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Abstract. Policy gradient algorithms have been widely applied to Markov decision processes and reinforcement
learning problems in recent years. Regularization with various entropy functions is often used to encourage explo-
ration and improve stability. This paper proposes an approximate Newton method for the policy gradient algorithm
with entropy regularization. In the case of Shannon entropy, the resulting algorithm reproduces the natural policy
gradient algorithm. For other entropy functions, this method results in brand-new policy gradient algorithms. We
prove that all these algorithms enjoy Newton-type quadratic convergence and that the corresponding gradient flow
converges globally to the optimal solution. Using synthetic and industrial-scale examples, we demonstrate that
the proposed approximate Newton method typically converges in single-digit iterations, often orders of magnitude
faster than other state-of-the-art algorithms.
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1. Introduction. Consider an infinite-horizon Markov decision process (MDP) [4, 33]M =
(S,A, P, r, γ), where S is a set of states of the system studied, A is a set of actions made by the
agent, P is a transition probability tensor with P a

st being the probability of transitioning from
state s to state t when taking action a, r is a reward tensor with ras being the reward obtained
when taking action a at state s, and 0 < γ < 1 is a discount factor. Throughout the paper, the
state space S and the action space A are assumed to be finite. A policy π is a randomized rule
of action-selection where πa

s denotes the probability of choosing action a at state s. For a given
policy π, the value function vπ is defined as

(1.1) (vπ)s = E
∞∑
k=0

(
γkrak

sk
| s0 = s

)
,

which satisfies the Bellman equation:

(1.2) (I − γPπ)vπ = rπ,

where (Pπ)st =
∑

a π
a
sP

a
st, (rπ)s =

∑
a π

a
s r

a
s , and I is the identity operator.

In order to promote exploration and enhance stability, one often regularizes the problem with a
function hπ such as the negative Shannon entropy (hπ)s =

∑
a π

a
s log π

a
s . With the regularization

hπ, the original reward rπ is replaced with the regularized reward rπ − τhπ where τ > 0 is a
regularization coefficient and (1.2) becomes

(1.3) (I − γPπ)vπ = rπ − τhπ,

where we overload the notation vπ for the regularized value function. Other continuously differ-
entiable entropy functions can be used as well, as we will show later. Since γ < 1 and Pπ is a
transition probability matrix, (I − γPπ) is invertible, and

(1.4) vπ = (I − γPπ)
−1(rπ − τhπ).

In a policy optimization problem, we seek a policy π that maximizes the value function vπ.
According to the theory of regularized MDPs [9], when the regularization is strongly convex, there
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is a unique optimal policy π∗ such that (vπ∗)s ≥ (vπ)s for any policy π and state s. It thus suffices

to maximize ρ⊤vπ for any positive weight vector ρ ∈ R|S|
+ . Using (1.4), the problem can be stated

as

(1.5) max
π

ρ⊤(I − γPπ)
−1(rπ − τhπ).

This problem can be solved by, for example, the policy gradient (PG) method. However, the
vanilla PG method converges quite slowly. In [1], for instance, the vanilla PG method is shown
to have the O(T−1) convergence rate, where T denotes the number of iterations. A widely used
variant of PG is the softmax policy gradient (SPG) method, where a softmax parameterization

is applied before taking gradient updates, which has been shown in [15] to require O(|S|2
Ω( 1

1−γ
)

)
iterations to converge for certain MDPs without regularization. For the PG method with entropy
regularization and some of its variants, the convergence rate can be improved to O(e−cT ), i.e.,
linear convergence [17], which can still be slow since the constant c in the linear convergence
rate O(e−cT ) is in general close to 0. It is also demonstrated in numerical examples that these
algorithms with linear rates can experience slow convergence. For example, in the example in
[40], thousands of iterations are needed for the algorithm to converge, even though the model
is relatively small and sparse. Therefore, there is a clear need for designing new methods with
faster convergence and one idea is to take the geometry of the problem into consideration. The
Newton method, for example, preconditions the gradient with the Hessian matrix and obtains
second-order local convergence. Since the exact Hessian matrix is usually too computationally
expensive to obtain, the approximate Newton methods (including quasi-Newton methods), which
use structurally simpler approximations of the Hessian instead, are more widely adopted in generic
optimization problems and are known to enjoy superlinear convergence [25, 26].

1.1. Contributions. In this paper, we investigate the approximate Newton approach for
solving (1.5). The main contributions of this paper are the following.

• First, we present a unified approximate Newton method for the policy optimization prob-
lem. The main observation is to decompose the Hessian as a sum of a diagonal matrix
and a remainder that vanishes at the optimal solution. This inspires us to use only the
diagonal matrix in the approximate Newton method. As a result, the proposed method
not only leverages the second-order information but also enjoys low computational cost
due to the diagonal structure of the preconditioner used. When the negative Shannon en-
tropy is used, this method reproduces the natural policy gradient (NPG) algorithm. For
other forms of entropy regularization, this method results in brand-new policy gradient
algorithms.

• Second, we analyze the convergence property of the proposed approximate Newton algo-
rithms and demonstrate local quadratic convergence both theoretically and numerically.
By leveraging the framework of Newton-type methods (see [8] for example), we provide
a simple and straightforward proof for quadratic convergence near the optimal policy.
In the numerical tests, we verify that the proposed method leads to fast quadratic con-
vergence even under small regularization and large discount rates (close to 1). Even for
industrial-size problems with hundreds of thousands of states, the approximate Newton
method converges in single-digit iterations and within a few minutes on a regular laptop.
We also prove the global convergence of the approximate Newton gradient flow to the
optimal solutions.

1.2. Background and related work. A major workhorse behind the recent success of rein-
forcement learning (RL) is the large family of policy gradient (PG) methods [38, 34], for example,
the natural policy gradient (NPG) method [12], the actor-critic method [13], the asynchronous
advantage actor-critic (A3C) method [19], the deterministic policy gradient (DPG) method [32],
the trust region policy optimization (TRPO) [28], the generalized advantage estimation (GAE)
[29], and proximal policy optimization (PPO) [30], to mention but a few. The NPG method is
known to be drastically faster than the original PG method because the policy gradient in NPG is
preconditioned by the Fisher information (an approximation of the Hessian of the KL-divergence)
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matrix in order to fit the problem geometry better. This idea is extended in TRPO and PPO
where the problem geometry is taken into consideration via trust region constraints (in terms of
KL-divergence) and a clipping function of the relative ratio of policies in the objective function,
respectively. These implicit ways (in the sense that they do not adjust the gradient by an explicit
preconditioner) of adjusting the policy gradient are in essence similar to the mirror descent (MD)
method [20] in generic optimization problems.

This similarity in addressing the inherent geometry of the problem is noticed by a line of
recent work including [22, 9, 31, 35, 14], and the analysis techniques in MD methods have been
adapted to the PG setting. The connection was first built explicitly in [22]. The authors consider
a linear program formulation where the objective function is the average reward and the domain
is the set of stationary state-action distributions, in which case the TRPO method can be viewed
as an approximate mirror descent method and the A3C method as an MD method for the dual-
averaging [21] objective. As a complement, [9] considers an actor-critic type method where the
policy is updated via either a regularized greedy step or an MD step, and the value function is
updated by a regularized Bellman operator, which also includes TRPO as a special case, and error
propagation analysis is provided. In [31], an adaptive scaling that naturally arises in the policy
gradient is applied to the proximity term of the MD formulation, and the sublinear convergence
result is proved with a properly decreasing learning rate. In [35], the application to the non-tabular
setting is enabled by parameterizing the policy and applying MD to the policy parameters, and
the corresponding sublinear convergence result is presented.

Regularization, a strategy that considers the modified objective function with an additional
penalty term on the policy, is another crucial component in the development of PG-type methods.
Intuitively, regularization is able to encourage exploration in the policy iteration process and thus
avoid local minima. It is also suggested [2] that regularization makes the optimization landscape
smoother and thus enables possibly faster convergence. Linear convergence results are then estab-
lished for regularized PG and NPG methods [1, 17, 6]. In these relatively earlier works [1, 17, 6],
the regularization usually takes the form of (negative) entropy or relative entropy. In the more
recent work [14] and [40] that follow the MD type methods, the regularization is extended to
general convex functions with the resulting Bregman divergences different from the KL-divergence
and linear convergence is guaranteed as well.

However, most of these algorithms are of either sublinear or linear convergence except the
entropy regularized NPG with full step length (which is a special case of the approximate Newton
method we propose), and even the linear convergence rate O(e−cT ) can be slow since c can be
close to zero. This motivates us to invent the approximate Newton policy gradient method to be
introduced in section 2.

2. Approximate Newton method.

2.1. Approximate Newton method and entropy regularized natural policy gra-
dient. This section derives the approximate Newton method for the entropy regularized policy
optimization problems. The idea is to approximate the Hessian with a simpler matrix whose
inverse is easy to compute. We start with the negative Shannon entropy (hπ)s =

∑
a π

a
s log π

a
s .

