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Abstract. This paper is dedicated to the stability analysis of the optimal solutions of a control
problem associated with a semilinear elliptic equation. The linear differential operator of the equation
is neither monotone nor coercive due to the presence of a convection term. The control appears only
linearly, or may not even appear explicitly in the objective functional. Under new assumptions,
we prove Lipschitz stability of the optimal controls and associated states with respect to not only
perturbations in the equation and the objective functional but also the Tikhonov regularization
parameter.
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1. Introduction. In this paper, we study the optimal control problem

(P)  min J(u) ::/QL(:E,yu(x),u(as))dx,

u€EUqq

where Uyq = {u € L2(Q) 1 u, <u(z) <up for aa. x€Q}, —oco < wu, <up < +oo. Here,
Y, denotes the solution of the following semilinear elliptic equation:
—div(A(z)Vy) +b(z) - Vy + f(z,y) =u in Q,
(1.1)
y=0 on I.

Assumptions on the data of the control problem (P) will be given below. The
aim of this paper is to prove stability results for the local minimizers of (P) with
respect to perturbations in the data of the control problem. There are quite a few
previous papers devoted to this issue; see, for instance, [14], [15], [16], [17]. In all
of these cases, the second derivative of L with respect to u is bounded from below
by a positive constant. This is the case where the Tikhonov term is involved in
the objective functional. Under this condition and assuming sufficient second order
optimality conditions (SSOC), the Lipschitz stability of the optimal controls is proved.
Here, we assume that u appears linearly in L(x,y,u) or does not even appear at all.
Therefore, the previous results do not apply. In this case, under (SSOC) for optimality,
Lipschitz stability of the optimal states can be proved; see [7]. In section 4, we obtain
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analogous estimates for the optimal states replacing (SSOC) by a weaker condition;
see (3.13). It is weaker because (SSOC) implies our assumption, but they are not
equivalent. In addition, our assumption implies strict local optimality of the control;
see Theorem 3.5.

In order to prove stability of the optimal controls when they are not explicitly
involved in the objective functional, besides (SSOC) an additional structural hypoth-
esis is usually assumed. This situation was studied in [21], where the authors proved
Lipschitz stability of the control with respect to linear perturbations simultaneously
appearing in the state equation and the objective functional. The drawback is that
the additional hypothesis is satisfied only by bang-bang controls. Here, we obtain
analogous estimates changing the mentioned assumption by a weaker one, see (5.2).
Though this second assumption (5.2) is stronger than (3.13), it can be satisfied by op-
timal controls independently if they are bang-bang or not. Moreover our assumption
(5.2) is satisfied if the (SSOC) and the additional hypothesis are assumed.

Finally, under the assumption (5.2), Lipschitz stability is established for the op-
timal states with respect to simultaneous perturbations in the equations and in the
objective functional with respect to the state and the control, and with respect to
the Tikhonov regularization parameter. The stability with respect to the Tikhonov
regularization has been studied in [7] and [20]. In [7], Holder stability of the states
is proved. In [20], stability of the control is proved under (SSOC) and the structural
assumption. The reader is also referred to [23], [24], [25] for the case of linear partial
differential equations.

In this paper, besides providing some new sufficient conditions for Lipschitz sta-
bility for the optimal control and associated states, we deal with a semilinear elliptic
state equation that is neither monotone nor coercive. Though some crucial results for
this state equation are taken from [6], some estimates have been proved that are not
available in the literature.

The plan of this paper is as follows. In section 2, we analyze the state equation.
First, we establish some properties of the linear differential operator of the state
equation, and the full semilinear equation is analyzed in the second part of the section.
The control problem (P) is studied in section 3. We prove that our assumption (3.13)
is a sufficient condition for strong local optimality. Section 4 is dedicated to the proof
of Lipschitz stability of the optimal states. In section 5 we introduce the stronger
condition (5.2) replacing (3.13) that allows us to establish the Lipschitz stability of
the optimal controls. Finally, in section 6, the Tikhonov regularization is considered.

2. Analysis of the partial differential equation. In this section we analyze
the equation (1.1). We split the section in two parts. In the first part, we establish
the results concerning the linear operator of the elliptic equation. In the second
subsection, the nonlinear equation will be studied.

2.1. Analysis of the linear differential operator. We define the differential
operator A: H} (2) — H=1(Q) by
Ay = —div(A(z)Vy) + b(z) - Vy.
The following assumptions are supposed to hold throughout the paper. They ensure
that the mathematical objects under consideration are well defined.

Assumption 2.1. The following statements are fulfilled.

(i) The set Q C R™, n = 2,3, is a bounded domain with a Lipschitz boundary
I'. The mapping A: Q — R™*™ is measurable and bounded in §2, and there
exists A4 > 0 such that €T A(z)€ > A4|€|? for a.e. £ €Q and all £ € R™.
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(ii) We assume that b € LP(Q; R™) with p >3 if n =3 and p > 2 arbitrary if n = 2.

Under these assumptions it is known that A : H}(Q) — H~1(Q) is an isomor-
phism despite the fact that the operator is neither coercive nor monotone; see [6], [13,
Theorem 8.3], [22]. The following identity is satisfied

<.Ay,z>:/AVy'Vzdqu/eryzdx Yy, z € H} (Q),
Q Q

where (-,-) denotes the duality pairing between H~1(Q) and H}(Q).
Along this paper we will set

1

Wl = ( /Q |Vy<x>|2dx) .

The next lemma states some properties of A that will be used later.

LEMMA 2.2. The following statements are fulfilled:
(i) There exists a constant Ca , p such that Garding’s inequality holds

Ay
(2.1) (Ay,y) > T”yH?{é(Q) — Caanllyllizy Ve Hi(Q).

(i) Let a € L>(2) be a nonnegative function and h€ H=1(Q). If y € H} () sat-
isfies Ay+ay = h and h is a nonnegative linear form, then y is a nonnegative
function as well.

