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Geometric Characterization of Maximum Diversification Return Portfolio via
Rao's Quadratic Entropy*
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Abstract. Diversification return has been well studied in finance literature, mainly focusing on the various
sources from which it may be generated. The maximization of diversification return, in its natu-
ral form, is often handed over to convex quadratic optimization for its solution. In this paper, we
study the maximization problem from the perspective of Rao's quadratic entropy (RQE), which
is closely related to the Euclidean distance matrix and hence has deep geometric implications.
This new approach reveals a fundamental feature that the maximum diversification return port-
folio (MDRP) admits a spherical embedding with the hypersphere having the least volume. This
important characterization extends to the maximum volatility portfolio, the long-only MDRP, and
the ridge-regularized MDRP. RQE serves as a unified formulation for diversification return related
portfolios and generates new portfolios that are worth further investigation. As an application of this
geometric characterization, we develop a computational formula for measuring the distance between
a new asset and an existing portfolio that has the hyperspherical embedding. Numerical experiments
demonstrate the developed theory.
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1. Introduction. Diversification Return (DR) of a portfolio, a term coined by Booth and
Fama [2] and also known as the excess growth rate [20], has been extensively studied in fi-
nance literature. One of the focuses is how DR is generated. Attributes include diversification
through variance reduction [10] and rebalancing [32]. More discussions and debates on those
two attributes among others can be found in [14, 27, 4, 5, 25, 18]. The extensive empirical
results conducted in [20] confirm that maximizing the diversification return leads to attractive
alternatives to competing smart portfolios. Unlike the Markovitz mean-variance model, how-
ever, the maximum diversification return portfolio (MDRP) lacks geometric interpretation.
The main purpose of this paper is to establish an elegant characterization that MDRP embeds
its assets on a hypersphere centered at the origin having the minimal volume with the origin
being the MDRP-weighted average of the embedding points. This characterization explains
why MDRP often yields negative exposures to some assets and positive exposure to others as
observed in [20]. This characterization also extends to other portfolios such as the maximum
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526 HOU-DUO QI

volatility portfolio [22, 20], the long-only MDRP (\ell MDRP) [20], and the ridge-regularized
MDRP. In the following, we first explain the mathematical formulation of MDRP. We then
introduce our approach and describe our main results.

1.1. Maximum diversification return portfolio. Suppose there are n risky assets Si, i=
1, . . . , n. We denote by V the covariance matrix of the returns of the n assets. Let \bfw =
(w1, . . . ,wn)

\top (column vector) be a portfolio that satisfies the budget constraint \bfone \top n\bfw = 1,
where \bfone n is the column vector of all ones of dimension n and \bfone \top n is its transpose (row vector).
The diversification return of the portfolio \bfw is given by

(1.1) DR(\bfw ) =
1

2

\Biggl( 
n\sum 

i=1

wi\sigma 
2
i  - \bfw \top V\bfw 

\Biggr) 
,

where \sigma 2
i is the variance of the asset Si. There are several ways of interpreting DR(\bfw ). Booth

and Fama [2] treated it as an approximation to the difference between the compound rate of
return of the portfolio and the averaged compound rate of returns of individual assets. Wil-
lenbrock [32] argued that the geometric rate of return is more suitable. Maeso and Martellini
[20] derived it as the excess growth rate of a stochastic portfolio.

The MDRP is defined as

(1.2) \bfw \ast := argmax DR(\bfw ), s.t. \bfone \top n\bfw = 1,

where ``:="" means ``define."" Let \eta := (\sigma 2
1, . . . , \sigma 

2
n)

\top be the variance vector. The problem has
a closed-form solution if V is nonsingular. If \eta is proportional to the expected return vector
\bfr , i.e., \eta = k\bfr for some constant k > 0, then MDRP (1.2) is obviously a special case of the
Markovitz mean-variance model and hence it is on the efficient frontier. Otherwise, MDRP is
not efficient in the sense of Markovitz. However, the extensive numerical results in [20] show
that MDRP in many scenarios outperforms several popular smart strategies. Motivated by
the Markovitz model, the first question we would like to ask is what geometric optimality
property MDRP may enjoy. The answer lies with casting (1.2) as Rao's quadratic entropy
maximization problem, which is introduced in the following subsection.

The second question we would like to address is under what circumstances MDRP is a
long-only portfolio, i.e., w\ast 

i \geq 0 for all i= 1, . . . , n. In [20], the long-only constraint \bfw \geq 0 was
added to (1.2) to get the (\ell MDRP):

(1.3) \bfw \ast 
L := argmax DR(\bfw ), s.t. \bfone \top n\bfw = 1, \bfw \geq 0.

This problem does not have a closed-form solution anymore. In [22], it regularizes the positive
part of \bfw \ast to get a long-only portfolio by

\bfw \ast 
+ :=

1\sum n
i=1max(0,w\ast 

i )
max(0,\bfw \ast ),

where max(0,\bfw \ast ) is the positive part of \bfw \ast . One common drawback among the two strate-
gies is that the generated portfolio has relatively a small number of active assets (portfolio
concentration issue). We propose a new portfolio that is based on the ridge regularization:

(1.4) \bfw \ast 
\rho = argmax DR(\bfw ) - \rho 

2
\| \bfw \| 2, s.t. \bfone \top n\bfw = 1,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

5/
23

 to
 1

58
.1

32
.1

61
.2

11
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



MAXIMUM DIVERSIFICATION RETURN PORTFOLIO 527

where \rho \geq 0 is a regularization parameter and \| \bfw \| is the Euclidean norm. It is known [8] that
the ridge regularization is equivalent to the norm \| \bfw \| \leq \tau with properly defined \tau . When
\tau = 1/n, the normal constraint yields the equal-weight portfolio: wi = 1/n, i= 1, . . . , n. It is
also known that norm-regularization (e.g., \ell 1 and \ell 2 norm) also leads to robust and structural
portfolios (see, e.g., [17, 33]). We will see the geometric characterization for MDRP also
extends to the problem (1.4). Moreover, we will establish a computable lower bound \rho 0 such
that whenever \rho \geq \rho 0, we always have \bfw \ast 

\rho > 0. This result gives us the flexibility to control
the number of active long-only assets in the resulting portfolio.

Our third question is to address a practical scenario when a new risky asset Sn+1 is
available and we try to measure its distance to the MDRP of the existing n risky assets. It
turns out that this question is closely related to the problem of adding a new point to an
existing vector diagram [11] and the landmark multidimensional scaling problem [7]. We will
develop a computational formula for measuring the distance. In the following, we explain how
we will resolve those questions.

1.2. Rao's quadratic entropy and main results. Our departing point from existing re-
search is to cast DR(\bfw ) as an instance of Rao's quadratic entropy (RQE) [29, 28], which was
initially developed for measuring bio-diversities; see [30] for its comparison to other diversity
measures including Shannon entropy. We briefly describe it in terms of the n risky assets Si,
i = 1, . . . , n. Let Dij be a dissimilarity measure between Si and Sj and Dij = Dji. For any
long-only portfolio \bfw , RQE is defined as

qD(\bfw ) :=
1

2
\bfw \top D\bfw =

1

2

\sum 

i,j

wiwjDij with \bfw \geq 0, \bfone \top n\bfw = 1,

where D := (Dij)
n
i,j=1 is the dissimilarity matrix. The quantity qD(\bfw ), also known as Rao's

diversity measure, summarizes the total dissimilarity among the n risky assets. A fundamental
requirement for being a legitimate RQE is that it preserves the following principle: the diver-
sity of a simple mixing of two portfolios should be higher than the simple mix of individual
diversities:

(1.5)

\Biggl\{ 
qD((1 - \lambda )\bfw 1 + \lambda \bfw 2)\geq (1 - \lambda )qD(\bfw 1) + (1 - \lambda )qD(\bfw 2),

\forall \bfw i, \bfone 
\top 
n\bfw i = 1, \bfw i \geq 0, i= 1,2, and 0\leq \lambda \leq 1.

We refer to the important reference [3] for more applications of RQE to portfolio constructions.
A key observation is

(1.6) DR(\bfw ) = qD(\bfw ) for D=DV :=
1

2
(\bfone n\eta 

\top + \eta \bfone \top n ) - V

by using the fact \bfone \top n\bfw = 1. We will show in Lemma 2.3 that DV satisfies the criterion (1.5).
(when no confusion is caused, we drop its dependence on V ). Therefore, maximizing DR(\bfw )
in (1.2) is equivalent to

(1.7) max qD(\bfw ) s.t. \bfone \top n\bfw = 1.
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528 HOU-DUO QI

The reformulation (1.7) is significant in several aspects.
(i) First, it is easy to see Dij = 1

2(\sigma 
2
i + \sigma 2

j )  - \sigma ij \geq 0. This immediately implies that
qD(\bfw ) \geq 0 for any long-only portfolio \bfw \geq 0, recovering the result proved in [20,
App. A]. Being nonnegative and assuming it is irreducible, D has a positive eigenvec-
tor \bfp corresponding to its largest eigenvalue and this vector is known as the Perron--
Frobenius (PF) eigenvector [24]. Hence, it naturally leads to a long-only portfolio (PF
portfolio). Moreover, if \bfone n is a PF eigenvector of D, we prove in Corollary 3.4 that the
equal-weight portfolio is MDRP. This happens when D corresponds to regular figures
in graph theory [15].

(ii) Second, D is in fact a Euclidean distance matrix (EDM). That is, there exist a set
of points \bfx i \in \Re k, i = 1, . . . , n, such that \| \bfx i  - \bfx j\| 2 =Dij , where k is the embedding
dimension of D. By applying Gower's fundamental result on EDM [13, Thm. 3], we
show that MDRP corresponds to a set of embedding points \{ \bfx i\} on a hypersphere
with the following properties (see Theorem 3.1):
(a) The center of the hypersphere is the origin.
(b) The origin is the MDRP-weighted average of the embedding points:

(1.8)

n\sum 

i=1

w\ast 
i \bfx i = 0.

(c) The hypersphere has the smallest radius among all possible spherical embed-
dings.

In recognition of Gower's contribution, we denote the radius by RG and the hyper-
sphere by Gower Sphere(RG). Since k is the smallest embedding dimension, the Gower
sphere has the minimal volume. Moreover, it is shown in Corollary 3.2 that any feasible
portfolio \bfw corresponds to a spherical embedding with properties that are different
from those in (a)--(c) above. Example 3.1 shows a scenario where the equal-weight
portfolio leads to a spherical embedding of the same volume as of the Gower sphere,
but it is not MDRP. The equal-weight portfolio does not satisfy the property (b) in
(1.8). In other words, out of infinitely many spherical embeddings, MDRP looks for
the one that satisfies the properties (a)--(c). When the origin is within the convex hull
of its embedding points, MDRP is in fact a long-only portfolio. However, it is difficult
to know when this would happen as we do not know those \bfx i a priori.

(iii) The power of the RQE reformulation is further reflected by the fact that the three
MDRP related portfolios (the maximum volatility portfolio (maxVP), the \ell MDRP
(1.3), and the regularized MDRP (1.4)) each has a RQE representation via a properly
defined Euclidean distance matrix. Hence, those portfolios all have a spherical embed-
ding that achieve a minimum volume among all possible embeddings. In particular,
for the latter, we are able to prove in Theorem 3.7 that

\bfw \ast 
\rho \geq 0 when \rho \geq 

\Bigl( 
1 + (n - 1)

\surd 
n
\Bigr) 
max

i

n\sum 

j=1

Dij .

In fact, the ridge regularization acts like a shrinkage operator that pulls the weights
toward the equal-weight portfolio. Extension to maxVP and \ell MDRP will be, respec-
tively, discussed in subsections 3.2 and 3.4.
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MAXIMUM DIVERSIFICATION RETURN PORTFOLIO 529

Last, the minimal spherical characterization allows us to project a newly available asset to
Sphere(RG) and we can use the error to measure the distance between the new asset and the
MDRP portfolio. A fast computational formula is developed in Proposition 4.1. Therefore,
this paper provides a complete mathematical study of MDRP and three of its closely related
portfolios and lays a foundation for future research on other diversification maximization
problems.

1.3. Organization. The paper is organized as follows. We review some background on
the Euclidean distance matrix in section 2. The geometric characterization is done in section
3 with its implications to the maximum volatility portfolio. Both the regularized problem
(1.4) and the \ell MDRP (1.3) are, respectively, studied in subsections 3.3 and 3.4. As an
application, section 4 addresses the issue of measuring the distance between a newly available
asset and MDRP. In section 5, we conduct some preliminary numerical experiments to verify
the theoretical results. We conclude the paper in section 6.