In what follows, it is assumed that π∗ is the optimizer of the problem stated in (1.5). By
introducing Zπ := I − γPπ, the objective function can be written as

(2.1) E(π) ≡ ρ⊤(I − γPπ)
−1(rπ − τhπ) = ρ⊤Z−1

π (rπ − τhπ) = w⊤
π (rπ − τhπ),

where wπ := Z−⊤
π ρ.

Let us first outline the main idea of the approximate Newton method. The gradient ∇πE in
R|S||A| of E(π) has entries given by

(2.2)
∂E

∂πa
s

= (ras − τ(log πa
s + 1)− [(I − γP a)vπ]s + cs)(wπ)s,

where cs is a multiplier associated with the constraint
∑

a π
a
s = 1 that depends on s. Our key

observation is to decompose the Hessian matrix D2E(π) in R|S||A|×|S||A| into two parts

(2.3) D2E(π) = Λ(π) + ∆(π),
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4 H. LI, S. GUPTA, H. YU, L. YING, AND I. DHILLON

where Λ(π) is a diagonal matrix given by Λ(sa),(tb) = −τδ{(sa),(tb)} (wπ)s
πa
s

and ∆(π) is a remainder

that vanishes at π = π∗, i.e., ∆(π) = O(∥π − π∗∥) (shown in Theorem 2.1). We emphasize
that Λ(π) is in general not the diagonal part of the Hessian matrix D2E(π), but a diagonal
approximation to it. With this decomposition, we can approximate the Hessian matrix D2E(π)
by Λ(π) and obtain the following approximate Newton flow:

dπa
s

dt
= −(Λ−1∇πE)sa = −(Λ(sa),(sa))

−1 ∂E

∂πa
s

= πa
s (r

a
s − τ(log πa

s + 1)− [(I − γP a)vπ]s + cs)/τ,

By introducing the parameterization θas = log πa
s and discretizing in time with learning rate η, we

arrive at

θas ← η(ras − τ − [(I − γP a)vπ]s + cs)/τ + (1− η)θas .

Writing this update back in terms of πa
s leads to the following update rule

πa
s ∝ (πa

s )
1−η exp(η(ras + (γP avπ)s)/τ),

which coincides with the NPG scheme with entropy regularization. This result is summarized in
the following theorem with the proof given in subsection 5.1.

Theorem 2.1. Let hπ ∈ R|S| be the negative Shannon entropy (hπ)s =
∑

a π
a
s log π

a
s .

(a) There exists a diagonal approximation Λ(π) of the Hessian matrix D2E(π) given by

Λ(sa),(tb) = −τδ{(sa),(tb)} (wπ)s
πa
s

such that

(2.4) Λ(π)−D2E(π) = O(∥π − π∗∥).

(b) The approximate Newton flow from Λ(π) is

(2.5)
dπa

s

dt
= πa

s (r
a
s − τ(log πa

s + 1)− [(I − γP a)vπ]s + cs)/τ.

With a learning rate η, the gradient update is

(2.6) πa
s ←

(πa
s )

1−η exp(η(ras + (γP avπ)s)/τ)∑
a(π

a
s )

1−η exp(η(ras + (γP avπ)s)/τ)
.

Remark 2.2. The policy update scheme (2.6) is the same as the entropy regularized natural
policy gradient scheme in, for example, [6].

Historical note. The natural gradient methods (including the NPG method) were traditionally
developed as a way of implementing the vanilla gradient descent method with an intrinsic metric
that is invariant to the choice of parameters (Cf. [16]), and entropy regularization was originally
motivated as a way of encouraging exploration and avoid the suboptimality caused by greedy
solvers (Cf. [22]). In this regard, it was more or less a coincidence that the algorithm combining
the two methods – the regularized NPG obtains a fast quadratic convergence (Cf. [6]). The
reason behind this coincidence is that the preconditioner used in the natural gradient method in
fact approximates the second-order derivatives introduced by the entropy regularization in this
case, though the fisher information matrix was not designed to approximate any second-order
information in the classical natural gradient literature.

2.2. Extension to other entropy functions. Theorem 2.1 can be extended to more general
entropy functions. It yields brand-new algorithms with quadratic convergence. Here we consider
the entropy functions of the form

(2.7) (hπ)s =
∑
a

ϕ

(
πa
s

µa
s

)
µa
s ,
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APPROXIMATE NEWTON POLICY GRADIENT ALGORITHMS 5

where ϕ is convex on (0,+∞) and ϕ(1) = 0, and µs is a prior distribution over A such that µa
s > 0.

The term (hπ)s is also called the “f -divergence” between πs and µs [24, 3]. If there is no prior
knowledge of the policy, one can use the uniform prior, i.e., µa

s = 1/|A| for all a. We further
assume that ϕ is twice continuously differentiable and strongly convex and that ϕ′(x) → −∞ as
x→ 0. Here are some examples:

• When ϕ(x) = x log x, (hπ)s =
∑

a

(
πa
s

µa
s
log

πa
s

µa
s

)
µa
s =

∑
a π

a
s log

πa
s

µa
s
. When the uniform

prior is used, we recover the negative Shannon entropy regularization
∑

a π
a
s log π

a
s used

in Theorem 2.1 after omitting the constant log 1
|A| .

• When ϕ(x) = 4
1−α2 (1− x

1+α
2 ) (α < 1), we obtain the α-divergence:

(2.8) (hπ)s =
4

1− α2
− 4

1− α2

∑
a

µa
s (π

a
s/µ

a
s)

1+α
2 .

In particular, when α = 0 we obtain the Hellinger divergence (hπ)s = 2−2
∑

a

√
µa
sπ

a
s after

dividing by 2. When α→ −1 we obtain the reverse-KL divergence (hπ)s =
∑

a µ
a
s log

µa
s

πa
s
.

Also, when α → 1, we obtain the KL-divergence (hπ)s =
∑

a π
a
s log

πa
s

µa
s
, though the limit

of ϕ(x) does not exist when α→ 1.
In the following theorem, we extend the approximate Newton method in Theorem 2.1 to the

entropy functions described above. The proof of this theorem can be found in subsection 5.2.

Theorem 2.3. Assume that π∗ is the optimizer of (1.5) where hπ is the entropy function
defined in (2.7).

(a) The Hessian matrix D2E(π) can be approximated by a diagonal matrix Λ(π) given by

(2.9) Λ(sa),(tb) = −τδ{(sa),(tb)}
(wπ)sϕ

′′(πa
s/µ

a
s)

µa
s

near π∗ such that Λ(π)−D2E(π) = O(∥π − π∗∥).
(b) The approximate Newton flow from Λ is

(2.10)
dπa

s

dt
= µa

s(ϕ
′′(πa

s/µ
a
s))

−1(ras − τϕ′(πa
s/µ

a
s)− [(I − γP a)vπ]s + cs)/τ.

With parameterization θas = ϕ′(πa
s/µ

a
s), the approximate Newton method from Λ(π) can be ex-

pressed as:

(2.11) θas ← η(ras − [(I − γP a)vπ]s + cs)/τ + (1− η)θas .

where where 0 < η ≤ 1 is the learning rate and cs is a multiplier introduced by the constraint∑
a π

a
s = 1.

For particular choices of ϕ, the corresponding approximate Newton update scheme can be
obtained directly by plugging ϕ into (2.11).

• For the case ϕ(x) = x log x and (hπ)s =
∑

a π
a
s log

πa
s

µa
s
, one can solve the multipliers cs

explicitly as in Theorem 2.1 and obtain the NPG method with prior distribution µ:

(2.12) πa
s ←

(µa
s)

η(πa
s )

1−η exp(η(ras + (γP avπ)s)/τ)∑
a(µ

a
s)

η(πa
s )

1−η exp(η(ras + (γP avπ)s)/τ)
.

• For the case ϕ(x) = 4
1−α2 (1 − x

1+α
2 ) (α < 1) and hπ given by the α-divergence (2.8), we

have θas = − 2
1−α (π

a
s/µ

a
s)

α−1
2 , thus by (2.11) the update scheme is

(2.13) πa
s ← µa

s

(
(1− η)(πa

s/µ
a
s)

α−1
2 +

α− 1

2
η(ras − [(I − γP a)vπ]s + cs)/τ

) 2
α−1

.
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6 H. LI, S. GUPTA, H. YU, L. YING, AND I. DHILLON

The remaining problem in the update schemes is the determination of the multipliers cs, since
in general they cannot be solved explicitly as in the case of the negative Shannon entropy (Cf.
Theorem 2.1). Since ϕ is strongly convex, we know that ϕ′ is strictly increasing, and thus −ϕ′ is
a strictly decreasing function mapping from (0,+∞) to (− supϕ′,+∞) since lim

x→0+0
ϕ′(x) = −∞.

