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Abstract

The discharging method is a powerful proof technique, especially for graph coloring
problems. Its major downside is that it often requires lengthy case analyses, which
are sometimes given to a computer for verification. However, it is much less common
to use a computer to actively look for a discharging proof. In this paper, we use a
Linear Programming approach to automatically look for a discharging proof. While
our system is not entirely autonomous, we manage to make some progress towards
Wegner’s conjecture for distance-2 coloring of planar graphs, by showing that 12
colors are sufficient to color at distance 2 every planar graph with maximum degree 4.

1 Introduction

The Four Color Theorem, stating that every planar map can be colored with 4 colors in such a
way that no adjacent regions receive similar colors, is famous for having one of the first computer
assisted proofs. Even if this breakthrough from [2] encountered some philosophical opposition
about the nature of proofs, using computers to prove mathematical statements became more and
more popular in the last decades. In particular, many researchers followed the steps of Appel and
Haken and used computed-aided proofs with the so-called discharging method, but also in various
fields of mathematics and computer science such as complex analysis [23]|, geometry [5, 15, 22],
game theory [26], logic [12] and, combinatorics [20, 19, 24, 29] just to cite a few.

Most of these results make great use of the ability of computers to perform efficiently some
computations, in particular exhaustive search and checks, much quicker than a human (and
probably more reliably). Therefore, it is not surprising that many computer assisted proofs rely
on such mechanics (either directly or using arguments that permit to reduce the proof to the
study of finitely many cases), see |2, 20, 22, 24, 26, 29]. Broadly speaking, for these results,
the authors prove that the statement can be reduced to checking finitely many cases and then
design an ad hoc program that goes through all the required cases (often using symmetries to
consider only a reasonable amount of cases).

Another way to use computers to build proofs consists in using enumeration, whose goal is
to generate efficiently all possible structures (such as graphs) with specific properties. On a first
hand, it permits to test some conjectures on small graphs and to discard many false statements,
see e.g. [6, 7]. On the other hand, one can also ask the computer to generate graphs with
specific properties, which can be then used by the human as gadgets to build counterexamples
(see e.g. [8]) or hardness reductions (see e.g. [25]). Again, in all these examples, most of the proof
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is still done by the human, who has to find the desirable properties, identify good patterns in
the graphs output by the computer, and combine them in a suitable way. The computer is thus
limited to an oracle whose power is to output quite naively some constructions, without strong
warranty that they will be of any use. Some other ways to use computers have been introduced,
by translating the original problem into instances of other problems such as SAT [5, 19], linear
programming [15] or semi-definite programming [14, 27]. A last family of computer assisted
proofs contains the ones obtained using proof assistants such as Coq. In that case, the computer
work consists only in helping to check step by step a mathematical proof, and to make the
writing of such a proof more comfortable.

Automatic discharging proofs. Our goal in this paper is to obtain discharging proofs using
a computer. The discharging method is a very useful tool in graph theory, especially to prove
coloring results on sparse classes of graphs. While powerful, this method has a major downside
of often requiring lengthy case analyses. Therefore, it is not surprising that computers are used
to automatically go through all the cases, see for example [16, 3]. However, in all these cases,
the computer only has a passive role: the formalization of the problem and the structure of the
proof is provided by the human while the computer is only used to check/generate all the cases.
The examples where the human gives the statement to prove and where the machine then plays
an active role in the proof construction are, as far as we know, much rarer. One can think of [12],
where the computer is used to search for a proof by generating consequences of the axioms until
it reaches the sought conclusion.

Regarding the discharging method, we would like to obtain a system that, after a small
modelization step performed by the human, would be able to completely generate the proof
by itself, instead of just checking some case analysis. Such a system has already been used,
for example in [13, 18], but the underlying generative programs are not formally discussed
nor published (only checkers are provided). In this paper, our main contribution consists in
presenting such a program, that uses Linear Programming to construct a discharging argument
and making our code available online. In particular our program gives an automatic way to find
discharging rules, which is left open in [30] and considered as “a big step forward in the field of
automatic proofs for planar graphs”. Moreover, our approach is generic, in the sense that it can
be reused for many types of problems or graph classes.