Notation. A (column) vector is often denoted by a boldfaced letter such as \bfs with si being
its elements. Diag(\bfs ) is the diagonal matrix whose diagonals are given by \bfs and diag(A) is the
diagonal vector of a squared matrix A. We let In be the identity matrix of size n, and it is often
abbreviated as I when the dimension n is obvious. For a set of risky assets Si, i= 1, . . . , n, \sigma 2

i

is the variance of the return of asset Si, and \rho ij is the correlation between Si and Sj . Their
covariance is denoted as \sigma ij , which also satisfies \sigma ij = \rho ij\sigma i\sigma j . The vector \eta is reserved for the
variance vector with its ith component being \eta i = \sigma 2

i . For a set of points \bfx i \in \Re k, i= 1, . . . , n,
and a portfolio \bfw \in \Re n satisfying \bfone \top n\bfw = 1, the \bfw -weighted average is

\sum n
i=1wi\bfx i. The vector

\bfw 1/n denotes the equally weighted portfolio with each weight being 1/n. For a given square
matrix D, D - denotes a generalized inverse that satisfies the property DD - D = D and
D - DD - = D - . For a square matrix A, A \succeq 0 means A is positive semidefinite and A \succeq B
means (A - B)\succeq 0. Furthermore, A\preceq 0 means ( - A)\succeq 0.

2. Background on Euclidean distance matrix. We recall an n\times nmatrixD= (Dij)
n
i,j=1 is

called EDM if there exists a set of points \bfx i \in \Re k, i= 1, . . . , n such that the squared Euclidean
distance between \bfx i and \bfx j reproduces Dij , i.e., \| \bfx i - \bfx j\| 2 =Dij . Note that there exist many
such embedding points. The smallest dimension k in which those embedding points live is
called the embedding dimension of D. There are many useful references about EDM (see,
e.g., [6, 26, 9, 1]). We only describe some key properties that are to be used in this paper.

A first major characterization of EDM D was due to Schoenberg [31]:

(2.1) diag(D) = 0 and \bfh \top D\bfh \leq 0 \forall \bfh \in \Re n satisfying \bfone \top n\bfh = 0.

This characterization is equivalent to

(2.2) diag(D) = 0 and JDJ \preceq 0 with J := In  - 
1

n
\bfone n\bfone 

\top 
n .

We note that the matrix J is the orthogonal projection operator to the subspace \bfone \bot n , which
contains all the vectors orthogonal to \bfone n. Gower generalized the characterization (2.2) to a
class of projection operators.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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530 HOU-DUO QI

Lemma 2.1 (see [12, Thm. 2]). D is EDM if and only if diag(D) = 0 and J\top 
\bfs DJ\bfs \preceq 0 for

any \bfs \in \Re n satisfying \bfone \top n \bfs = 1. Here J\bfs := In  - \bfs \bfone \top n .

The original result of Gower has an extra condition on \bfs : D\bfs \not = 0. This condition was
later proved superfluous [13, p. 83]. Given EDM D, a set of embedding points \bfx i can be
generated as follows. Suppose \bfs \in \Re n satisfies \bfone \top n \bfs = 1. Since the matrix ( - J\top 

\bfs DJ\bfs ) is positive
semidefinite, it admits the following decomposition:

(2.3) B := - 1

2
J\top 
\bfs DJ\bfs =X\top X with X := [\bfx 1,\bfx 2, . . . ,\bfx n],

where \bfx i \in \Re k are embedding points of D, i.e., \| \bfx i  - \bfx j\| 2 = Dij , i, j = 1, . . . , n, k, is the
embedding dimension, and k = rank(J\top 

\bfs DJ\bfs ). We note that with a different choice of \bfs , the
decomposition would generate different sets of embedding points.

We say EDM D is spherical if there exists a set of embedding points that lie on a hyper-
sphere. We note that the center of the hypersphere is not necessarily at zero (the origin of
the coordinate system). For example, [1, Thm. 4.1] gave a constructive way to compute the
center of such a hypersphere for a set of embedding points corresponding to \bfs = (1/n)\bfone n. We
will use Gower's construction.

Lemma 2.2. Let D be nonzero EDM and D - be any generalized inverse of D (i.e., DD - D=
D and D - DD - =D - ). We have the following results.

(i) [13, Thm. 2] It holds that \bfone \top nD
 - D = \bfone \top n and DD - \bfone n = \bfone n. Moreover, the quantity

\bfone \top nD
 - \bfone n is the same for any choice of D - . In other words, it does not depend on the

choice of D - .
(ii) [13, Thm. 3] D is spherical if and only if \bfone \top nD

 - \bfone n \not = 0. In this case, there exists a
hypersphere centered at the origin with the radius RG given by

R2
G =

1

2(\bfone \top nD - \bfone n)
.

A set of embedding points sitting on the sphere are generated by (2.3) corresponding
to \bfs =D - \bfone n/\bfone TnD

 - \bfone n.
(iii) [13, Thm. 6] Let rank(D) = r. Then the embedding dimension k = r  - 1 if and only

if \bfone \top nD
 - \bfone n \not = 0 and k= r - 2 if and only if \bfone \top nD

 - \bfone n = 0.

We note that Gower [13] called ( - D/2) EDM. Therefore, Lemma 2.2 is a restatement of
Gower's result. We now prove that the RQE dissimilarity matrix is actually EDM.

Lemma 2.3. The following hold.
(i) A matrix D is EDM if and only if diag(D) = 0 and the RQE condition (1.5) holds.
(ii) Let D = DV in (1.6). Then D is EDM. Furthermore, D is nonsingular if V is non-

singular.

Proof. (i) Simple calculation verifies that the RQE condition (1.5) is actually equivalent
to

(2.4) (\bfw 2  - \bfw 1)
\top D(\bfw 2  - \bfw 1)\leq 0 \forall \bfw i \geq 0, \bfone \top n\bfw i = 1, i= 1,2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

5/
23

 to
 1

58
.1

32
.1

61
.2

11
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



MAXIMUM DIVERSIFICATION RETURN PORTFOLIO 531

We use (2.1) for EDM characterization. Now suppose the condition (2.1) holds. Choosing
\bfh = \bfw 2  - \bfw 1 leads to the condition (2.4). Hence, when D is EDM, it must be a RQE
dissimilarity matrix. We now prove the converse part.

Suppose the condition (1.5) holds. Let 0 \not = \bfh such that \bfone \top n\bfh = 0. Define \bfh + :=max\{ \bfh , 0\} 
and \bfh  - :=max\{  - \bfh ,0\} . We then have

\bfh = \bfh +  - \bfh  - and \bfone \top n\bfh + = \bfone \top n\bfh  - =: c > 0.

Define \bfw 1 := \bfh +/c and \bfw 2 := \bfh  - /c. It follows from (2.4) that

(\bfw 2  - \bfw 1)
\top D(\bfw 2  - \bfw 1) =

1

c2
(\bfh +  - \bfh 1)

\top D(\bfh +  - \bfh  - ) =
1

c2
\bfh \top D\bfh \leq 0,

establishing the condition (2.1).
(ii) An immediate consequence of the characterization (2.2) is that the matrix DV in (1.6)

is EDM because

diag(DV ) = 0 and JDV J = J
\Bigl( 
\bfone n\eta 

\top + \eta \bfone \top n
\Bigr) 
J

\underbrace{}  \underbrace{}  
=0

 - JV J = - JV J \preceq 0,

where we used the fact J\bfone n = 0. If V is nonsingular, then the embedding dimension k is given
by

k= rank(JDV J) = rank(JV J) = n - 1,

because rank(J) = n - 1. Therefore, Lemma 2.2(iii) implies that rank(DV ) is either (k+1) = n
or (k + 2) = n + 1 (impossible). Hence, rank(DV ) = n. That is, DV is nonsingular if V is
so.

It is possible that DV is nonsingular even if V is singular.

3. Characterization of minimal spherical embedding. In this section, we study the geo-
metric characterization of MDRP discussed in the introduction and extend the characteriza-
tion to the maximum volatility portfolio, the ridge-regularized MDRP, and the \ell MDRP. The
study makes heavy use of EDM properties.

Throughout, we assume that MDRP \bfw \ast in (1.2) exists and D \not = 0. This assumption is
satisfied if the covariance matrix V is nonsingular. In particular, when D = 0, V must be a
rank-2 matrix:

V =
1

2

\Bigl( 
\bfone \top n \eta + \eta \bfone \top n

\Bigr) 
.

In other words, the covariance \sigma ij satisfies

\sigma ij = \rho ij\sigma i\sigma j = (\sigma 2
i + \sigma 2

j )/2.

Using the inequality (\sigma 2
i + \sigma 2

j )\geq 2\sigma i\sigma j , the above equation means \rho ij = 1 and \sigma i = \sigma j for all
i, j. It is equivalent to say that the n risky assets are perfectly correlated and share the same
variance. They can be regarded as n copies of the same asset. Our assumption on D \not = 0
removes this possibility from our study.
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532 HOU-DUO QI

It is also worth pointing out that when V is nonsingular, the solution of MDRP (1.2) is
given as follows in terms of the inverse of V :

\bfw \ast =
\biggl( 
1 - \bfone \top n V

 - 1\eta 

2

\biggr) 
V  - 1\bfone n

\bfone \top n V  - 1\bfone n
+

1

2
V  - 1\eta 

=

\biggl( 
1 - \bfone \top n V

 - 1\eta 

2

\biggr) 
V  - 1\bfone n

\bfone \top n V  - 1\bfone n\underbrace{}  \underbrace{}  
=:\bfw \mathrm{m}\mathrm{v}\mathrm{p}

+
\bfone \top n V

 - 1\eta 

2
\times V  - 1\eta 

\bfone \top n V  - 1\eta \underbrace{}  \underbrace{}  
=:\bfw \mathrm{m}\mathrm{a}\mathrm{x}\mathrm{v}\mathrm{p}

,(3.1)

where \bfw \mathrm{m}\mathrm{v}\mathrm{p} is the classical minimum variance portfolio and \bfw \mathrm{m}\mathrm{a}\mathrm{x}\mathrm{v}\mathrm{p} is the maximum volatility
portfolio. Hence, MDRP is an affine combination of MVP and maxVP. This formula has an
explicit assumption that the quantity \bfone \top n V

 - 1\eta \not = 0. However, the quantity may be zero even
V is nonsingular; see an example in subsection 3.2.

3.1. Maximum diversification return portfolio. In this part, we first present our main
result, Theorem 3.1, which states that the MDRP \bfw \ast corresponds to the Gower sphere. We
then construct an example to show that other portfolios may also have a spherical embedding
with the same volume as the Gower sphere, but the weighted average of the embedding point
does not lie at the center of the sphere (see Example 3.1). We further study a class of risky
assets, whose MDRP is the equal-weight portfolio (see Corollary 3.4).

Theorem 3.1. Let V be the covariance matrix of n risky assets and \eta = diag(V ). Let the
dissimilarity matrix D be defined by D =DV = 1

2(\bfone n\eta 
\top + \eta \bfone \top n ) - V. Consider the MDRP \bfw \ast 

in (1.2). The following hold.
(i) D is EDM and \bfone \top nD

 - \bfone n > 0 for any generalized inverse D - .
(ii) The n risky assets can be represented on the Gower sphere centered at the origin with

the radius RG given by R2
G = 1/(2\bfone \top nD

 - \bfone n). The corresponding n embedding points
on the sphere are generated by (2.3) with \bfs being the maximum diversification portfolio
\bfw \ast = D - \bfone n

\bfone \top 
nD - \bfone n

. Furthermore, the maximum diversification return is DR(\bfw \ast ) =R2
G.

(iii) Suppose D can be embedded on another sphere with radius R and its center is allowed
to be arbitrarily chosen. We must have R\geq RG.

Proof. (i) That D is EDM has been proved in Lemma 2.3(ii). The characterization (1.5)
of D implies that qD(\bfw ) is concave over the feasible region of (1.2). Therefore, the optimality
condition holds at \bfw \ast :

(3.2) D\bfw \ast = \lambda \bfone n and \bfone \top n\bfw 
\ast = 1

for some \lambda \in \Re . Multiplying both sides of (3.2) by \bfw \ast yields

2DR(\bfw \ast ) = 2qD(\bfw 
\ast ) = (\bfw \ast )\top D\bfw \ast = \lambda \bfone \top n\bfw 

\ast = \lambda .