(ili) Let a be as above and h € L"(Q2) with v > %. Then, the solution y of the
above equation belongs to HE () N C(Q). Moreover, there exists a constant
C, independent of a and h such that

(2.2) Hy”Hg(Q) +lylle@ < Crllbll L)

Proof. The proof of (2.1) can be found in [6]; see also [13, Lemma 8.4]. For the
proof of (ii) the reader is referred again to [6] and [13, Theorem 8.1]. The HZ(Q2)NC(Q)
regularity of y for functions h € L™ () is well known; see [13, Lemma 8.31]. It remains
to prove the estimates (2.2) for a constant C, independent of h and a. Let us denote
by Ya.n € Hi (2)NC(Q) the solution of Ay + ay =h. With yo ;, we denote the solution
corresponding to a =0. Then, the estimate ||yo,n/|c(q) < Cllhl - () is well known for
a constant C depending on r, but independent of h. Let us write h =hT —h~. From
(ii) we know that y, ,+ > 0 and y, ,- > 0. Now, since A(Yq n+ — Yo,n+) + a(Yan+ —
Yo.n+) = —ayo p+, again by item (i), we obtain 0 <y, 5+ < Yo+ and consequently
[Ya,n+ lo@) < 1Yot oy Analogously, by the same argument 0 < y, 5~ < yo,5- and
consequently [[yon-lleqy < o~ oy, Therefore,

1Ya,nllc@) < Yantllo@) + 1Wan-lle@ < von+lle@) + 1Yo,n-le@

<C (I Nz + 107 @) < 2C1AlLre;
where C' is independent of a and h. To prove the corresponding estimate in Hg (£2)
we use Garding’s inequality (2.1) and the above estimate:
Ay
4
< (Ao} + [ @ o+ Cagolvonliaco
Q

||ya,h||§13(n) < (AYa,hsYa,n) + CAA,bHya,h”sz(Q)
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r—1
I3

:/ hya,n dx"‘CAA,b”ymh
Q

<20 (117" +20C 410 ) 113 0,

22 <1217 1Pl @ lyanllc@) + CanslQllyanllE

where || denotes the Lebesgue measure of Q. Since the above constants are inde-

pendent of a and h, the inequality completes the proof of (2.2). 0
Now, we consider the adjoint operator A* : H}(Q) — H~1(Q) of A. Since A is an
isomorphism, A* is also an isomorphism. It is obvious that A*p = —div(AT V) —

div(eb). The operator A* satisfies the same properties established in Lemma 2.2.
Indeed, the Garding’s inequality is a consequence of (2.1) and the identity (A*p, ) =
(Ap, ). The proof of the estimate (2.2) is the same for the operator A*. We only
prove the statement (ii). Let h € H~1(Q) be a nonnegative linear form. This means
that (h,y) > 0 for every nonnegative function y € H}(Q). Let ¢ € H}(Q) satisfy
A*¢ + ap = h. Now, given a nonnegative function w € L*(Q) we take y € H}(Q)
satisfying Ay + ay = w. By Lemma 2.2(ii) we have that y > 0. Then, we obtain

/Qw@div = (Ay +ay, ) = (A*p +ap,y) = (h,y) > 0.

Since w is an arbitrary nonnegative function of L2(£2), this inequality yields ¢ > 0.
We finish this subsection by proving an L?(2) estimate.

LEMMA 2.3. Assume that s € [1,-25), s' is its conjugate, and let a € L>(S2) be
a nonnegative function. Then, there exists a constant Cs independent of a such that

llynllLs ) < Collhl L1 (o) —1 1
2.3 Yhe H-Y(Q)NLY(Q),
23) {|mm®s®wm@ @NLY

where yp, and @y, satisfy the equations Ayp+ayn, = h and A*pp+apn, = h, respectively,
and Cy 1is given by (2.2) with r =s'.

Proof. We prove the estimate (2.3) for ¢p, and n = 3, the proof being identical
for y, and analogous for n = 2 with minor modifications. First we observe that
HYQ) c L5(Q) C L3(Q), hence ¢, € L5(Q). As a consequence we obtain that
lon|*~tsign(en) € L# (Q). Moreover, s < 3 implies that s’ > 3. According to Lemma
2.2(iii), the solution of Ay+ay = |pn|*~tsign(¢s) belongs to Ha (Q2)NC(2) and satisfies
Iylle@y < Colllonl* tsign(en) Q) = CS/Hcth‘;(lQ), where C, is independent of a
and h. Using these facts we infer

lenllzs o) :/Q [pn|® dz = (Ay + ay, on) = (A"pn + apn, y)

= [ hyde < bl eyllllo < Collblaa oy llonl o

This proves (2.3) for . 0

2.2. Analysis of the semilinear equation. In this subsection, we formulate
some results concerning the semilinear equation (1.1). For this purpose we make the
following assumptions on the nonlinear term of the equation.

Assumption 2.4. We assume that f:Q x R — R is a Carathéodory function of
class C? with respect to the second variable satisfying

(2.4) f(-,0) e L"(Q) with r > % and %(m,y) >0 Yy eR,
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0% f

(2.5) VM >0 3Cf >0 such that ‘g;j(x,y)‘ + W(x,y)‘ <Cyum Yyl <M,

VM >0 and Ve >0 3§ > 0 such that

(2.6) 0% f 0% f

@(%W)‘@(%Z/l) <eif |yil,|y2] <M and |y —y1| <9,

for almost every = € 2.

THEOREM 2.5. Let Assumptions 2.1 and 2.4 hold. If u belongs to L"(S2) for some
r > n/2, then there exists a unique solution y, € H3(2) N C(Q) of (1.1). Moreover,
there exists a constant Ky, independent of u such that

(2.7) 1ull 3 @) + lvulle@) < Kpr(lullr@) + 1£C0)lir@) +1)-
Further, if {ux}32, is a sequence converging weakly to u in L"(Q), then yu, — Yu
strongly in H(Q) N C().

The reader is referred to [6] for the proof of this result. As a consequence of (2.7)
we get

(2.8) 3Ky > 0 such that [|yullg1 o) + [vullc@ < Kv  Vu € Uaa.

For each r > n/2, we define the map G, : L"(Q2) — H} (2) N C(Q) by G, (u) =y,.

THEOREM 2.6. Let Assumptions 2.1 and 2.4 hold. For every r > 5 the map G,
is of class C?, and the first and second derivatives at u € L"(Q) in the directions
v,v1,v2 € L7(Q), denoted by 2y, = G'r(w)v and zy ., 0, = G r(w)(v1,v2), are the
solutions of the equations

af B
of o2 f
(2'10) Az + aiy(xvyu)zz_aiyz(xvyu)zu,vlzu,vg)

respectively.

The proof of this theorem is an easy application of the implicit function theorem;
see [6].

