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Abstract. We propose a limiting procedure to preserve invariant domains with time explicit
discrete high-order spectral discontinuous approximate solutions to hyperbolic systems of conserva-
tion laws. Provided the scheme is discretely conservative and satisfy geometric conservation laws at
the discrete level, we derive a condition on the time step to guaranty that the cell-averaged approxi-
mate solution is a convex combination of states in the invariant domain. These states are then used
to define local bounds which are then imposed to the full high-order approximate solution within
the cell via an a posteriori scaling limiter. Numerical experiments are then presented with modal
and nodal discontinuous Galerkin schemes confirm the robustness and stability enhancement of the
present approach.
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1. Introduction. Let D ⊂ Rd be an open domain with d the space dimension.
We are interested here in high-order numerical solutions to hyperbolic systems of
conservations law

(1.1)

{
∂tu +∇ · f(u) = 0, in D × (0,∞),
u(x, 0) = u0(x), in D,

where u(x, t) represents the vector of conserved variables with values in the set of
states Ωa ⊂ Rm which is assumed to be convex. The flux tensor f = (f1, . . . , fd) :
Ωa 3 u 7→ f(u) ∈ Rm×d is assumed to be smooth.

Solutions to (1.1) may develop discontinuities in finite time even if the initial data
is smooth, therefore the equations are to be understood in the sense of distributions.
Nevertheless, in this setting we lose uniqueness of the solution and (1.1) must be
supplemented with further admissibility criteria. We here focus on entropy inequalities
on some twice differentiable strictly convex function η : Ωa → R associated with a
smooth entropy flux q : Ωa → Rd satisfying

(1.2) η′(u)>f ′i(u) = q′i(u)> ∀u ∈ Ωa, 1 ≤ i ≤ d.

A weak solution to (1.1) is called an entropy weak solution if for every entropy
pair of (1.1) we have

(1.3)
∂η(u)

∂t
+∇ · q(u) ≤ 0,

in the sense of distributions. Classical (smooth) solutions respect this condition with
an equality, since one can apply the chain rule with (1.2). The inequality for discon-
tinuous solutions comes from a vanishing viscosity argument by adding a parabolic
perturbation to (1.1), the regularizing effect allows to have a smooth unique solution
in this case. Then, under some structural assumptions on (1.1), vanishing viscosity
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2 V. CARLIER AND F.RENAC

approximations converge to an entropy measure valued solution to (1.1) and (1.3)
[9]. This result is in particular based on the existence of convex invariant domains
B ⊂ Ωa for (1.1): if u is in B, then it remains in B almost everywhere in D × (0,∞)
[28, 13, 24, 40]. This property generalizes the notion of maximum principle for scalar
equations. Numerical methods keeping this property at the discrete level are called
invariant domain preserving (IDP).

We are here interested in the approximation of (1.1) using high-order discontin-
uous spectral methods (see, e.g., [7, 14, 11, 6, 8] and references therein) where the
solution to (1.1) is sought under the form of discontinuous piecewise truncated series
of analytic functions over a partition of the domain D. Such methods have been
applied to a wide range of applications [41, 45], and have the potential to achieve
high-order accuracy efficiently on modern parallel architectures [25, 12]. Unfortu-
nately these approximations suffer from spurious oscillations around discontinuities
of the exact solution due to Gibbs phenomenon [10, 17] that may cause the approx-
imate solution to become locally nonphysical, leading to robustness issues. A large
body of research has been proposed to address such issues with, e.g., solution and flux
limiters [31, 49, 21], entropy conservative subcell flux differencing [11, 6, 8] artificial
viscosity [20, 2], shock-capturing terms [26, 23].

We here focus on a posteriori limiters from [49, 50] scaling the cellwise approx-
imate solution around its cell average, thus allowing to preserve positivity of the
solution (i.e., with B = Ωa) and maximum principles in scalar problems, while pre-
serving conservativity of the method. Under some strong assumptions on the mesh,
it is indeed possible to derive a condition on the time step of the scheme so that
the cell-averaged solution remains in the invariant domains on Cartesian and simpli-
cial grids [49, 50, 27], or on unstructured quadrangular straight-sided grids [38]. We
here extend this limiting technique to an IDP limiter for a broad class of spectral
discontinuous methods with explicit time stepping on general unstructured meshes
with possibly curved elements. Provided, the discretization method is conservative
and satisfies geometric conservation laws [43, 29] at the discrete level, we propose a
condition on the time step to guaranty that the cell-averaged approximate solution is
a convex combination of states lying in the required invariant domains. These states
are then used to define local bounds which are then imposed to the full high-order
approximate solution within the cell via the scaling limiter. This strategy is closely
related to convex limiting [21] based on first-order IDP approximations defining local
bounds and then forcing the high-order approximation to satisfy these bounds through
flux limiting [4, 48]. This approach has been applied to finite element approximations
in [19] and discontinuous Galerkin spectral element method in [34] among others.

The objective of this paper is hence to derive a CFL condition on the time step
and to propose an iterative algorithm for its evaluation. These are based first on
the existence of a state in the invariant region which satisfies a trivial flux balance
over each mesh cell boundaries. We call this state the pseudo-equilibrium state and
then use tricks from [36] to expand the the cell-averaged approximate solution is a
convex combination of states lying in the invariant domains. The CFL condition is
also based on the existence of a quadrature rule to evaluate the cell-averaged solution
that includes the traces of the numerical solution used to evaluate numerical fluxes
in the scheme. This latter result generalized the work in [51] on triangular grids to
general curved polyhedral elements.

The paper is organized as follows. In section 2 we introduce the notion of invariant
domain and invariant domain preserving Riemann solver. In section 3 we will state
and prove our theorem on the existence of a CFL for high order schemes, present and
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discuss the limiting strategy. section 4 will present various schemes that satisfy the
hypothesis of our work and state the CFL precisely for those. Numerical experiments
will be presented in section 5, and the conclusions follow in section 6.

2. Approximate Riemann solvers. In this section we present some basic no-
tions [5, 22] on Riemann problem, approximate Riemann solver (ARS), and convex
invariant domain that will be used in the remainder of this work. Throughout this
section, n in Rd is a given unit vector.

2.1. Riemann problem and invariant domains. Let two states uL and uR
in Ωa, it is convenient for the present analysis to consider the Riemann problem in
the direction n:

(2.1) ∂tu + ∂xf(u) · n = 0, in R× (0,∞), u(x, 0) =

{
uL, if x < 0,
uR, if x > 0.

We will integrate (2.1) over the space time slab [−h2 ,
h
2 ] × [0,∆t] with h > 0 and

∆t > 0 the space and time steps. We suppose here that all the Riemann problems
we consider have a self-similar entropy weak solution W(xt ; uL,uR,n). Let intro-
duce the self-similar variable ξ = x

∆t and assume that there exist σL, σR such that:
W(ξ; uL,uR,n) = uL for ξ < σL and W(ξ; uL,uR,n) = uR for ξ > σR. We then
define the maximum wave speed in (2.1) by

(2.2) |λ|(uL,uR,n) = max (|σL|, |σR|),

and for ∆t
h |λ|(uL,uR,n) ≤ 1

2 , we define the average over the Riemann fan [21, 22]
(2.3)

ū(uL,uR,n,∆t) :=
1

h

∫ h
2

−h2
W
( x

∆t
; uL,uR,n

)
dx =

uL + uR
2

−∆t
(
f(uR)− f(uL)

)
·n.