Since D \not = 0, there exists Dij > 0 for some (i, j). Let wi = wj = 1/2. Then DR(\bfw \ast ) \geq 
2wiwjDij > 0, implying \lambda > 0. Premultiplying \bfone TnD

 - on both sides of the first equation in
(3.2) and using the fact \bfone \top nD

 - D= \bfone \top n in Lemma 2.2(i) leads to

\lambda \bfone \top nD
 - \bfone n = \bfone \top nD

 - D\bfw \ast = \bfone \top \bfw \ast = 1.
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MAXIMUM DIVERSIFICATION RETURN PORTFOLIO 533

The fact that \lambda > 0 implies \bfone \top nD
 - \bfone n > 0.

Since \bfone \top nD
 - \bfone n > 0, (ii) follows from Lemma 2.2(ii). In particular, [13, Thm. 3] proved

that \bfs = D - \bfone n

\bfone \top 
nD - \bfone n

satisfies the optimality condition (3.2). Hence \bfw \ast = \bfs and

DR(\bfw \ast ) = qD(\bfw 
\ast ) =

1

2

\bfone \top nD
 - DD - \bfone n

(\bfone \top nD - \bfone n)2
=

1

2

1

\bfone \top nD - \bfone n
=R2

G.

(iii) Assume that D can be embedded on a sphere with radius R> 0 but with an unknown
center. We treat this unknown center as the (n+ 1)th point. The n embedding points will
have the same distance R from the (n+ 1)th point. In other words, the matrix D below is
Euclidean:

(3.3) D :=

\biggl[ 
D R2\bfone n

R2\bfone Tn 0

\biggr] 
.

By Lemma 2.1, J\top 
\bfs DJ\bfs \preceq 0 with \bfs = \bfe n+1 being the vector of zeros except the last element

being 1 (i.e., \bfe n+1 is the (n+ 1)th unit vector in \Re n+1). We compute

0\succeq J\top 
\bfe n+1

DJ\bfe n+1
=
\Bigl( 
In+1  - \bfone n+1\bfe 

T
n+1

\Bigr) 
D
\Bigl( 
In+1  - \bfe n+1\bfone 

T
n+1

\Bigr) 

=

\biggl[ 
D R2\bfone n

R2\bfone Tn 0

\biggr] 
 - 
\Biggl[ 

2R2\bfone n\bfone 
T
n R2\bfone n

R2\bfone Tn 0

\Biggr] 

=

\biggl[ 
D - 2R2\bfone n\bfone 

T
n 0

0 0

\biggr] 
.

This is equivalent to D\preceq 2R2\bfone n\bfone 
T
n . Consequently, we have

2R2 = 2R2(\bfw \ast )\top \bfone n\bfone \top n\bfw 
\ast \geq (\bfw \ast )\top D\bfw \ast 

=
1

(\bfone \top nD - \bfone n)2
\bfone \top nD

 - DD - \bfone n =
1

\bfone \top nD - \bfone n
,

which implies

R2 \geq 1

2\bfone \top nD - \bfone n
=R2

G.

Hence, RG is the smallest radius of all spheres that can contain embedding points of D.

Corollary 3.2.
(i) The n risky assets can be embedded on a sphere of any radius R\geq RG.
(ii) For any portfolio \bfw satisfying \bfone \top n\bfw = 1, the n risky assets can be embedded on a

sphere of the radius RG such that the \bfw -weighted average of the embedding points is
the origin. In this case, the origin may not be the center of the sphere.

Proof. (i) Let R \geq RG be given. Theorem 3.1 proved that the n risky assets can be
embedded on the Gower sphere. Therefore, the matrix

Dg :=

\biggl[ 
D R2

G\bfone n
R2

G\bfone 
T
n 0

\biggr] 
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534 HOU-DUO QI

is Euclidean. For (i), it is enough to prove that the matrix D in (3.3) is EDM. We note that
D has the following decomposition:

D=Dg +
R2  - R2

g

2

\Bigl( 
\bfe n+1\bfone 

\top 
n+1 + \bfone n+1\bfe 

\top 
n+1

\Bigr) 
 - (R2  - R2

g)\bfe n+1\bfe 
\top 
n+1.

Choosing \bfs = \bfe n+1, it is easy to verify that

J\top 
\bfs DJ\bfs = J\top 

\bfs DgJ\bfs \underbrace{}  \underbrace{}  
\preceq 0

 - (R2  - R2
g)J

\top 
\bfs \bfe n+1\bfe 

\top 
n+1J\bfs \underbrace{}  \underbrace{}  

\succeq 0

\preceq 0,

where we used the fact J\top 
\bfs \bfone n+1 = 0 and Dg is Euclidean. Therefore, D is Euclidean by Lemma

2.1. Consequently, the n risky assets can be embedded on a sphere with any radius R\geq RG.
(ii) We give a constructive proof. Suppose \bfx i, i= 1 . . . , n, are the embedding points of the

n risky assets on the Gower sphere. Hence, we have \| \bfx i\| = RG. For a given portfolio \bfw , let
\=\bfx \bfw be the average of the embedding points by the portfolio:

\=\bfx \bfw :=

n\sum 

i=1

wi\bfx i.

We define \bfy i := \bfx i  - \=\bfx \bfw , i= 1, . . . , n. It follows that

\| \bfy i  - ( - \=\bfx \bfw )\| = \| \bfy i + \=\bfx \bfw \| = \| \bfx i\| =RG, i= 1, . . . , n.

Therefore the points \bfy i lie on the sphere of radius RG with ( - \=\bfx \bfw ) being its center. The
\bfw -average of the new embedding points \{ \bfy i\} is

\=\bfy \bfw :=

n\sum 

i=1

wi\bfy i =

n\sum 

i=1

wi\bfx i  - 
\Bigl( n\sum 

i=1

wi

\Bigr) 
\=\bfx \bfw = \=\bfx \bfw  - \=\bfx \bfw = 0.

It is important to note that \=\bfx \bfw \not = \=\bfy \bfw in general. This proves the result.

Motivated by Corollary 3.2(ii), we propose a concept of portfolio centrality.

Definition 3.3 (centrality of portfolio). Suppose there are n risky assets with V being their
covariance matrix. Let \bfx i, i = 1, . . . , n, be the embedding points on the Gower sphere deter-
mined by the distance matrix DV . The centrality of portfolio \bfw is defined as

c(\bfw ) := \| w1\bfx 1 +w2\bfx 2 + \cdot \cdot \cdot +wn\bfx n\| .

The embedding points \{ \bfx i\} can be obtained via (2.3) with D replaced by DV . It follows
that

c2(\bfw ) = \| X\bfw \| 2 =\bfw \top X\top X\bfw = - 1

2
\bfw \top J\top 

\bfs DV J\bfs \bfw .

This means that c(\bfw ) does not depend on a particular set of embedding points \{ \bfx i\} and is
hence well defined for any portfolio \bfw . Corollary 3.2 says that portfolio \bfw can be embedded on
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MAXIMUM DIVERSIFICATION RETURN PORTFOLIO 535

a sphere with the same radius as that of the Gower sphere and its center being the \bfw -weighted
average of \{  - \bfx i\} . Hence, the centrality measures how far the center is from the origin, which
corresponds to MDRP. In the numerical part, we will investigate the relationship between
centrality and the diversification return. It turns out that the portfolios on the efficient frontier
have a larger centrality than those studied in this paper. Other numerical observations call
for more mathematical investigation on this concept.

The following example illustrates the key features in MDRP.

Example 3.1. Suppose there are three risky assets Si, i= 1,2,3, whose covariance matrix
V , the corresponding distance matrix D, and its inverse D - 1 are, respectively, given by

V =
1

9

\left[ 
 

11 8 8
8 23  - 4
8  - 4 23

\right] 
 , D=

\left[ 
 

0 1 1
1 0 3
1 3 0

\right] 
 , D - 1 =

1

6

\left[ 
 

 - 9 3 3
3  - 1 1
3 1  - 1

\right] 
 .

We note that V is also nonsingular. It follows from Theorem 3.1 that the MDRP is \bfw \ast =
( - 1,1,1)\top . The corresponding embedding points are \bfx 1 = (1,0)\top , \bfx 2 = (1/2,

\surd 
3/2)\top , and

\bfx 3 = (1/2, - 
\surd 
3/2)\top . They lie on the sphere of radius RG = 1 centered at the origin. On the

other hand, the equal-weight portfolio \bfw = (1/3,1/3,1/3)\top has the embedding points \bfy 1 =
(0,1/3)\top , \bfy 2 = ( - 

\surd 
3/2, - 1/6)\top , \bfy 3 = (

\surd 
3/2, - 1/6)\top . They lie on the sphere of radius R= 1,

but centered at (0, - 2/3). In other words, MDRP seeks an investment that places all assets
on the sphere of minimal radius centered at the origin. If the origin is not within the convex
hull of the embedding points, the portfolio may have to short certain assets (e.g., asset S1 in
this example). We note that MDRP has the diversification return DR(\bfw \ast ) = R2

G = 1, while
the equal-weight portfolio has DR = 5/9. Both MDRP and the equally weighted portfolios
are illustrated in Figure 1.

We note that Theorem 3.1 does not require V being nonsingular. It is known that for risky
assets that share same variance the classical minimum variance portfolio of those risky assets
is also MDRP [22, 20]. It is also known that when all risky assets share the same variance
and have the same level of correlation, the equally weighted portfolio is MDRP. In fact, the
result can be generalized to the following.

Corollary 3.4. Consider n risky assets with V being its covariance matrix. Let D=DV be
the corresponding distance matrix from V . If the vector \bfone n is an eigenvector of D, then the
equal-weight portfolio \bfw 1/n is MDRP.

Proof. Since \bfone n is an eigenvector of D, there must exist a positive eigenvalue \lambda 1 > 0
(assuming D \not = 0) such that D\bfone n = \lambda 1\bfone n. Suppose the rest of the (n  - 1) eigenvalues are
denoted by \lambda i, i = 2, . . . , n, with the corresponding normalized eigenvectors \bfp i, i = 2, . . . , n,
which are orthogonal to \bfone n, i.e., \bfone 

\top 
n\bfp i = 0 for i = 2, . . . , n. We choose D - to be the Moore--

Penrose inverse:

D - =
1

n\lambda 1
\bfone n\bfone 

\top 
n +

n\sum 

i=2

1

\lambda i
\bfp i\bfp 

\top 
i ,

where 1/\lambda i is taken to be 0 for \lambda i = 0. Therefore,

D - \bfone n =
1

\lambda 1
\bfone n and \bfw \ast =

D - \bfone n
\bfone \top nD - \bfone n

=
1

n
\bfone n.
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536 HOU-DUO QI12 HOU-DUO QI

Figure 1: For the data in Example 3.1, the Gower sphere is centred at the origin with RG = 1
and the three embedding points are x1, x2 and x3. The equally weighted portfolio also lie
on a unit sphere with the centre (0, - 2/3) being away from the origin and its corresponding
embedding points are y1, y2 and y3. The origin is in the convex hull of the embedding points
yi, i = 1, 2, 3. However, the equal-weight portfolio is not optimal. The optimal portfolio is
w\ast = ( - 1, 1, 1), which places the centre of its unit circle at the origin.

That is, the equal-weight portfolio is MDRP.

The case of equal variance \sigma 2 and same level of correlations at \rho among n risky assets
becomes a direct consequence of Corollary 3.4. This is because for this case D1n = (1 +
(n  - 1)\rho )\sigma 21n. An example that yields D1n = \lambda 1n for some \lambda > 0 but has different level of
correlations is the following:

V =

\left[ 
   

1 0 0  - 1
0 1  - 1 0
0  - 1 1 0
 - 1 0 0 1

\right] 
   .

In fact, the condition D1n = \lambda 1n for some \lambda > 0 is closely related to regular figures investi-
gated in [15]. Hence, many such examples can be derived from those figures which results in
the equal-weight portfolio being MDRP.

3.2. Maximum volatility portfolio. The maximum volatility portfolio studied in [22] and
[20, Appendix 2] aims to use a riskless asset to increase the diversification return. The main
purpose of this subsection is to explain a formula for the maxVP in [22, 20] may not be well
defined and we provide a unified computational formula based on the distance matrix D.