LEMMA 2.7. The following statements are fulfilled.
(i) Suppose thatr >4 and s € [1, L5). Then, there exist constants K, depending
onr and My depending on s such that for every u,t € Uyq

(211> ||yu —Ya — Zﬂ,u—ﬂ”c(ﬁ) < KrHyu - yﬁ”%h(Q),
(2.12) 190 = Y — Zuu—all Lo @) < Mallyu — Yal 220 -

(i) Taking Cx = K2+/|Q] if X = C(Q) and Cx = My if X = L*(Q), the following
inequality holds

(2'13) ”Zuw - Zﬁ,v”X < CXHyu - yﬁHXHZﬁ,v”X Yu,t € Uyq and Yo € LQ(Q)
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(i) Let X be as in (ii). There exists € > 0 such that for all G,u € U,y with
Y — Yallcq)y <€ the following inequalities are satisfied:

1 3
(2.14) §Hyu —Yallx < lzau-allx < §||yu —vallx,

1 3
(215) Slzaallx < lzuollx < Szl Vo€ L2().

Proof. Let us set ¢ = Yy — Ya — zuu—a € HE(Q) N C(Q). From the equations
satisfied by the three functions and using the mean value theorem we get

A¢+%§<x,yﬂ>¢: %(:c,ya)—%(m,ye) (Y — v),

where yg(z) = ya(z) + 0(2) (yu(x) — ya(z)) with 6 : @ — [0,1] measurable. Using
again the mean value theorem we deduce

of o0 f

Ap + 87/(%?/11%?5: —Ga—ﬁ(m,yﬁ)(yu —ya)?

with yg(z) = ya(x) + () (ye(z) — ya(z)) and ¥ : Q@ — [0, 1] measurable. By Lemma
2.2(iii) and taking into account (2.5) and (2.8) we infer the existence of C, independent
of u,u € U,q such that

6llc@) < CrCr il (Wu — va) [l Lr) = CrCroicy 1yu — Yall2r )

which proves (2.11) with K, = C,Cf k. To prove (2.12) we use Lemma 2.3 to obtain

Il

Taking Ms = CyCy Ky, (2.12) follows.
Now we prove (2.13) for X = C(Q). Setting ¢ = z,,, — 2z, and subtracting the
corresponding equations, we infer with the mean value theorem

0 0 0 0?
A + aijr(sc,yu)zb - a%(%%) - 6—5(%%) Zaw = a—y{(w,ye)(ya ~ Yu)Zu,0-

Lo(@) < Co Cr iy | (u — ya)* (@) = Cor O ko 9 — vall72(q)-

Taking r = 2 in (2.2) and using (2.5) and (2.8), it follows from the above equation
that

[Pl < CoCf ok ll(Ya — yu)zawllz @) < KoV QY — yalle@)llza0 @)

which proves (2.13) for X = C(2). The proof for X = L?(2) is analogous; we use the
estimate (2.3) for s =2 instead of (2.2).
To prove (2.14) for X = C'(2) we use (2.11) with r =2 to get

[y — l/a||c(s‘2) < H¢||c(s‘z) + ||Za,ufa\|0(§z) < Ko|lyu — yﬂHQL4(Q) + ||Za,u7a||0(fz)
< Ko/ [Q]lyu — ya||20(9) + ||Za,u—a||c((z)~

Choosing &1 = [2K21/|Q|]7!, we see the first inequality of (2.14) follows if |y, —
Yallc@) <e1. To deal with the case X = L*(2) we use (2.12) with s =2 and obtain

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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190 = vall2@) <Nl + 1za,u—allz2 @) < Mallyu — valliz () + 1Zau—all 2@
< Mo/ |9y — yuHC(Q)Hyu - ya||L2(Q) + ||Za,u—a||L2(Q)-

Hence, taking e2 = [2M2+/|Q|]7! we obtain the first inequality of (2.14) with X =
L2(Q) if ||lyu — vallo) < e2- )
To prove the second inequality of (2.14) for X = C(£2), we proceed as follows:

Iza.u-allc@ < lolle@) + e = vallo@ < KeVIQlye = vallt ) + e — vallc@)
3 .
<Slyw —valle@ i lyu —vallo@) <e1-

Similarly the second inequality of (2.14) follows if X = L?(2) with e, replacing ;.
Finally, we prove (2.15). Using (2.13) we obtain

[2u,0llx < ll2uw = 2za0llx + 1250l x < Cxllyu — yallxl|zallx + |za,0/ x,
lzawllx < 2uw = zawllx + |2upllx < Cx|lyu — yallx llzaollx + 2wl x- O

Therefore, selecting e = [2C2] ™! for X = C(Q) and & = [2C5/|Q[] 7! for X = L2(Q),
we see (2.15) follows if ||y, — yallc@) <e.

3. The control problem. In this section, we make assumptions on the objective
functional J so that (P) has at least one solution and the first and second order
conditions for local optimality can be established. Since the problem is not convex,
we will consider not only global minimizers but also local minimizers. Throughout
this paper, we will say that @ is a local minimizer of (P) if & € U,q and there exists a
ball B, (@) C L*(2) such that J (@) < J(u) for every u € Uyq N B,(u). We will also say
that @ is a strong local minimizer of (P) if @ € U,4 and there exists € > 0 such that
J(u) < J(u) for every u € Uaa with [|yu — yallc) < e. If the previous inequalities
are strict whenever u # @, then we say that @ is a strict (strong) local minimizer. As
far as we know, the notion of strong local minimizers in the framework of control of
partial differential equations was introduced for the first time in [1]; see also [2].

We make the following assumptions on L.

Assumption 3.1. The function L: Q x R? — R is Carathéodory and of class C?
with respect to the second variable. In addition, we assume that

(3.1) L(z,y,u) = Lo(x,y) + g(x)u with Ly(-,0)€ L' () and g€ L>(Q),

VM >0 Fp € LQ(Q) and CL,M > 0 such that

3.2 OL 0L

42 S o] < oaa(o) and |5 o] < s Wl < M,
VM >0 and Ve >0 36 > 0 such that

3.3 0L 0%L .

(3:3) ‘8212(%312&)—83/2(%3/1#) <eif [y, ly2| <M, |y2 — 11| <6,

for almost every = € 2.

Using Theorem 2.5, the assumptions on L, and the boundedness of U4 in L™>(Q),
the existence of at least one solution of (P) follows. Indeed, if we take a minimizing
sequence {ug}52,, we can assume that ug 5% in L°°(Q). Then Theorem 2.5 implies

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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that y,, — ya strongly in H (Q)NC(Q). Further, using (2.8) and (3.2) with M = Ky
we infer with the mean value theorem that

Lo, Y (2))] < [Lo (2, 0)] + ¢y, (2) K-

Then we can apply Lebesgue’s dominated convergence theorem to pass to the limit
in the objective functional and to obtain J(uy) — J(@).