Finally, we will use the definition of invariant domain from [21]: a convex set
B ⊂ Ωa is an invariant domain (1.1) if for all uL and uR in B, we have

ū
(
uL,uR,n,

∆t
h

)
∈ B ∀ ∆t

h
|λ|(uL,uR,n) ≤ 1

2
.

2.2. Two-point numerical fluxes and approximate Riemann solvers.
The discretization of (1.1) will rely on two-point numerical fluxes [32, 22] for the
approximation of f · n and we assume them to be consistent and conservative:

(2.4) h(u,u,n) = f(u) · n, h(uL,uR,n) = −h(uR,uL,−n) ∀u,uL,uR ∈ Ωa,

and Lipschitz continuous. We also define the notion of IDP two-point flux in the
following definition.

Definition 2.1. A two-point flux is said to be invariant domain preserving (IDP)
for B an invariant domain if we have

u− ∆t

h

(
h(u,uR,n)− h(uL,u,n)

)
∈ B ∀ uL,u,uR ∈ B,

under the half CFL condition

∆t

h
max(|λ|(uL,u,n), |λ|(u,uR,n)) ≤ 1

2
.
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We now introduce the notion of ARS and IDP ARS, which will be used to derive
IDP two-point fluxes.

Definition 2.2 (Approximate Riemann solver). An ARS is a self-similar func-
tion Wa(xt ; uL,uR,n), used to approximate the solution W(xt ; uL,uR,n) of the Rie-
mann problem (2.1), that is consistent with the integral form of (1.1) [22, 16]: for
any ∆t

h |λ|(uL,uR,n) ≤ 1
2 , we have

(2.5)
1

h

∫ h
2

−h2
Wa
( x

∆t
; uL,uR,n

)
dx =

uL + uR
2

−∆t
(
f(uR)− f(uL)

)
· n.

Using consistency in (2.4), and setting ξ = x
∆t , one defines a two-point flux from

an ARS as

hWa(uL,uR,n) = f(uL) · n−
∫ 0

−λ

(
Wa(ξ; uL,uR,n)− uL

)
dξ(2.6a)

= f(uR) · n +

∫ λ

0

(
Wa(ξ; uL,uR,n)− uR

)
dξ,(2.6b)

where λ = |λ|(uL,uR,n). Both definitions are equivalent due to (2.5). We can now
define the notion of IDP ARS.

Definition 2.3. An ARS Wa(ξ; uL,uR,n) is IDP for B an invariant domain if
we have

1

λ

∫ 0

−λ
Wa(ξ; uL,uR,n)dξ ∈ B, 1

λ

∫ λ

0

Wa(ξ; uL,uR,n)dξ ∈ B ∀uL,uR ∈ B.

As a consequence 1
2λ

∫ λ
−λW

a(ξ,uL,uR,n)dξ is also in B. We have the following
results linking IDP ARS and two-point numerical flux.

Lemma 2.4 (Interface invariant domain preservation [5]). The ARS Wa is IDP
for B iff. for all uL,uR in B, and ∆t

h |λ|(uL,uR,n) ≤ 1, we have

uL −
∆t

h

(
hWa(uL,uR,n)− f(uL) · n

)
∈ B,(2.7a)

uR −
∆t

h

(
f(uR) · n− hWa(uL,uR,n)

)
∈ B.(2.7b)

Proof. Let consider (2.7a), a similar argument holds for (2.7b). From (2.6a), we
have

uL−
∆t

h

(
hWa(uL,uR,n)−f(uL)·n

)
=
(
1−∆t

h
λ
)
uL+

∆t

h
λ

1

λ

∫ 0

−λ

(
Wa(ξ,uL,uR,n)dξ,

and since 0 < ∆t
h λ ≤ 1 this is a convex combination of states in B and therefore is in

B. Conversely, taking ∆t
h λ = 1 the above integrals are B iff. (2.7a) and (2.7b) hold

and we conclude from Definition 2.3.

This allows us to state the following result.

Lemma 2.5. Let hWa and hWb be two-point fluxes from two different ARS that
are IDP for B. Then, we have

(2.8) u− ∆t

h

(
hWa(u,uR,n)− hWb(uL,u,n)

)
∈ B ∀uL,u,uR ∈ B,
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under the half CFL condition

∆t

h
max

(
|λ|(uL,u,n), |λ|(u,uR,n)

)
≤ 1

2
.

Proof. We rewrite (2.8) as

u− ∆t

h

(
hWa(u,uR,n)− hWb(uL,u,n)

)
=

1

2

(
u− 2

∆t

h

(
hWa(u,uR,n)− f(u) · n

))
+

1

2

(
u− 2

∆t

h

(
f(u) · n− hWb(u,uR,n)

))
,

and apply Lemma 2.4 to both terms of the right-hand side with 2∆t
h λ ≤ 1.

The previous lemma withWb =Wa also proves that the three-point scheme built
from an IDP ARS is also IDP [5].

3. Invariant domain preserving limiter. We here state and prove our main
results on the existence of an explicit condition on the time step to ensure that the
cell-averaged solution from a high-order spectral discontinuous scheme is IDP. In sub-
section 3.1 we clarify the schemes we are considering in this work. Our results are
based on the existence of a pseudo-equilibrium state allowing a balance of the numeri-
cal fluxes at faces of each element which is introduced in subsection 3.2 where we prove
its existence. The main result givin the condition on the time step is given in subsec-
tion 3.3. A limiting strategy based on convex bounds is described in subsection 3.4,
while subsection 3.5 introduces a fast algorithm to evaluate the time step.

3.1. Cell-averaged fully discrete scheme. We now describe the main prop-
erties of the numerical methods we are considering in this work. We consider here
discretely conservative high-order approximations of (1.1). Without loss of generality,
we use an explicit forward Euler discretization in time. High-order time integration
is then performed using strong-stability preserving Runge-Kutta methods [18] that
are convex combinations of explicit first-order schemes in time and thus keep their
stability properties. For the spatial discretization, the approximate solution uh(x, t)
is defined locally over each element κ of the partition Th of the domain D in a lo-

cal function cell space Vph(κ). By u
(n+1)
h (·) = uh(·, t(n+1)) we denote the solution at

time t(n+1) = t(n) + ∆t(n) with t(0) = 0 and ∆t(n) > 0 the time step. The approxi-
mate solution is assumed to satisfy the following relation for the cell-averaged solution
〈uh〉κ:

(3.1) 〈u(n+1)
h 〉κ = 〈u(n)

h 〉κ −∆t(n)

Nf∑
k=1

sκkh
(
u−h (xκk , t

(n)),u+
h (xκk , t

(n)),nκk
)
∀κ ∈ Th,

where the xκk are some points on the faces f in ∂κ and u±h (xκk , t
(n)) = limε→0+ uh(xκk±

εnκk , t
(n)) denote evaluations of the traces of the solutions at xκk (see Fig. 1). The

sκk > 0 are local contributions to |f |
|κ| with |f | and |κ| approximations of the face

surface and element volume, and we introduce

(3.2) Sκ :=

Nf∑
k=1

sκk .

The geometrical quantities depend on the numerical method under consideration
and examples will be given in section 4. By h we denote a consistent, conservative
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u−h

u+
h

nκk

xκk

yκi

• •
• ••

•
•

•

• •

• •
• • • •

• •
• •

• •
• •

• • • •

• • • •

Fig. 1: Notations for d = 2 on a quadrangle: definitions of the unit outward normal
vector nκk , element quadrature nodes yκi (black bullets), surface quadrature node xκk
(gray bullets), and inner and outer traces u±h at xκk .