Let ψ := (−ϕ′)−1, then ψ : (− supϕ′,+∞) → (0,+∞) is a strictly decreasing function that
satisfies lim

x→− supϕ′+0
ψ(x) = +∞ and lim

x→+∞
ψ(x) = 0. From (2.11), the equation of the multiplier

cs corresponding to
∑

a π
a
s = 1 is:

(2.14)
∑
a

µa
sψ
(
−η
τ
cs − (1− η)ϕ′ (πa

s/µ
a
s)−

η

τ
(ras − [(I − γP a)vπ]s)

)
= 1,

or equivalently,

(2.15)
∑
a

µa
sψ (c̃s + xa) = 1,

where

(2.16) c̃s = −
η

τ
cs, xa = −(1− η)ϕ′ (πa

s/µ
a
s)−

η

τ
(ras − [(I − γP a)vπ]s).

We claim that the determination of c̃s in equation (2.15) (and thus the determination of cs) can
be done in a similar way as in [39] based on the following lemma. The proof of this lemma can be
found in subsection 5.3.

Lemma 2.4. Let L ∈ R∪ {−∞}. Assume that ψ : (L,+∞)→ (0,+∞) is a strictly decreasing
function that satisfies lim

x→L+0
ψ(x) = +∞ and lim

x→+∞
ψ(x) = 0 and assume also that µi > 0, then

for any x1, x2, . . . , xk, there is a unique solution to the equation:

µ1ψ(x+ x1) + · · ·+ µkψ(x+ xk) = 1.(2.17)

Moreover, the solution is on the interval

(2.18)

[
max

{
L− min

1≤i≤k
xi, min

1≤i≤k

{
ψ−1

(
1

kµi

)
− xi

}}
, max
1≤i≤k

{
ψ−1

(
1

kµi

)
− xi

}]
.

Leveraging Lemma 2.4 and the monotonicity of the function µ1ψ(x+x1)+· · ·+µkψ(x+xk)−1,
many of the established numerical methods (e.g. bisection) for nonlinear equations can be applied
to determine the solution for (2.17). This routine can be used to find c̃s in (2.15) and thus the
multipliers cs in (2.14) as stated in Proposition 2.5 whose proof is given in subsection 5.4.

Proposition 2.5. The multipliers cs in the update scheme (2.11) can be determined uniquely
such that the updated policy π satisfies πa

s ≥ 0 and
∑

a π
a
s = 1.

When the α-divergence is used, we have ϕ = 4
1−α2 (1 − x

1+α
2 ) and ϕ′(x) = 2

α−1x
α−1
2 , then

L = − supϕ′ = 0 and ψ(x) = (−ϕ′)−1(x) = (ϕ′)−1(−x) = (1−α
2 x)

2
α−1 . The algorithm proposed in

this section is summarized in Algorithm 2.1 below.

2.3. Convergence of the approximate Newton gradient flow. Recall from (2.10) that
the approximate Newton gradient flow with the general entropy functions is

dπa
s

dt
= µa

s(ϕ
′′(πa

s/µ
a
s))

−1(ras − τϕ′(πa
s/µ

a
s)− [(I − γP a)vπ]s + cs)/τ,

This manuscript is for review purposes only.
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Algorithm 2.1 Approximate Newton method for the regularized MDP

Require: the MDP model M = (S,A, P, r, γ), initial policy πinit, convergence threshold ϵtol,
regularization coefficient τ , learning rate η, the regularization type (KL or α-divergence).

1: Initialize the policy π = πinit.
2: Set ξ = 1 + ϵtol and k = |A|.
3: while ξ > ϵtol do
4: Calculate the regularization term hπ by (hπ)s =

∑
a µ

a
sϕ(π

a
s/µ

a
s).

5: Calculate Pπ and rπ by (Pπ)st =
∑

a π
a
sP

a
st, (rπ)s =

∑
a π

a
s r

a
s .

6: Calculate vπ by (1.4), i.e., vπ = (I − γPπ)
−1(rπ − τhπ).

7: if the KL divergence is used then

8: (πnew)
a
s ←

(µa
s )

η(πa
s )

1−η exp(η(ras+(γPavπ)s)/τ)∑
a(µ

a
s )

η(πa
s )

1−η exp(η(ras+(γPavπ)s)/τ)
for a = 1, 2, . . . , |A|, s = 1, 2, . . . , |S|.

9: end if
10: if the α-divergence is used then
11: for s = 1, 2, . . . , |S| do
12: Set L = 0 and ψ(x) = (1−α

2 x)
2

α−1

13: Calculate xa = −(1− η)ϕ′ (πa
s/µ

a
s)−

η
τ (r

a
s − [(I − γP a)vπ]s), a = 1, . . . , |A|.

14: Solve for c̃s = − η
τ cs with the bisection method on the interval described in (2.18).

15: Update (πnew)
a
s ← µa

sψ(c̃s + xa) for a = 1, 2, . . . , |A|.
16: end for
17: end if
18: ξ = ∥πnew − π∥F / ∥π∥F .
19: π = πnew
20: end while

from which we can obtain the dynamics of the objective function E:

(2.19)

dE(π)

dt
=
∑
sa

∂E

∂πa
s

dπa
s

dt

=
∑
sa

[
(ras − τϕ′(πa

s/µ
a
s)− [(I − γP a)vπ]s + cs)(wπ)s

· µa
s(ϕ

′′(πa
s/µ

a
s))

−1(ras − τϕ′(πa
s/µ

a
s)− [(I − γP a)vπ]s + cs)/τ

]
=
∑
sa

µa
s(τϕ

′′(πa
s/µ

a
s))

−1(ras − τϕ′(πa
s/µ

a
s)− [(I − γP a)vπ]s + cs)

2(wπ)s

≥ 0,

where we have used the gradient

(2.20)
∂E

∂πa
s

= (ras − τϕ′(πa
s/µ

a
s)− [(I − γP a)vπ]s + cs)(wπ)s.

As a result, we have shown that dE(π)
dt ≥ 0. Since E(π) is upper-bounded by ρ⊤vπ∗ , E(π)

converges. With a closer look, the following theorem states that the limiting policy is exactly the
optimal policy π∗ and the proof is given in subsection 5.5.

Theorem 2.6. The approximate Newton flow (2.10) converges globally to the optimal policy
π∗.

3. Quadratic Convergence. In this section, we study the quadratic convergence of the
approximate Newton method at the learning rate η = 1, which corresponds to the step size used
in the Newton method. Our analysis is inspired by the results in [8, 37]. The following theorem
states the second-order convergence when η = 1, with the proof given in subsection 5.6. For the
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simplicity of notations, we let f(π)sa = −(ras − ((I − γP a)vπ)s), which is the additive inverse of
the advantage function.

Theorem 3.1. Let

Φ(π) = τ
∑
sa

µa
sϕ

(
πa
s

µa
s

)
,

where ϕ is twice continuously differentiable and strongly convex and that ϕ′(x) → −∞ as x → 0.
Denote the k-th policy obtained in Algorithm 2.1 by π(k). For η = 1, the update scheme in
Algorithm 2.1 can be summarized as

(3.1) ∇Φ(π(k+1))−∇Φ(π(k)) = −
(
f(π(k)) +∇Φ(π(k))−B⊤c(π(k))

)
,

where f(π)sa = −(ras − ((I−γP a)vπ)s) and we denote by B the |S|-by-(|S|× |A|) matrix such that
Bij = 1 for |A|(i − 1) + 1 ≤ j ≤ |A|i and Bij = 0 otherwise. Then π(k) enjoys a quadratic local
convergence to π∗, i.e., limk→∞ π(k) = π∗ and

(3.2)
∥∥∥π(k+1) − π∗

∥∥∥ ≤ C ∥∥∥π(k) − π∗
∥∥∥2 ,

for some constant C, given that the initial policy π(0) is sufficiently close to π∗.

Remark 3.2. It is clear that the quadratic convergence also occurs if π(k) is in a sufficiently
small neighborhood of π∗ for some k ≥ 1 even if π(0) is not. The precise description of this small
neighborhood is provided in the proof (see Subsection 5.6). For a special case of this result, where
ϕ(x) = x log x and µa

s = 1/|A|, the algorithm is reduced to the entropy regularized NPG. A similar
local convergence result for this special case has been obtained in [6], where the proof leverages
the particular structure of Shannon entropy.