In order to derive the first order optimality conditions satisfied by a local mini-
mizer we address the issue of the differentiability of the objective functional J.

THEOREM 3.2. Suppose that r > 5. Then, the functional J : L"(2) — R is of
class C?. Moreover, given u,v,v1,ve € L" () we have

Q
2L 2
(3.5) J" (u)(v1,v2) :/Q [gyz(ﬂc,yu,u) - LPug—;;(x,g/u) o Zury A7,
where @, € HH(Q) N C(Q) is the unique solution of the adjoint equation
e L Of 0L ,
(36) A ‘P"‘afy(%yu)@—afy(x,ymu) n Q’

p=0onT.

This is a straightforward consequence of Theorem 2.6, Assumption 3.1, and the chain
rule. The only critical issue is the existence, uniqueness, and regularity of ,,. But this
is an immediate consequence of Lemma 2.2(iii) that, as already mentioned, applies to
the operator A* as well. From this theorem, the optimality conditions follow in the
classical way.

THEOREM 3.3. Let @ be a (strong or not strong) local minimizer of (P); then
there exist two unique elements §, p € HE(Q) N C(Q) such that

Ay + f(z,9) =u in Q,
(37 { 7=0onT,
_of, .. oL, _ .

* Y _ 9= Q
(3.8) Aet+ 5 (@9)p=7 (x.5,4) n

p=0onT,
(3.9) /(@+g)(u—ﬂ)dxzo Vi € Uyg.

Q

The derivation of sufficient second order conditions for local optimality is more
delicate. First, we introduce the cone of critical directions on which we formulate the
necessary second order conditions for optimality: if u € U,4 is a local minimizer of
(P), we define

Cy={veL*(Q):J (a)v=0 and v satisfies the sign conditions (3.10)},

ay

b-

(3.10) v(x){ 20 if a(z)

U
<0 ifa(z)=u

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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As usual, from (3.9) we deduce that (@ + g)(x)v(z) > 0 for almost all z € Q if
v € L?(Q) satisfies (3.10). Therefore, the condition J’(#)v = 0 for v satisfying (3.10)
is possible only if v(z) = 0 for almost every x € Q such that (g + g)(z) #0. Therefore,
Cy can be written

Cy = {v e L*(Q) : satisfying (3.10) and v(z) =0 if |(¢ + g)(x)| > 0}.

It is well known that every local minimizer @ satisfies the second order necessary
optimality condition J"(u)v? > 0 for all v € Cy; see, for instance, [8]. However, based
on Cf it is not possible to get sufficient second order conditions for local optimality.
The reader is referred to [12] for a counterexample. A procedure suggested by several
authors consists of extending the cone of critical directions Cy; see [10], [11], [18], [19].
Two possible extensions of C; seem natural after the above comments: for 7 > 0 we
define the extended cones

DT = {v € L*(Q) : satisfying (3.10) and v(z) =0 if |(¢ + ¢)(x)| > 7},

Gy, = {v € L*(Q) : satisfying (3.10) and J'(@)v < 7|z 10y }-
On any of these cones we can formulate sufficient second order conditions for local
optimality. Obviously, both are extensions of Cy. In [3], the authors introduced the

cone CT = DINGYT, which is also an extension of Cy. They proved that the first order
optimality conditions (3.7)—(3.9), along with the condition

(3.11) 36 > 0 such that J''(@)v? > 5||ZUH%2(Q) Yo ey,
imply the existence of k>0 and ¢ > 0 such that
_ R _ _
(3.12) J(u) + §||yu — szLz(Q) < J(u) Vu€Uuq such that |y, — Jllc@) <e

Actually, the proof in [3] was carried out for a parabolic control problem with g = 0.
However, the same proof works for the elliptic case and g # 0. Here, we replace (3.11)
with a new assumption that also implies (3.12)

Assumption 3.4. There exist numbers o > 0 and > 0 such that

(3.13)
J' (@) (u— @) +J" (@) (u = @)% > || za,u-all T2 ) Yu € Usa With yu —Fllc@) <o

It was proved in [4] that (3.11) implies (3.13). Therefore, (3.13) appears as a weaker
assumption. However, the next theorem proves that it is sufficient to imply (3.12).

THEOREM 3.5. Let @ € U,q satisfy the optimality conditions (3.7)—(3.9) and As-
sumption 3.4. Then, there exist € >0 and x>0 such that (3.12) holds.

Before proving this theorem we establish some lemmas.

LEMMA 3.6. Let @ € Uyq be fized with associated state §. Then, the following
inequality holds for all 0 € [0,1] and u € Unq:

B14)  yarow-a) —dlle@ < (CoCfro VIQIYu = Flle@ + Dlve = dllc@),

where Cy is the constant of (2.2) with r =2, and Cj g, is the one deduced from (2.5)
and (2.8).

Copyright (C) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/12/23 to 193.144.185.30 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

STABILITY ANALYSIS IN OPTIMAL CONTROL PROBLEMS 1403

Proof. The proof of this lemma is based on the analogous result for parabolic
control problems established in [5]. We take 6 € [0,1] and u € Uyq. We set ¢ =
Ya4+-0(u—1u) — [¥ + 0(yu — ¥)]. Then, we have

Applying the mean value theorem, we obtain measurable functions 6; : Q — [0, 1],

1=1,2, such that

.0 N N i
F(@, yatou—a)) — f(z,9) = 6—;’;(@ Y1) Waro(u—a) — ¥) andy1 =7+ 01 (Yaro(u—a) — ¥),

F(@aya) — f(2,5) = Z—i(m)(yu — ) with go =+ O (g — 7).

Inserting these identities into the above partial differential equation, we infer
of o ,0f i}
Ap+ afy(x, Y1) (Yatou—a) —¥) — 0@(15, y2)(yu — ) =0.