(2.4), and IDP (see Definition 2.1) two-point flux. The cell-averaged solution 〈u(n)
h 〉κ

is supposed to be evaluated through a suitable quadrature rule, that includes Nv
volume quadrature points yκi in κ together with the Nf surface points xκi on ∂κ (see
Fig. 1) introduced in (3.1):

(3.3) 〈u(n)
h 〉κ =

Nv∑
i=1

νκi uh(yκi , t
(n)) +

Nf∑
i=1

βκi u−h (xκi , t
(n)),

where the weights νκ1≤i≤Nv ≥ 0 and βκ1≤i≤Nf > 0 are assumed to satisfy

(3.4)

Nv∑
i=1

νκi +

Nf∑
i=1

βκi = 1.

Lemma 3.1 and Corollary 3.3 give a theoretical basis on existence of such a quad-
rature on polygonal or polyhedral mesh elements. An explicit example is also given
in [51] in the case of triangles and in section 4.

Lemma 3.1. Let κ be a compact subset of Rd and Pκ a finite dimensional subspace
of C0(κ,R), that contains the constant function f ≡ 1κ. Suppose that there exists a
quadrature ($κ

i ,y
κ
i )1≤i≤Nv with positives weights $κ

i > 0 and points yκi in κ that
integrates exactly products of functions in Pκ:

(3.5)

∫
κ

f(y)g(y)dV =

Nv∑
i=1

$κ
i f(yκi )g(yκi ) ∀f, g ∈ Pκ.

Then, for given points (xκi )1≤i≤Nf in κ there exist nonnegative (νκi )1≤i≤Nv and
positive (βκi )1≤i≤Nf coefficients such that

(3.6) 〈f〉κ =

Nv∑
i=1

νκi f(yκi ) +

Nf∑
i=1

βκi f(xκi ) ∀f ∈ Pκ.

Proof. It is known that (f, g) 7→
∫
κ
f(y)g(y)dV defines a scalar product on

C0(κ,R) and therefore on Pκ. Then using the Riesz representation theorem, every
linear form ϕ : Pκ → R can be represented using this scalar product: there exists
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fϕ ∈ Pκ such that for every g ∈ Pκ, ϕ(g) =
∫
κ
fϕ(y)g(y)dV , then let αϕi = $κ

i fϕ(yκi ),

we obtain for every g ∈ Pκ, ϕ(g) =
∑Nv
i=1 α

ϕ
i g(yκi ). Now, since f 7→

∑Nf
i=1 s

κ
kf(xκi )

defines a linear form on Pκ, for any sκk > 0, it can be represented this way: there exist
(ακi )1≤i≤Nv such that:

(3.7)

Nf∑
i=1

sκi f(xκi ) =

Nv∑
i=1

ακi f(yκi ) ∀f ∈ Pκ.

As the constant function is in Pκ, we have for f in Pκ, 〈f〉κ =
∑Nv
i=1$

κ
i f(yκi ), so

for εκ > 0

〈f〉κ =

Nv∑
i=1

$κ
i f(yκi ) =

Nv∑
i=1

$κ
i f(yκi )− εκ

Nf∑
i=1

sκi f(xκi ) + εκ

Nf∑
i=1

sκi f(xκi )

=

Nv∑
i=1

$κ
i f(yκi )− εκ

Nv∑
i=1

ακi f(yκi ) + εκ

Nf∑
i=1

sκi f(xκi )

=

Nv∑
i=1

($κ
i − εκακi )f(yκi ) + εκ

Nf∑
i=1

sκi f(xκi ).

Since the $κ
i are positive, for εκ = min{i:ακi >0}(

$κi
ακi

) > 0, the ($κ
i − εκακi ) are

nonnegative, then (3.6) holds with

(3.8) νκi = $κ
i − εκακi ≥ 0 ∀1 ≤ i ≤ Nv, βκi = εκs

κ
i > 0 ∀1 ≤ i ≤ Nf .

Remark 3.2. Note that κ is usually a polyhedron and Pκ a polynomial space,
we can subdivide κ into simplices and since there are quadrature rules integrating
exactly arbitrary order polynomials on simplices, the previous lemma can be applied.
Likewise, the existence of the quadrature in Lemma 3.1 is required only for modal
methods or when the DOFs are not defined at the xκk in (3.1), so the present framework
also holds for non polynomial nodal approximations with DOFs at the faces as in [8].

The following corollary allows to explicitely define the quadrature (3.3) for modal
polynomial based methods.

Corollary 3.3. Given a basis (φj)1≤j≤Np of Pκ which is orthonormal with re-
spect to the inner product (i.e.,

∫
κ
φi(x)φj(x)dV = δij where δij is the Kronecker

symbol), then the ακi in (3.8) read

(3.9) ακi = $κ
i

Np∑
j=1

Nf∑
k=1

sκkφj(x
κ
k)φj(y

κ
i ).

Proof. We know that there exists g ∈ Pκ such that (see proof of Lemma 3.1)

(3.10)

Nf∑
i=1

sκi f(xκi ) =

Nv∑
i=1

$κ
i f(yκi )g(yκi ) ∀f ∈ Pκ.

Expanding g ≡
Np∑
k=1

gkφk in the orthonormal basis and using (3.10) with f ≡ φj
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we get

Nf∑
i=1

sκi φj(x
κ
i ) =

Nv∑
i=1

$κ
i φj(y

κ
i )

Np∑
k=1

gkφk(yκi ) = gj ,

for all 1 ≤ j ≤ Np, by orthonormality of the basis. Substituting g in (3.10) by its
expansion in the basis gives

Nf∑
i=1

sκi f(xκi ) =

Nv∑
i=1

$κ
i f(yκi )

Np∑
j=1

Nf∑
k=1

sκkφj(x
κ
k)φj(y

κ
i ) ∀f ∈ Pκ,

and we conclude by comparing this result with (3.7).

Finally, the scheme is assumed to preserve uniform states in the following sense:

(3.11)

Nf∑
k=1

sκkn
κ
k = 0,

which is a discrete version of 1
|κ|
∮
∂κ

ndS = 0 for a closed contour. Relation (3.11)

is closely related to the discrete geometric conservation laws [43] and is required for
the numerical scheme to preserve free-stream states [29]. In section 5 we will present
schemes that satisfies assumptions (3.1), (3.3) and (3.11).

3.2. The pseudo-equilibrium state. We first introduce the Rusanov flux [39]
:

(3.12) hλ(uL,uR,n) =
f(uL) · n + f(uR) · n

2
− λ

2
(uR − uL),

for λ ≥ |λ|(uL,uR,n) defined in (2.2). Note that the Rusanov flux is derived from
the following ARS:

Wλ(ξ,uL,uR,n) =

 uL, ξ < −λ,
uL+uR

2 − 1
2λ (f(uR) · n− f(uL) · n), −λ < ξ < λ,

uR, λ < ξ,

so from (2.3) we know that it is IDP, see also [13]. We now state a result that will
allow us to rewrite (3.1) with updates of three-point schemes.