Figure 1. For the data in Example 3.1, the Gower sphere is centered at the origin with RG = 1 and the
three embedding points are \bfx 1, \bfx 2, and \bfx 3. The equally weighted portfolio also lies on a unit sphere with the
center (0, - 2/3) being away from the origin, and its corresponding embedding points are \bfy 1, \bfy 2, and \bfy 3. The
origin is in the convex hull of the embedding points \bfy i, i = 1,2,3. However, the equal-weight portfolio is not
optimal. The optimal portfolio is \bfw \ast = ( - 1,1,1), which places the center of its unit circle at the origin.

That is, the equal-weight portfolio is MDRP.

The case of equal variance \sigma 2 and same level of correlations at \rho among n risky assets
becomes a direct consequence of Corollary 3.4. This is because for this case D\bfone n = (1 +
(n - 1)\rho )\sigma 2\bfone n. An example that yields D\bfone n = \lambda \bfone n for some \lambda > 0 but has different level of
correlations is the following:

V =

\left[ 
   

1 0 0  - 1
0 1  - 1 0
0  - 1 1 0
 - 1 0 0 1

\right] 
   .

In fact, the conditionD\bfone n = \lambda \bfone n for some \lambda > 0 is closely related to regular figures investigated
in [15]. Hence, many such examples can be derived from those figures, which results in the
equal-weight portfolio being MDRP.

3.2. Maximum volatility portfolio. The maximum volatility portfolio studied in [22] and
[20, App. 2] aims to use a riskless asset to increase the diversification return. The main
purpose of this subsection is to explain that a formula for the maxVP in [22, 20] may not be
well defined and we provide a unified computational formula based on the distance matrix D.
Moreover, we identify a necessary and sufficient condition for the riskless asset to (or not to)
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MAXIMUM DIVERSIFICATION RETURN PORTFOLIO 537

play a role in maxVP. We also study a condition when the diversification return of maxVP is
guaranteed positive.

Suppose there is a riskless asset Sn+1 available. The covariance matrix \widetilde V of the (n+ 1)
risky asset is given by

\widetilde V =

\biggl[ 
V 0
0 0

\biggr] 
, \widetilde \eta =

\biggl[ 
\eta 
0

\biggr] 
, and \widetilde \bfw =

\biggl[ 
\bfw 

wn+1

\biggr] 
.

The corresponding distance matrix

\widetilde D :=
1

2

\Bigl( 
\widetilde \eta \bfone \top n+1 + \bfone n+1\widetilde \eta \top 

\Bigr) 
 - \widetilde V =

\biggl[ 
D 1

2\eta 
1
2\eta 

\top 0

\biggr] 
.

We use the language of \widetilde D to define the maximum volatility portfolio in [22]:

(3.4) \widetilde \bfw \ast := argmax
1

2
\widetilde \bfw \top \widetilde D \widetilde \bfw s.t. \bfone \top n+1 \widetilde \bfw = 1.

We further note that

\widetilde \bfw \top \widetilde D \widetilde \bfw =\bfw \top D\bfw +wn+1\eta 
\top \bfw 

=\bfw \top D\bfw + (1 - \bfone \top n\bfw )\eta \top \bfw 

=\bfw \top 
\biggl( 
D - 1

2
(\bfone n\eta 

\top + \eta \bfone \top n )
\biggr) 
\bfw + \eta \top \bfw 

= \eta \top \bfw  - \bfw \top V\bfw .

Therefore, problem (3.4) is equivalent to

max
1

2

\Bigl( 
\eta \top \bfw  - \bfw \top V\bfw 

\Bigr) 
, s.t. \bfone \top n\bfw +wn+1 = 1,

which in turn is an unconstrained optimization problem:

\bfw \eta := arg min
\bfw \in \Re n

\bfw \top V\bfw  - \eta \top \bfw .

Its optimal solution is \bfw \eta = (1/2)V  - 1\eta . Both [22, 20] used its normalized version for the risky
part of their maxVP:

(3.5) \bfw \mathrm{m}\mathrm{a}\mathrm{x}\mathrm{v}\mathrm{p} :=
V  - 1\eta 

\bfone \top n V  - 1\eta 
.

One issue with this formula is that its denominator may be zero. To see this, let us consider
n= 2 risky assets that have the covariance matrix

V =

\biggl[ 
2 1
1 2/3

\biggr] 
and V  - 1 =

\biggl[ 
2  - 3
 - 3 6

\biggr] 
.

It is straightforward to verify that \bfone \top n V
 - 1\eta = 0. Hence the formula (3.5) is not well defined

for this example although we may calculate the numerator V  - 1\eta . We also note that when V
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538 HOU-DUO QI

is singular, maxVP may not even exist. Hence, we assume V is nonsingular in this part. By
Lemma 2.3(ii), D is also nonsingular. Another issue with the maxVP (3.5) is that it may lead
to negative diversification return. With some simplification, we have

DR(\bfw maxvp) =
\bfone \top n V

 - 1\eta  - 1

2(\bfone \top n V  - 1\eta )2
\eta \top V  - 1\eta .

If \bfone \top n V
 - 1\eta < 1, then DR(\bfw maxvp) becomes negative. This possibility happened in our numer-

ical experiment.
The following result aims to study when maxVP in (3.5) is well defined and when

DR(\bfw maxvp) is positive. According to Theorem 3.1, we have a unified solution for (3.4):

(3.6) \widetilde \bfw \ast =
\widetilde D - 1\bfone n+1

\bfone \top n+1
\widetilde D - 1\bfone n+1

=:

\biggl[ 
\bfw \ast 

u

w\ast 
f

\biggr] 
,

where we use \bfw \ast 
u to denote the risky part and w\ast 

f for the riskless part. We will show \widetilde D - 1

exists. maxVP places the (n+1) assets on a sphere and the \widetilde \bfw \ast -weighted center is the origin

of the sphere with radius \widetilde RG =
\sqrt{} 

1/(2\bfone \top n+1
\widetilde D - 1\bfone n+1).

Theorem 3.5. Suppose the covariance matrix V is nonsingular. Then the following hold.
(i) It holds that

\eta \top D - 1\eta > 0 and \bfone \top nD
 - 1\eta > 1.

(ii) The matrix \widetilde D is nonsingular. Define

\alpha 0 :=
\bfone \top nD

 - 1\eta  - 2

\eta \top D - 1\eta 
and c0 := \bfone \top nD

 - 1\bfone n  - (\eta \top D - 1\eta )\alpha 2
0.

We have

\widetilde \bfw \ast =
\biggl[ 
\bfw \ast 

u

w\ast 
f

\biggr] 
=

1

c0

\Biggl[ 
D - 1\bfone n  - \alpha 0D

 - 1\eta 

2\alpha 0

\Biggr] 
.

Consequently, \widetilde \bfw \ast = (\bfw \ast ,0) if only if \bfone \top nD
 - 1\eta = 2. Here \bfw \ast is the MDRP.

(iii) The risky part \bfw \ast 
u is a null portfolio (i.e., \bfone Tn\bfw 

\ast 
u = 0) if and only if

\bfone \top nD
 - 1\eta = 1+

\sqrt{} 
1 + (\bfone \top nD - 1\bfone n)(\eta \top D - 1\eta ).

Moreover, if \bfone \top nD
 - 1\eta \leq 2, then w\ast 

f \leq 0, \bfone \top n\bfw 
\ast 
u \geq 1, and maxVP is well defined and

satisfies

\bfw maxvp =
\bfw \ast 

u

\bfone \top n\bfw \ast 
u

and DR(\bfw maxvp)\geq 
1

(\bfone \top n\bfw \ast 
u)

2
DR(\bfw \ast ).
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MAXIMUM DIVERSIFICATION RETURN PORTFOLIO 539

Proof. (i) We consider the following problem:

(3.7) max
1

2
\bfw \top D\bfw s.t. \eta \top \bfw = 1.

Note that the objective function under the constraint becomes 1
2\bfone 

\top 
n\bfw  - 1

2\bfw 
\top V\bfw , which is

strongly concave because V is nonsingular. Therefore, problem (3.7) has a unique optimal
solution, denoted by \bfw \eta , which satisfies the optimality condition: D\bfw \eta = \lambda 0\eta for some \lambda 0.
Since D is elementwise nonnegative, the optimal objective is positive. Hence, \lambda 0 =\bfw \top 

\eta D\bfw \eta >

0. It follows that \eta \top D - 1\eta = 1/\lambda 0 > 0.
From the definition

D=
1

2

\Bigl( 
\eta \bfone \top n + \bfone n\eta 

\top 
\Bigr) 
 - V

we get

D - 1 =D - 1DD - 1 =
1

2

\Bigl( 
D - 1\eta \bfone \top nD

 - 1 +D - 1\bfone \eta \top D - 1
\Bigr) 
 - D - 1V D - 1.

Multiplying \eta \top and \eta on both sides of the above identity, we have

\eta \top D - 1\eta = (\eta \top D - 1\eta )(\eta \top D - 1\bfone n) - \eta \top D - 1V D - 1\eta ,

which is equivalent to

(\eta \top D - 1\bfone n  - 1)(\eta \top D - 1\eta ) = \eta \top D - 1V D - 1\eta .

Since V is positive definite, the right-hand side is positive. We have proved that \eta \top D - 1\eta > 0.
Therefore, \bfone \top nD

 - 1\eta > 1.
(ii) Since D is nonsingular and \eta \top D - 1\eta \not = 0, the Schur-complement of D in the matrix \widetilde D

is  - \eta \top D - 1\eta \not = 0. Hence, \widetilde D is nonsingular and its inverse is given by

\widetilde D - 1 =
1

\eta \top D - 1\eta 

\Biggl[ 
(\eta \top D - 1\eta )D - 1  - D - 1\eta \eta \top D - 1, 2D - 1\eta 

2\eta \top D - 1,  - 4

\Biggr] 
.

We calculate

(3.8) \widetilde D - 1\bfone n+1 =
1

\eta \top D - 1\eta 

\Biggl[ 
(\eta \top D - 1\eta )D - 1\bfone n + (2 - \bfone \top nD

 - 1\eta )D - 1\eta 

2(\bfone \top nD
 - 1\eta  - 2)

\Biggr] 
.

Noticing c0 = \bfone \top n+1
\widetilde D - 1\bfone n+1 and applying the normalization formula (3.6), we arrive at the

stated solution \widetilde \bfw \ast . It is obvious that \alpha 0 = 0 if and only if \bfone \top nD
 - 1\eta = 2 and the maxVP

reduces to (\bfw \ast ,0).
(iii) The condition \bfone \top n\bfw 

\ast 
u = 0 implies

\bfone \top nD
 - 1\bfone n  - \alpha 0\bfone 

\top 
nD

 - 1\eta = 0.
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540 HOU-DUO QI

Substitute the definition of \alpha 0 into the equation and solve for \bfone \top nD
 - 1\bfone n to get the first claim

in (iii). If \bfone \top nD
 - 1\eta \leq 2, then the definition of \alpha 0 ensures \alpha 0 \leq 0. With the fact c0 > 0, we

have w\ast 
f \leq 0. Consequently, \bfone \top n\bfw 

\ast 
u = 1 - w\ast 

f \geq 1. The fact that the optimal objective value of
(3.4) is positive yields

0<
1

2
(\widetilde \bfw \ast )\top \widetilde D \widetilde \bfw \ast = \eta \top \bfw \ast 

u  - 
1

2
(\widetilde \bfw \ast )\top V \widetilde \bfw \ast ,

which implies \eta \top \bfw \ast 
u > 0. Since (\bfw \ast ,0) is feasible to problem (3.4), we have

DR(\bfw \ast )\leq 1

2
(\widetilde \bfw \ast )\top \widetilde D \widetilde \bfw \ast 

=
1

2
(\bfw \ast 

u)
\top D\bfw \ast 

u +w\ast 
f (\eta 

\top \bfw \ast 
u)

\leq 1

2
(\bfw \ast 

u)
\top D\bfw \ast 

u = (\bfone \top n\bfw 
\ast 
u)

2DR(\bfw \mathrm{m}\mathrm{a}\mathrm{x}\mathrm{v}\mathrm{p}) (using \eta \top \bfw \ast 
u > 0 and w\ast 

f \leq 0).

This establishes the lower bound for DR(\bfw \mathrm{m}\mathrm{a}\mathrm{x}\mathrm{v}\mathrm{p}).