Noting that yziow-a) — ¥ = ¢ + 0(yu — ), we see the above equality and a new
application of the mean value theorem lead to

2
Ao+ G @mo=0| e - T )| -0 =05 L) - 97,

where y3 =y1 + 03(y2 —y1). Using (2.2) with r =2, (2.5), and (2.8) we infer
19l c@) < CoCrcu (W — 9120 < CoCrre V1Y — U120y
This implies
Yarou—a) — Ilc@ =19+ 0w —Dlle@
<(CoCr i VU =~ Flo@ + Dl = Glle@- D

LEMMA 3.7. There exists a constant My >0 such that
(3.15) lpullc@) <My Yu € Una.
Moreover, given u € Uyq with associated state y and adjoint state ¢, we have
(3.16) leat+ow—a) — Plle@ < Cllyu —Ylle@ VOE(0,1] and Vu € Uag,
where C' depends only on f, L, U,q, and €.
Proof. For the proof of (3.15) we use (2.2) with r =2, (2.8), and (3.2) as follows:

oL
leulle@) < CQHéTy(x’y“’u)‘ <My = Co[Yry 2 ) -

L2(Q)

Let us prove (3.16). Given u € Uyq and 6 € [0,1] let us denote ug =@ + 0(u — @),
Yo = Yuy, a0d pp = @y, . Subtracting the equations satisfied by ¢y and @, we get with
the mean value theorem

oy s W DL oL
A (wa—«p)Jrafy(w,y)(we—w)— oy (7,90, u0) oy (z,9,u)

of, . Of _[9*L 0 f _
+| S ) - P )] 0= | S iovuo) = o L )| 0 - ),
where yy =7+ ¥(yp — 7) for some measurable function 9 : Q@ — [0, 1]. Now, we apply
(2.2) with r =2, (2.8), (3.15), (2.5), and (3.2) to get, from the above equation,

o — Pllc@) < C2(CrL.xy + MuClr oy )V IQUYe — Yllc(o)-
Then, (3.16) follows from Lemma 3.6. O
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LEMMA 3.8. For every p > 0 there exists € > 0 such that if u € Uaq and ||y, —
Ylow) <e, then

B.17) [ (a+0(u—1u) — J"(@)]0* < pllzapliz Vo€ L*(Q) and V6 € [0,1].

Proof. First, let us denote ug, yg, and py as in the proof of Lemma 3.7. From
(3.5) we get

[T (a+0(u—a)) — J" (w)]v?|
/H@ > (2, Y9, ug) — ng(fcaym)} 2oy

+/Q dx—f—/’ [ 5 (2, y0) — ZZJ;(%?J)}Z%H,U

o*°L, . _9f 2 2
+ |:ay2(x7y7u) - <p6y2(x’y):| (Zug,v - Zﬂ,v)

Sy STy A A

dx

dx

e

Let us estimate the terms I;. For I; we deduce from (3.3), (2.15), and (3.14) that for
every p > 0 there exists ¢ > 0 such that I < p||zz,, ||2LQ(Q) if lyu—9llc(q) <e. The same
estimate can be deduced for I using (2.5), (2.8), (2.15), and (3.16). The estimate
for I3 follows from (2.6), (2.8), (2.15), (3.14), and (3.15). Finally, we estimate I, by
using (2.5), (2.8), (2.13), (2.15), (3.2), (3.14), and (3.15) to infer that

I, < (CL,KU + MUOf,KU)”Zug,v + Zﬁ,v”L"’(Q) qug,v - Zﬂ,vHLQ(Q)

5 )
< 5(Crxy + MuCyky )Cra @ llve — dllc@ 1za0ll 22 )

<pllzunlliz) if e = dlew <e
Hence, (3.17) is a straightforward consequence of the above estimates. O

Proof of Theorem 3.5. Let us take u € Uyq with ||y, — ¥l c(q) < @. By performing
a Taylor expansion and using the fact that J'(@)(u — @) > 0, we obtain

J(u)=J(a)+ J (a)(u—1u)+ %J”(UQ)(’LL —1)?
> )+ 517/ () 1) + T (@)~ 1)) + 51" (ug) — T (@)~ 1)
> J(8) + Uzaalldag) — 117" (uo) — T (@]~ 0)?].

Lemma 3.8 implies the existence of ¢ € (0,a] such that |[J" (ug) — J'(@)](u — u)?| <
%||zﬁ7u_ﬁ||%2(m for every u € Uaq with [lyy — llc(q) <e. Inserting this estimate into
the above expression and taking e still smaller if necessary, we can apply (2.14) to
deduce

- g _ Y _
J(u) = J(u) + ZHZﬁ,u—ﬁ”%z(Q) > J(u)+ T6Hyu — 9720

This inequality yields (3.12) with x = . |

4. Stability of the states. In this section, we consider the following perturba-
tions of the control problem (P):

(Pe)  min Je(u):= /Q[L(ﬂf,yi(x)w(x))+775($)y2(96)] dz,

UEULq
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where y;, is the solution of the equation

(4.1) { ;iig(éiw)riy)+b(x)-Vy+f(x,y):u+g€ n

Here we assume that {£.}.~o and {7.}.>0 are bounded families in L?(Q2) satisfying
(€.,m:) — (0,0) in L?(2)? as ¢ — 0. As a consequence of Theorem 2.5 we get the
existence and uniqueness of a solution y € HE(Q) N C(Q) of (4.1). Moreover, using
(2.7) with » = 2 and the boundedness of {£.}c~o in L?(Q) we infer that the set
{ys :u €Uy,q and € > 0} is bounded in H}(Q) N C(Q). Therefore, increasing the value
of Ky, if necessary, we can assume that (2.8) and the inequality

(4.2) lvallzi + lvallo@ < Ku o Vu€Uga and Ve >0

hold. We will prove that the solutions of problems (P.) converge to the solutions of
(P) in some sense to be made precise below. Conversely, we will also prove that any
strict strong local minimizer of (P) can be approximated by strong local minimizers
of problems (P.). Finally, the Lipschitz stability of the optimal states with respect
to the perturbations is established. We begin by analyzing the difference between the
solutions of (1.1) and (4.1).

THEOREM 4.1. The following inequalities hold for every e > 0:

(4.3) 195 = vull ) + 195 — vullo@) < CalléellLa ) Yue L2 (),

(44)  llzhy = zuollza@) S C3C Ky e 2@ ll2ull L2 () V(u,v) € Uaa x L2 (),

where Cy is the constant given in (2.2) for r =2, Cy i, is the constant Cy ar of (2.5)
with M = Ky given as in (2.8) or (4.2), and z;, , denotes the solution of (2.9) with
ys, replacing Y, .