Lemma 3.4 (pseudo-equilibrium state). Suppose that the numerical scheme sat-
isfies (3.1), (3.3) and (3.11). Let B be a invariant domain and suppose that the
internal traces u−h (xκk , t

(n))1≤k≤Nf are in B, then there exists u?κ = u?κ(t(n)) in B and

λ?κ = λ?κ(t(n)) > 0 finite such that

(3.13)

Nf∑
k=1

sκkhλ?κ
(
u?κ,u

−
h (xκk , t

(n)),nκk
)

= 0,

with hλ?κ defined in (3.12) with λ = λ?κ where

(3.14) λ?κ ≥ max
1≤k≤Nf

(
|λ|(u?κ,u−h (xκk , t

(n)),nκk)
)
,
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and the pseudo-equilibrium state is defined by

(3.15) u?κ =

Nf∑
k=1

γ̃κk

(
u−h (xκk , t

(n))−
f
(
u−h (xκk , t

(n))
)
· nκk

λ?κ

)
, γ̃κk :=

sκk
Sκ

.

Proof. For the sake of clarity, we remove the time dependance of uh since all
evaluations are done at t(n) and write u−h (xκk) for u−h (xκk , t

(n)). We first remark that
from (3.2) and (3.15), we have

(3.16)

Nf∑
k=1

γ̃κk = 1.

We introduce the following two sequences:

(3.17)



u?0 =
Nf∑
k=1

γ̃κku−h (xκk), λ0 = max
1≤k≤Nf

(
|λ|(u?0,u−h (xκk),nκk)

))
,

λp+1 = max
(
λp,

1
d(u?p,∂B) + max

1≤k≤Nf

(
|λ|(u?p,u−h (xκk),nκk)

))
, p ≥ 0,

u?p+1 =

Nf∑
k=1

γ̃κk

(
u−h (xκk) + u?p

2
−

f
(
u−h (xκk)

)
· nκk − f(u?p) · nκk
2λp+1

)
, p ≥ 0,

where d(u, ∂B) = infv∈∂B ‖u−v‖ is the distance from u to the boundary of B. We will
show that both sequences converge and the limits satisfy (3.13) and (3.14). We first
remark that (λp) is non decreasing and therefore converges to some λ?κ in R ∪ {+∞}
and that for all p ≥ 0, u?p is in B since λp+1 ≥ |λ|(u−h (xκk),u?p,n

κ
k) so we can use (2.3)

with ∆t = 1
2λp+1

. Using successively (3.11) and the definition of γ̃κk in (3.15), then

(3.16), we have

u?p+1 =

Nf∑
k=1

γ̃κk

(
u−h (xκk) + u?p

2
−

f(u−h (xκk)) · nκk
2λp+1

)

=
u?p
2

+
1

2

Nf∑
k=1

γ̃κku−h (xκk)− 1

2λp+1

Nf∑
k=1

γ̃κk f(u−h (xκk)) · nκk .

Then the first step of the sequence (3.17) for u?κ reads

u?1 =

Nf∑
k=1

γ̃κku−h (xκk)− 1

2λ1

Nf∑
k=1

γ̃κk f(u−h (xκk)) · nκk ,

so applying the recurrence relation p more times, we obtain

(3.18) u?p+1 =

Nf∑
k=1

γ̃κku−h (xκk)−
p+1∑
i=1

1

2iλ(p+2−i)
×

Nf∑
k=1

γ̃κk f(u−h (xκk)) · nκk .

Let show that
∑p
i=1

1
2iλ(p+1−i)

above converges to 1
λ?κ

. Assume λ?κ is finite and let

ε > 0, since λp converges to λ?κ, there exists p0 such that | 1
λp
− 1

λ?κ
| < ε for all p > p0.
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Then for p > p0, we set

p∑
i=1

1

2iλ(p+1−i)
− 1

λ?κ
=

p∑
k=1

1

2(p+1−k)λk
− 1

λ?κ

=

p0∑
k=1

1

2(p+1−k)λk
+

p∑
k=p0+1

1

2(p+1−k)λk
− 1

λ?κ

=
1

2p+1

p0∑
k=1

2k

λk
+

p∑
k=p0+1

2k

2p+1

(
1

λk
− 1

λ?κ

)
− 1

λ?κ

(
1−

p∑
k=p0+1

2k

2p+1

)
and using a triangle inequality we obtain∣∣∣∣∣

p∑
i=1

1

2iλ(p+1−i)
− 1

λ?κ

∣∣∣∣∣ ≤ 1

2(p+1)

p0∑
k=1

2k

λk
+

p∑
k=p0+1

2k

2p+1

∣∣∣∣ 1

λk
− 1

λ?κ

∣∣∣∣
+

1

λ?κ

(
1−

p∑
k=p0+1

2k

2p+1

)

≤ 1

2(p+1)

p0∑
k=1

2k

λk
+

p−p0∑
i=1

1

2i
ε+

1

λ?κ

(
1−

p−p0∑
i=1

1

2i

)

=
1

2p+1

p0∑
k=1

2k

λk
+

(
1− 1

2p−p0

)
ε+

1

2p−p0
1

λ?κ

which clearly converges to ε when p→∞, proving our statement and (3.15).
Let now prove that λ?κ is finite by contradiction. Suppose that λp → +∞, then

u?p →
∑Nf
k=1 γ̃

κ
ku−h (xκk), but the application

u 7→ max
1≤k≤Nf

(|λ|(u,u−h (xκk),nκk)) +
1

d(u, ∂B)

is continuous in the interior of B and is hence locally bounded around
∑Nf
k=1 γ̃

κ
ku−h (xκk),

implying that λp is bounded and λ?κ is finite which is a contradiction. By (3.17), we
obviously have λp+1 ≥ max1≤k≤Nf

(
|λ|(u?p,u−h (xκk),nκk)

)
and passing the inequality

to the limit we obtain (3.14).
Let now prove that u?κ is in B, since for all p ≥ 0, u?p is in B, we already know

that u?κ is in the closure B̄. Now by contradiction, assuming that u?κ is not in B, we
necessarily have u?κ in ∂B, so d(u?p, ∂B) → 0 inducing λp → +∞ by (3.17) which a

contradiction. It remains to prove (3.13). Using (3.11), we add 1
λ?κ

f(u?κ)·
∑Nf
k=1 γ̃

κ
knκk =

0 to (3.15) and get

u?κ =

Nf∑
k=1

γ̃κk

(
u−h (xκk)−

f(u−h (xκk)) · nκk + f(u?κ) · nκk
λ?κ

)
.

Moving u?κ to the right-hand side and using (3.16) we obtain

Nf∑
k=1

γ̃κk

(
u−h (xκk)− u?κ −

f(u−h (xκk)) · nκk + f(u?κ) · nκk
λ?κ

)
= 0,
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and multiplying the above quantity by −λ
?
κ

2

∑Nf
i=1 s

κ
i = −λ

?
κ

2 S
κ we finally get

Nf∑
k=1

sκk

(
f(u−h (xκk)) · nκk + f(u?κ) · nκk

2
− λ?κ

(u−h (xκk)− u?κ)

2

)
= 0,

which is exactly (3.13) from the definition of the Rusanov flux (3.12).

3.3. Invariant domain preserving schemes. Using Lemma 3.4 we now state
and prove the main result of this work in the theorem below.