Connection with mirror descent. The approximate Newton algorithm (3.1) for η = 1 has a
deep connection with mirror descent. The vanilla mirror descent of −E(π) with a learning rate β
and the Bregman divergence associated with Φ is given by

π(k+1) = argmin
π
{−E(π(k))−∇E(π(k))(π − π(k)) +

1

β
(Φ(π)− Φ(π(k))−∇Φ(π(k))(π − π(k)))}

= argmin
π
{(diag(wπ(k))⊗ I|A|)(f(π

(k)) +∇Φ(π(k)))(π − π(k)) +
1

β
(Φ(π)−∇Φ(π(k))π)},

where diag(wπ(k)) is the diagonal matrix with the diagonal equal to wπ(k) := (I − γP⊤
π(k))

−1ρ,
⊗ denotes the Kronecker product, and I|A| denotes the |A| by |A| identity matrix. In the last
equality, the terms independent of π are dropped and the multiplier term in ∇E is canceled out
using Bπ = Bπ(k) = 1|S|. The first-order stationary condition of this minimization problem reads

∇Φ(π(k+1))−∇Φ(π(k)) = −β(diag(wπ(k))⊗ I|A|)(f(π
(k)) +∇Φ(π(k))−B⊤c(π(k))).(3.3)

This suggests that (3.1) can be reinterpreted as an acceleratedmirror descent method with adaptive
learning rates βs ≡ 1/(wπ(k))s that depend on the state s and the current iterate π(k). Observation
of the connection between mirror descent and the natural gradient method (which is similar with
the approximate Newton method in this paper when the Shannon entropy is used) is given in
[23, 10].

In [40], a variant of mirror descent is proposed based on an implicit update scheme

(∇Φ(π(k+1)))sa − (∇Φ(π(k)))sa = −β′
(
f(π(k))sa +∇Φ(π(k+1))sa − (c(π(k)))s

)
,(3.4)

with a state independent learning rate β′. In the next section, we will compare this variant with
our approximate Newton method (3.1) and show that the approximate Newton method converges
orders of magnitudes faster than the ones in [40].
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4. Numerical results.

4.1. Experiment I. We first test the approximate Newton methods derived in section 2 on
the model in [40]. For the sake of completeness, we include the description of the model here. The
MDP considered has a state space S of size 200 and an action space A of size 50. For each state t
and action a, a subset Sa

t of S is uniformly randomly chosen such that |Sa
t | = 20, and P a

tt′ = 1/20
for any t′ ∈ Sa

t . The reward is given by ras = Ua
s Us, where U

a
s and Us are independently uniformly

chosen on [0, 1]. The discount rate γ is set as 0.99 and the regularization coefficient τ = 0.001.
In the numerical experiment, we implement Algorithm 2.1 with the KL divergence, the reverse

KL divergence, the Hellinger divergence, and the α-divergence with α = −3. We adopt the uniform
prior µa

s = 1/|A| in order to make a fair comparison with the policy mirror descent (PMD) and the
general policy mirror descent (GPMD) method in [40]. We set the initial policy as the uniform
policy, the convergence threshold as ϵtol = 10−12, and the learning rate η as 1. Figure 1(a)
demonstrates that, for these four tests, the approximate Newton algorithm converges in 7, 7, 7,
and 6 iterations, respectively. In comparison, we apply PMD and GPMD to the same MDP with
the same stopping criterion. As also shown in Figure 1(a), many more iterations are needed for
GPMD and PMD to reach the same precision: GPMD converges in 14822 iterations, and PMD
does not reach the desired precision after 3 × 105 iterations. For the implementation of GPMD
and PMD, a quadratic regularization is used and we have already tuned the hyperparameters to
optimize their performance. The number of iterations needed for GPMD and PMD to converge
accords with the numerical results provided in [40].

(a) Relative change of the policy us-
ing Algorithm 2.1 and methods from
[40].

(b) The policy error in the process
of training using KL-divergence.

(c) The policy error in the process
of training using reverse KL-
divergence.

(d) The policy error in the process of
training using Hellinger divergence.

(e) The policy error in the process
of training using α-divergence with
α = −3.

Fig. 1. Figures for the synthetic medium scale MDP. (a): Relative change of the policy ∥πnew − π∥F / ∥π∥F
during training of Algorithm 2.1 compared with PMD and GPMD in [40], with the logarithmic scale used for both
axes. Notice that Algorithm 2.1 converges in 6-7 iterations to 10−12 in all cases while PMD and GPMD take
more than 104 iterations. Here the quadratic regularization is used for PMD and GPMD. (b) - (e): Blue: The
convergence of log

∣∣log ∥π − π∗∥F
∣∣ in the training process with the KL divergence, the reverse KL divergence, the

Hellinger divergence, and the α-divergence with α = −3, respectively. Green: A line through the origin with slope
log 2. Comparison of the convergence plots with the green reference lines shows a clear quadratic convergence for
Algorithm 2.1.

In order to verify the quadratic convergence proved in section 3, we draw the plots of
log |log ∥π − π∗∥| in Figure 1(b), Figure 1(c), Figure 1(d) and Figure 1(e), where π∗ is the final
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policy and the norm used is the Frobenius norm. A green reference line with slope log 2 through
the origin is plotted for comparison. If the error converges exactly at a quadratic rate, the plot
of log |log ∥π − π∗∥| shall be parallel to the reference line. The convergence curves approach the
reference lines at the end (and are even steeper than the reference lines in the beginning), demon-
strating clearly a quadratic convergence for all forms of regularization used here.

4.2. Experiment II. Next, we apply the approximate Newton methods derived in section 2
to an MDP model constructed from the search logs of an online shopping store, with two different
ranking strategies. Each issued query is represented as a state in the MDP. In response to a query,
the search can be done by choosing one of the two ranking strategies (actions) to return a ranked
list of products shown to the customer. Based on the shown products, the customer can refine or
update the query, thus entering a new state. The reward at each state-action pair is a weighted
sum of the clicks and purchases resulting from the action. Based on the data collected from two
separate 5-week periods for both ranking strategies, we construct an MDP with 135k states and
a very sparse transition tensor P with only 0.01% nonzero entries. The discount rate γ is set as
0.99 and the regularization coefficient is τ = 0.001. In the implementation, we use the uniform
prior µa

s = 1/|A|.
When calculating vπ by vπ = (I−γPπ)

−1(rπ−τhπ), we apply the iterative solver Bi-CGSTAB
[36], a widely used numerical method with high efficiency and robustness for solving large sparse
non-symmetric systems of linear equations [27, 7], in order to leverage the sparsity of the transition
tensor.

In the numerical experiment, we implement Algorithm 2.1 with the KL divergence, the reverse
KL divergence, the Hellinger divergence, and the α-divergence with α = −3. We set the initial
policy as the uniform policy, the convergence threshold as ϵtol = 10−12, and the learning rate
η as 1. All the tests end up with fast convergence as shown in Figure 2(a), where logarithmic
scale is used for the vertical axis. More specifically, the approximate Newton algorithm using the
KL divergence, the reverse KL divergence, the Hellinger divergence, and the α-divergence with
α = −3 converge in 6, 6, 6, 5 iterations, respectively. It is worth noticing that even though the
size of the state space S here is some magnitudes larger than the examples in subsection 4.1, the
number of approximate Newton iterations used is about the same. The comparison with GPMD
and PMD is not given for this example since they are intractable to implement due to the high
computational cost caused by the large MDP model.

In Table 1, we report the number of BiCGSTAB steps used in the algorithm. In each approx-
imate Newton iteration, less than 20 BiCGSTAB steps are used in order to find vπ. For all four
regularizers used here, altogether only about 100 BiCGSTAB steps are needed in the whole train-
ing process, thanks to the fast convergence of the approximate Newton method. As a comparison,
the regularized value iteration (a special case for the method in [9]) typically needs thousands of
matrix-vector multiplication with the MDP transition matrix, since its convergence rate is O(γT ).

Regularizer KL reverse-KL Hellinger α-divergence (α = −3)
Approx-Newton Iterations 6 6 6 5
Total Bi-CGSTAB steps 110 109 110 83

Average Bi-CGSTAB steps 18.3 18.2 18.3 16.6

Table 1
Number of approximate Newton iterations and BiCGSTAB steps used in the training process.

As in the previous numerical example, in Figure 2(b), Figure 2(c), Figure 2(d) and Figure 2(e)
we verify the quadratic convergence by comparing the plot of log |log ∥π − π∗∥| with a green
reference line through the origin with slope log 2. As the convergence curves are approximately
parallel to the reference lines, this verifies that the proposed algorithm converges quadratically
with all the regularizations in this example as well.
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(a) Relative change of the policy
∥πnew − π∥F / ∥π∥F in the training
process.

(b) The policy error in the process
of training using KL-divergence.

(c) The policy error in the process
of training using reverse KL-
divergence.

(d) The policy error in the process of
training using Hellinger divergence.

(e) The policy error in the process
of training using α-divergence with
α = −3.

Fig. 2. Figures for the industrial-size MDP. (a): Relative change of the policy ∥πnew − π∥F / ∥π∥F in the
training process of Algorithm 2.1. A logarithmic scale is used for the vertical axis. (b) - (e): Blue: The convergence
of log

∣∣log ∥π − π∗∥F
∣∣ in the training process with the KL divergence, the reverse KL divergence, the Hellinger

divergence and the α-divergence with α = −3, respectively. Green: A line through the origin with slope log 2.