Proof. Subtracting the equations (4.1) and (1.1) and using the mean value theo-
rem, we obtain

. of .
Alya = yu) + 5 (2 90) (g0 = yu) = &
Y
Then, (2.2) implies (4.3). To prove (4.4) we subtract the equations satisfied by z, ,,
and 2, , to obtain
Al = 2u0) 4 G @R = 500) = | G0 = 500 20

Now, using (2.3) with s =2, (2.5), (2.8), and (4.3), from the previous equation with
the mean value theorem we obtain

of of
Zuw — 2unllL2@) < Co [ Z,Yu) — 5 (2, Y5 } Zuv
[E IL2(0) 8y( ) 8y( ) e
< CQOﬁKU ”(y'i - yu)zu,v”Ll(Q)
< CoCy i W5 — vull 20 | 2unll L2 ) < C3Cs ko l|€ell 200 | 20,0l L2 () - o

Now we analyze the convergence of problems (P.) to (P).
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THEOREM 4.2. Let {u.}c>0 be a family of solutions of problems (P.). Any control
u that is a weak™ limit in L>(S2) of a sequence {ue, }72, with e, — 0 as k — 00 is a
solution of (P). Moreover, the strong convergence Yok, = Ya in HHQ)NC(Q) holds.

Proof. The existence of the sequences {u., }7° ; converging to @ weakly* in L>°(£2)
is a consequence of the boundedness of Uy,q in L>°(2). From Theorem 2.5 and (4.3)
we infer

lvat, —vallmy o) + lvet, —valle@)
<Nk, = Yu, Ny + 1928, = vue, lo@) + 19u., —vallay @) + 19u., —valle@)
< Colléellrz() + 1Yu., — vallmi) + 1Yu., — Yallo@) — 0 as k— oc.

Using this fact, the convergence 1. — 0 as € — 0, (3.2), the optimality of u., for (P, ),
and again (4.3), we get

J(a):kin;onk(usk) Skhi{:ojek(u):J(u) Yu € Uy,

which proves that @ is a solution of (P). 0
Now, we establish a kind of converse result.

THEOREM 4.3. Let @ be a strict strong local minimizer of (P). Then, there exist
g0 > 0 and a family of strong local minimizers {uc}e<e, of problems (Pc) such that
ue = in L=°(Q) and 5. = ya strongly in Hi () NC () as e — 0.

Proof. Since @ is a strict strong local minimizer of (P), there exists p > 0 such
that @ is the unique solution of the problem

(Pp) 7?611(/2 J(u) 9

where U, = {u € Una : [|yu — Yallc(a) < p}- Now, for every e >0 we define the problems

(Ppe) 5161%2 Jo(u).

Using Theorem 2.5 we deduce that U, is weakly* closed in L>(Q2), and hence the
existence of a solution u. of (P,.) can be proved as we indicated for (P). Moreover,
arguing as in the proof of Theorem 4.2, we deduce the existence of sequences {ue, }32
converging weakly* to a solution u of (P,) in L>°(€2) and such that Yik, = Yu strongly
in H} () NC(Q). Since @ is the unique solution of (P,), we conclude the convergence
ue = @ in L=(S2) and ys. = ya in HY(Q) N C(Q) as € — 0. Therefore, there exists
€0 > 0 such that ||y, — yallc(q) <p for every € <go. This implies that u. is a strong
local minimizer of (P.) for every & < €y, which completes the proof. 0

Now we establish our main theorem of this section.

THEOREM 4.4. Let @ be a local minimizer of (P) satisfying Assumption 3.4 and
{uc}ece, be a family of local solutions of problems (P.) such that u. — @ in L™(S)
as € = 0. Then, there exist € € (0,eq) and a constant C >0 such that

(4.5) lye. —¥ll2) < C(I|€a||L2(Q) + ||775||L2(Q)> Ve <é,

where §=1yg.
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Let us observe that Assumption 3.4 implies that @ satisfies (3.12). Hence, @ is
a strict strong local minimizer of (P), and, consequently, Theorem 4.3 ensures the
existence of a family {uc}e<e, of strong local minimizers of problems (P.) satisfying
the conditions of the above theorem. Before proving this theorem we establish the
following lemma.

LEMMA 4.5. Let u satisfy the assumptions of Theorem 4.4. Then, there exists
€ >0 such that

_ Y . _
(46) J/(’U,)(’U, — u) Z §qu,u7’ﬁ”%2(§]) Yu € Z/{ad with ||yu - y||c(Q) <e,

where v is given as in Assumption 3.4.

Proof. We denote by H : Q2 x R® — R as follows the Hamiltonian associated with
the control problem (P):

H(z,y,¢,u) = L(z,y,u) + ¢[u — f(z,y)].
For every u € Uy,q and v € L%(Q), we define 1, € HL(Q) N C(Q) as the function
satisfying
’H

" of _
-A wu,v + @(Z,yu)wu,v - 8y2 (x,yuv @uvu)zuﬂw

We split the proof into two steps.
Step 1. Here we prove that for every p > 0 there exists € > 0 such that for every
u € U With [[yu — ¥l c(q) <€ we have

(4.7)

/Q (o — & — Yana)(u— 8)dz| < pllzu_slZ-

Setting m = ¢, — ® — ¥y u—q and subtracting their respective equations, it follows with
the mean value theorem that

N of N OH oOH o
A T+ @(x7y)ﬂ_ 8y (x7yua§0uau) - ay (%ya%u)
0°H o 0°H o _
- B2 (T,9,0,0)20,u—5 — m(%ya%u)(@u - Q)
0’H . 0*H,
= TyQ(xay%@Qqu)(yu 7y) - 8y2 (a:,y,go,u)z%u_g
0*’H 0°H o _
+ m(%yoaw,ue)—m(%ya%u) (0w —®)
92H .
:Tyz(l’uy%@%u@)(yu_y_zﬂ,ufﬁ)
[0°H 0%H o
+ _Tyg(%yeﬂpe,ue) - Tyg(ﬂf,%%u) Za,u—a
[ 0?°H 0°H o _
+ ayaso(xvyea@@auQ)_ 8ya¢(‘x?y)¢7u) ((pu—go)

This implies
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/ m(u—u)dx :/ 0 <.Azu7u_u + af(x,fg)z%u_u) dx
Q Q Jy

=/Q (A*F—F gz(m,y)ﬂ') Zau—z dz

0*’H _
= /Q TyQ(xa Yo, Lo, u@)(yu —Yy— Zﬁ,u—ﬁ)zﬁ,u—ﬁ dz

0*H ”P?H, 1,
+/Q |:8y2(xay975097u9) - 6:[/2(9373%%“)} Za,u—adx

+/ azH(m u)—agH(:c“ﬂ)( — @) zau—adr
o 8y6g0 y Yo, Lo, U 8y8<p » Yy P, Pu, P)Za,u—u

=L+ L+1s.