Theorem 3.5 (Time step condition). Assume that the numerical scheme satis-
fies (3.1), (3.3) and (3.11) and assume that u±h (xκk , t

(n))1≤k≤Nf and uh(yκi , t
(n))1≤i≤Nv

are in B, then under the following condition on the time step

(3.19) ∆t(n) max
κ∈Th

max
1≤k≤Nf

sκk
βκk

max
(
λ?κ, |λ|

(
u−h (xκk , t

(n)),u+
h (xκk , t

(n)),nκk
))
≤ 1

2
,

where λ?κ is defined by (3.14), 〈u(n+1)
h 〉κ is also in B.

Proof. Once again we remove the time dependance of uh for the sake of clarity,

except when explicitly needed in the evaluation of 〈u(n+1)
h 〉κ. Using Lemma 3.4 we

add the trivial quantity ∆t(n)× (3.13) to (3.1) and use (3.3) to get

〈u(n+1)
h 〉κ =〈u(n)

h 〉κ −∆t(n)

Nf∑
k=1

sκk
(
h(u−h (xκk),u+

h (xκk),nk)− hλ?κ(u?κ,u
−
h (xκk),nκk)

)
=

Nv∑
i=1

νiuh(yκi ) +

Nf∑
k=1

(
βκku−h (xκk)

−∆t(n)sκk
(
h(u−h (xκk),u+

h (xκk),nk)− hλ?κ(u?κ,u
−
h (xκk),nκk)

))
=

Nv∑
i=1

νiuh(yκi ) +

Nf∑
k=1

βκkU
κ,n
k ,(3.20)

where, from Lemma 2.5 and the condition (3.19), the updates

(3.21) Uκ,nk := u−h (xκk)− ∆t(n)sκk
βκk

(
h
(
u−h (xκk),u+

h (xκk),nκk
)
− hλ?κ

(
u?κ,u

−
h (xκk),nκk

))
,

are in B. Then by (3.4) 〈u(n+1)
h 〉κ is a convex combination of quantities in B, which

concludes the proof.

Remark 3.6. Since the set of states Ωa is in general a convex invariant domain,
Theorem 3.5 can then be applied to B = Ωa to ensure robustness of the scheme.

Remark 3.7. In the case where we are using the quadrature on the volume defined

by Lemma 3.1, from (3.8) and (3.9) and the definition εκ = min{i:ακi >0}(
$κi
ακi

), we have

(3.22)
sκk
βκk

=
1

εκ
= max
{i:ακi >0}

(
ακi
$κ
i

) = max
1≤i≤Nv

Np∑
j=1

Nf∑
l=1

sκl φj(x
κ
l )φj(y

κ
i ) ∀1 ≤ k ≤ Nf ,

and the CFL condition (3.19) now reads

(3.23) ∆t(n) max
κ∈Th

1

εκ
max

(
λ?κ, |λ|

(
u−h (xκk , t

(n)),u+
h (xκk , t

(n)),nκk
))
≤ 1

2
.
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3.4. Limiting strategy. Convex limiting enforces the numerical solution to pre-
serve invariant domains [21] through quasiconcave constraints [1]. Let recall that a
function ψ : B → R is quasiconcave iff. for every family of convex coefficients (λi) ≥ 0,
with

∑
λi = 1, we have ψ(

∑
i λiui) ≥ mini ψ(ui) for all ui in B. From Theorem 3.5

we see that for any quasiconcave function ψ we have

(3.24) ψ(〈u(n+1)
h 〉κ) ≥ mψ

κ := min
(
ψ
(
uh(yκi , t

(n))
)

1≤i≤Nv
, ψ
(
Uκ,nk

)
1≤k≤Nf

)
,

where the updates Uκ,nk are defined in (3.21). We now limit the solution around its

cell-average 〈u(n+1)
h 〉κ so that it satisfies the same bounds and we rely on scaling

limiters introduced in [50, 49] to enforce the bounds from quasiconcave functions to
points where uh needs to be evaluated. The limited solution is thus defined as

(3.25) ũ
(n+1)
h ≡ (1− θκ)u

(n+1)
h + θκ〈u(n+1)

h 〉κ,

where

θκ = min
z∈(yκ

1≤i≤Nv
)∪(xκ

1≤i≤Nf
)
max

{
0 ≤ t ≤ 1 : ψ

(
(1−t)uh(z, t(n+1))+t〈u(n+1)

h 〉κ
)
≥ mψ

κ

}
.

This strategy may be applied to a finite family (ψi)1≤i≤nc of nc quasiconcave
functions by using the minimum value θκ = min{θκ(ψi) : 1 ≤ i ≤ nc}. The limiter
(3.25) is then applied locally to each cell κ and preserves high-order accuracy of

the scheme in smooth domains [50]. The cell-average is not modified, 〈ũ(n+1)
h 〉κ =

〈u(n+1)
h 〉κ, and cellwise discrete conservation (3.1) still holds.

3.5. Practical evaluation of u?κ. The evaluation of mψ
κ in (3.24) requires to

first evaluate both λ?κ and u?κ as limits of the sequences in (3.17) which might be
cumbersome. Here we propose another strategy where we only need to check the
convergence of (λp) to ensure that (u?p) has also converged to u?κ which is in B. Let
introduce the sequences

(3.26)



λ0 = 1
ϑ max

1≤k≤Nf
|λ|
(
u−h (xκk , t

(n)),u+
h (xκk , t

(n)),nκk
)
,u?0 =

Nf∑
k=1

γ̃κku−h (xκk , t
(n)),

λp+1 = max
(
λp,

1
ϑ max

1≤k≤Nf

(
|λ|(u?p,u−h (xκk , t

(n)),nκk)
))
, p ≥ 0,

u?p+1 =
Nf∑
k=1

γ̃κk

(
u−h (xκk , t

(n))− f
(
u−h (xκk ,t

(n))
)
·nκk

λp+1

)
, p ≥ 0,

where

ϑ = max
{

0 ≤ t ≤ 1 : u?0 −
t

λ̃1

Nf∑
k=1

γ̃κk f
(
u−h (xκk , t

(n))
)
· nκk ∈ B

}
,

λ̃1 = max
1≤k≤Nf

(
|λ|
(
u−h (xκk , t

(n)),u+
h (xκk , t

(n)),nκk
)
, |λ|
(
u?0,u

−
h (xκk , t

(n)),nκk
))
.

Since u?0 ∈ B, we have 0 < ϑ ≤ 1 and then u?1 ∈ B by definition of ϑ. Now λp
is increasing and u?p+1 ∈ [u?0,u

?
p] ⊂ [u?0,u

?
1] for all p ≥ 1 which is enough to prove

convergence of both sequences and ensure that u?p ∈ B and since [u?0,u
?
1] is closed

the limit is also in B (no need to add the distance term as in (3.17)). Obviously, the
limits satisfy (3.13), (3.14) and (3.15). But this time, if λp+1 = λp for p ≥ 1, then
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u?p+1 = u?p and from this point both sequences are stationary. Now, the evaluation of

u?p is really fast and we only need to evaluate max1≤k≤Nf (|λ|(u?p,u−h (xκk , t
(n)),nκk)).

It is possible to use a local λ?kκ at each vertex xkκ in ∂κ in the above algorithm to
lower the artificial dissipation of the Rusanov flux (3.12) and thus avoid the induced
restriction on the time step as well as to reduce over-diffusion of the updates Uκ,nk in
(3.21). We thus look for λ?kκ , 1 ≤ k ≤ Nf , and u?κ satisfying

(3.27)

Nf∑
k=1

sκkhλ?kκ
(
u?κ,u

−
h (xκk , t

(n)),nκk
)

= 0,

and

(3.28) λ?kκ ≥ |λ|
(
u?κ,u

−
h (xκk , t

(n)),nκk
)
.