A formal description of discharging proofs and our method is provided in Section 3. From
a high level perspective, our program will, at every step, either find a set of discharging rules
ensuring that the result holds or output a set of substructures called configurations. When the
second option occurs, the human (with the help of a second independent algorithm in this work)
has to prove that one of configurations can be “reduced” (this will be formally defined later).
We can then re-use our system by taking into account the reducibility of new configurations.
We repeat this back and forth process until the system stabilizes. When stabilization is reached,
either we get a full discharging proof, or we cannot reduce any output configuration (and we
have to rethink our modeling).

A rather similar system has been used in another context in [28] for studying identifying
codes in grids, except that the process is one-shot: the author simply model his problem into a
Linear Program and does not use a back-and-forth procedure.

In |21], the authors very recently provided a computer assisted discharging proof. Their
program allows, once a set of rules is given, to generate the configurations to reduce. The main
difference with our process is that determining a suitable set of rules is done by the human in
their case while this step is automatic in our approach.

While our system is not yet completely autonomous (since it needs the intervention of a
human at the end of every round of our algorithm), we believe it is a first step towards a fully



automated discharging prover, that would be able (with enough computing power) to reprove
many discharging results from the literature. We discuss possible further works to reach that
goal in conclusion.

Our results. As a proof of concept, we use our system to improve the best known result of
the conjecture of Wegner on distance-2 chromatic number of planar graphs of maximum degree
4. A distance-2 coloring of a graph G is an assignment of colors to the vertices of G such that no
two vertices within distance at most 2 receive the same color. The minimum number of colors
required for such a coloring to exist is denoted by x2(G). This is equivalent to a (standard)
coloring of the graph G2, obtained from G by adding edges between vertices with a common
neighbor. Wegner’s conjecture states an upper bound on y2(G) depending on the maximum

degree A(G).
Conjecture 1.1 (Wegner [32]). Every planar graph G with maximum degree A satisfies:

7 if A =3,
x2(G) < § A+5 if4A<ALT,
38141 if A =8,

Despite many partial results, only the case A = 3 has been proven [31]. The conjecture is
also known to be asymptotically true (and tight) for large values of A [17, 1]. For a up-to-date
overview of the best values depending on A, we refer the reader to [4].

In this paper, we actually focus on the case A = 4. In that case, a greedy procedure shows
that 17 colors always suffice. Brooks’ theorem brings down this bound to 16 unless we consider a
graph with 17 vertices and diameter 2, but this cannot hold for a planar graph. This result can
again be improved to 15 by a result from [10]. The bound was then brought down successively
to 14 and 13 in [9, 33]. We pursue this line of work by showing the following:

Theorem 1.2. Every planar graph G of maximum degree 4 satisfies x2(G) < 12.

2 Preliminaries

Given a graph G, we denote by V(G) and E(G) its vertex set and edge set, respectively. Note
that the graphs we consider do not contain any loop or parallel edges. A graph G is planar if its
vertices and edges can be embedded in the plane in such a way no edges cross except maybe on
vertices when they have this vertex as a common endpoint. When such an embedding is fixed,
we denote by F(G) the set of faces of G.

Let v € V(G). We denote by Ng(v) the neighborhood of v in G, i.e. the set of vertices
adjacent to v. The degree degs(v) of v is |[Ng(v)|. We extend this notion to faces by defining
degq(f) as the number of edges incident to f, counted with multiplicity.

For an integer d, a vertex is said to be a d-verter (respectively, a d~-verter, a d*-vertex)
if its degree is equal to d (resp., at most d, at least d). Likewise, a face is said to be a d-face
(resp., a d™-face, a d*-face) if its degree is equal to d (resp., at most d, at least d).

Let X C V(G). We denote by G[X] the subgraph induced by the set of vertices X. The
graph obtained from G by removing a vertex v and its incident edges is denoted by G —v. Note
that G—v = G[V \v]. Let u,v in V. By G+uwv, we denote the graph G’ such that V(G') = V(G)
and E(G") = E(G) U {uv}, i.e., the graph obtained from G by adding an edge between u and v
if it does not already exist.

We end this section with coloring-related definitions. A partial distance-2 coloring on a set
of vertices X of a graph G is a coloring of G[X] such that every pair of vertices at distance 2 in
G are colored differently. In particular, when X = V(G), a partial coloring is a coloring.



