterion for 2D problems.
• Parallel scalability of HODLR2D matrix-vector product is studied.

2. Preliminaries

We begin by establishing some notations using two hierarchical low-rank representations: (i)
A generic H matrix; (ii) HODLR matrix. We look at the above two structures since we will be
comparing our HODLR2D against these two hierarchical matrices.

2.1. Notations. Let B ⊂ R2 be a box containing N particles whose interaction is given by the
matrix A ∈ Rn×n, i.e., Aij is the interaction between the ith and jth particle (We will assume that
the matrix is symmetric for pedagogical reasons). Let T L represent a L level tree, which subdivides
the box B hierarchically. Each node in the tree represents a set of particles inside the box B, and
I be the index set that maps all these particles in the box B. The following definitions help define
T L.

Definition 2.1. N (l)
i denote the ith node at level l in the tree T L.
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Definition 2.2. I(l)
i is the index set of particles corresponding to N (l)

i .

Definition 2.3. The cluster C(l)
i contains all the coordinate pairs corresponding to N (l)

i .

For example, in the box B considered N (0)
0 contains I(0)

0 and C(0)
0 , where I(0)

0 = {1, 2, . . . , N}
and C(0)

0 = {(x1, y1), (x2, y2), (x3, y3), . . . , (xN , yN )}, where (xi, yi) is the location of the ith particle.
N (0)

0 is called the root of T L.

Definition 2.4. Consider two nodes N (l)
i at level l and N (l+1)

j at level l+ 1. If I(l+1)
j ⊆ I(l)

i , then
N (l)
i is termed as the parent of N (l+1)

j in T L and N (l+1)
j is the child of N (l)

i in T L. Note that we
immediately have C(l+1)

j ⊆ C(l)
i . Further, the index set I(l)

i =
⋃
N (l+1)

k
∈child(N (l)

i ) I
(l+1)
k

Definition 2.5. Consider two nodes N (l)
i and N (l)

j at level l in T L. If N (l)
i and N (l)

j have same
parent, then N (l)

i is the sibling of N (l)
j in T L.

Definition 2.6. For a node N , if child(N ) = ∅, then N is the leaf in T L.

The interaction between the points in the same cluster with index set I is denoted by the matrix
block A(I, I); the interaction of particles in the cluster with index set J with the particles in the
cluster with index set I is A(I, J). Throughout the article, we use the following definition to
compute the numerical rank of a matrix.

Definition 2.7. Numerical Rank of a matrix Given ε > 0, the ε-rank of the matrix A ∈ Cn×n,
denoted by rε(A), is given by

rε(A) = max
{
k ∈ {1, 2, . . . , N} : σk

σ1
> ε

}
where σ1 ≥ σ2 ≥ ... ≥ σN ≥ 0 are the singular value of the matrix A.

Definition 2.8. Let A ∈ Cm×n. We say that a matrix algorithm on the matrix A scales almost
linearly if the computational complexity of the matrix algorithm (measured in terms of flop counts)
scales as O

(
(m+ n)1+ε

)
for all ε > 0.

2.2. H-matrix. The hierarchical low-rank matrices (H-matrix) operate on the tree T L (like 2d-
tree for d dimensions, a K-D tree, etc.) to represent the clusters formed by hierarchical subdivision
of the underlying domain. The submatrix corresponding to the interaction between two nodes at
the same level in the hierarchical tree can be efficiently approximated using a low-rank matrix, if
it agrees with the admissibility condition as given below. Let us consider two nodes at level l, N (l)

i

and N (l)
j . The admissibility condition for N (l)

j to N (l)
i is given by (2.1).

(2.1) min
(
diam

(
C(l)
i

)
, diam

(
C(l)
j

))
≤ ηdist

(
C(l)
i , C(l)

j

)
where diam(C) is the Euclidean diameter of the cluster C and dist

(
C(l)
i , C(l)

j

)
is the Euclidean

distance between the two clusters. If the clusters C(l)
i and C(l)

j satisfy (2.1), then they are defined
as admissible clusters. We direct our readers to [2] for a detailed description of H-matrix and its
practical implementation details.

In this article, when we consider H-matrix, we use a quadtree to subdivide the
domain and the admissibility condition we use sets the value of η to be

√
2. This

H-matrix representation is one of the baseline representation that we use to compare
the performance of our proposed HODLR2D representation.
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2.3. HODLR matrix. We now describe the HODLR [5] matrix. The HODLR matrix approxi-
mates the submatrix of interactions between any two disjoint clusters as a low-rank matrix. Typi-
cally, the HODLR matrix subdivides the domain using a K-D tree. Following the conventions in [16],
the 1-level HODLR representation of the dense matrix A ∈ RN×N is given in Equation (2.2).

(2.2) A = K
(0)
1 =

[
K

(1)
1 K

(1)
12

K
(1)
21 K

(1)
2

]
=
[

K
(1)
1 U

(1)
1 V

(1)T

2
U

(1)
2 V

(1)T

1 K
(1)
2

]

where K(1)
1 ,K

(1)
2 ∈ RN/2×N/2, U1, U2, V1, V2 ∈ RN/2×p and p� N .

The dense block matrices K(1)
1 , K(1)

2 can further be represented as a HODLR matrix. In general,
for an L level HODLR matrix, its ith diagonal block at a level l, K(l)

i is given by Equation (2.3)
where 1 ≤ i ≤ 2l and 0 ≤ l ≤ L.

(2.3) K
(l)
i =

[
K

(l+1)
2i−1 U

(l+1)
2i−1 V

(l+1)T

2i
U

(l+1)
2i V

(l+1)T

2i−1 K
(l+1)
2i

]

where K(l)
i ∈ RN/2l , K(l+1)

2i−1 ,K
(l+1)
2i ∈ RN/2l+1×N/2l+1 , U (l+1)

2i−1 , V
(l+1)

2i , U
(l+1)
2i V

(l+1)
2i−1 ∈ RN/2l+1×p,

where p � N . Figure 1 shows the HODLR representation of the dense matrix A for different
levels. Using this HODLR representation of the dense matrix A, the matrix-vector product can be
performed in O(pN log(N)). The implementation of HODLR can be found in [26].