4.3. Experiment III. In this section, we are concerned with an MDP with relatively large
action space and state space at the same time. We consider the state space and action space with
size |S| = 10000 and |A| = 300 with (S,A) = ({0, 1, . . . , |S| − 1}, {0, 1, . . . , |A| − 1}). Here the
transition tensor is defined as P a

tt′ = 1 when t′ = (t + a) mod |S|, t ̸= |S| − 1 or t = t′ = |S| − 1,
and P a

tt′ = 0 otherwise. The reward is set as ras = 1− γ if s = |S| − 1 and ras = 0 otherwise, where
γ = 0.99.

Similar to the previous tests, we apply the approximate Newton algorithm with the KL diver-
gence, the reverse KL divergence, the Hellinger divergence, and the α-divergence with α = −3 and
the uniform prior µa

s = 1/|A|. For this experiment, we use τ = 0.01 and ϵtol = 10−9. Similar to the
previous examples, in all 4 tests the algorithm converges with single-digit approximate Newton
iterations, as shown in Figure 3(a). The quadratic convergence can be verified in the plots of
log |log ∥π − π∗∥| displayed in Figure 3(b), Figure 3(c), Figure 3(d) and Figure 3(e). Due to the
size and sparsity of the transition tensor, we also adopt Bi-CGSTAB for calculating vπ, and the
number of Bi-CGSTAB iterations used is reported in Table 2. Around 400 Bi-CGSTAB steps are
used, which also involves fewer matrix-vector multiplication with the transition matrix compared
to traditional value iteration methods.

Regularizer KL reverse-KL Hellinger α-divergence (α = −3)
Approx-Newton Iterations 6 6 6 7
Total Bi-CGSTAB steps 370 379 492 452

Average Bi-CGSTAB steps 61.7 63.2 82.0 64.6

Table 2
Number of approximate Newton iterations and BiCGSTAB steps used in the training process.
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(a) Relative change of the policy
∥πnew − π∥F / ∥π∥F in the training
process.

(b) The policy error in the process
of training using KL-divergence.

(c) The policy error in the process
of training using reverse KL-
divergence.

(d) The policy error in the process of
training using Hellinger divergence.

(e) The policy error in the process
of training using α-divergence with
α = −3.

Fig. 3. Figures for an MDP with both the state space and action space relatively large. (a): Relative change of
the policy ∥πnew − π∥F / ∥π∥F in the training process of Algorithm 2.1. A logarithmic scale is used for the vertical
axis. (b) - (e): Blue: The convergence of log

∣∣log ∥π − π∗∥F
∣∣ in the training process with the KL divergence, the

reverse KL divergence, the Hellinger divergence and the α-divergence with α = −3, respectively. Green: A line
through the origin with slope log 2.

5. Proofs.

5.1. Proof of Theorem 2.1.

Proof. Step 1: expand E(π) and prove the first-order condition (5.2). For any ϵ ∈
R|S|×|A|, introduce rϵ ∈ R|S| and Zϵ ∈ R|S|×|S| such that

(5.1) (rϵ)s :=
∑
a

ϵasr
a
s , (Zϵ)st :=

∑
a

ϵas(δst − γP a
st),

where δst = 1 if s = t and δst = 0 otherwise. Then rϵ and Zϵ are linear with respect to ϵ, which
is helpful when expressing the first-order conditions and simplifying the expansion of E(π).

Now we proceed to prove that for any ϵ with
∑

a ϵ
a
s = 0 and |ϵas | < πa

s , at π = π∗

(5.2) rϵ − τDhπϵ− ZϵZ
−1
π (rπ − τhπ) = 0,

where Dhπ ∈ R|S|×|S||A| is the gradient matrix of hπ with respect to π.
Since π is a policy,

∑
a π

a
s = 1 for any s. Thus

(5.3) (Zπ)st = δst − γ
∑
a

πa
sP

a
st =

∑
a

πa
s (δst − γP a

st).

Now consider a policy π+ ϵ, i.e.,
∑

a ϵ
a
s = 0 and πa

s + ϵas ≥ 0, then thanks to (5.3) one can obtain:

(5.4) Zπ+ϵ = Zπ + Zϵ, rπ+ϵ = rπ + rϵ,

where Zϵ and rϵ are defined in (5.1), i.e., (Zϵ)st =
∑

a ϵ
a
s(δst−γP a

st). (rϵ)s =
∑

a ϵ
a
sr

a
s . Leveraging
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the linearity (5.4), we obtain the expansion:

(5.5)

E(π + ϵ) = ρ⊤Z−1
π+ϵ(rπ+ϵ − τhπ+ϵ) = ρ⊤(Zπ + Zϵ)

−1(rπ + rϵ − τhπ+ϵ)

= ρ⊤Z−1
π (I − ZϵZ

−1
π + ZϵZ

−1
π ZϵZ

−1
π )(rπ + rϵ − τhπ − τDhπϵ−

1

2
ϵ⊤τD2hπϵ) +O(∥ϵ∥3)

= E(π) + w⊤
π

[
−ZϵZ

−1
π (rπ − τhπ) + (rϵ − τDhπϵ)

]
+ w⊤

π (−
1

2
ϵ⊤τD2hπϵ)

+ w⊤
π

[
−ZϵZ

−1
π (rϵ − τDhπϵ) + ZϵZ

−1
π ZϵZ

−1
π (rπ − τhπ)

]
+O(∥ϵ∥3),

where Dhπ is a second-order tensor that maps from S ×A to S, and D2hπ is a third-order tensor
that maps from (S ×A)⊗2 to S. With this expansion, one can see that

∂E

∂πa
s

= (ras − τ(log πa
s + 1)− [(I − γP a)vπ]s + cs)(wπ)s,

where cs is a multiplier that only depends on s. Then at π = π∗,

∂E

∂πa
s

= (ras − τ(log πa
s + 1)− [(I − γP a)vπ]s + cs)(wπ)s = 0.

Since wπ = (I − γP⊤
π )−1ρ = ρ +

∑∞
i=1 γ

i(P⊤
π )ie and all elements of ρ are positive, we also know

that all elements of wπ are positive. Thus at π = π∗,

ras − τ(log πa
s + 1)− [(I − γP a)vπ]s + cs = 0.

Multiplying the left hand side with ϵas and taking the sum over a, we obtain:

(rϵ − τDhπϵ− Zϵvπ)s + cs
∑
a

ϵas = 0, ∀s, ∀ϵ.

Since
∑

a ϵ
a
s = 0 for any s and vπ = Z−1

π (rπ − τhπ), we have

rϵ − τDhπϵ− ZϵZ
−1
π (rπ − τhπ) = 0, ∀ϵ,

at π = π∗, which proves (5.2).
Step 2: Derive the decomposition (2.3) with the obtained expansion and first-order

condition. With (5.2), one can approximate the second-order term in (5.5) for π near π∗:

w⊤
π (−

1

2
ϵ⊤τD2hπϵ) + w⊤

π

[
−ZϵZ

−1
π (rϵ − τDhπϵ) + ZϵZ

−1
π ZϵZ

−1
π (rπ − τhπ)

]
=

1

2
ϵ⊤Λ(π)ϵ− w⊤

π ZϵZ
−1
π

(
rϵ − τDhπϵ− ZϵZ

−1
π (rπ − τhπ)

)
≈ 1

2
ϵ⊤Λ(π)ϵ.

By (5.2) and that h is twice continuously differentiable, the approximate Hessian Λ converge to
the true Hessian as π converges to π∗, and their difference Λ(π)−D2E(π) = O(∥π−π∗∥). Hence,
the second-order derivatives of E(π) can be approximated by

(5.6)
∂2E

∂πa
s∂π

b
t

≈ Λ(sa),(tb) = −τδ{(sa),(tb)}
(wπ)s
πa
s

,

from which we have shown that Λ is diagonal.
Step 3: Derive the approximate Newton flow and the policy update scheme with

the obtained decomposition. Using this approximate second-order derivative as a precondi-
tioner, wπ is canceled out in the policy gradient algorithm, which yields the gradient flow:

dπa
s

dt
= πa

s (r
a
s − τ(log πa

s + 1)− [(I − γP a)vπ]s + cs)/τ.
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Adopting the parameterization πa
s = exp(θas ), we have

(5.7)
dθas
dt

= (ras − τ(θas + 1)− [(I − γP a)vπ]s + cs)/τ.