We therefore introduce new sequences as

(3.29)


λk0 = 1

ϑ |λ|
(
u−h (xκk , t

(n)),u+
h (xκk , t

(n)),nκk
)
, u?0 =

Nf∑
k=1

γ̃κku−h (xκk , t
(n)),

λkp+1 = max
(
λkp,

1
ϑ |λ|

(
u?p,u

−
h (xκk , t

(n)),nκk
))
, p ≥ 0,

u?p+1 =
Nf∑
k=1

γ̃κkλ
k
p+1∑Nf

i=1 γ̃iλ
i
p+1

(
u−h (xκk , t

(n))− f
(
u−h (xκk ,t

(n))
)
·nκk

λkp+1

)
, p ≥ 0,

where the index k ranges from 1 to Nf and

ϑ = max
{

0 ≤ t ≤ 1 :

Nf∑
k=1

γ̃κkλ
k
1∑Nf

i=1 γ̃iλ
i
1

(
u−h (xκk , t

(n))− t
f
(
u−h (xκk , t

(n))
)
· nκk

λ̃k1

)
∈ B

}
,

λ̃k1 = max
(
|λ|
(
u−h (xκk , t

(n)),u+
h (xκk , t

(n)),nκk
)
, |λ|
(
u?0,u

−
h (xκk , t

(n)),nκk
))
.

Now all the sequences (λkp)p are non-decreasing and will converge. Also for p ≥ 1,
we compute

( Nf∑
i=1

γ̃iλ
i
p+1

)
u?p+1 −

( Nf∑
i=1

γ̃iλ
i
p

)
u?p =

Nf∑
k=1

γ̃κk (λkp+1 − λkp)u−h (xκk , t
(n)),

so u?p+1 can be recast as a convex combination

u?p+1 =

∑Nf
i=1 γ̃iλ

i
p∑Nf

i=1 γ̃iλ
i
p+1

u?p +

Nf∑
k=1

γ̃κk (λkp+1 − λkp)∑Nf
i=1 γ̃iλ

i
p+1

u−h (xκk , t
(n)).

with Nf + 1 positive weights such that∑Nf
i=1 γ̃iλ

i
p∑Nf

i=1 γ̃iλ
i
p+1

+

Nf∑
k=1

γ̃κk (λkp+1 − λkp)∑Nf
i=1 γ̃iλ

i
p+1

= 1,

and by recurrence u?p+1 is also a convex combination of u?1 and the u−h (xκk , t
(n)).

Therefore, if u?1 is in B, then u?p is also in B for all p ≥ 1 and stays in a compact
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subset of B which ensures that the λkp are bounded. So they converge to some finite

λ?kκ and u?p converges to

(3.30) u?κ =

Nf∑
k=1

γ̃κkλ
?k
κ∑Nf

i=1 γ̃iλ
∗i
κ

(
u−h (xκk , t

(n))−
f
(
u−h (xκk , t

(n))
)
· nk

λ?kκ

)
∈ B.

By definition of the λkp, (3.28) holds and with the definition of u?κ, (3.27) is also

satisfied, while Theorem 3.5 still holds with λ?kκ instead of λ?κ in (3.19). We summarize
these results in the following lemma.

Lemma 3.8. Suppose that the numerical scheme satisfies (3.1), (3.3) and (3.11),
let B be a invariant domain and suppose that for all 1 ≤ i ≤ Nf , u±h (xκi , t

(n)) are
in B, then u?κ defined by (3.30) is in B, satisfies (3.27), and there exists a family of
finite and positive estimates (λ?kκ )1≤k≤Nf satisfying (3.28).

4. Examples of high-order spectral discontinuous methods. We here re-
view some high-order spectral discontinuous approximations of (1.1) which satisfy
the assumptions of discrete conservation (3.1), existence of quadrature rule (3.3)
and preservation of uniform states (3.11). As a consequence there exists pseudo-
equilibrium states u?κ such that Lemma 3.4, Lemma 3.8, and Theorem 3.5 hold, and
the limiter (3.25) can be applied. In the following, we consider a partition Th of
D ⊂ Rd, composed of non-overlapping and non-empty elements κ, and by Fh we
denote the set of faces in the partition. The approximate solution is sought under the
form

(4.1) uh(x, t) =

Np∑
k=1

φκk(x)Uκ
k(t) ∀x ∈ κ, κ ∈ Th, ∀t ≥ 0,

where the basis functions φκk span the function space Vph(κ) restricted onto κ and the
discrete scheme may be written as

(4.2) Mκ
k

Uκ
k,n+1 −Uκ

k,n

∆t(n)
+ Rκ

k(u
(n)
h ) = 0 ∀κ ∈ Th, 1 ≤ k ≤ Np, n ≥ 0,

where Uκ
k,n = Uκ

k(t(n)) and the Mκ
k are the entries of the mass matrix.

4.1. Discontinuous Galerkin Method. The first numerical scheme we de-
scribe here is the discontinuous Galerkin method with modal basis [37, 3, 7]. We look
for approximate solutions in the function space of discontinuous polynomials

Vph =
⊕
κ∈Th

Vph(κ) = {φ ∈ L2(D) : φ|κ ◦ xκ ∈ Pp(K̂) ∀κ ∈ Th},

where Pp(K̂) is a polynomial space over a reference element K̂, Each physical element
κ is the image of K̂ through the mapping x = xκ(ξ) with ξ = (ξ1, . . . , ξd). Likewise,
each face f in Fh is the image of a reference face F̂ through the mapping x =
xf (ξ1, . . . , ξd−1). We suppose that we have a quadrature (ξVi , ω

V
i )1≤i≤Nv on K̂ and

denote yκi = xκ(ξi) (see Fig. 1). Similarly, we consider a quadrature (ξfk , ω
f
k )1≤k≤nf

on F̂ and denote the faces of κ (f jκ)1≤j≤Nκ where Nκ is the number of faces of κ and

the f jκ ∈ F are distinct. Then define the xκi in (3.1) by xκ(j−1)nf+k = xfjκ(ξ
fjκ
k ) for
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1 ≤ j ≤ Nκ and 1 ≤ k ≤ nf and Nf = Nκ × nf . We further define Jacobians of the
transformations by Jκ(x) = |x′κ(ξ)| and Jf (x) = |x′f (ξ1, . . . , ξd−1)|.

The DG method consists in defining a discrete weak formulation of (1.1) by multi-
plying it with test functions φκk spanning Vph and integrating over κ, using integration
by parts and approximating f(uh) ·n by two-point numerical fluxes and the integrals
by the quadrature rules. The space discretization in (4.2) reads

(4.3) Rκ
k(uh) = −

Nv∑
i=1

ωVi Jκ(yκi )f
(
uh(yκi , t

(n))
)
· ∇φκk(yκi )

+

Nf∑
i=1

ωfi Jf (xκi )h
(
u−h (xκi , t

(n)),u+
h (xκi , t

(n)),nκi
)
φκk(xκi ).