(a) level = 1 (b) level = 2 (c) level = 3
Full-rank Matrix (Self Interaction)

Low-rank representation (UV T )

Figure 1. A HODLR matrix at different levels.

3. Rank growth of different interactions in 2D

In this section, we will examine the rank of the off-diagonal blocks of HODLR matrix arising out
of N body problem in two dimensions. Consider the box B(0)

0 = [−1, 1]2 containing 2n particles
located at {~ri}2ni=1, where ~ri ∈ R2. Let K ∈ R2n×2n be the interaction matrix whose entries are
given by

(3.1) K(i, j) =
{

0 if i = j

log (|~ri − ~rj |) if i 6= j

Let’s now represent K as a 1 level HOLDR matrix. As mentioned before, HODLR uses a K-
D tree, and hence at each level in the hierarchical tree, the box is subdivided into two smaller
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boxes each containing n particles as shown in Figure 2. Hence, B(0)
0 is subdivided into two boxes

B
(1)
0 = [−1, 0)× [−1, 1] and B(1)

1 = [0, 1]× [−1, 1] at level 1. Let the boxes B(1)
0 , B

(1)
1 each contain

n = m2 particles located at m×m Chebyshev grid, where m ∈ Z+. Let KE ∈ Rn×n represent the
interaction of particles in B(1)

1 with the particles in B(1)
0 .

B
(0)
0 B

(1)
0 B

(1)
1

(A) Level 0 (B) Level 1

Figure 2. Subdivision of box B(0)
0 into B(1)

0 and B(1)
1

0 1 2 3 4
·104

1,000

2,000

Off-diagonal block size n

N
um

er
ic
al

ra
nk

,r
ε

rε(KE)
c1n

0.5

Figure 3. Scaling of the rank of the off-diagonal block with the entries defined by
log(r) to its size n

From Figure 3, we see that the numerical rank of the interaction matrix, KE , increases as a
function of n and the scaling seems to be O (

√
n) (We prove the precise form of the scaling for

uniformly distributed particles at the end of this section, Theorem 3.2). This immediately implies
that if we were to use a HODLR matrix to represent the dense matrix K, the matrix-vector product
will no longer scale linearly in n. This is because the rank of the largest off-diagonal block KE

seems to scale as O (
√
n) (as shown in Figure 3). Hence, using HODLR one cannot obtain an

almost linear scaling algorithm for N body problems in 2D.
Consider the subdivision of the Box B(0)

0 as in Figure 4, the Box marked as X denotes a cluster
with n particles and let its respective index set be IX . We consider three Boxes: E, V and F ,
where Box E shares an edge, V shares a vertex with cluster X respectively. Box F does not share
a boundary with Box X. The particles in E, V and F , are indexed using the index sets IE , IV
and IF , respectively. Let us examine the numerical rank of the interaction matrices K (IX , IE),
K (IX , IV ) and K (IX , IF ) (submatrices represented using MATLAB notation) for the kernel log(r).
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X E

V

F

Figure 4. Clusters at 2 level on subdivision of box B(0)
0

50 100 150
10−19

10−14

10−9

10−4

101

First 100 singular values of K(IX ,IV )

σ
i

σ
1

n = 4096
n = 6400
n = 10000
n = 22500
n = 32400
n = 40000
n = 62500

(a) Vertex sharing clusters

500 1,000 1,500 2,000 2,500
10−19

10−14

10−9

10−4

101

First 2500 singular values of K(IX ,IE)

σ
i

σ
1

n = 4096
n = 6400
n = 10000
n = 22500
n = 32400
n = 40000
n = 62500

(b) Edge sharing clusters

25 50
10−18

10−14

10−10

10−6

10−2

First 50 singular values of K(IX ,IF )

σ
i

σ
1

n = 4096
n = 6400
n = 10000
n = 22500
n = 32400
n = 40000
n = 62500

(c) Far field clusters

Figure 5. Decay of singular values of different submatrices of size (n) for the log(r)
kernel

From Figure 5, we observe that the singular values of the matrix K(IX , IF ) decay rapidly,
followed by the singular values of the matrix K(IX , IV ). The decay of singular values of the matrix
K(IX , IE) is the slowest among the three. We now prove theorems, which validate the observation
in Figure 5.

Lemma 3.1. (Multipole Expansion) Consider n charges of strength {qi}ni=1 located at points
{zi}ni=1, where zi ∈ C with |zi| < r. Then for any z ∈ C with |z| > r, the complex potential induced

by the n charges is given by φ(z) =
n∑
i=1

qi log (z − zi). Note that the real potential,
n∑
i=1

qi log (|z − zi|),

is nothing but the real part of φ(z), i.e., Re (φ(z)).
We then have

φ(z) = q log(z) +
∞∑
k=1

ak
zk

where q =
n∑
i=1

qi and ak = −
n∑
i=1

qiz
k
i

k
. Furthermore, for any p ≥ 1,

(3.2)
∣∣∣∣∣φ(z)− q log(z)−

p∑
k=1

ak
zk

∣∣∣∣∣ ≤
(

Q

p+ 1

)( 1
c− 1

)(1
c

)p

where c =
∣∣∣∣zr
∣∣∣∣, Q =

m∑
i=1
|qi|
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The proof for this lemma can be found in [13, 27].

Theorem 3.2 (Rank of different interactions in 2D). Let N charges, {qj}Nj=1, be uniformly located

at {zj}Nj=1 inside a box B1 of side length a. Let Q =
n∑
i=1
|qi|. The complex potential due to these

N charges, at M locations, {wi}Mi=1, inside another box B2 is given by φi =
N∑
j=1

log (wi − zj) qj. In

matrix-vector parlance, we have
~φ = A~q

where ~q ∈ RN×1, ~φ ∈ CM×1 and A ∈ CM×N with Aij = log (wi − zj). Then we claim that given
ε > 0, there exists a matrix Ã ∈ CM×N with rank at most p, where p ∈ O (R(N) log (R(N)Q/ε))
such that

∣∣∣φi − (Ãq)
i

∣∣∣ < ε, where

(i) R(N) = 1 if the boxes B1 and B2 are one box away.
(ii) R(N) = log(N) if the boxes B1 and B2 are vertex sharing neighbors.
(iii) R(N) =

√
N if the boxes B1 and B2 are edge sharing neighbors.