With a learning rate η, this becomes

(5.8) θas ← η(ras − τ − [(I − γP a)vπ]s + cs)/τ + (1− η)θas ,

which corresponds to

(5.9) πa
s ← (πa

s )
1−η exp(η(ras − τ − [(I − γP a)vπ]s + cs)/τ),

and cs is determined by the condition that
∑

a π
a
s = 1. Equivalently, we have

πa
s ←

(πa
s )

1−η exp(η(ras − τ − [(I − γP a)vπ]s)/τ)∑
a(π

a
s )

1−η exp(η(ras − τ − [(I − γP a)vπ]s)/τ)
=

(πa
s )

1−η exp(η(ras + (γP avπ)s)/τ)∑
a(π

a
s )

1−η exp(η(ras + (γP avπ)s)/τ)
,

where we cancel out the factors independent of a and obtain (2.6). This finishes the proof.

5.2. Proof of Theorem 2.3.

Proof. Similar with (5.2), we first prove that for any ϵ with
∑

a ϵ
a
s = 0 and |ϵas | < πa

s , at
π = π∗

(5.10) rϵ − τDhπϵ− ZϵZ
−1
π (rπ − τhπ) = 0,

Similar to the proof of Theorem 2.1, by direct calculations one can get:

(5.11)
∂E

∂πa
s

= (ras − τϕ′(πa
s/µ

a
s)− [(I − γP a)vπ]s + cs)(wπ)s,

where cs is a multiplier that only depends on s. Since all elements of wπ are positive, at π = π∗,

(5.12) (ras − τϕ′(πa
s/µ

a
s)− [(I − γP a)vπ]s + cs) = 0.

By multiplying (5.12) with ϵas and summing over a, one can obtain:

rϵ − τDhπϵ− ZϵZ
−1
π (rπ − τhπ) = 0, ∀ϵ,

at π = π∗, which proves (5.10). Since the only difference between the functional E(π) defined here
and the E(π) in Theorem 2.1 lies in the regularizer h, one can still obtain the expansion:

E(π + ϵ)− E(π)− w⊤
π

[
−ZϵZ

−1
π (rπ − τhπ) + (rϵ − τDhπϵ)

]
= w⊤

π (−
1

2
ϵ⊤τD2hπϵ)− w⊤

π ZϵZ
−1
π

(
rϵ − τDhπϵ− ZϵZ

−1
π (rπ − τhπ)

)
+O(∥ϵ∥3)

=
1

2
ϵ⊤Λ(π)ϵ+O(∥ϵ∥2∥π − π∗∥) +O(∥ϵ∥3).

Hence we have D2E(π)− Λ(π) = O(∥π − π∗∥). Using this expansion, one can derive an approxi-
mation for the second-order derivatives:

∂2E

∂πa
s∂π

b
t

≈ Λ(sa),(tb) = −τδ{(sa),(tb)}
(wπ)sϕ

′′(πa
s/µ

a
s)

µa
s

,

which proves (2.9) and shows that Λ is diagonal. The approximate Newton flow thus becomes

dπa
s

dt
= µa

s(ϕ
′′(πa

s/µ
a
s))

−1(ras − τϕ′(πa
s/µ

a
s)− [(I − γP a)vπ]s + cs)/τ,
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which proves (2.10), or equivalently,

d(ϕ′(πa
s/µ

a
s))

dt
= (ras − τϕ′(πa

s/µ
a
s)− [(I − γP a)vπ]s + cs)/τ.(5.13)

Let θas = ϕ′(πa
s/µ

a
s), then

dθas
dt

= (ras − τθas − [(I − γP a)vπ]s + cs)/τ,

With a learning rate η, this becomes

θas ← η(ras − [(I − γP a)vπ]s + cs)/τ + (1− η)θas ,

which proves (2.11).

5.3. Proof of Lemma 2.4.

Proof. Let
g(x) = µ1ψ(x+ x1) + · · ·+ µkψ(x+ xk).

Since ψ : (L,+∞)→ (0,+∞) is decreasing, g(x) is positive and decreasing on (L− min
1≤i≤k

xi,+∞).

When x → − min
1≤i≤k

xi from the right, g(x) → +∞ since at least one of the terms go to +∞. If

min
1≤i≤k

{
ψ−1( 1

kµi
)− xi

}
≥ L− min

1≤i≤k
xi, when x = min

1≤i≤k

{
ψ−1( 1

kµi
)− xi

}

g(x) =

k∑
i=1

µiψ

(
min

1≤j≤k

{
ψ−1

(
1

kµj

)
− xj

}
+ xi

)

=

k∑
i=1

µiψ

(
min

1≤j≤k

{
ψ−1

(
1

kµj

)
− xj

}
+ xi − ψ−1

(
1

kµi

)
+ ψ−1

(
1

kµi

))

≥
k∑

i=1

µiψ

(
ψ−1

(
1

kµi

))
=

k∑
i=1

µi ×
1

kµi
= k × 1

k
= 1.

Since ψ−1
(

1
kµi

)
≥ L, we have max

1≤i≤k

{
ψ−1

(
1

kµi

)
− xi

}
≥ max

1≤i≤k
{L− xi} = L − min

1≤i≤k
xi. Then

when x = max
1≤i≤k

{
ψ−1

(
1

kµi

)
− xi

}
,

g(x) =

k∑
i=1

µiψ

(
max
1≤j≤k

{
ψ−1

(
1

kµj

)
− xj

}
+ xi

)
≤

k∑
i=1

µiψ

(
ψ−1

(
1

kµi

))
= 1.

By the continuity of g, there exists a solution x to (2.17) on[
max

{
L− min

1≤i≤k
xi, min

1≤i≤k

{
ψ−1

(
1

kµi

)
− xi

}}
, max
1≤i≤k

{
ψ−1

(
1

kµi

)
− xi

}]
,

and the solution is unique by the strict monotonicity of g on (L− min
1≤i≤k

xi,∞).

5.4. Proof of Proposition 2.5.

Proof. By Lemma 2.4 there is a unique solution c̃s to the equation
∑

a µ
a
sψ(c̃s + xa) = 1,

where xa is defined as in (2.16). Now update the policy by

πa
s ← µa

sψ(c̃s + xa) =
∑
a

µa
sψ
(
−η
τ
cs − (1− η)ϕ′ (πa

s/µ
a
s)−

η

τ
(ras − [(I − γP a)vπ]s)

)
one ensures that πa

s ≥ 0 and
∑

a π
a
s = 1, and that the multiplier cs with this property is unique.
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5.5. Proof of Theorem 2.6.

Proof. In subsection 2.3 we have proved that the approximate Newton flow:

dπa
s

dt
= µa

s(ϕ
′′(πa

s/µ
a
s))

−1(ras − τϕ′(πa
s/µ

a
s)− [(I − γP a)vπ]s + cs)/τ

converges globally, so it suffices to show that the limiting policy is the optimal policy. Denote the
limiting policy by π⋄. Since µa

s > 0 and (ϕ′′((π⋄)as/µ
a
s))

−1 > 0, we have

(5.14) ras − τϕ′((π⋄)as/µ
a
s)− [(I − γP a)vπ⋄ ]s + cs = 0,

and cs is a multiplier which ensures
∑

a(π
⋄)as = 1. From the theory of regularized MDP (Cf. [9]),

we know that the optimal policy π∗ is the unique solution to the Bellman maximal equation:

(5.15) v = max
π

rπ + γPπv − τhπ.

Since vπ⋄ = (I − γPπ⋄)−1(rπ⋄ − τhπ⋄), we have vπ⋄ − γPπ⋄vπ⋄ = rπ⋄ − τhπ⋄ , or equivalently

vπ⋄ = rπ⋄ + γPπ⋄vπ⋄ − τhπ⋄ .

Thus it now suffices to show that π⋄ is the optimizer of the constrained maximization problem
max
π

rπ + γPπvπ⋄ − τhπ, or in the component form:

(5.16) max
π

∑
a

(ras + γ(P avπ⋄)s)π
a
s − τ

∑
a

µa
sϕ(π

a
s/µ

a
s).

Since ϕ is convex and µ is positive, τ
∑

a µ
a
sϕ(π

a
s/µ

a
s) is also a convex function in πs. By the

theory of convex optimization (Cf. [5], chapter 5), the Karush-Kuhn-Tucker (KKT) condition is
sufficient for the optimality when the objective function is convex, and the KKT condition for the
problem (5.16) is

ras + γ(P avπ⋄)s − τϕ′(πa
s/µ

a
s) + λs = 0,∑

a

πa
s = 1,

πa
s ≥ 0,

where λs is the Lagrange multiplier. Now let π = π⋄ and λs = cs − (vπ⋄)s. From the first-order
condition (5.14) one can directly observe that the KKT condition above is satisfied, which makes
π⋄ the optimizer for (5.16) and vπ⋄ the solution to the Bellman equation (5.15). Thus vπ⋄ and π⋄

are indeed the optimal value function and the optimal policy, which closes the proof.

5.6. Proof of Theorem 3.1.

Proof. The proof is divided into three steps. First, we present some results needed in proving
the local convergence. We then demonstrate the local convergence of π(k) to π∗ using induction
in the second step. Finally, we prove that the convergence rate is quadratic.