For each v € V(G), let L(v) be a finite list of colors. We say that G is L-choosable if one
can find a coloring of G where each vertex v receives a color from L(v). Note that when all the
lists are equal, we recover the standard notion of coloring. Let £: V(G) — N be a function. We
say that G is (-choosable if, for any assignment of lists of colors v — L(v) with |L(v)| = £(v), G
is L-choosable.

3 Overview of the proof

The discharging method is a widely used proof technique, especially suited for obtaining results
of the form “every graph from the class F satisfies some property 11" (see [11]| for a survey on
the discharging method). Usually, F is a class of sparse graphs. In our case, F is the class of
planar graphs of maximum degree 4, and II is the property x2(G) < 12.

We first consider the structure of the graphs in F to show that G must contain some patterns
(usually partially induced subgraphs with degree conditions) called configurations (we say that
the set of configurations is unavoidable). To this end, we use a standard method called dis-
charging. It consists in double counting some suitable quantity defined on a graph G € F. More
precisely, we give some charges to some elements of G (usually vertices and faces) such that the
total charge, i.e., the sum of all the charges, is negative. We then redistribute the charges in G
to other vertices and faces (while preserving the total charge) with some discharging rules. We
then show that if some graph G does not contain any configuration from our set of configura-
tions, the final charge of each vertex and face of G is non-negative. Since the initial total charge
is negative and we keep charge when discharging, we obtain that our set of configurations is
unavoidable.

We then have to show that our set of unvoidable configurations are reducible. Informally, it
means that, for every graph G € F containing one of them, one can construct a smaller graph
H such that if H has a valid coloring, then so does GG. Proving that all our configurations are
reducible ends the proof. Indeed, consider a smallest counterexample to the sought result, 7.e.
a graph G € F such that y2(G) > 12 with minimum number of edges and vertices. It must then
contain one of our configurations, which is reducible. This means that we can find a graph H
smaller than G, which would still be a counterexample (otherwise there would be a valid coloring
for H and we could extend it to G). This contradicts the minimality of G and shows that G
cannot exist.

We propose two algorithms that will automatize some parts of both steps. For the discharging
part, our algorithm, which is the main contribution of this paper, aims at finding an unavoidable
set of configurations. More precisely, it tries to find some discharging rules using a Linear
Program we will outline in Section 4. Either our algorithm proves that such rules exist or will
provide a list of configurations such that at least one of them has to be reduced to be able to
reach a contradiction.

As a counterpart to this program, we need to test whether the obtained configurations are
reducible. We present in Section 5 an algorithm that permits to reduce configurations. This
algorithm is an heuristic whose goal consists in trying to prove that a graph is list-colorable.
Our heuristic permits to keep a good balance between efficiency and quality (finding an efficient
algorithm is hopeless since the problem is NP-complete).

Note that the two programs are not run sequentially: we actually go back and forth between
them until we reach some kind of stabilization. Essentially, when our first algorithm outputs a
list of candidate of unavoidable configurations, our second algorithm tries to reduce at least one
of them. We repeat this process until we converge (see Section 4.3 for more details).

In the following, we denote by G a graph from F with x2(G) > 12 which minimizes (|V(G)|, |[E(G)|),
and we fix an arbitrary embedding of G. We first reduce some technical configurations to ensure



that our process and upcoming proofs are sound. This includes connectivity issues and vertices
of degree at most 2. In particular, we will assume in the following sections that all our graphs
are 2-connected and have minimum degree 3.

Lemma 3.1. The graph G is 2-connected.

Proof. Note that G is connected, otherwise, some connected component of G would be a smaller
counterexample than G. Assume now that G contains a cut vertex v, and denote by C be the
vertex set of a component of G — v. Note that G; = G — C € F and Gy = G[C U {v}] € F.
Assume that they admit distance-2 12-colorings, respectively «a; and as.

We can permute the colors of a; in such a way a1 (v) = ae(v) and a1 (Ng, (v))Naz(Ng, (v)) =
(). Now the union of o and «s is a distance-2 12-coloring of GG, which completes the proof. [

The main consequence of this lemma is that for every integer d, the vertices incident to a
d-face induce a cycle. In that case, we denote the face by [vq, ... v4].

Lemma 3.2. The graph G has minimum degree 3.