We use an orthonormal basis such that Mk
κ = |κ| :=

∑Nv
i=1 ω

V
i Jκ(yκi ) and further

seting φκk = 1κ the indicator function of κ, the first sum vanishes and we obtain (3.1)

with sκk =
ωfkJf (xκk)

|κ| and βκk = εκs
κ
k in (3.3) where εκ is evaluated from (3.22). Then

by (3.23), the scheme (4.2) and (4.3) is IDP under the condition

(4.4) ∆t(n) max
κ∈Th

1

εκ
max

1≤k≤Nf
max

(
λ?κ, |λ|

(
u−h (xκk , t

(n)),u+
h (xκk , t

(n))
))
≤ 1

2
.

4.2. Discontinuous Galerkin Spectral Element Method. In the DGSEM,
the reference element is an hypercube : K̂ = Id := {ξ = (ξ1, . . . , ξd) : −1 ≤ ξj ≤ 1}
and the polynomial space Pp(Id) is formed by tensor products of polynomials of degree
at most p in each direction. The approximate solution is sought under the form (4.1)
where (Uκ

k)1≤k≤Np are the Np = (p+ 1)d DOFs in the element κ with indexing

k = k(i1, . . . , id) := 1 +

d∑
j=1

ij(p+ 1)j−1 0 ≤ i1, . . . , id ≤ p.

We define a basis (φκk)1≤k≤Np of Vph(κ) by using tensor products: φκk(x) =
φκk(xκ(ξ)) = Πd

j=1`ij (ξj), where `0≤i≤p denote the ith Lagrange interpolation poly-
nomial associated to ζi the ith Gauss-Lobatto quadrature node with ζ0 = −1 < ζ1 <
· · · < ζp = 1 (see Fig. 2) and by ωi we denote the associated weight. We therefore

have the following cardinality relation at quadrature points ξk′ = (ξi′1 , . . . , ξi′d) in K̂:
φκk(xκk′) = φκk(xκ(ξk′)) = δi1,i′1 . . . δid,i′d with δi,i′ the Kronecker symbol, so the DOFs
correspond to the point values of the solution: Uκ

k(t) = uh(yκk , t) and interpolation
and quadrature points are collocated, hence Nv = Np.

Let introduce the discrete derivative matrix with entries Dij = `′j(ζi) with 0 ≤
i, j ≤ p. The DGSEM discretization takes the form (4.2) with Mκ

k = ωVk Jκ(kκk),
ωVk = Πd

j=1ωij for k = k(i1, . . . , id) and

Rκ
k(uh) = 2ωVk

d∑
j=1

p∑
l=0

Dij lhsym
(
Uκ
k ,U

κ
k′j
, {Jκ∇ξj}(k,k′j)

)
+

Nf∑
i=1

φκk(xκi )ωfi Jf (xκi )
(
h
(
Uκ
k,n,u

+
h (xκi , t),n

κ
i

)
− f
(
Uκ
k,n

)
· nκi

)
(4.5)
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κ = κ− κ+

f

u−h

u+
h

nκk

xκk

yκi

• •
• •

• •
• •

• • • •

• • • •

Fig. 2: Notations for the DGSEM and d = 2: inner and outer elements, κ− and κ+,
for d = 2; definitions of traces u±h on the interface f and of the unit outward normal
vector nκk . Element quadrature nodes yκi and surface quadrature node xκk that are
also included in the yκi .

where for d = 3 k′1 = k(l, i2, i3), k′2 = k(i1, l, i3) and k′3 = k(i1, i2, l), hence k′j =

k + (i′j − ij)(p+ 1)j−1, Nf = 2d(p+ 1)d−1, ωfi = Πd−1
j=1ωij , and

{Jκ∇ξ}(k,k′j) = 1
2

(
Jκ(yκk)∇ξj(ξk) + Jκ(yκk′j

)∇ξj(ξk′j )
)
,

have been introduced to keep conservation of the scheme [46]. By hsym we de-
note a two-point flux supposed to be symmetric in the sense that hsym(u,v,n) =
hsym(v,u,n). Note that φκk(xκi ) = 1 if xκi = yκk and φκk(xκi ) = 0 else.

The choice of the yκk in the quadrature (3.3) is not unique and we here use the
following decomposition

〈u(n)
h 〉κ =

1

|κ|
∑
yκi ∈κ

ωVi Jκ(yκi )Uκ
i,n

=
1

|κ|
∑

yκi ∈int(κ)

ωVi Jκ(yκi )Uκ
i,n +

1

|κ|

Nf∑
i=1

ω̃fi Jκ(xκi )uh(xκi , t
(n)),

where int(κ) denotes the interior of κ, while ω̃fi Jκ(xκi ) = 1
dω

V
j Jκ(yκj ) if yκj = xκi is a

vertex of the d-dimensional hexahedron, ω̃fi Jκ(xκi ) = 1
d−1ω

V
j Jκ(yκj ) if yκj = xκi is on

some edge, and ω̃fi Jκ(xκi ) = ωVj Jκ(yκj ) else.
Summing (4.2) over 1 ≤ k ≤ Nv gives for the cell-averaged solution

〈u(n+1)
h 〉κ = 〈u(n)

h 〉κ −
∆t(n)

|κ|

Nv∑
k=1

Rκ
k(u

(n)
h )

= 〈u(n)
h 〉κ −

∆t(n)

|κ|

Nf∑
i=1

ωfi Jf (xκi )h
(
u−h (xκi , t

(n)),u+
h (xκi , t

(n)),nκi
)
,

by conservation of the DGSEM [15, 46] and providing that the so-called metric iden-
tities are satisfied at the discrete level [29]. This relation can be identified with (3.1)
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with sκk =
ωfkJf (xκk)

|κ| . Then we can apply Theorem 3.5 with βκk =
ω̃fkJκ(xκk)

|κ| and the

DGSEM scheme (4.2) is IDP under the condition

(4.6) ∆t(n) max
κ∈Ωh

max
1≤k≤Nf

ωfkJf (xκk)

ω̃fkJκ(xκk)
max

(
λ?κ, |λ|

(
u−h (xκk , t

(n)),u+
h (xκk , t

(n))
))
≤ 1

2
.

4.3. Other methods. Properties (3.1), (3.3), and (3.11) also hold for other dis-
cretely conservative spectral difference methods on general curved elements provided
the discretization operators satisfy the metric identities at the discrete level, which
imposes some limits on the order of approximation of the mesh elements compared to
the approximation order of the solution [29]. The limiter (3.25) may hence be applied
to make these methods invariant domain preserving. We list some examples below.

The skew-symmetric entropy stable modal discontinuous Galerkin methods [6]
uses skew-hybrized summation-by-parts (SBP) operators allowing conservation and
free-stream preservation under the standard accuracy requirements of volume and
surface quadratures. In [8] multidimensional discretization schemes based on SBP
operators on general curved elements generalize the staggered finite differences from
[11]. The discretizations with curved elements remain accurate, conservative, and
entropy stable. Spectral differences [33] and staggered Chebyshev [30] methods on
curved elements belong to a same family of conservative approximations satisfying the
discrete metric identities. The methods use two sets of interpolation points for the
solution and fluxes and impose the discrete residuals to be satisfied at solution points.
Flux points contain points at faces of the elements where two-point numerical fluxes
are used. Then, the space derivatives at solution points are evaluated by differencing
the polynomials interpolating the fluxes.