Proof. (i) Boxes B1 and B2 are one box away as shown in Figure 6. The proof follows immediately

B1 B2
a

a

Figure 6. Rank of Far field boxes

from Lemma 3.1. We construct a circle, say C, by enclosing the box B1 of radius a√
2
. The

distance between the center of the circle C and the box B2 is 3a
2 . Hence in the Lemma 3.1,

we have c = 3a/2
a/
√

2
= 3√

2
. Now if we set

Ãij = log (wi)−
p∑

k=1

zkj
kwki

we have (
Ãq
)
i

= q logwi −
n∑
j=1

p∑
k=1

qjz
k
j

kwki

From here we see that

Ãij =
[
log (wi)

−1
wi

−1
2w2

i

· · · −1
pwpi

]


1
zj
z2
j
...
zpj
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Hence, we note that the rank of Ã is p+ 1. Hence, from Lemma 3.1, we have∣∣∣(Aq)i − (Ãq)i∣∣∣ ≤ Q

p+ 1

( √
2

3−
√

2

)(√
2

3

)p

Now choosing p =
log

(√
2Q/

((
3−
√

2
)
ε
))

log
(
3/
√

2
) guarantees

∣∣∣(Aq)i − (Ãq)i∣∣∣ ≤ ε
So in this case, when the boxes are one box away, we have that the rank of the matrix Ã to
be p+ 1, where p+ 1 ∈ O (log (Q/ε)) .

(ii) In this part, we study the growth in the rank of the interaction matrix corresponding to vertex
sharing boxes as shown in Figure 7. The proof for this part relies on hierarchically subdividing

B1

B2

a

Figure 7. Rank of vertex sharing boxes

the box B1 as shown in Figure 8. B1,j denotes the L-shaped domain at the jth level and B1,j

partitions the box B1, i.e., B1,j ∩ B1,k = ∅ and B1 =
∞⋃
j=1

B1,j . Note that since we have N

particles uniformly distributed in the domain, there exists κ = log4 (N) + constant, beyond
which there will be no particles in the L-shaped box, i.e., there will be no particles in the
boxes B1,j for j > κ. Let Aj ∈ CM×N be the matrix whose columns corresponding to charges

B1,1

B1,2
B1,3

B2

Figure 8. Hierarchical subdivision of box B1
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lying inside B1,j are the respective columns of the matrix A and the columns corresponding
to the charges lying outside B1,j are zeroes.

We will make use of the multipole expansion lemma (Lemma 3.1) to prove the above claim.
To do that, we will construct a circle enclosing B1,1 as shown in Figure 9. The radius of

B1,1

B1\B1,1

B2

a

Figure 9. Rank of sub-boxes

the circle can be shown to be r = a
√

10
4 and the center to be at (a/4, a/4) (assuming the

box B1 = [0, a]2). The locations at which the potential is measured is bounded below by

|z| > 3a
√

2
4 (essentially the distance of the top right of box B1 from the center of the circle).

Hence, for the Multipole expansion lemma, we have c =
∣∣∣∣zr
∣∣∣∣ > 3√

5
. Hence, we obtain

∣∣∣(A1q − Ã1q
)
i

∣∣∣ ≤ ( Q

p+ 1

)( √
5

3−
√

5

)(√
5

3

)p

where Q =
m∑
i=1
|qi| and Ã1 ∈ CM×N is a matrix of rank p + 1 obtained from the multipole

expansion as in the previous proof (Note that p is independent of the box B1,j). Note that, as
with the matrix A1, the columns corresponding to the charges lying outside B1,1 are zeroes.

Now choosing p =


log4

(4Q
ε1

)
log4(3/

√
5)

 guarantees

∣∣∣(A1q − Ã1q
)
i

∣∣∣ < ε1

Now repeat the same for the box B1\B1,1, i.e., split the charges in B1\B1,1 as those in
the domain B1,2 and those outside the domain B1,2. Let A2 ∈ CM×N be the matrix that
corresponds to charges in the domain B1,2. By a similar argument as above, we have that the

matrix A2 can be approximated by a matrix Ã2 ∈ CM×N of rank 1 +


log4

(4Q
ε1

)
log4(3/

√
5)

 such that
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∣∣∣(A2q − Ã2q
)
i

∣∣∣ < ε1.
Repeating this till κ levels, we have the rank of the matrix Ã = Ã1 + Ã2 + · · · + Ãκ, where

Ãk, Ã ∈ CM×N , to be bounded above by

1 +


log4

(4Q
ε1

)
log4(3/

√
5)


κ. The matrix A is now

approximated by Ã = Ã1+Ã2+· · ·+Ãκ whose rank is bounded above

1 +


log4

(4Q
ε1

)
log4(3/

√
5)


κ

and the error is bounded above by κε1. This is because we have∣∣∣(Aq − Ãq)
i

∣∣∣ =
∣∣∣((A1 +A2 + · · ·+Aκ) q −

(
Ã1 + Ã2 + · · ·+ Ãκ

)
q
)
i

∣∣∣
≤
∣∣∣(A1q − Ã1q

)
i

∣∣∣+ ∣∣∣(A2q − Ã2q
)
i

∣∣∣+ · · ·+ ∣∣∣(Aκq − Ãκq)
i

∣∣∣
< κε1

Hence, to obtain Ã such that
∣∣∣φi − (Ãq)

i

∣∣∣ < ε, we need to pick ε1 = ε

κ
.

Hence, given ε > 0, there exists a matrix Ã with rank at most1 +


log4

(4Qκ
ε

)
log4(3/

√
5)


κ

such that
∣∣∣φi − (Ãq)

i

∣∣∣ < ε.

Hence, we have the rank in this case to be O
(

log (N) log
(
Q log (N)

ε

))
, since κ = log4 (N)+

constant.
(iii) In the final part, we study the growth in rank of edge sharing boxes as shown in Figure 10.