We estimate every term I;. For the first term we use (2.5), (2.8), (2.12) with s =2,
(2.14) with X = L?(Q2), (3.2), and (3.15) as follows:

|Il‘ (CL7KU + MUCf,Ku)”Z/u —y— Zﬂ,u—uHm(Q) ||Za,u—a||L2(Q)
(Crc + MuCy i, )Moy — Gl 72 (0 12a,u—all L2 ()

<2(Cr,xy + MyCy iy )Mo/ Qe za,u—all 720 -

<
<

The second term is estimated with (2.6), (2.8), (3.3), (3.14), (3.15), (3.16), leading
to |I2] < p||zﬁ,u,ﬁ||%2(m for p arbitrarily small if € is taken according to p. Finally,
for the last term we use the same inequalities as for I the fact that (3.16) holds true
with L2(2) instead of C(Q) and additionally (2.15) with X = L%(Q) to get

3] < pllpw — @l L2 ) ll2a,u—allL2 )
<pCa(CL ky + MuCr ) |Yu — YllL2(o)ll2a,u—allL2(0)
< 2PCQ(CL7KU + MUOf,KU)”Z@u—ﬂ”%?(Q)’
where again p is arbitrarily small if € is chosen according to it. Thus, (4.7) follows

from the proved estimates.
Step 11. Now, we prove (4.6). First, we observe that for every v € L?(Q),

/ ¢a,vvd$=/ '(/)ﬂ,v (Azu,v + af(mvy)zu,v> dz
Q Q dy

. of ,  _ 0*H
:/Q (-A wﬁ,v + %(zay)¢u,v) Ra,v dz = /Q TyQ(%y, (p7u)Z%,v dx
=J"(a)v?,

where the last inequality follows from (3.5) and the definition of the Hamiltonian. Let

€ >0 be such that (4.7) holds with p= 3. Then, using Assumption 3.4 and (4.7), for
U € Uaa With [lyu — 3llcia) <& we get

J'(u)(wﬂ):/Qumg)(ufa)dx
:/(Sﬁu_¢_¢ﬂ,u—ﬁ)(1&—ﬂ)d$+/(@-l—g—i—wﬂ,u,a)(u—ﬂ)dm
Q Q

v - — - - v
> = lzau-alliz g + [T/ (@) (= @) + J"(@)(w = 0)*) 2 l2a,u-al 12 ().

|
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Remark 4.6. Let us note that if % is a local minimizer of (P) satisfying Assumption
3.4, then there exists € > 0 such that there is no stationary point @ of (P) different
from @ such that |lya — ylc@q) <e. We say that @ is a stationary point of (P) if it
satisfies the first order optimality condition. In particular, if @ is a stationary point,
then J'(@)(w — @) > 0. This contradicts (4.6) if ||ya — ¥llc@) <e-

Proof of Theorem 4.4. Using the local optimality of u., we get

0> J/s(ue)(us - ’(7,)

oL oL
= J/(UE)(UE - ﬂ) +/Q |:ay(x7yiiaua) - ay(xaquaus)] B ue—1T dx

oL
(4.8) +/ ) (%yiaaus)(zl,uﬁa_Zu@uafﬁ)dx“‘/ Uazia,ugfadm-
Q oy Q

We estimate each one of these four terms. First, we observe that the convergence
u. — 4 in L?()) implies that ||y, — Ylle@) — 0; see Theorem 2.5. Hence, from
Lemma 4.5 we deduce the existence of €1 > 0 such that

(4.9) I (ue) (ue — @) > %uz%,u&_ﬁuig(m Ve <er.

For the second term we use Schwarz’s inequality, the mean value theorem, (2.8), (4.2),
(3.2), and (4.3) to get

oL . L
a0 ’ - a4 Jues Ue ,Ue —U d
| G @) = G @) s
<CrxullVa. = Yullz2@) | 2uc uc—all z2(0)
(4.10) < Crry VIQCa &l 22 (9120w —all L2 (0 -
Now we estimate the third term with (3.2), (4.2), Schwarz’s inequality, and (4.4) to
get
oL . R
a % ) Ue,Ue —U  “Ue,Uc—U d
[ G| o= 2l
< [ 0ol o= sl da
Q
(4.11) < [Uxpll2@ C3Cracu €ell 2@ ll2u, e —allz2(0)-

For the last term, we use again (4.4) and the fact that {&.}.~o is bounded in L?(f2),
obtaining

/Q 725 0. —al 42 < Imellz20) (128 . —a = 2uc e all 2@ + 2w -allz2o) )

< (C3C1 kol Naen +1) Il z2@) 20 e -all 2y
(4.12) < Clnellzo) 2 we—all L2 0)-

Inserting the estimates (4.9)—(4.12) into (4.8), for some constant C’ > 0 and every
e < &1, we obtain

eucine-allzze) < (&l Lo + el )-
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Finally, using (2.14) and (4.3) we deduce the existence of g5 € (0,£1] such that for
every € < €9, we have

Y. = Ollz2) < va. — Yullzz) + 1Yu. — Fllz2(@)
< OV I€e 22 ) + 2l|2ue ue—all L2 )
< CoV/IUlcl 20y + 20" (el + Incllzacoy )

which proves (4.5). 0

5. Stability of the controls. In the previous section, we established Lipschitz
stability for the optimal states with respect to state perturbations in the objective
functional and to the force in the state equation. In order to obtain stability of the
optimal controls, an additional assumption is usually required. The reader is referred
to Qui and Wachsmuth [21] for the following assumption:

(5.1) 3C >0 such that [{z € Q:|(p+ g)(z)| <e}| < Ce Ve>0.

Using this assumption and sufficient second order optimality conditions, they proved
Lipschitz stability of the controls in the L!(Q) norm. However, the assumption (5.1)
implies that @ is bang-bang. As far as we know, there is no proof of stability for
the optimal controls when they are not bang-bang. Assumption 3.4 considered in the
previous sections is applicable for the case of optimal controls that are not bang-bang.
Nevertheless, it leads only to Lipschitz stability of the optimal states. Here, we modify
Assumption 3.4 as follows.

Assumption 5.1. There exist numbers a > 0 and « > 0 such that for all u € U,q
with ||yu — ¥llc(q) < a the following inequality is fulfilled:
(5.2) J(@) (= @) + () — )% 2 7 2a.0-al 2@ lu — @ll s o)

Under this assumption we will prove Lipschitz stability of the optimal controls. It
has been proved in [9] that the sufficient second order conditions plus the structural
assumption (5.1) imply the existence of positive numbers v and « such that
(5.3)

J' (@) (u—a) + J" (@) (u—u)* > yllu— a||2L1(Q) Vu € Uyq with [Ju — |11y < .