We make a brief comment on the condition \bfone \top nD
 - 1\eta = 2 for the case in which all risky

assets share the same variance. That is, \eta = \sigma 2\bfone n for some value \sigma 2. In this case, we have

\bfone \top nD
 - 1\bfone n =

2

\sigma 2
and R2

G =
1

2\bfone \top nD - 1\bfone n
=

\sigma 2

4
.

Therefore, RG = \sigma 
2 . Since all embedding points of MDRP sit on the sphere of the radius RG

with the center at the origin, the Euclidean distance between any two points must be not
bigger than the diameter of the sphere, leading to

(3.9)
\sqrt{} 

Dij \leq \sigma \forall i \not = j.

On the other hand, we have from the construction D= (\eta \bfone \top + \bfone \eta \top )/2 - V that

Dij = \sigma 2  - \sigma ij = \sigma 2(1 - \rho ij),

where \rho ij is the correlation between assets Si and Sj . Therefore, the condition (3.9) must
require \rho ij \geq 0 for all i, j. To put it another way, if there exist a pair of assets that have
negative correlation \rho ij < 0, then the condition \bfone \top nD

 - 1\eta = 2 cannot hold and the riskless asset
must play an active role in maxVP.

3.3. Ridge-regularized MDRP. One of the major issues with MDRP is that it may con-
tain negative weights on some assets. Various techniques have been proposed to convert
MDRP to a long-only portfolio. One technique is to take only the positive weights in MDRP,
and this strategy may lead to portfolio that has significantly fewer assets in it. In this sec-
tion, we propose a regularized MDR which is guaranteed to be a long-only portfolio when the
regularization parameter is set above the certain threshold. The regularized portfolio defined
in (1.4) is copied below:

(3.10) \bfw \rho := argmax
1

2
\bfw \top D\bfw  - \rho 

2
\| \bfw \| 2, s.t. \bfone \top n\bfw = 1,
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MAXIMUM DIVERSIFICATION RETURN PORTFOLIO 541

where \rho \geq 0 is a regularization parameter and \| \bfw \| is the Euclidean norm of \bfw . We note that
the regularization term in (3.10) is known as the Herfindahl concentration index in economics
and finance (see, e.g., [19, sect. 1.2.3]).

A key property that we will use is the PF eigen-pair of D. Note that D is EDM and hence
is a nonnegative matrix. We summarize some of the results about D below.

Lemma 3.6. Let G be any (nonzero) n\times n EDM. The following results hold.
(i) [6, eq. (1028)] G has just one positive eigenvalue, denoted as \lambda 1, and it has (n - 1)

nonpositive eigenvalues. The largest eigenvalue is known as the PF eigenvalue and
satisfies the following bound:

min
i

n\sum 

j=1

Gij \leq \lambda 1 \leq max
i

n\sum 

j=1

Gij .

(ii) [24] Assume further that G is irreducible (i.e., there exists an integer k > 0 such
that Gk > 0 positive componentwise with Gk being the multiplication of G with itself k
times). Let \bfp 1 be an eigenvector of G corresponding to its largest eigenvalue \lambda 1. The
pair (\lambda 1,\bfp 1) is known as the PF eigen-pair and \bfp 1 is strictly positive.

By using the constraint \bfone \top n\bfw = 1, problem (3.10) is equivalent to

(3.11)

\bfw \rho = argmax 1
2\bfw 

\top D\bfw  - \rho 
2\| \bfw \| 2 + \rho 

2

= argmax 1
2\bfw 

\top D\bfw  - \rho 
2\| \bfw \| 2 + \rho 

2\bfw 
\top \bfone n\bfone \top n\bfw 

= 1
2\bfw 

\top 
\Bigl( 
D+ \rho (\bfone n\bfone 

\top 
n  - I)\underbrace{}  \underbrace{}  

=:D0

\Bigr) 
\bfw 

s.t. \bfone \top n\bfw = 1.

By using the fact J2 = J and J\bfone n = 0, we have

 - JD0J = \rho J \succeq 0 and diag(D0) = 0.

It follows from Lemma 2.1 that D0 is Euclidean. Hence, the matrix (D+ \rho D0) is Euclidean.
By Theorem 3.1, we get

(3.12) \bfw \rho =
(D+ \rho D0)

 - \bfone n
\bfone \top n (D+ \rho D0) - \bfone n

and the n risky assets can be embedded on a sphere centered at the origin with the radius\sqrt{} 
1/(2(\bfone \top n (D+ \rho D0) - \bfone n)). We would like to know when \bfw \rho results in long-only portfolios.

We denote D\rho :=D - \rho I. We have the following results.

Theorem 3.7. Suppose D is irreducible. Let (\lambda 1,\bfp 1) be the PF eigen-pair. Let p\mathrm{m}\mathrm{i}\mathrm{n} be the
smallest element in \bfp 1. The following hold.

(i) If \rho = \lambda 1, then

\bfw \rho =
1

\bfone \top n\bfp 1
\bfp 1 > 0.
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542 HOU-DUO QI

(ii) If \rho satisfies

1

\lambda 1
<

1

\rho 
<

\biggl( 
1 +

p\mathrm{m}\mathrm{i}\mathrm{n}

(n - 1)
\surd 
n

\biggr) 
1

\lambda 1
,

then \bfw \rho > 0.
(iii) If \rho satisfies

\rho \geq 
\Bigl( 
1 + (n - 1)

\surd 
n
\Bigr) 
max

i

n\sum 

j=1

Dij ,

then \bfw \rho > 0.

Proof. Since D is irreducible, the PF eigenvector is strictly positive by Lemma 3.6. Con-
sequently p\mathrm{m}\mathrm{i}\mathrm{n} > 0. Since the ridge regularization is used, the objective function in (1.4) is
strictly concave, and its unique optimal solution satisfies the optimality condition:

D\rho \bfw =D\bfw  - \rho \bfw = \lambda \bfone n and \bfone \top n\bfw = 1.

If \rho = \lambda 1 (the largest eigenvalue of D), then D\bfp 1 = \rho \bfp 1. The weight \bfw \rho in (i) satisfies the
optimality condition with the Lagrange multiplier \lambda = 0. This proves (i).

We now prove (ii). We first note that D has one positive eigenvalue \lambda 1 and (n - 1) non-
positive eigenvalues \lambda i \leq 0, i = 2, . . . , n. Suppose D has the following eigenvalue-eigenvector
decomposition:

D= \lambda 1\bfp 1\bfp 
\top 
1 +

n\sum 

i=2

\lambda i\bfp i\bfp 
\top 
i ,

where \bfp i are the orthonormal eigenvectors corresponding to \lambda i, i= 1, . . . , n. Therefore,

D\rho = (\lambda 1  - \rho )\bfp 1\bfp 
\top 
1 +

n\sum 

i=2

(\lambda i  - \rho )\bfp i\bfp 
\top 
i .

Since \rho \not = \lambda 1 and \lambda i  - \rho \leq  - \rho < 0 for i= 2, . . . , n, D\rho is invertible and

(3.13) D - 1
\rho =

1

\lambda 1  - \rho 
\bfp 1\bfp 

\top 
1 +

n\sum 

i=2

1

\lambda i  - \rho 
\bfp i\bfp 

\top 
i .

It follows that

D - 1
\rho \bfone n =

\bfone \top n\bfp 1

\lambda 1  - \rho 
\bfp 1 +

n\sum 

i=2

\bfone \top n\bfp i

\lambda i  - \rho 
\bfp i.

The solution \bfw \rho is given by

\bfw \rho =
D - 1

\rho \bfone n

\bfone \top nD
 - 1
\rho \bfone n

.
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Using the facts \bfp 1 > 0, \lambda 1 \geq \rho , and \lambda i \leq 0, i = 2, . . . , n, we now establish a lower bound for
each component of D - 1

\rho \bfone n: for each j = 1, . . . , n,

\Bigl( 
D - 1

\rho \bfone n

\Bigr) 
j
\geq \bfone \top n\bfp 1

\lambda 1  - \rho 
p\mathrm{m}\mathrm{i}\mathrm{n}  - 

n\sum 

i=2

| \bfone \top n\bfp i| 
\rho 

\geq 1

\lambda 1  - \rho 
p\mathrm{m}\mathrm{i}\mathrm{n}  - 

n\sum 

i=2

\surd 
n

\rho 
=

1

\lambda 1  - \rho 
p\mathrm{m}\mathrm{i}\mathrm{n}  - 

(n - 1)
\surd 
n

\rho 
.

The second inequality used the facts \bfone \top n\bfp 1 \geq \| \bfp 1\| 2 = 1 and | \bfone \top n\bfp i\| \leq \surd 
n. It is easy to see

that \bfw \rho > 0 under the stated condition.
(iii) Since D is assumed to be irreducible, Lemma 3.6(i) implies that the largest eigenvalue

\lambda 1 of D satisfies \lambda 1 \leq maxi
\sum n

j=1Dij . By the choice of \rho in (iii), we have \rho > \lambda 1. Using (3.13)
and the fact

1

\rho  - \lambda i
 - 1

\rho 
=

\lambda i

\rho (\rho  - \lambda i)
, i= 1, . . . , n,

we get

 - D - 1
\rho =

1

\rho 
I +

\Bigl( 
 - D - 1

\rho  - 1

\rho 
I
\Bigr) 
=

1

\rho 
I +

n\sum 

i=1

\biggl( 
1

\rho  - \lambda i
 - 1

\rho 

\biggr) 
\bfp i\bfp 

\top 
i

=
1

\rho 
I +

n\sum 

i=1

\lambda i

\rho (\rho  - \lambda i)
\bfp i\bfp 

\top 
i ,

where the second equality used I =
\sum n

i=1\bfp i\bfp 
\top 
i . Because \lambda 1 is the only positive eigenvalue of

D and the trace of D is zero, we must have | \lambda i| \leq \lambda 1 for all i= 2, . . . , n. Then, for each index
j = 1, . . . , n,

\Bigl( 
 - D - 1

\rho \bfone n

\Bigr) 
j
\geq 1

\rho 
+

\lambda 1\bfone 
\top 
n\bfp 1

\rho (\rho  - \lambda 1)
(\bfp 1)j  - 

n\sum 

i=2

| \lambda i| 
\rho (\rho  - \lambda i)

| \bfone \top n\bfp i| 

>
1

\rho 
 - 

n\sum 

i=2

| \lambda 1| 
\rho (\rho  - \lambda i)

\surd 
n=

1

\rho 
 - (n - 1)

\surd 
n\lambda 1

\rho (\rho  - \lambda 1)
.

The strict inequality above used the following facts: \rho > \lambda 1 and \bfp 1 is positive. Hence,
( - D - 1

\rho \bfone n)j > 0 if

\rho > (1 + (n - 1)
\surd 
n)\lambda 1.

The stated condition in (iii) is sufficient for the above inequality and hence

\bfw \rho =
 - D - 1

\rho \bfone n

 - \bfone \top nD
 - 1
\rho \bfone n

> 0

by using the fact that the quantity ( - \bfone \top nD
 - 1
\rho \bfone n) is necessarily positive under the condition

on \rho .
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544 HOU-DUO QI

Theorem 3.7 states three scenarios that guarantee long-only portfolios. The first scenario
(i) is to set the regularization parameter at the level of \lambda 1. This would generate a portfolio
defined by the PF eigenvector. We call it the PF portfolio. Therefore, the PF portfolio, like
MDRP, also has a Gower spherical representation. The second scenario (ii) is to set \rho below
the level of \lambda 1, but close to it so that the ridge regularization pulls the optimal portfolio toward
the PF portfolio. The third scenario (iii) is to set \rho well above \lambda 1 so that the regularization
pulls the optimal portfolio toward the equal-weight portfolio. To see why it is the case, we
note that the regularized problem (3.10) is actually equivalent to

(3.14) max
1

2
\bfw \top D\bfw  - \rho 

2
\| \bfw  - \bfw 1/n\| 2 s.t. \bfone \top n\bfw = 1,

using the fact \bfone \top n\bfw 1/n = 1. When \rho is sufficiently large, the regularization term dominates the
diversification return term. Consequently, the optimal portfolio is pulled toward the equal-
weight portfolio \bfw 1/n. The bounds on \rho in (ii) and (iii) are the worst-case analysis. It is
important to note that it is quite possible that the values outside of those estimated intervals
also lead to long-only portfolios. This possibility is illustrated by our numerical examples.