5. Numerical experiments. Let consider the compressible Euler equations of
gas dynamics. The conservative variables and fluxes in (1.1) are

(5.1) u =

 ρ
ρv
ρE

 , f =

 ρv>

ρvv> + pId
(ρE + p)v>

 ,

where ρ, v, and E denote the density, velocity vector, and specific total energy,
respectively. The system is closed by defining the equation of state p = p( 1

ρ , e) with

e = E − 1
2v · v the specific internal energy and the system is hyperbolic over the set

of states Ωa = {u ∈ Rd+2 : ρ > 0,v ∈ Rd, e > 0}. We focus here on the polytropic

ideal gas law p = (γ − 1)ρe where γ =
Cp
Cv

= 7
5 is the ratio of specific heats. The

compressible Euler equations (1.1) and (5.1) possess the natural entropy – entropy
flux pair

η = −ρs, q = −ρsv, s = Cv ln
( p
ργ

)
,

and B = {u ∈ Ωa s(u) ≥ s0}, with s0 in R, is an invariant domain for (1.1) and (5.1)
[13]. We use our convex limiting strategy with the quasiconcave functions ψ1 ≡ ρ and
ψ2 ≡ ρe.

We now test the robustness and efficiency of the CFL condition on simulations of
(1.1) and (5.1) with discontinuous solutions on one-dimensional and unstructured two-
dimensional grids. We use the modal DG method in subsection 4.1 and the DGSEM in
subsection 4.2. The CFL conditions (4.4) and (4.6) guaranty the cell-averaged solution
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Table 1: Initial conditions of Riemann problems (2.1) where x0 indicates the abscissa
separating the states.

problem left state (ρL, uL, pL)> right state (ρR, uR, pR)> x0

Sod [42] (1, 0, 1)> (0.125, 0, 0.1)> 0
Lax (0.445, 0.698, 3.528)> (0.5, 0, 0.571)> 0
Toro 4 [44] (5.99924, 19.5975, 460.894)> (5.99242,−6.19633, 46.0950)> −0.1

to be IDP and we then apply the limiter (3.25) to further impose the high-order
solution to be IDP. We will compare the following limiting strategies: a positivity
limiter (POS) which imposes the solution to remain in Ωa thus extending [50] to
unstructured grids; an IDP limiter which imposes the solution to remain in the convex
hull of the states in (3.20) and computing the time step in (4.4) and (4.6) with either
the global wave estimate λ?κ (IDP) from algorithm (3.26), or the local wave estimate
λ?κ from (3.29) (IDPloc). Imposing the IDP property may result in over-limiting of
the solution and some strategies are usually applied such as bound relaxation [21],
or subcell smoothness indicator [34]. We here follow the second strategy which relies
on the smoothness indicator from [35] (see [34, Sec. 4.4] for details). Finally, we use
the Suliciu pressure relaxation based numerical flux from [5, Sec. 2.4.6] at interfaces,
while for hsym in the DGSEM scheme (4.5) we use the Kennedy and Grubber splitting
from [15].

5.1. Riemann problems. We here consider Riemann problems (2.1) with ini-
tial data given in Tab. 1. We first consider computations with the DGSEM (see
section 4) and the three limiting strategies. Results are shown in Figs. 3 to 5. The
POS limiter only ensures that the solution remains in the set of states Ωa and does
not modify non-physical oscillations, with the IDP and IDPloc strategies succeed
in damping spurious oscillations and result in very close oscillations. All numeri-
cal experiments always show that there is no sensible improvement to evaluate the
pseudo-equilibrium state u?κ with local wave estimates λ?kκ in (3.26) instead of a global
estimate λ?κ in (3.29), while it leads to a more expensive algorithm. Besides, our obser-
vation show that using a local estimates require more iterations for algorithm (3.29)
to converge with a global average between 2.8 and 3.2 iterations evazluated over the
whole computations compared to between 1.11 and 1.17 when using (3.26). In the
latter case, for most of the computations the initial guess u?0 given in (3.26) satisfies
the requirement (3.27) and (3.28) so no more step is needed.

We now reproduce the same numerical experiments but using the classical modal
DG (see subsection 4.1) with the IDP strategy. Figure 6 presents the results for the
threes Riemann problems and we observe a good resolution of the waves with only
lower amplitude oscillations compared to the DGSEM results. Imposing the IDP
property at all quadrature points may result in stronger limiting of the solution with
the modal DG scheme as these are more quadrature points (compare Figs. 1 and 2).
Again, algorithm (3.26) converges very fast with a global average between of 1.11
and 1.18 iterations evaluated over the whole computations. Finally note that all the
computations (with either DGSEM, or modal DG scheme) require to apply one of the
limiting strategy to avoid non-physical solution.



INVARIANT DOMAIN PRESERVING APPROXIMATIONS OF HYPERBOLIC SYSTEMS19

(a) POS (b) IDP (c) IDPloc

Fig. 3: DGSEM computations of the Sod problem at t = 0.2 with p = 3 and N = 100
elements for the density (top), velocity (middle), and pressure (bottom).

5.2. Double Mach Reflection problem. We now consider the two-dimensional
problem of a Mach 10 shock reflection over a 30◦ wedge [47]. Ahead of the shock, the
gaz is at rest and has a density of 1.4 and pressure of 1. Inflow and outflow conditions
are applied at the left and bottom boundaries, while a symmetry condition is applied
at the top boundary. Initially, the shock is located at x = 0 corresponding to the be-
ginning of the wedge. We use an unstructured mesh with 132800 quadrangles to solve
the horizontally moving shock interacting with the inclined wall where slip conditions
are applied. In Fig. 7 we can observe qualitatively similar results for the three tests.
The limiting strategy induce some spurious oscillations, but the computations proved
to be robust. Here again, algorithm (3.26) proves to be cheap in term of iterations
to converge with global averages of 1.18 for both the DGSEM (IDP) and modal DG
(IDP) computations.
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(a) POS (b) IDP (c) IDPloc

Fig. 4: DGSEM computations of the Lax problem at t = 0.2 with p = 3 and N = 100
elements for the density (top), velocity (middle), and pressure (bottom).

6. Conclusions. We here investigate robustness and stability properties of dis-
cretely conservative high-order spectral discontinuous methods with explicit time step-
ping for the approximation of hyperbolic systems of conservation laws. We derive a
condition on the time step to guaranty that the cell-averaged approximate solution
is a convex combination of DOFs at preceding time step and updates of invariant
domain preserving and entropy stable three-point schemes. As a consequence, the
cell-averaged solution lies in some convex invariant domain and we apply a posteri-
ori scaling limiting techniques [50] that impose to all the DOFs to satisfy the same
invariant domain properties.

The condition on the time step is evaluated from the traces of the solution at
faces of the mesh and can be easily evaluated on the fly. Provided the scheme satisfies
the discrete metric identities, the condition is fairly general and holds for general un-
structured grid with possibly curved elements. It relies on the existence of a so-called
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(a) POS (b) IDP (c) IDPloc

Fig. 5: DGSEM computations of the Toro 4 problem at t = 0.2 with p = 3 and
N = 100 elements for the density (top), velocity (middle), and pressure (bottom).

pseudo-equilibrium state which satisfies a flux balance over each mesh element, and
the existence of a quadrature rule including the traces to evaluate the cell-averaged
solution. We here prove their existence in the general case and provide an iterative
algorithm to evaluate the pseudo-equilibrium state. We illustrate these results with
the classical modal discontinuous Galerkin and DGSEM schemes. Numerical experi-
ments in one and two space dimensions are provided to illustrate the robustness and
stability of the present approach. The extension of this framework to parabolic sys-
tems of conservation laws, e.g., the compressible Navier-Stokes, is a possible direction
of future research.
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