We have the next equivalence.

PROPOSITION 5.2. The statement (5.3) is equivalent to the existence of positive
numbers v and o such that

(5.4)
J'(@)(w =) + J" (@) (w—)* >y lu = @l ) Yu € Uaa With yu — Fllo@) <o
Proof. Let us assume that (5.3) holds, but (5.4) is false. Then, for every integer

k > 1 there exists an element uy € U,q such that

_ _ _ _ 1 _ _ 1
(5:5) (@) (g — @) + J" (@) (g = @)* < 2 Jlux = @l 710y and yu, = Fllow) < -
Since {ug}2; C Uyq is bounded in L>(f2), we can extract a subsequence, denoted
in the same way, such that uy X in L°(Q). On the one hand, (5.5) implies that
Yu,, — 7 in C(2). On the other hand, from Theorem 2.5 the convergence y,, — ¥, in
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C () follows. Then, y, =7 and, consequently, u = @ holds. But (5.3) implies that @
is bang-bang, and, hence, the weak convergence u;, — @ yields the strong convergence
ug — U in L'(Q); see [9, Proposition 12 and Lemma 6]. Then, (5.5) contradicts (5.3).

Let us prove the converse implication. First, we observe that given u € U, 4, with
the mean value theorem, we get

Alya—9) + %@,gw@u ) (e —§) =u—

Now, using (2.2) with r =2 we get

1
Hyu - gHC(Q) < C2Hu - a||L2(Q) < Covuy — Ua”u - ﬂle,l(Q)'

12

.«
CZ(up—uq)’

Then, taking o = we obtain that (5.4) implies (5.3) with v=+'. ad

From (2.3) we infer that (5.4) implies (5.2). Hence, the combination of sufficient
second order conditions plus (5.1) is a stronger assumption than (5.2).

THEOREM 5.3. Let @ be a local minimizer of (P) satisfying Assumption 5.1 and
{uc}ece, be a family of local solutions of problems (P.) such that u. — @ in L(5)
as € = 0. Then, there exist € € (0,e9) and a constant C >0 such that

(5.6) e =il o) < C(lecl 2@ + Inellze)) Ve <&,

where §=yg.

The proof of this theorem follows the steps of that of Theorem 4.4 with Lemma
4.5 replaced by the following.

LEMMA 5.4. Let u satisfy the assumptions of Theorem 5.3. Then, there exists
€ >0 such that

L _ . ~
(6.7 J'(u)(u—1u)> §||Zu,u—a||L2(Q)||U — 1) Yu € Uaa With |lyu — ¥llcq) <,

where v is given as in Assumption 5.1.

Proof. We use (4.7) with p= 3-, Assumption 5.1, and (2.3) to deduce for £ >0
small enough that

Pa)u=1)= [ (pu+g)u—a)da
= / (P — @ = Vau—a)(u—1u)dz + / (6 + 9+ Vau—a)(u—1u)dr
Q Q
> —;EHZE’U,EH%Z(Q) [ (@) (u— @) + J (@) (u — §)?]

vy _ _
> —§||Za.,ufa||L2(Q) v —allLr @) + YlIzau—allL2 @ llv — @l @),

which proves (5.7). d

Proof of Theorem 5.3. We follow the proof of Theorem 4.4, replacing the estimate
(4.9) by (5.7) to deduce with (4.8) and (4.10)—(4.12) the inequality

0> J'(ue)(ue — ) > %quz,ug—ﬂ”L?(Q)Hua - u”Ll(Q)

~ Cllzuse—allzay (6 2 + Il 2e)-
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Then, dividing this inequality by ||z, u. —allr2) we get

_ 2C,
Jue = llzaoy < = (eellaeoy + Inellzace)-

which proves (5.6) with C' = % 0

6. Some final state stability results. In this section we see how Assumption
5.1 allows us to prove Lipschitz stability for the optimal states for more general
perturbations of (P). Here, we consider the following simultaneous perturbations on
the control and state variables of (P):

(Pe) min Jc(u) ::ALE(x,yi(x),u(x))dx,

UEU.q

where y¢ is the solution of (4.1), and for every € > 0,

€
Ls(xay,u) = L0($7y) + Ny + geu + iuz'

As in section 4, we assume that {{.}.>0 and {n.}.>o are bounded families in
L3(Q) satisfying (£.,m:) — (0,0) in L?(Q)? as ¢ — 0. Moreover, we suppose that
lge — gllL (@) — 0 as € = 0. Under these assumptions, it is immediate to check that
(P.) is an approximation of (P) in the sense of Theorems 4.2 and 4.3. Moreover, we
have the following Lipschitz stability property for the optimal states.

THEOREM 6.1. Let @ be a local minimizer of (P) satisfying Assumption 5.1 and
{uc}Yece, be a family of local solutions of problems (P.) such that u. — @ in L(S)
as € = 0. Then, there exist € € (0,eq) and a constant C >0 such that

(61)  llys. — e <C (€l 2@ + Ime Nz + g — gllzwoy +¢) Ve <,

where § = yg.

Proof. Similarly to (4.8) we have
0> J (ue)(ue — ) = J (ue)(ue — @) + | (eue + g — g)(ue — @) dx
Q
oL oL
Jr/Q {aiy(xayisvua) - %(xayugvus)] Zue . —a AT
OL
+ 7(%3/557“6)(7555 ue—a Zug,us—ﬂ)dx +/ 775225 Ue—T dz.
o Oy ' Q '
Then, using (5.7) and (4.10)—(4.12) we obtain with (2.3) that

g _ _
0> iz, wall e lue = @l o) = (lluclim @) + 9 = gll =) ) lue = llzscey
i _
= C1l|2ue ue—all2(o) (Hfalle(Q) + ||77£||L2(Q)) 2 5 lzucuc-allz2@llue = alli (o)
- (5 +119e — gllL= (o) + 1€l z2(0) + HnsHL?(Q)) [ue = ull L1 (0),

where C" = max{1, |u,|, |up|, C1Co}. Dividing the above expression by ||ue — | 11 (q)
and using (2.14), we infer
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~ 4c’
Iy = 9llz2e) < == (+ lge = gl + Wellzaeoy + Iellzzcey)-

Now, the rest follows as in the proof of Theorem 4.4. O
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