3.4. Long-only MDRP. This subsection shows that the spherical representation of MDRP
also extends to the \ell MDRP (1.3). However, the difference from the previous subsections is
that its representation involves an unknown quantity and needs to be computed by an iterative
algorithm.

Since the feasible region of (1.3) is bounded, the \ell MDRP \bfw \ast 
L is well defined and satisfies

the following KKT conditions for some \bfitg \ast \in \Re n and \lambda \ast \in \Re :

(3.15)

\Biggl\{ 
D\bfw \ast 

L + \bfitg \ast = \lambda \ast \bfone n,

\bfone \top n\bfw 
\ast 
L = 1,

\bfw \ast 
L \geq 0, \bfitg \ast \geq 0, (\bfitg \ast \circ \bfw \ast 

L) = 0.

Here (\bfitg \ast \circ \bfw \ast 
L) is the vector that contains the Hadamard (componentwise) product of the two

vectors. For any given \bfitg \in \Re n, define

V\bfitg := V + 2Diag(\bfitg ), \eta \bfitg := diag(V\bfitg ), D\bfitg :=
1

2

\Bigl( 
\eta \bfitg \bfone 

\top 
n + \bfone \eta \top \bfitg 

\Bigr) 
 - V\bfitg .

We have the following characterization of \bfw \ast 
L.

Proposition 3.8. Let (\bfw \ast 
L,\bfitg \ast , \lambda \ast ) be the KKT point defined by (3.15). Then the matrix D\bfitg \ast 

is EDM and

(3.16) \bfw \ast 
L = argmax

1

2
\bfw \top D\bfitg \bfw , s.t. \bfone \top n\bfw = 1.

Proof. Since \bfitg \ast \geq 0, the matrix V\bfitg \ast 
= V + 2Diag(\bfitg \ast ) is positive semidefinite and hence is

a legitimate covariance matrix. It follows from Lemma 2.3(ii) that D\bfitg \ast 
is EDM and

D\bfitg \ast 
=

1

2

\Bigl( 
(\eta + 2\bfitg \ast )\bfone 

\top 
n + \bfone n(\eta + 2\bfitg \ast )

\top 
\Bigr) 
 - V  - 2Diag(\bfitg \ast )

=D+
\Bigl( 
\bfitg \ast \bfone 

\top 
n + \bfone n\bfitg 

\top 
\ast 
\Bigr) 
 - 2Diag(\bfitg \ast ).
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It is easy to verify that

D\bfitg \ast 
\bfw \ast 

L =D\bfw \ast 
L + \bfitg \ast = \lambda \ast \bfone n and \bfone \top n\bfw 

\ast 
L = 1,

where we used the properties in (3.15). We proved that (\bfw \ast 
L, \lambda \ast ) satisfies the KKT conditions

for the problem (3.16) and hence \bfw \ast 
L is its optimal solution.

It follows from Theorem 3.1 that

\bfw \ast 
L =

D - 
\bfitg \ast 
\bfone n

\bfone \top nD
 - 
\bfitg \ast 
\bfone n

and \ell MDRP \bfw \ast 
L corresponds to a hyperspherical representation. However, \bfw \ast 

L depends on
the unknown Lagrange multiplier vector \bfitg \ast . This is in contrast to the previous portfolios
(MDRP, maxVP, and rMDRP), which all enjoy a closed-form formula that does not involve
any unknown quantity.

4. Application: Measuring distance between a new asset and MDRP. Suppose we
have a new asset Sn+1 available. Our interest is not to compute the new MDRP of this asset
together with the existing assets Si, i = 1, . . . , n, but to understand how far it is from the
current MDRP. The geometric sphere representation of MDRP suggests that we may measure
the distance between the new asset and the sphere, and it leads to the following computational
approach.

Let \sigma i,n+1 denote the covariance between Sn+1 and Si, i = 1, . . . , n. Let \widehat V := (\sigma ij)
n+1
i,j=1

be the covariance matrix of those (n + 1) assets. According to Theorem 3.1(i), the matrix
\widehat D := (\widehat \eta \bfone \top n+1+\bfone n+1\widehat \eta \top )/2 - \widehat V is a Euclidean distance matrix, where \widehat \eta := diag(\widehat V ). Therefore,

the last column of \widehat D consists of the (squared) Euclidean distances between assets Si and Sn+1:

\widehat d2i,n+1 :=
1

2
(\sigma 2

i + \sigma 2
n+1) - \sigma i,n+1, i= 1, . . . , n.

Let MDRPn be the MDRP of the n risky assets and Sphere(RG) denote the embedding sphere
of MDRPn. Let the n embedding points be \bfx i, i= 1, . . . , n. The new asset Sn+1 is embedded
onto Sphere(RG) and we denote the embedding point as \bfx n+1. We then calculate the pairwise
(squared) Euclidean distance between \bfx n+1 and \bfx i:

d2i,n+1 = \| \bfx i  - \bfx n+1\| 2, i= 1, . . . , n.

We define the embedding error by

\ell (xn+1) :=

n\sum 

i=1

\Bigl( 
d2i,n+1  - \widehat d2i,n+1

\Bigr) 2
.

If \ell (xn+1) = 0, then Sn+1 can be exactly embedded onto Sphere(RG). Adding Sn+1 to the
existing assets universe and calculating the new MDRPn+1 would lead to the same portfolio
given by MDRPn, i.e., the weight on Sn+1 will be zero. Naturally, we define the distance
between Sn+1 and MDRPn to be the least error loss:

(4.1) d2(Sn+1,MDRPn) := min
\bfx n+1\in \mathrm{S}\mathrm{p}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}(RG)

\ell (\bfx n+1).
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546 HOU-DUO QI

This problem is very similar to the problem of adding a new point to an existing vector
diagram [11] or landmark MDS [7]. Both considered the case where the existing points \bfx i are
geometrically centered, i.e.,

\sum n
i=1 \bfx i = 0, which is not satisfied here. Moreover, we require the

embedding to be on a fixed hypersphere rather than to the space spanned by \{ \bfx i\} . We follow
the approach by Gower [11] to derive a formula for (4.1). We show that the problem (4.1) can
be solved in two steps:

S.1 Solve the problem without restricting \bfx n+1 to the sphere. That is, we solve the problem

(4.2) \bfx n+1 = argmin \ell (\bfx ) s.t. \bfx \in Span\{ \bfx 1, . . . ,\bfx n\} ,

where Span\{ \bfx 1, . . . ,\bfx n\} is the space spanned by \bfx i, i= 1, . . . , n.
S.2 The optimal solution of (4.1) is given by

(4.3) \bfx \ast 
n+1 =

\Biggl\{ 
RG

\bfx n+1

\| \bfx n+1\| if \bfx n+1 \not = 0,

any point \bfx on Sphere(RG) otherwise.

Let us collect what we have known for the embedding points \bfx i, i = 1, . . . , n. They can
be computed from the decomposition of the matrix B in (2.3) with \bfs = D - \bfone n/(\bfone \top nD

 - \bfone n).
Let k be the rank of B and k is known as the embedding dimension. Suppose B has the
eigenvalue-eigenvector decomposition

B = - 1

2
J\top 
\bfs DJ\bfs = [\bfu 1, . . . ,\bfu k]

\left[ 
  

\lambda 1

. . .

\lambda k

\right] 
  

\left[ 
  

\bfu \top 
1
...

\bfu \top 
k

\right] 
  ,

where \lambda 1 \geq \cdot \cdot \cdot \geq \lambda k > 0 are the positive eigenvalues of B and \bfu i are the orthonormal
eigenvectors. The embedding points \bfx i can be obtained by

(4.4) X := [\bfx 1, \cdot \cdot \cdot ,\bfx n] = Diag
\Bigl( \sqrt{} 

\lambda 1, \cdot \cdot \cdot ,
\sqrt{} 

\lambda k

\Bigr) 
\left[ 
  

\bfu \top 
1
...

\bfu \top 
k

\right] 
  .

In particular, we have

X\bfs = 0, XX\top =Diag
\Bigl( 
\lambda 1, \cdot \cdot \cdot , \lambda k

\Bigr) 
, \| \bfx i\| =RG, i= 1, . . . , n.

Proposition 4.1. Let \bfitdelta be the column vector with its ith element being (\widehat d2i,n+1 - R2
G). Then

the optimal solution of (4.2) is given by

\bfx n+1 =
1

2

\Bigl( 
XX\top 

\Bigr)  - 1
X(I  - \bfone n\bfs 

\top )\bfitdelta 

=
1

2
Diag

\Bigl( 
1/
\sqrt{} 

\lambda 1, . . . ,1/
\sqrt{} 

\lambda k

\Bigr) 
\left[ 
  

\bfu \top 
1
...

\bfu \top 
k

\right] 
  (\bfone n\bfs \top  - I)\bfitdelta .
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MAXIMUM DIVERSIFICATION RETURN PORTFOLIO 547

Moreover, \bfx \ast 
n+1 defined in (4.3) solves the problem (4.1) and

\bfs \top \bfitdelta \geq \| \bfx n+1\| 2 and d2(Sn+1,MDRPn) = (\bfs \top \bfitdelta  - \| \bfx n+1\| 2) + (RG  - \| \bfx n+1\| )2.

Proof. Since \widehat d2i,n+1 are squared Euclidean distances between Sn+1 and Si, i= 1, . . . , n and

the embedding points \bfx i, i= 1, . . . , n are in \Re k, there must exist a representation of Sn+1 in
\Re k+1 denoted as \widehat \bfx n+1:

\widehat \bfx n+1 =

\biggl[ 
\bfx n+1

x0

\biggr] 
,

where \bfx n+1 \in \Re k and x0 \in \Re satisfies

\| \widehat \bfx n+1  - \widehat \bfx i\| 2 = \widehat d2i,n+1, \widehat \bfx i :=

\biggl[ 
\bfx i

0

\biggr] 
\in \Re k+1, i= 1, . . . , n.

Expanding leads to

(4.5) \widehat d2i,n+1 = \| \widehat \bfx n+1\| 2 + \| \bfx i\| 2  - 2\bfx \top 
i \bfx n+1, i= 1, . . . , n.

Multiplying each equation above by si and adding them together yields

n\sum 

i=1

si \widehat d2i,n+1 = \| \widehat \bfx n+1\| 2 +
n\sum 

i=1

si\| \bfx i\| 2  - 2
\Bigl( 
X\bfs 
\Bigr) \top 

\bfx n+1 = \| \widehat \bfx n+1\| 2 +
n\sum 

i=1

siR
2
G,

where we used the facts \bfone \top n \bfs = 1 and X\bfs = 0. Hence,

(4.6) \| \widehat \bfx n+1\| 2 =
n\sum 

i=1

si(\widehat d2i,n+1  - R2
G) = \bfs \top \bfitdelta .

Substituting back to (4.5) we get

\bfx \top 
i \bfx n+1 =

1

2
\bfs \top \bfitdelta  - 1

2
\delta i, i= 1, . . . , n,

whose vector form is

X\top \bfx n+1 =
1

2

\Bigl( 
\bfone n\bfs 

\top  - I
\Bigr) 
\bfitdelta .

Multiplying the above equation by X on both sides we obtain

\Bigl( 
XX\top 

\Bigr) 
\bfx n+1 =

1

2
X
\Bigl( 
\bfone n\bfs 

\top  - I
\Bigr) 
\bfitdelta .

Noticing the nonsingularity of (XX\top ) and the formula (4.4), we arrive at the claimed char-
acterization for \bfx n+1. Moreover, the x0-part in \widehat \bfx n+1 can be computed from (4.6):

\| \bfx n+1\| 2 + x20 = \bfs \top \bfitdelta =\Rightarrow x20 = \bfs \top \bfitdelta  - \| \bfx n+1\| 2 \geq 0.
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548 HOU-DUO QI

Let \bfh \top := (0, x0)\in \Re k+1. It is easy to see that \bfh is orthogonal to the space Span\{ \bfx i\} and \bfx n+1

is the projection of \widehat \bfx n+1 to Span\{ \bfx i\} . The nearest point \bfx \ast 
n+1 of \bfx n+1 to the Sphere(RG) is

defined by (4.3). Let \bfx be any other point on Sphere(RG), and

\widehat \bfx =

\biggl[ 
\bfx 
0

\biggr] 
, \widehat \bfx \ast 

n+1 =

\biggl[ 
\bfx \ast 
n+1

0

\biggr] 
.