B1 B2

a

Figure 10. Rank of edge sharing boxes

The proof again relies on hierarchically subdividing the box B1 like the earlier proof for vertex
sharing interactions but the hierarchical subdivision is done in a different way as shown in Figure 11.
The box Bk,i denotes the ith box from the bottom at the kth level in the hierarchical subdivision,
where 1 ≤ k < ∞ and 1 ≤ i ≤ 2k. Note that Bk,i partitions the box B1 (i.e., Bk,r ∩ Bj,q is

non-empty iff k = j and r = q; B1 =
∞⋃
k=1

2k⋃
i=1

Bk,i). Note that the boxes beyond a certain level κ =

log4 (N)+ constant will no longer contain any charges (since we have assumed uniform distribution
of charges in the domain). Let Ak,i ∈ CM×N be the matrix whose columns corresponding to charges

10



B1,1

B1,2

B2,1

B2,2

B2,3

B2,4

Figure 11. Hierarchical subdivision of box B1

lying inside Bk,i are the respective columns of the matrix A and the columns corresponding to the
charges lying outside Bk,i are zeroes.

We will again rely on the multipole expansions (Lemma 3.1) to prove this claim. We construct
a circle, say Ck,j , enclosing the box Bk,j . The radius of the circle is r = a

2k
√

2
. The distance of

the box B2 from the center of the circle Ck,i (which is same as the center of the box Bk,i) is
3a

2k+1 .

Hence, we have c =
∣∣∣∣zr
∣∣∣∣ > 3a/2k+1

a/2k+1/2 = 3√
2
. Hence, we obtain

∣∣∣(Ak,jq − Ãk,jq)
i

∣∣∣ ≤ Q

p+ 1

( √
2

3−
√

2

)(√
2

3

)p

where Q =
m∑
i=1
|qi| and Ãk,j ∈ CM×N is a matrix of rank p+1 obtained from the multipole expansion

as in the proof of the first part. Note that, as with the matrix Ak,j , the columns corresponding to

the charges lying outside Bk,j are zeroes. Now choosing p =

 log (Q/ε1)
log

(
3/
√

2
)
 (Note that p doesn’t

depend on the box level or box number) guarantees∣∣∣(Ak,jq − Ãk,jq)
i

∣∣∣ < ε1

Repeating the same for all boxes till level κ, we have that the rank of the matrix Ã =
κ∑
k=1

2k∑
j=1

Ãk,j ,

where Ãk,j , Ã ∈ CM×N , to be bounded above by

κ∑
k=1

2k
1 +

 log (Q/ε1)
log

(
3/
√

2
)

 =

(
2κ+1 − 2

)1 +

 log (Q/ε1)
log

(
3/
√

2
)

 ∈ O (√N log (Q/ε1)

)
and the error is bounded above by

κ∑
k=1

2kε1 =
(
2κ+1 − 2

)
ε1 < 2

√
Nε1

Hence, to obtain Ã such that ∣∣∣φi − (Ãq)
i

∣∣∣ < ε

11



we need to pick ε1 = ε

2
√
N

.

Hence, given ε > 0, there exists a matrix Ã with rank p ∈ O
(√

N log
(√

NQ/ε
))

such that∣∣∣φi − (Ãq)
i

∣∣∣ < ε
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Figure 12. Numerical Rank with ε = 10−14 of different interactions vs size of the
off-diagonal block (n)

Figure 12 shows the numerical rank of the matrix corresponding to the three different interactions
for a wide range of kernels arising from radial basis function interpolation and integral equations. It
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is evident from Figure 12 that the numerical rank remains constant for the far-field interaction, i.e.,
the numerical rank of the matrix K(IX , IF ). The numerical rank remains "almost" constant for the
vertex sharing interaction, i.e., the numerical rank of the matrix K(IX , IV ), whereas the numerical
rank increases with n (roughly as

√
N) for the edge sharing interaction, i.e., the numerical rank

of the matrix K(IX , IE). The theoretical bounds from the Theorem 3.2 is in agreement with the
numerical experiments performed and reported in Figure 12. We leverage these results to develop
our new hierarchical low-rank structure, HODLR2D.

4. HODLR2D

This section provides a detailed description of HODLR2D, the new hierarchical low-rank matrix
structure. In the previous section (Section 3), we provided numerical illustrations and a proof for
the fact that the numerical rank of the matrix corresponding to edge sharing interactions grew

as O
(
√
N log

(√
NQ

ε

))
, where N is the size of the off-diagonal submatrix. This immediately

implies that the HODLR [5] based matrix-vector products will no longer scale linearly.
Further, in the previous section (Section 3), we provided numerical illustrations and a proof for

the fact that the numerical rank of the matrix corresponding to vertex sharing interactions grew
as O

(
log(N) log

( log (log(N)Q)
ε

))
, where N is the corresponding matrix size. We leverage this

slow growth in the numerical rank of the matrix corresponding to vertex sharing interactions to
construct the new HODLR2D structure.

We subdivide the domain using a quadtree. We begin by subdividing the square box B (the
entire domain) into 4 smaller square boxes and number them as in Figure 13 and continue this till
κ levels.

0

(a) Level 0

0 1

3 2

(b) Level 1

0 1

3 2

4 5

7 6

12 13

15 14

8 9

11 10

(c) Level 2

Figure 13. Subdivision of the box B ∈ R2 at different levels and the numbering
convention used

For each smaller box, the following definitions are intended to help us describe algorithms for
HODLR2D matrices. Let C denote the cluster corresponding to the node i at level l, N (l)

i as defined
in Section 2.
Definition 4.1. Two clusters in a level are said to be edge sharing clusters, if their respective
boxes share an edge. Then, EC for a cluster C be a set containing the clusters that share an edge
with C. Note that |EC | ≤ 4.
Definition 4.2. Two clusters in a level are said to be vertex sharing clusters if their respective
boxes share a vertex. Then, VC for a cluster C be a set containing clusters that share a vertex with
C. Note that |VC | ≤ 4.
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Definition 4.3. Two clusters in a level are said to be well separated clusters, if their respective
boxes do not share boundary. Then, WC for a cluster C be a set containing clusters that are well
separated from C.