Step 1. Preparation. From the scheme

∇Φ(π(k+1))−∇Φ(π(k)) = −
(
f(π(k)) +∇Φ(π(k))−B⊤c(π(k))

)
,(5.17)

one can obtain the inequality

(5.18)

∥f(π(k+1))− f(π(k))∥ ≥ (f(π(k))− f(π(k+1)))⊤(π(k+2) − π(k+1))

∥π(k+2) − π(k+1)∥

=
−
(
f(π(k+1)) +∇Φ(π(k+1))−B⊤c(π(k))

)⊤
(π(k+2) − π(k+1))∥∥π(k+2) − π(k+1)

∥∥
=
−
(
f(π(k+1)) +∇Φ(π(k+1))−B⊤c(π(k+1))

)⊤
(π(k+2) − π(k+1))∥∥π(k+2) − π(k+1)

∥∥
=

(
∇Φ(π(k+2))−∇Φ(π(k+1))

)⊤
(π(k+2) − π(k+1))∥∥π(k+2) − π(k+1)
∥∥ ,
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where we use the constraint Bπ(k+1) = Bπ(k+2) = 1|S|. By a direct calculation of ∇2Φ from
the definition of Φ, we can see that ∇2Φ is diagonal and Φ is strongly convex since ϕ is strongly
convex. As a result, there is some constant ω > 0 such that

(5.19) (∇Φ(π)−∇Φ(π̃))⊤(π − π̃) ≥ ω ∥π − π̃∥2

for any π and π̃. Thus from (5.18) one can deduce that

(5.20)

∥∥∥f(π(k+1))− f(π(k))
∥∥∥ ≥ (∇Φ(π(k+2))−∇Φ(π(k+1))

)⊤
(π(k+2) − π(k+1))∥∥π(k+2) − π(k+1)
∥∥

≥
ω
∥∥π(k+2) − π(k+1)

∥∥2∥∥π(k+2) − π(k+1)
∥∥ = ω

∥∥∥π(k+2) − π(k+1)
∥∥∥.

Let K be a closed set contained in {π : B⊤π = 1|S|, π
a
s > 0} such that K contains a ball centered

at π∗ with radius δ0 > 0, which is guaranteed to exist since (π∗)as > 0. Define the conjugate
function of Φ as

Φ∗(x) = max
π∈∆

[∑
sa

πsaxsa − Φ(π)

]
,(5.21)

where ∆ = {π : B⊤π = 1|S|, πsa ≥ 0}. Since Φ is ω-strongly convex and ∆ is a closed convex

set, it can be deduced from classical convex analysis results (see [11] for example) that ∇Φ∗ is 1
ω -

Lipschitz continuous, and π = ∇Φ∗(∇Φ(π)). Moreover, from the definition of Φ∗ one can observe
that Φ∗(x+B⊤c) = Φ∗(x)+1⊤

|S|c, and thus ∇Φ∗(x+B⊤c) = ∇Φ∗(x). Similar results concerning

the conjugate functions have also been used in [18] and [9]. Thanks to the properties of Φ∗, we
have the identity

π(k+1) = ∇Φ∗(∇Φ(π(k+1))) = ∇Φ∗(B⊤c(π(k))− f(π(k))) = ∇Φ∗(−f(π(k))),(5.22)

where we have used the update scheme (5.17). Moreover, by the result of Theorem 2.6 we have
d(∇Φ(π))

dt = 0 at π = π∗, so f(π∗) +∇Φ(π∗) = B⊤c(π∗) and

π∗ = ∇Φ∗(∇Φ(π∗)) = ∇Φ∗(B⊤c(π∗)− f(π∗)) = ∇Φ∗(−f(π∗)),(5.23)

Since ∇Φ∗ and −f are continuous on K, it can be concluded from (5.22) and (5.23) that there
exists δ1 > 0 such that

∥∥π(k+1) − π∗
∥∥ < 1

16 min{ ω
M , δ0} whenever

∥∥π(k) − π∗
∥∥ ≤ δ1, where M =

supπ∈K |∇2f(π)|.
Step 2. Prove the convergence by induction. Now let δ = min{ ω

16M , δ016 , δ1}. Assuming

that
∥∥π(0) − π∗

∥∥ < δ, we proceed to prove that
∥∥π(k) − π∗

∥∥ ≤ 1
2 min{ ω

M , δ0} for any k by induction.
To this end, we first strengthen the induction hypothesis to∥∥∥π(k) − π∗

∥∥∥ ≤ (
1

2
− 1

2k+2
)min{ ω

M
, δ0}, k = 0, 1, . . . , n,∥∥∥π(k+1) − π(k)

∥∥∥ ≤ (
1

2
− 1

2k+2
)
∥∥∥π(k) − π(k−1)

∥∥∥ , k = 1, 2, . . . , n.

(5.24)

We first prove (5.24) for n = 1. Note that∥∥∥π(0) − π∗
∥∥∥ ≤ δ ≤ (

1

2
− 1

20+2
)min{ ω

M
, δ0},(5.25)

by the definition of δ, and that∥∥∥π(1) − π∗
∥∥∥ ≤ 1

16
min{ ω

M
, δ0} ≤ (

1

2
− 1

21+2
)min{ ω

M
, δ0},(5.26)
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by the definition of δ1 and the fact that
∥∥π(0) − π∗

∥∥ ≤ δ1. Then
∥∥∥π(1) − π(0)

∥∥∥ ≤ ∥∥∥π(1) − π∗
∥∥∥+ ∥∥∥π(0) − π∗

∥∥∥ ≤ 1

8
min{ ω

M
, δ0}.(5.27)

In addition, from (5.25) and (5.26) we know that π(0) ∈ K and π(1) ∈ K. Then by (5.20),

∥∥∥π(2) − π(1)
∥∥∥ ≤ 1

ω

∥∥∥f(π(1))− f(π(0))
∥∥∥ ,

=
1

ω

∥∥∥∇f(π(0) + ζ((π(1) − π(0))))(π(1) − π(0))
∥∥∥

=
1

ω

∥∥∥(∇f(π(0) + ζ((π(1) − π(0))))−∇f(π∗))(π(1) − π(0))
∥∥∥

≤ M

ω

∥∥∥(π(0) + ζ((π(1) − π(0)))− π∗)(π(1) − π(0))
∥∥∥

≤ M

ω
max{

∥∥∥π(1) − π∗
∥∥∥ ,∥∥∥π(0) − π∗

∥∥∥}∥∥∥π(1) − π(0)
∥∥∥

(5.28)

where we have used the identity ∇f(π∗)(π(1) − π(0)) = 0 and the fact that π(1) and π(0) are
contained in K. In fact, we can prove that

∇f(π∗)(π(k+1) − π(k)) = 0, for any k,

as follows. Since f(π)sa = −(ras − ((I − γP a)vπ)s) has a similar form with E(π), we can directly
obtain ∇f(π)

(∇f(π))sa,tb = λsa,t(π) (−f(π)tb + c̃(π)t −∇Φ(π)tb) ,(5.29)

where λsa,t(π) = Z−⊤
π ρ̃sa and ρ̃sa is the s-th row of I − γP a. Since f(π∗) +∇Φ(π∗) = B⊤c(π∗),

we have

(5.30)

(∇f(π∗)(π(k+1) − π(k)))sa

=
∑
tb

λsa,t(π
∗) (−f(π∗)tb + c̃(π∗)t −∇Φ(π∗)tb) (π

(k+1)
tb − π(k)

tb )

=
∑
tb

λsa,t(π
∗) (c̃(π∗)t − c(π∗)t) (π

(k+1)
tb − π(k)

tb )

=
∑
t

[(
λsa,t(π

∗) (c̃(π∗)t − c(π∗)t)

)(∑
b

(π
(k+1)
tb − π(k)

tb )

)]
= 0,

where the last equality results from the fact that
∑

b π
(k+1)
tb =

∑
b π

(k)
tb = 1 for any t. Now

from(5.25), (5.26) and (5.28), we obtain

∥∥∥π(2) − π(1)
∥∥∥ ≤ M

ω
max{

∥∥∥π(1) − π∗
∥∥∥ ,∥∥∥π(0) − π∗

∥∥∥} ∥∥∥π(1) − π(0)
∥∥∥

≤ M

ω
· 1
16

min{ ω
M
, δ0}

∥∥∥π(1) − π(0)
∥∥∥

≤ (
1

2
− 1

21+2
)
∥∥∥π(1) − π(0)

∥∥∥
(5.31)
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Now, assuming that the induction hypothesis (5.24) holds for some n ≥ 1, we have∥∥∥π(n+1) − π(∗)
∥∥∥ ≤ ∥∥∥π(n+1) − π(n)

∥∥∥+ ∥∥∥π(n) − π∗
∥∥∥

≤

(
n∏

k=1

(
1

2
− 1

2k+2
)