By the Pythagorean theorem, we have

\| \widehat \bfx n+1  - \widehat \bfx \| 2 = x20 + \| \bfx n+1  - \bfx \| 2 \geq x20 + \| \bfx n+1  - \bfx \ast 
n+1\| 2

= \bfs \top \bfitdelta  - \| \bfx n+1\| 2 + (RG  - \| \bfx n+1\| )2.
This gives the formula for d2(Sn+1,MDRPn).

We note that the landmark MDS approach [7] would lead to a different formula for \bfx n+1.
But it can be proved that the formula is equivalent to the one we obtained here. We omit the
details. If the new asset Sn+1 is not to make a contribution to the existing MDRPn, we must
have

\| \bfx n+1\| =RG and \bfs \top \bfitdelta =R2
G,

so that d2(Sn+1,MDRPn) = 0. In particular, if the new asset is chosen to be any existing
asset Si, then d2(Si,MDRPn) = 0, which implies \bfs \top \bfitdelta =R2

G. Simplifying it leads to

n\sum 

i=1

siDij = 2R2
G, i= 1, . . . , n.

Those identities can be proved directly from the distance relations among the embedding
points \{ \bfx i\} , but they are natural consequences of our characterization in Proposition 4.1.

5. Numerical illustration. There exist extensive numerical experiments in [3, 20] that
have demonstrated that diversification return driven portfolios can perform well on risk-
adjusted returns in certain circumstances. Hence, it is not the purpose of this part to enhance
those conclusions. Instead, through comparison with some benchmark portfolios, we draw a
few key observations when using MDRP related portfolios.

5.1. Comparison of MDRP related portfolios. (\bfa ) \bfD \bfa \bft \bfa \bfs \bfe \bft \bfs . We choose two real yet
small data sets for our numerical illustration for two reasons. One is that the results reported
can be easily reproduced, and the second reason is that they bring out contrasting behavior
of MDRP related portfolios. The first data set consists of 30 stocks having appeared in the
German DAX Index (GDAXI) and the second data set is from [21]. We describe the two data
sets below.

Example 5.1. (DAX30 stocks) This data set consists of 30 stocks that have appeared
in the DAX30 Index (DAX30) and was used in [16, p. 336]. The ticker symbols for those
stocks are ADS.DE, ALV.DE, BAS.DE, BAYN.DE, BEI.DE, BMW.DE, CBK.DE, CON.DE,
DAI.DE, DB1.DE, DBK.DE, DPW.DE, DTE.DE, EOAN.DE, FME.DE, FRE.DE, HEI.DE,
HEN3.DE, IFX.DE, LHA.DE, LIN.DE, LXS.DE, MRK.DE, MUV2.DE, RWE.DE, SAP.DE,
SDF.DE, SIE.DE, TKA.DE, VOW3.DE. The data period is from January 3, 2017 to December
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MAXIMUM DIVERSIFICATION RETURN PORTFOLIO 549

Table 1
Eight agricultural commodities [21, Tab. 3]. The asset codes are defined as follows. Corn (CC), Live

Cattle (CLC), Lean Hogs (CLH), Soybeans (CS), Wheat (CW), Cotton (NCT), Coffee (NKC), Sugar (NSB).
Data period: January 1979 to March 2008.

Code Return \sigma Correlation matrix (\%)

CC 4.5\% 21.4\% 100 2.7 4.2 61.8 51.6 13.9 4.6 9.3
CLC 17.2\% 14.8\% 100 31.0 4.5 3.5 2.5 0.8 3.7
CLH 14.4\% 22.6\% 100 7.0 5.9 5.0  - 0.7 3.1
CS 10,5\% 21.8\% 100 42.8 16.2 6.3 10.4
CW 5.1\% 23.7\% 100 10.9 5.6 7.9
NCT 3.6\% 23.2\% 100 3.4 7.3
NKC 4.2\% 36.5\% 100 6.6
NSB 5.0\% 43.8\% 100

31, 2021. The mean and the covariance matrix of the daily returns were annualized in this
experiment.1

Example 5.2 (agricultural assets). This data set consists of 8 light agricultural commodities
taken from [21, Tab. 3] and is given in Table 1. It shows a large heterogeneity in volatilities
and similarities of correlation coefficients around low levels (0\%--10\%).

(\bfb ) \bfP \bfo \bfr \bft \bff \bfo \bfl \bfi \bfo \bfs . We recall from (3.1) that whenever maxVP is well defined, the MDRP
can be represented as an affine combination of the minimum variance portfolio and maxVP:

\bfw \ast = \alpha \bfw \mathrm{m}\mathrm{v}\mathrm{p} + (1 - \alpha )\bfw \mathrm{m}\mathrm{a}\mathrm{x}\mathrm{v}\mathrm{p} with \alpha = \bfone \top n V
 - 1\eta /2.

This motivates us to consider hybrid portfolios of two known portfolios \bfw 1 and \bfw 2:

\bfw h := \alpha \bfw 1 + (1 - \alpha )\bfw 2, \alpha \in \Re .
If \alpha \in [0,1], then \bfw h is a convex combination of \bfw 1 and \bfw 2. This class of portfolios was also
studied in [23]. We refer to \bfw h as \bfw 1-\bfw 2 portfolios. We calculate DR at \bfw h:

DR(\bfw h) =DR(\bfw 2) + \alpha \bfw \top 
2 D(\bfw 1  - \bfw 2) + \alpha 2DR(\bfw 1  - \bfw 2).

We like to compute the largest DR(\bfw h):

(5.1) \alpha \ast := argmax DR(\bfw h), s.t. \alpha \in \Re .
Since D is negative semidefinite on \bfone \bot n , DR(\bfw 1  - \bfw 2) \leq 0. Under the assumption that D
is nonsingular, the problem (5.1) is strictly concave (i.e., DR(\bfw 1  - \bfw 2) < 0. The optimal
solution is given by

\alpha \ast = - \bfw \top 
2 D(\bfw 1  - \bfw 2)

(\bfw 1  - \bfw 2)\top D(\bfw 1  - \bfw 2)
and \bfw \ast 

h := \alpha \ast \bfw 1 + (1 - \alpha \ast )\bfw 2.

1Suppose the observations are from time t0 to time T . Let n denote the number of returns in this period and
let N denote the number of calendar days between t0 and T . The annualized time step is \delta =N/(365n). Let\widehat \mu and \widehat V be the sample mean and covariance matrix of the returns. Then the annualized mean and covariance
matrix are, respectively, given by \mu = \widehat \mu /\delta and V = \widehat V /\delta . The value of \delta for DAX30 data set is 0.003952.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

5/
23

 to
 1

58
.1

32
.1

61
.2

11
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



550 HOU-DUO QI26 HOU-DUO QI

(a) (b)

Figure 2: Comparison of Portfolios of DAX30 Assets.

(a) (b)

Figure 3: Comparison of Portfolios of Eight Agricultural Commodities.

1. The first striking feature is that in both cases the hybrid MVP-MDRP portfolios dom-
inate others in the sense that the hybrid MVP-MDRP yields the highest diversification
return given a level of standard deviation. It is more like an efficient-frontier in the
space of standard deviation and the diversification return. However, it is not easy to
theoretically prove this is the case.

2. The ridge-regularized portfolios when \rho > 0 varies closely follow the EW-MDRP hybrid
portfolios. This is consistent with the theory of rMDRP in the sense that at one end
rMDRP is MDRP and at the other end it approximates equal-weight portfolio EW, see
the comments following the problem (3.14). Therefore, rMDRP provides important

Figure 2. Comparison of portfolios of DAX30 assets.
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Figure 3: Comparison of Portfolios of Eight Agricultural Commodities.

1. The first striking feature is that in both cases the hybrid MVP-MDRP portfolios dom-
inate others in the sense that the hybrid MVP-MDRP yields the highest diversification
return given a level of standard deviation. It is more like an efficient-frontier in the
space of standard deviation and the diversification return. However, it is not easy to
theoretically prove this is the case.

2. The ridge-regularized portfolios when \rho > 0 varies closely follow the EW-MDRP hybrid
portfolios. This is consistent with the theory of rMDRP in the sense that at one end
rMDRP is MDRP and at the other end it approximates equal-weight portfolio EW, see
the comments following the problem (3.14). Therefore, rMDRP provides important

Figure 3. Comparison of portfolios of eight agricultural commodities.

The best portfolio \bfw \ast 
h is called the optimal hybrid portfolio. There are many combinations.

But we choose the following combinations that are enough to bring out our key observations:
MVP-maxVP, MVP-MDRP, MVP-EW, and \ell MDRP-MDRP. We note that the MVP-maxVP
and MVP-MDRP form the same set of hybrid portfolios because MDRP is an affine combina-
tion of MVP and maxVP in (3.1). We also study the behavior of ridge-regularized portfolios
rMDRP when \rho > 0 varies. The diversification returns of those portfolios against the corre-
sponding standard deviations are plotted in Figure 2 (for the DAX30 assets) and Figure 3
(for the 8 agricultural commodities), along with the more familiar efficient-frontier graphs.
Contrasting features were brought out by the two examples.
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(\bfc ) \bfK \bfe \bfy \bfo \bfb \bfs \bfe \bfr \bfv \bfa \bft \bfi \bfo \bfn \bfs . We have the following observations.
1. The first striking feature is that in both cases the hybrid MVP-MDRP portfolios dom-

inate others in the sense that the hybrid MVP-MDRP yields the highest diversification
return given a level of standard deviation. It is more like an efficient frontier in the
space of standard deviation and the diversification return. However, it is not easy to
theoretically prove this is the case.

2. The ridge-regularized portfolios when \rho > 0 varies closely follow the EW-MDRP hybrid
portfolios. This is consistent with the theory of rMDRP in the sense that at one end
rMDRP is MDRP and at the other end it approximates equal-weight portfolio EW; see
the comments following the problem (3.14). Therefore, rMDRP provides important
portfolios that balance the EW portfolio and MDRP. However, rMDRP is sensitive
to the choice of \rho . In both data sets, small \rho (0.61 in Figure 2(a) and 0.0800 in
Figure 3(a)) can lead to long-only portfolios. In particular, for the first data set, when
\rho \geq 0.61, it generates portfolios that are close to the EW portfolio, leaving not much
room to search for other long-only portfolios. We also note that the PF portfolio is
also one of the regularized portfolios.

3. Optimal hybrid portfolios also show interesting features. We depicted two such port-
folios (optimal MVP-EW and maxVP-EW) for both cases. The other optimal hy-
brid portfolio is MDRP. For DAX30, the optimal hybrid maxVP-EW is very close to
MDRP, and the optimal hybrid MVP-EW is close to EW. However, for the agricul-
tural commodity dataset, they are very different from their generators (EW, maxVP,
MVP). More numerical experiments would be needed to quantify what benefit those
new portfolios would bring out in terms of risk-adjusted returns.

4. Comparing with the efficient portfolios in Figures 2(b) and 3(b), the portfolios related
to the diversification return are far from being efficient. Would this suggest that those
portfolios should be less preferred in practice? In Figure 2(b), we also plotted the
risk and return of the GDAXI, which can be regarded as a market portfolio. It can
be seen that GDAXI is also far from being efficient but is very close to the hybrid
MVP-MDRP portfolio line. In fact, the dominating portfolio, denoted as \bfw h on the
line over GDAXI, can be calculated. Its return and risk (standard deviation) as well as
those from other portfolios are reported in Table 2. Under the same risk, the portfolio
\bfw h would make 2\% more return than GDAXI. We also note that the return per unit
risk of the efficient frontier is probably too high for DAX30 data and does not reflect
the true market performance.

The observation above seems to suggest that diversification return related portfolios and
the efficient portfolios are at opposite ends of the spectrum of certain kinds of portfolios.
This motivates us to investigate the intrinsic relationship among them. Recall from Corollary
3.2 that any portfolio \bfw can be embedded on a sphere of the size of the Gower sphere, but

Table 2
Risk and return of particular portfolios on DAX30 stocks.

MDRP maxVP LMDRP \bfw h GDAXI EW MVP

Return (\%) 18.91 16.99 10.53 9.78 7.79 6.14 4.82
Risk (\sigma ) 0.4177 0.3669 0.2765 0.1926 0.1926 0.1953 0.1327
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Figure 4: Centrality vs Diversification Return

portfolios that balance the EW portfolio and MDRP. However, rMDRP is sensitive to
the choice of \rho . In both data sets, small \rho (0.61 in Fig. 2a and (0.0800 in Fig. 3a))
can lead to long-only portfolios. In particular, for the first data set, when \rho \geq 0.61,
it generates portfolios that are close to the EW portfolio, leaving not much room to
search for other long-only portfolios. We also note that the Perron-Frobenius (PF)
portfolio is also one of the regularized portfolios.