For a cluster C corresponding to the node i at level l, N (l)
i , we classify other clusters at the

same level using the three disjoint sets, namely, the set of Edge sharers (EC), the set of Vertex
sharers (VC) and the set of Well separated clusters (WC). From the above definitions, the cluster
C(0)

0 corresponding to the root node N (0)
0 is given as,

(4.1) C(0)
0 = C ∪ EC ∪ VC ∪WC

Figure 14 illustrates different clusters for a cluster (coloured red) at level 2.

Cluster considered

Well separated clusters

Edge sharing clusters

Vertex sharing clusters

Figure 14. Types of clusters at level 2 for a cluster considered

Definition 4.4. Clan set CC - For a cluster C, clan set contains the siblings(C) and the children
of clusters in parents set of edge sharers (i.e., Eparent(C)).

The clan set CC keeps track of the clusters that are unaccounted for in previous levels (i.e., the
children of the parent’s edge-sharing clusters and their siblings). In HODLR2D, we use the above
defined four sets (i.e., EC , VC , WC and CC) for each node in the hierarchical tree.

Remark 4.1. Admissibility criteria for HODLR2D - Two clusters are admissible, if their re-
spective boxes in the quadtree don’t share an edge.

As with any hierarchical low-rank representations, the Interaction list of a cluster C (IC) at a
level has the clusters that are admissible (i.e., their interaction can be represented as low-rank) and
that are not accounted for at previous level.

Definition 4.5. For a cluster C, IC denotes a set defined by Equation (4.2).

(4.2) IC = (CC ∩ VC) ∪ (CC ∩WC)

Then, the Interaction list (IC) of the cluster C, is the list formed from the set IC.

With above definitions, given a cluster C at level l in the hierarchical tree, its interaction list is
shown in Figure 15.
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(A) Level 0 (B) Level 1 (C) Level 2

Self interaction; Edge sharing clusters; Clusters in IC ;

Compressed clusters at parent level;

Figure 15. Interaction relation of a cluster with other clusters for different levels.

4.1. HODLR2D Algorithm. Algorithm 1 provides the initialization routine of the HODLR2D
based on quadtree. We start with the subdivision of the box corresponding to each the cluster into
four geometrically disjoint boxes and number the resulting smaller boxes as in Figure 13. The Box
B ⊂ R2 is subdivided using a κ level balanced quadtree such that all boxes at the leaf level have
at most Nmax particles. Then for all the nodes in the Hierarchical tree, we form the set of Edge
sharers (EC) and the Interaction list (IC). At all levels, we compress and represent the matrices
corresponding to the elements in the IC using ACA. The resulting low-rank approximation of the
matrix at different levels using HODLR2D is as in Figure 16.
Remark 4.2. In HODLR2D, the edge sharing clusters at the leaf level are represented as full-rank
matrix blocks even though they are numerically low-rank.

(a) level = 1 (b) level = 2
Full-rank Matrix (Self Interaction)

Full-rank Matrix (Edge sharing neighbors)

Low-rank Matrix block (represented as UV T )

Figure 16. HODLR2D matrix at different levels.
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Upon constructing the HODLR2D representation using Algorithm 1, we accelerate the matrix-
vector product using Algorithm 2. In Algorithm 2, lines 4 and 7 represent a dense matrix-vector
operation corresponding to self-interaction and interaction between edge-sharing clusters at the leaf
level, respectively. Moreover, line 15 performs a low-rank matrix-vector product for all nodes in the
quadtree. For a node in the hierarchical tree of HODLR2D at any level, the maximum size of the
interaction list is 15. At the leaf level, a node can have a maximum of five dense matrices (including
the self-interaction). Comparing this with the H-matrix described in Section 2, the maximum size
of the interaction list is 27, and at the leaf level, a node can have a maximum of nine dense matrices.
Furthermore, another difference is that the low-rank approximation for HODLR2D starts at nodes
in level 1, whereas for H-matrix, it starts at level 2.

Algorithm 1 HODLR2D
1: procedure InitializeHODLR2D(Nmax,ε)
2: . Nmax is the maximum number of particles at leaf level; ε is the tolerance for ACA
3: Consider a balanced quadtree with κ levels such that each node at the leaf level contains

not more than Nmax particles.
4: For each nodes in quadtree from root to leaf compute Interaction list IC and set of Edge

sharers EC using definitions 4.5 and 4.1 respectively.
5: For each nodes at leaf level κ, compute the dense matrix corresponding to the self interaction

and the dense matrices corresponding to edge sharing list.
6: For each level l ∈ {κ, κ− 1, . . . , 1}, and for all nodes in a particular level, compute the low

rank approximation UV T using ACA with prescribed tolerance ε corresponding to the clusters
in Interaction list IC .

7: end procedure

Algorithm 2 HODLR2D Matrix Vector Product Kψ = b

1: procedure MatVec(ψ)
2: for i=1:4κ do . Full-rank Mat-Vec product
3: X ← Index set of C(κ)

i
4: b(X) = b(X) +K(X,X)× ψ(X)
5: for j in EC do
6: Y ← Index set of C(κ)

j

7: b(X) = b(X) +K(X,Y )× ψ(Y )
8: end for
9: end for

10: for l = 1 : κ do . Low-rank Mat-Vec product
11: for i=1:4κ do
12: X ← Index set of C(l)

i
13: for j in IC do
14: Y ← Index set of C(l)

j

15: b(X) = b(X) + U
(l)
ij ×

(
V

(l)
ij

T
× ψ(Y )

)
16: end for
17: end for
18: end for
19: return b
20: end procedure
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The total storage cost, initialization time and computational cost to perform matrix-vector prod-
ucts scale as O (pNκ), where p is the maximum rank of vertex sharing blocks and κ is the number
of levels in the balanced quadtree. From Theorem 3.2, we have p = O (log (N) log (log (N) /ε)) and
κ ∈ O (log (N)) for a uniform distribution of particles. Hence, the total storage cost and compu-
tational cost to perform matrix-vector products scale as O

(
N log2 (N) log (log (N) /ε)

)
. Note that

the algorithm can also be adapted to a non-balanced or adaptive quadtree with little modifications.
We work on a balanced quadtree for pedagogical reasons.