)∥∥∥π(1) − π(0)
∥∥∥+ ∥∥∥π(n) − π∗

∥∥∥
≤ 1

2n
· 1
8
min{ ω

M
, δ0}+ (

1

2
− 1

2n+2
)min{ ω

M
, δ0}

= (
1

2
− 1

2n+2
+

1

2n+3
)min{ ω

M
, δ0}

= (
1

2
− 1

2(n+1)+2
)min{ ω

M
, δ0},

(5.32)

which also implies that π(n+1) ∈ K. Now using the same reasoning as (5.28) but (π(0), π(1), π(2))
replaced by (π(n), π(n+1), π(n+2)), one obtains∥∥∥π(n+2) − π(n+1)

∥∥∥ ≤ M

ω
max{

∥∥∥π(n+1) − π∗
∥∥∥ ,∥∥∥π(n) − π∗

∥∥∥} ∥∥∥π(n+1) − π(n)
∥∥∥ .(5.33)

After plugging (5.32) and the induction hypothesis into this inequality, we get∥∥∥π(n+2) − π(n+1)
∥∥∥ ≤ M

ω
· (1

2
− 1

2n+3
)min{ ω

M
, δ0}

∥∥∥π(n+1) − π(n)
∥∥∥

≤ (
1

2
− 1

2(n+1)+2
)
∥∥∥π(n+1) − π(n)

∥∥∥(5.34)

With (5.32) and (5.34) we have shown that (5.24) holds with n replaced by n + 1. As a result,
(5.24) holds for any n. From the second inequality in (5.24), it is clear that π(k) converges (at
least exponentially fast). Denote the limit of π(k) by π̃ for now, we obtain from (5.17) that

f(π̃) +∇Φ(π̃)−B⊤c(π̃) = 0,(5.35)

thus π̃ = π∗ by Theorem 2.6.
Step 3. Prove the convergence rate is quadratic. Since π(k) converges to π∗ and ∇f

is Lipschitz continuous on K, we have

lim
k→∞

f(π(k+1))− f(π(k))−∇f(π∗)
(
π(k+1) − π(k)

)∥∥π(k+1) − π(k)
∥∥ = 0.(5.36)

On the other hand, we have

(5.37)

f(π(k+1))− f(π(k))−∇f(π∗)
(
π(k+1) − π(k)

)
=f(π(k+1)) +∇Φ(π(k+1))−B⊤c(π(k))−∇f(π∗)

(
π(k+1) − π(k)

)
=f(π(k+1)) +∇Φ(π(k+1))−B⊤c(π(k)),

where we have used (5.30). Combining with (5.36) we arrive at

lim
k→∞

f(π(k+1)) +∇Φ(π(k+1))−B⊤c(π(k))∥∥π(k+1) − π(k)
∥∥ = 0.(5.38)

With the last three lines of (5.18), we obtain

lim
k→∞

(
∇Φ(π(k+2))−∇Φ(π(k+1))

)⊤
(π(k+2) − π(k+1))∥∥π(k+1) − π(k)

∥∥∥∥π(k+2) − π(k+1)
∥∥ = 0,(5.39)

This manuscript is for review purposes only.



20 H. LI, S. GUPTA, H. YU, L. YING, AND I. DHILLON

by multiplying the unit vector π(k+2)−π(k+1)

∥π(k+2)−π(k+1)∥ to the fraction in (5.38). Then by (5.19) we get

0 = lim
k→∞

∥∥π(k+2) − π(k+1)
∥∥2∥∥π(k+1) − π(k)

∥∥∥∥π(k+2) − π(k+1)
∥∥ = lim

k→∞

∥∥π(k+2) − π(k+1)
∥∥∥∥π(k+1) − π(k)
∥∥ ,(5.40)

from which we can conclude that π(k) converges to π∗ superlinearly, i.e.,

(5.41) lim
k→∞

∥π(k+1) − π∗∥
∥π(k) − π∗∥

= 0.

In fact, for any ϵ (assume ϵ < 1/2 without loss of generality), there is some k(ϵ) such that for any

k > k(ϵ),
∥π(k+2)−π(k+1)∥
∥π(k+1)−π(k)∥ < ϵ, then for any k > k(ϵ)

∥∥∥π(k+1) − π∗
∥∥∥ ≤ ∞∑

n=k+1

∥∥∥π(n+1) − π(n)
∥∥∥ ≤ ∞∑

n=k+1

ϵn−k
∥∥∥π(k+1) − π(k)

∥∥∥
≤ ϵ

1− ϵ

∥∥∥π(k+1) − π(k)
∥∥∥ ≤ 2ϵ

∥∥∥π(k+1) − π(k)
∥∥∥ .

Then ∥∥∥π(k) − π∗
∥∥∥ ≥ ∥∥∥π(k+1) − π(k)

∥∥∥− ∥∥∥π(k+1) − π∗
∥∥∥

≥ (
1

2ϵ
− 1)

∥∥∥π(k+1) − π∗
∥∥∥ .

For any G > 0, take ϵ = 1/(2G+ 2), then for any k > k(ϵ),∥∥∥π(k) − π∗
∥∥∥ ≥ (

1

2ϵ
− 1)

∥∥∥π(k+1) − π∗
∥∥∥ = (G+ 1)

∥∥∥π(k+1) − π∗
∥∥∥ > G

∥∥∥π(k+1) − π∗
∥∥∥ ,(5.42)

which shows that lim
k→∞

∥π(k)−π∗∥
∥π(k+1)−π∗∥ = +∞ and thus (5.41) holds. Now, from (5.17) and (5.30) we

have ∥∥∥f(π(k+1)) +∇Φ(π(k+1))−B⊤c(π(k))
∥∥∥

=
∥∥∥f(π(k+1))− f(π(k))−∇f(π∗)

(
π(k+1) − π(k)

)∥∥∥
=

∥∥∥∥(∫ 1

0

[
∇f(π(k) + t(π(k+1) − π(k)))−∇f(π∗)

]
dt

)(
π(k+1) − π(k)

)∥∥∥∥
≤ C̃

∥∥∥π(k) − π∗
∥∥∥∥∥∥π(k+1) − π(k)

∥∥∥
for some constant C̃, where we used (5.41) and the Lipschitz continuity of ∇f in the last equality.
Multiplying both sides by π(k+2) − π(k+1), and by (5.19) and the last three lines of (5.18) we have

ω
∥∥∥π(k+2) − π(k+1)

∥∥∥2
≤
(
∇Φ(π(k+2))−∇Φ(π(k+1))

)⊤
(π(k+2) − π(k+1))

=
(
f(π(k+1)) +∇Φ(π(k+1))−B⊤c(π(k))

)⊤
(π(k+2) − π(k+1))

≤ C̃
∥∥∥π(k) − π∗

∥∥∥∥∥∥π(k+1) − π(k)
∥∥∥∥∥∥π(k+2) − π(k+1)

∥∥∥ ,
which implies that ∥∥∥π(k+2) − π(k+1)

∥∥∥ ≤ C̃ ∥∥∥π(k) − π∗
∥∥∥∥∥∥π(k+1) − π(k)

∥∥∥ ,(5.43)
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with some constant C̃. From (5.41), we have

lim
k→∞

∥π(k) − π(k+1)∥
∥π(k) − π∗∥

= lim
k→∞

∥π(k+1) − π(k+2)∥
∥π(k+1) − π∗∥

= 1.(5.44)

Combining this with (5.43) leads to∥∥∥π(k+1) − π∗
∥∥∥ ≤ C ∥∥∥π(k) − π∗

∥∥∥2 ,(5.45)

for some constant C, which closes the proof.

6. Conclusion and Discussion. In this paper, we present a fast approximate Newton
method for the policy gradient algorithm with provable quadratic convergence. The proposed
method gives a systematic theory that includes the well-known natural policy gradient algorithm
as a special case and naturally extends to other regularizers such as the reverse KL divergence,
the Hellinger divergence, and the α-divergence.

With a relatively simple proof, we show the local quadratic convergence of the proposed
approximate Newton method as well as the global convergence of the approximate Newton gradient
flow to the optimal solution. The quadratic convergence is confirmed numerically on both medium
and large sparse models. In contrast with mirror descent type first-order methods (e.g. [40]) that
take up to tens of thousands of iterations even with manually tuned learning rate, the proposed
approximate Newton algorithms typically converge in less than 10 iterations, despite the large
discount rate (≈ 1) and small regularization coefficient (≈ 0).

For future work, we plan to adapt the technique used here to other gradient-based algorithms
for solving the MDP problems. Other forms of f -divergence can also be included. An interesting
direction is to apply different types of numerical schemes for ordinary differential equations (ODEs)
to the approximate Newton gradient flow presented in Subsection 2.3, which can be helpful for
obtaining a good initial policy such that the discrete approximate Newton method is able to
achieve fast quadratic convergence. Another direction is to consider continuous MDP problems
by leveraging function approximation, effective spatial discretization, or model reduction.
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