3. Optimal hybrid portfolios also show interesting features. We depicted two such port-
folios (optimal MVP-EW and maxVP-EW) for both cases). The other optimal hy-
brid portfolio is MDRP. For DAX30, the optimal hybrid maxVP-EW is very close to
MDRP, and the optimal hybrid MVP-EW is close to EW. However, for the agricul-
tural commodity dataset, they are very different from their generators (EW, maxVP,
MVP). More numerical experiments would be needed to quantify what benefit those
new portfolios would bring out in terms of risk-adjusted returns.

4. Comparing with the efficient portfolios in Fig. 2b and Fig. 3b, the portfolios related
to the diversification return are far from being efficient. Would this suggest that those
portfolios should be less preferred in practice? In Fig. 2b, we also plotted the risk
and return of the German DAX Index (GDAXI), which can be regarded as a market
portfolio. It can be seen that GDAXI is also far from being efficient, but is very close
to the hybrid MVP-MDRP portfolio line. In fact, the dominating portfolio, denoted as
wh on the line over GDAXI can be calculated. Its return and risk (standard deviation)
as well as those from other portfolios are reported in Table 2. Under the same risk,
the portfolio wh would make 2\% more return than GDAXI. We also note that the
return per unit risk of the efficient frontier is probably too high for DAX30 data and
does not reflect the true market performance.

The observation above seems to suggest that diversification return related portfolios and
the efficient portfolios are at the opposite end of spectrum of certain kind of portfolios. This
motivates us to investigate the intrinsic relationship among them. Recall from Cor. 3.2 that

Figure 4. Centrality vs. diversification return.

with its center being away from the origin. The origin is the center of the Gower sphere
representing MDRP. The distance c(\bfw ) of the center to the origin is defined as the centrality
of the portfolio in Definition 3.3. We plot the centrality of a portfolio against its diversification
return q(\bfw ) in Figure 4 for both data sets. We highlight two observations. One is that the
centrality c(\bfw ) and the diversification return q(\bfw ) seem to form a smooth concave curve.
Whether it is a parabola (similar to the efficient frontier in the risk-return plane) would need
a mathematical proof. The second observation is that the curve is decreasing with MDRP at
one end and the efficient portfolios at the other end. This echoes our previous observation that
diversification-return-based portfolios are opposite to efficient portfolios. It is an interesting
question whether efficient portfolios can be analyzed on this curve and this would provide a
new perspective of the efficient frontier from the viewpoint of diversification return.

5.2. Asset distance and DR contribution. The main purpose of this part is to demon-
strate that the distance measure developed in section 4 is a good indication of how an indi-
vidual asset would make a DR contribution when added to an existing portfolio. The data
sets above are too small for this purpose. Hence, we choose to use a bigger data set FF100,2

accessed on November 9, 2022. The dataset contains daily average-value weighted returns of
100 portfolios (assets) from 1926 to 2022. The detail of the assets is also described in the
companion webpage.3 The 100 assets were formed in the following way. The original assets
were first divided into 10 categories according to size (market equity, ME). They were also
divided into 10 categories according to the ratio of book equity to market equity (BE/ME).
Combining the categories of ME and BE/ME in pairs, there are 100 cases in total. This is
the total number of newly formed assets in the dataset. This data set was recently studied
in [33]. We consider two subdatasets: (a) the averaged monthly returns from November 1978
to June of 2020; in this dataset, after removing the assets with missing values, there are 96
assets left (N = 96). (b) the annualized daily returns from January 3, 2017 to December 31,
2020; there are 100 assets in this dataset (N = 100). The figures (a) and (b) in the figures

2https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/100 Portfolios 10x10 Daily CSV.zip.
3https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data Library/det 100 port sz.html.
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reported below, respectively, correspond to the datasets (a) and (b).
We tested two types of optimal portfolios: MDRP and rMDRP (with \rho > 0 varying). We

use the first 70 stocks (n= 70) to form an optimal portfolio, which is denoted as Portn. For the
remaining assets, we calculate the distance di of each asset Si to Portn by di = d2(Si,Portn)
using (4.1). The distances are well defined because both MDRP and rMDRP have spherical
representations. We next calculate the asset's diversification return contribution by adding
this new asset to Portn and recalculate the DR of the new optimal portfolio, denoted by
Portn,i. The asset's DR contribution is defined to be

DRi := DR of Portn,i  - DR of Portn, i= n+ 1, . . . ,N.

We plot DRi against di for those remaining assets in Figure 5. It can be clearly seen for both
data sets that di has a nice positive correlation with the corresponding DR contribution. In
particular, whenever the distances are significantly far away from Portn, the corresponding
assets contributed more in terms of DR (see the top two panels of Figure 5). A potential
use of the distance measure is to detect significantly different assets from the existing ones
and those assets have potential to have a significant influence on portfolio construction. The
bottom panel in Figure 5 also demonstrates one important point in portfolio construction,
that the impact of the newly available asset on Portn does not just depend on its distance to
Portn (as discussed above), but also depends on the property of Portn. In the bottom panel
case, the portfolio is close to EW portfolio and it seems that the DR of EW portfolio is very
stable and is not conducive to change.

We further investigate whether the positive correlation between di and DRi passes on
when we consider their accumulated version. For k newly available assets denoted by K, we
define their distance to Portn and the collective DR contribution from K, respectively, byMAXIMUM DIVERSIFICATION RETURN PORTFOLIO 29

(a) (b)

Figure 5: Comparison of individual asset DR contribution and the corresponding distance for
FF100 data. Fig. 5a is based on monthly return data from November of 1978 to June of 2020.
After dropping those assets that have missing values, there are 96 assets in this experiment.
Fig. 5b is based on annualized daily return data from January 3, 2017 to December 31, 2020.
There are 100 assets in this experiments.

Portn,i.The asset's DR contribution is defined to be

DRi := DR of Portn,i  - DR of Portn, i = n+ 1, . . . , N.

We plot DRi against di for those remaining assets in Fig. 5. It can be clearly seen for both
data sets that di has a nice positive correlation with the corresponding DR contribution. In
particular, whenever the distances are significantly far away from Portn, the corresponding
assets contributed more in terms of DR (see the top two panels of Fig. 5). A potential use of
the distance measure is to detect significantly different assets from the existing ones and those
assets have potential to have significant influence on portfolio construction. The bottom panel
in Fig. 5 also demonstrates one important point in portfolio construction that the impact of
newly available asset on Portn does not just depend on its distance to Portn (as discussed
above), but also depends on the property of Portn. In the bottom panel case, the portfolio
is close to EW portfolio and it seems that the DR of EW portfolio is very stable and is not
conducive to change.

We further investigate whether the positive correlation between di and DRi passes on when
we consider their accumulated version. For k newly available assets denoted by K, we define
their distance to Portn and the collective DR contribution from K respectively by by

DK :=
\sum 

i\in K
di and DRK := DR of Portn,K  - DR of Portn,

where Portn,K is the portfolio of (n+k) assets. We choose K to be \{ n+1\} , \{ n+1, n+2\} , and
up to \{ n + 1, n + 2, \cdot \cdot \cdot , N\} (i.e., K contains one new asset, two new assets and upto N  - n
new assets). We plot the accumulated Di against DRK in Fig. 6, where DRK in Fig. 6a was

Figure 5. Comparison of individual asset DR contribution and the corresponding distance for FF 100 data.
Figure (5a) is based on monthly return data from November of 1978 to June of 2020. After dropping those
assets that have missing values, there are 96 assets in this experiment. Figure (5b) is based on annualized daily
return data from January 3, 2017 to December 31, 2020. There are 100 assets in these experiments.
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(a) (b)

Figure 6: Comparison of accumulated DR contributions and the corresponding accumulated
distances for FF100 data. There exists a strong correlation between accumulated distances
and the corresponding DR contributions (the top two panels). The correlation in the bottom
panel is less obvious as the underlying portfolios are close to the EW portfolio and are less
sensitive to changes.

scaled 10 times to match the increase in Di. This linear scaling is just for the convenience
of visualization and does not present any issue in our key observations. As seen clearly
from the top two panels of the plot, the positive correlation still prevails and it once again
demonstrates that the proposed distance measure is a good indication how newly available
assets would influence on the DR contributions. The bottom panel enhances our observation
that EW-like portfolio is not conducive on DR changes as the DR contribution line stays flat.

6. Conclusion. Despite being a simple convex optimization problem in terms of the co-
variance matrix, the maximum diversification return portfolio problem has a deep geometric
interpretation in terms of Euclidean embedding. We derived such a geometric representation
via the Rao's Quadratic Entropy. The resulting spherical representation of MDRP also ex-
tends to other portfolios including the long-only MDRP, the ridge-regularized MDRP and the
maximum volatility portfolios. We studied the weakness and strength of those portfolios and
cautioned the use of the maximum volatility as it may result in negative diversification return.
Those results rely on the fact that the distance matrix DV is Euclidean. However, there are
a few empirical diversification measures whose corresponding D is not Euclidean, see [3] for
such instances. One important example is the distance matrix D given

D = diag(
\surd 
\eta )
\Bigl( 
1n1

\top 
n  - C

\Bigr) 
diag(

\surd 
\eta ),

where C is the Pearson correlation matrix of n assets. This matrix may not be Euclidean
and hence the results obtained in this paper cannot be applied to this case. The optimization
problem is not convex any more. It remains to be seen how to tackle such choices. In
the numerical part, we studied hybrid portfolios consisting of two known portfolios. It is

Figure 6. Comparison of accumulated DR contributions and the corresponding accumulated distances for
FF 100 data. There exists a strong correlation between accumulated distances and the corresponding DR con-
tributions (the top two panels). The correlation in the bottom panel is less obvious as the underlying portfolios
are close to the EW portfolio and are less sensitive to changes.

DK :=
\sum 

i\in K
di and DRK := DR of Portn,K  - DR of Portn,

where Portn,K is the portfolio of (n+ k) assets. We choose K to be \{ n+ 1\} , \{ n+ 1, n+ 2\} ,
and up to \{ n + 1, n + 2, \cdot \cdot \cdot ,N\} (i.e., K contains one new asset, two new assets, and up to
N  - n new assets). We plot the accumulated Di against DRK in Figure 6, where DRK in
Figure 6(a) was scaled 10 times to match the increase in Di. This linear scaling is just for
the convenience of visualization and does not present any issue in our key observations. As
seen clearly from the top two panels of the plot, the positive correlation still prevails and
it once again demonstrates that the proposed distance measure is a good indication how
newly available assets would influence the DR contributions. The bottom panel enhances our
observation that an EW-like portfolio is not conducive to DR changes as the DR contribution
line stays flat.

6. Conclusion. Despite being a simple convex optimization problem in terms of the co-
variance matrix, the MDRP problem has a deep geometric interpretation in terms of Euclidean
embedding. We derived such a geometric representation via the Rao's quadratic entropy. The
resulting spherical representation of MDRP also extends to other portfolios including the
long-only MDRP, the ridge-regularized MDRP, and the maximum volatility portfolios. We
studied the weakness and strength of those portfolios and cautioned the use of the maximum
volatility as it may result in negative diversification return. Those results rely on the fact
that the distance matrix DV is Euclidean. However, there are a few empirical diversification
measures whose corresponding D is not Euclidean; see [3] for such instances. One important
example is the distance matrix D given

D=diag(
\surd 
\eta )
\Bigl( 
\bfone n\bfone 

\top 
n  - C

\Bigr) 
diag(

\surd 
\eta ),
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where C is the Pearson correlation matrix of n assets. This matrix may not be Euclidean
and hence the results obtained in this paper cannot be applied to this case. The optimization
problem is not convex any more. It remains to be seen how to tackle such choices. In
the numerical part, we studied hybrid portfolios consisting of two known portfolios. It is
observed that the MVP-MDRP hybrid portfolios seem to dominate other portfolios in terms
of the diversification return given the level of the standard deviation. It calls for theoretical
justification when this observation is valid. We intend to tackle those questions in our future
research.

Acknowledgement. We would like to thank the two referees for the stimulating questions
that have led to the development of the concept of portfolio centrality.
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