5. Numerical Experiments

This section demonstrates the performance of the HODLR2D format and compares it with
HODLR andH-matrix formats. To being with, we compare the scaling of matrix-vector products of
HODLR2D matrix with HODLR and H-matrix. We then accelerate GMRES based iterative solver
for dense linear systems using HODLR2D, HOLDR andH-matrices. The first application involves a
dense linear system arising out of radial basis function interpolation. The next application involves
a dense linear system arising out the discretization of an integral equation. In both examples, we
use HODLR, HODLR2D and H-matrix formats to approximate the underlying dense matrix and
use it to accelerate the matrix-vector product in GMRES. We use ACA to perform the low-rank
decomposition in all three hierarchical representations. The considered example problems are as
generic as possible. Throughout our experiments, the following parameters remain unchanged.

• Tolerance for computing low-rank approximation through ACA to 10−12

• Stopping criteria for GMRES is residual less than 10−10 with restart after each iterations.
• Number of levels in the hierarchical tree is decided such that the number of charges at leaf
level does not exceed 500.

We tabulate the results of numerical experiments with the following notations.

N Number of Unknowns/Degrees of Freedom
Nmax Number of particles at the leaf level in the tree; kept as 500 throughout the article.
TI Time to initialize the hierarchical tree (in seconds)
TG Time taken by GMRES to converge (in seconds)
CR Compression Ratio, which denotes the ratio of number of FP64 values in the hierarchical tree to N2

rm Maximum rank across the hierarchical tree
εr Relative error in the solution
ε Tolerance for the ACA; kept as 10−12 throughout the article.

5.1. HODLR2D matrix-vector product. We first demonstrate the space and computational
performance of HODLR2D in comparison with H-matrix and HODLR using the kernel defined
in Equation (5.1). Let us now consider N points {xi}Ni=0 in the Box B ⊂ [−1, 1]2 (

√
N ×

√
N

Chebyshev grid on [−1, 1]2). The matrix K ∈ RN×N due to the interaction of points xi defined by
Equation (5.1).

(5.1) Kij =
{ 1
rij

i 6= j

0 i = j

rij = ||xi − xj ||2,where, xi, xj ∈ B
Table 1 shows the maximum rank across the hierarchical tree, the memory required and the initial-
ization time of HODLR2D, H-matrix and HODLR for different system size N . It is evident from
the Table 1, that the maximum rank, memory required and the initialization time for HODLR2D
is way lesser than HODLR. Also, the memroy required and initialization time for HODLR2D is
comparable with H-matrix.
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To demonstrate the computational performance of HODLR2D, H-matrix and HODLR, we use
ten different input vectors ψ ∈ RN×1. We obtain the right-hand side vector b ∈ RN×1 using explicit
matrix-vector product Kψ = b. Let K̂ represent the hierarchical low-rank representation of K
and let the computed right hand side using the algorithm be b̂ = K̂ψ. Table 2 compares the
computational performance of HODLR2D, H-matrix and HODLR using the average time taken for
matrix-vector product on the ten different pair ψ ∈ RN×1 and the error is the maximum relative

error εr, i.e., εr = nmax
i=1

∣∣∣b̂− b∣∣∣
i

|b|i
. The error reported in Table 2 is the maximum error over the ten

right hand sides. All the computations in this section were performed using only a single core of
Intel Xeon Gold 6248, 20-core, 2.5 GHz processor with memory of 192GB.

N rm Memory used (in GB) TI
HODLR2D H-matrix HODLR HODLR2D H-matrix HODLR HODLR2D H-matrix HODLR

10000 113 56 515 0.23 0.26 0.25 2.4628 3.17731 4.77726
22500 127 60 797 0.69 0.78 0.88 8.02592 9.71345 27.9686
40000 138 59 1051 1.46 1.65 2.12 19.8064 23.3388 88.4981
62500 145 63 1308 2.53 2.87 4.14 31.5305 35.9836 209.583
90000 159 61 1499 3.99 4.53 7.26 57.6382 76.5599 463.171
160000 165 62 2028 7.96 9.04 17.06 125.052 168.782 1404.71
250000 180 62 2596 13.52 15.31 33.57 186.154 222.405 3501.93

Table 1. Space complexity of HODLR2D, H-matrix and HODLR for matrix K
whose elements are defined by Equation (5.1)

N Matrix-Vector product time (in s) εr

HODLR2D H-matrix HODLR HODLR2D H-matrix HODLR
10000 0.0284 0.0307 0.0211 1.5×10−13 1×10−13 3.46×10−12

22500 0.0903 0.1015 0.0723 1.75×10−12 8.7×10−13 1.181×10−11

40000 0.1979 0.228 0.1744 7.23×10−12 6.49×10−12 2.232×10−11

62500 0.3208 0.374 0.3378 5.16×10−12 5.01×10−12 1.751×10−10

90000 0.557 0.6824 0.6264 3.88×10−12 3.02×10−12 9.09×10−10

160000 1.2835 1.6359 1.5465 2.049×10−11 2.027×10−11 4.03×10−10

250000 1.9681 2.4578 3.055 2.588×10−11 2.132×10−11 2.037×10−9

Table 2. Computational performance of HODLR2D, H-matrix and HODLR for
matrix K whose elements are defined by Equation (5.1)
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Figure 17. Performance comparison of HODLR2D, H-matrix and HODLR for
matrix K whose elements are defined by Equation (5.1)

5.2. HODLR2D accelerated iterative solver for radial basis function interpolation. All
the numerical experiments in this and the next subsection are performed without parallelization
on a laptop with a 2.5GHz Intel Core i5 processor and 16GB RAM.

Let the location of the particles be a
√
N ×

√
N Chebyshev grid in 2D over the domain [−1, 1]2.

The dense linear system is generated using Equation (5.2).

(5.2) βλi +
N∑
j=1
j 6=i

φ(||xi − xj ||2)λj = fi

φ(r) : R → R, where r is the Euclidean norm between two locations. The matrix form of Equa-
tion (5.2) is given below:

(5.3) Aλ = f

Two popularly used radial basis functions are considered.

(5.4) Kernel 1: φ1(r) =


loge r
loge a

r ≥ a
r loge r−1
a loge a−1 r < a

(5.5) Kernel 2: φ2(r) =
{
a
r r ≥ a
r
a r < a

With the choice of parameters a = 0.001 and β = N , the resulting linear system corresponding
to both the radial basis functions is well-conditioned. To verify the accuracy of the solution, a
random vector λ is used to produce the right-hand side vector f in Equation (5.3) by explicitly
performing a matrix-vector product. We use the generated f as our right-hand side for the iterative

solver, and now we seek λ̂. The relative error (εr), measured in 2-norm, i.e., ||λ− λ̂||2
||λ||2

is of the

order of 10−10 in all the cases. The performance of different hierarchical formats with Kernel 1 is
reported in Tables 3 and 4 and that for Kernel 2 in Tables 5 and 6. The scaling results are shown
in Figures 18, 19 and 20.
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N rm TI CR
HODLR2D H-matrix HODLR HODLR2D H-matrix HODLR HODLR2D H-matrix HODLR

10000 42 24 451 1.6 2 4.8 0.154 0.182 0.301
22500 46 24 688 7.6 7.4 25 0.087 0.105 0.221
40000 49 24 1080 10.7 15.2 83.5 0.057 0.069 0.18
62500 54 25 1385 16.9 24.1 206.5 0.04 0.048 0.15
90000 54 24 1710 33.8 50.1 436.5 0.03 0.037 0.129
160000 56 24 – 81.4 129 – 0.019 0.023 –
250000 59 25 – 105.4 231.8 – 0.013 0.016 –

Table 3. Space complexity of HODLR2D, H-matrix and HODLR for φ1(r)

N
Matrix-Vector Product accelerated using
HODLR2D H-matrix HODLR

10000 0.231 0.288 0.797
22500 0.556 0.852 3.009
40000 1.198 1.716 7.487
62500 1.961 2.559 16.708
90000 4.32 10.028 33.719
160000 8.643 12.451 –
250000 12.2752 28.44 –

Table 4. Time taken for the iterative solver TG to solve Equation (5.2) for φ1(r)

N rm TI CR
HODLR2D H-matrix HODLR HODLR2D H-matrix HODLR HODLR2D H-matrix HODLR

10000 78 36 591 1.9 2.2 11.3 0.218 0.239 0.463
22500 88 39 1007 6.4 8.2 61.8 0.128 0.142 0.347
40000 94 42 1410 13.8 16.1 214.8 0.086 0.095 0.287
62500 98 42 1829 21 24.2 568.4 0.061 0.068 0.246
90000 107 42 2250 48.8 52.4 1244.4 0.047 0.052 0.213
160000 110 44 – 121.4 141.9 – 0.03 0.033 –
250000 118 45 – 147.6 178.9 – 0.021 0.023 –

Table 5. Space complexity of HODLR2D, H-matrix and HODLR for φ2(r)

N
Matrix-Vector Product accelerated using
HODLR2D H-matrix HODLR

10000 0.142 0.168 0.531
22500 0.36 0.515 2.318
40000 0.896 1.129 8.158
62500 1.465 1.799 16.614
90000 2.221 2.769 27.839
160000 11.336 8.195 –
250000 8.93127 13.06 –

Table 6. Time taken for the iterative solver TG to solve Equation (5.2) for φ2(r)
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Figure 18. rm for HODLR2D, H-matrix and HODLR for both radial basis func-
tions
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Figure 19. Storage for HODLR2D, H-matrix and HODLR for both radial basis
functions
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Figure 20. Time taken for the iterative solver using HODLR2D, H-matrix and
HODLR matrix-vector products for both radial basis functions
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5.3. HODLR2D accelerated iterative solver for integral equations in 2D. We now demon-
strate the applicability of HODLR2D in solving the linear system arising out of discretization of
Fredholm integral equation of the second kind.

Consider the integral equation in Equation (5.6)

(5.6) ψ(x)− iκ2q(x)
4

∫
Ω
H

(1)
0 (κ ‖x− y‖2)ψ(y)dy = −κ2q(x) exp (i0.5x1)

where x, y ∈ R2, x1 is the first coordinate of x, κ = 0.5, q(x) = 1.5 exp
(
−0.25 ‖x‖22

)
and Ω =

[−1, 1]2.
Discretisation of Equation (5.6) is done as in [28, 29] and this results in a linear system of the

form

(5.7) A~ψ = ~f

where ~ψ is a vector of values of ψ(x) at the grid points located in the leaf boxes of the quadtree as
done in [28, 29].

N rm TI CR
HODLR2D H-matrix HODLR HODLR2D H-matrix HODLR HODLR2D H-matrix HODLR

1600 47 – 221 112.1 132.8 101.7 0.807 1 0.67
4096 42 17 290 333.3 442.3 420.1 0.344 0.452 0.388
6400 51 17 429 725.6 986.4 973.3 0.318 0.429 0.369
16384 44 16 558 1967 2620.9 3560.1 0.118 0.158 0.198
25600 53 16 830 4044.9 5564.6 8269.4 0.104 0.143 0.188
65536 47 15 1067 10312 13808.7 28797.6 0.037 0.049 0.097
102400 55 15 – 20237.4 27950 – 0.031 0.043 –

Table 7. Space Complexity of HODLR2D, H-matrix and HODLR for Equa-
tion (5.7)

As done in [28, 29], we hierarchically subdivide the domain into smaller domains using a level
restricted quadtree and represent the unknown function ~ψ(x) as polynomials on each of the leaf
boxes of the level restricted quadtree. For our numerical experiments, we varied the number of levels
in the level restricted quadtree and the number of points in the leaf level of the level restricted
quadtree. It is to be noted that the level restricted quadtree mentioned here is in the context of
discretizing the domain. The HODLR2D hierarchical low-rank structure still rests on the balanced
quadtree as discussed in the previous section.

N TG (in s) Relative Error
HODLR2D H-matrix HODLR HODLR2D H-matrix HODLR

1600 0.184 0.269 0.421 0.567×10−10 0.613×10−10 0.616×10−10

4096 0.429 0.76 1.91 0.634×10−10 0.608×10−10 0.62×10−10

6400 0.994 1.381 3.649 0.613×10−10 0.636×10−10 0.632×10−10

16384 2.38 3.224 14.678 0.758×10−10 0.604×10−10 0.674 ×10−10

25600 5.217 7.146 35.775 0.676×10−10 0.689×10−10 0.123×10−10

65536 11.612 15.617 176.085 1.25×10−10 1.11×10−10 0.203×10−10

102400 24.7659 33.96 – 1.28×10−10 1.4 ×10−10 –

Table 8. Performance of HODLR2D, H-matrix and HODLR for Equation (5.7)
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Since the right-hand side vector is well defined for this example, we use GMRES with stopping
criteria as residual being 10−10 to get an approximate solution vector. The approximate solution
vector is again used to generate the right-hand side by explicitly constructing the dense matrix and
performing a matrix-vector product. The error reported in Table 8 is the relative forward error in
the solution vector ψ.
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Figure 21. Storage for HODLR2D, H-matrix and HODLR for Equation (5.7)

5.4. Inferences. The key observation from the Tables 3 through 8 is that the maximum rank
reported remains almost constant in the case of H-matrix and HODLR2D, whereas for HODLR, it
increases as a function of the system size. From Figures 17 through 21, it is clear that HODLR2D
scales almost linearly in terms of both storage and computational complexity. In all examples
considered, HODLR2D performs significantly better in space and computational complexity than
HODLR and provides an attractive alternative to H-matrix.

6. Parallel HODLR2D

This section will examine the parallel scalability of HODLR2D initialization (Algorithm 1) and
the matrix-vector product (Algorithm 2) on distributed memory systems. The existing literature
on the parallel scalability of the rank structured matrices (both flat and hierarchical formats) is
extensive, and we direct our readers to some seminal work[30, 31, 32, 33]. An important factor in the
parallel scalability of an algorithm is how efficiently we can divide the load across the processes. In
our case, we perform this by estimating the load of each node in the quadtree using Equation (6.1).

(6.1) Load =


n2 + (|IC | × n) +

|IC |∑
i=1

mi + n×

|EC |∑
j=1

kj

 , if leaf node

|IC | × n+
|IC |∑
i=1

mi, if non-leaf node

where n denotes the number of points in the cluster and mi denotes number of points in ith cluster
in IC and finally kj denotes number of points in jth cluster in EC . Upon estimating the load for
each node, we schedule the nodes across the processors by prioritizing the node with largest load
first and by maintaining the load per processor almost constant. It is important to note that the
scheduling is done apriori and not dynamically, the reason being it suits well for hybrid (multi-core
+ distributed) architectures. The initialization for HODLR2D does not require communication
between the MPI processes.
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Number of MPI processes System size(N)
10000 22500 40000 62500 90000 160000 250000

2 0.99 3.14 7.29 12.39 21.11 45.84 79.61
4 0.49 1.55 3.58 6.13 10.49 22.97 39.67
6 0.38 0.98 2.36 3.79 6.96 15.54 28.09
8 0.27 0.94 1.95 3.43 6.49 14.03 23.04
10 0.23 0.79 1.76 2.92 4.98 11.67 19.89
20 0.16 0.47 0.96 2.00 3.24 5.99 12.05
60 0.13 0.36 0.77 1.22 2.11 3.65 7.13
80 0.11 0.30 0.63 0.94 1.76 3.72 6.85

Table 9. HODLR2D Initialization time (in seconds) for different system sizes (N)
by varying number of processors

Number of MPI System size(N)
processes 10000 22500 40000 62500 90000 160000 250000

2 0.016 0.048 0.106 0.172 0.298 0.671 1.034
4 0.008 0.025 0.056 0.091 0.154 0.346 0.530
6 0.007 0.021 0.043 0.076 0.110 0.253 0.383
8 0.005 0.015 0.030 0.049 0.087 0.197 0.290
10 0.005 0.014 0.028 0.046 0.073 0.159 0.243
20 0.004 0.009 0.021 0.031 0.048 0.105 0.162
60 0.016 0.016 0.015 0.015 0.032 0.050 0.086
80 0.012 0.011 0.015 0.019 0.017 0.032 0.051

Table 10. HODLR2D Mat-Vec time (in seconds) for different system sizes (N) by
varying number of processors
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Figure 22. Speedup of parallel HODLR2D vs number of MPI processors

Parallel HODLR2D is implemented using OpenMPI, and we repeat the same experiments in
Section 5.1, which serves as a baseline serial version of HODLR2D. We tabulate (Table 9 and
Table 10) the time to initialize and perform matrix-vector products using parallel HODLR2D by
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varying the number of MPI processes and system size. Figure 22 shows the speedup gained by
parallel HODLR2D for particular system sizes.

7. Conclusion

We have presented a new hierarchical low-rank representation, HODLR2D, for a class of dense
matrices arising out of two dimensional problems. We also provided theorems guaranteeing the
growth of rank for different interactions in 2D. These theorems form the basis of the HODLR2D
algorithm. The key observation in HODLR2D is that the ranks of matrices corresponding to vertex
sharing boxes are almost constant. We provide numerical benchmarks for our new HODLR2D
structure by comparing the performance of HODLR2D with HODLR and H-matrix with standard
admissibility criterion. These benchmarks include time taken for matrix-vector products and to
solve linear systems using GMRES based iterative solver. We also observe that both the memory
requirement and time taken for matrix-vector products for HODLR2D matrix is significantly better
than HODLR matrix. Further, the HODLR2D matrix structure provides an attractive alternative
to H-matrix. We also examine the parallel scalability of HODLR2D. We are also exploring on
constructing a direct solver for this new HODLR2D structure and are also working on extending
this to three dimensional problems.
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