Proof. We only prove the result for 2-vertices, the other cases being straightforward. Assume
that G contains a 2-vertex. Let G’ be the graph obtained from G by adding an edge between
the neighbors of v (if not already present) and removing v.

Note that G’ € F. By minimality, G’ admits a distance-2 12-coloring .. Then « is a distance-
2 coloring of G — v, and at most 8 colors are present within distance 2 from v. Therefore, there
always exists an available color to extend « to v. U

4 Unavoidable set of configurations

4.1 Encoding rules as a Linear Program

To find the discharging rules and the corresponding set of unavoidable configurations, we imple-
ment an algorithm based on linear programming. This algorithm, given a set of configurations
C, returns, if it exists, a set of discharging rules that ensures that the final charge of every face
and vertex not appearing in a configuration in C is non-negative. If this set does not exist,
then the set of forbidden configurations must be updated and the algorithm will give us new
configurations, some of them having to be reduced and added to our set C.

We encode some discharging rules using the variables of a Linear Program to represent the
amount of charge displaced. We encode the fact that the final charges are non-negative in the
constraints of the program. There exists infinitely many ways to transfer rules from vertices/faces
to other vertices/faces. In this paper, we focus on so-called local discharging rules where charge
is transferred locally to close vertices and faces. In order to avoid combinatorial blow up, we
will actually assume that we transfer charge only to adjacent vertices or faces. One can indeed
consider more general rules but have to pay a price in terms of running time. Note that most
of the statements using the discharging method only use this type of rules. Also note that it
does not reduce the problem into a finite problem since there might exist infinitely many types
of neighborhoods, and the charges are real numbers.

Initial charges. Our initial charge distribution is given as follows: each vertex and face x
receives deg(x) — a, where « is a variable of our linear program we want to maximize. The
constraints of the Linear Program will depend on a set of configuration C that will be formally
defined later. Informally speaking, the set C will correspond to the list of reducible configurations
which cannot appear in a minimal counter-example. So, for each configuration of C, we will be
able to remove some constraints in the Linear Program.



Theorem 4.1. Let P be the linear program created from a set C of configurations, and o™ be
the optimal value of o in P. Then there exists a set of discharging rules such that, when applied
to any graph G € F avoiding C, all vertices and faces x end with non-negative weight if their
initial weight was degq(x) — .

One may consider « as an informal measurement of how far we are from obtaining a proof.
For planar graphs, if we find a set C of reducible configurations such that o > 4, we know that
the total charge is negative because of the following equality (derived from Euler’s formula).

Y. (deg(z) —4)=-8 (1)

2€V (G)UF(G)

Assuming that Theorem 4.1 holds, we reach a contradiction by applying it to our minimal
counterexample G.

The end of this section is thus devoted to defining the Linear Program so that Theorem 4.1
holds.

Variables of the linear program. We need some definitions on the adjacencies of faces and
vertices. An edge uv is incident to a face f if uv is an edge of the border of the face. A face f is
edge-adjacent to a face f’ if there is an edge uv called common edge such that wv is incident to
f and f’ (see Figure 1 (c)). A face f is vertexz-adjacent to a face f’ if there is a unique vertex v
called common verter such that v is incident to f and f’ (see Figure 1 (b)). A face f is adjacent
to a face fif f is vertex-adjacent or edge-adjacent to f’. A face f is adjacent to a vertex v if v
is incident to f.

We will allow the following three types of discharging rules, where d > 5, (¢,r, ¢, 1) € N‘;g:

o A d-face x transfers to each incident 3-vertex y a charge wq g 3., if ¥ is also incident to an
(-face and a r-face (see Figure 1(a)).

o A d-face x transfers to each vertex-adjacent 3-face y a charge w3, if there are a ¢-face
edge-adjacent to xz and y, and also a r-face edge-adjacent to = and y (see Figure 1(b)).

e A d-face x transfers to each edge-adjacent 3-face a charge wgs ¢ 3, , if x and y have the
common 4-vertices u and v such that, w is incident to a ¢-face edge-adjacent to x and a
{'-face vertex-adjacent to x, and v is incident to a r-face edge-adjacent to x and a r’-face
vertex-adjacent to x (see Figure 1(c)).

Figure 1: The three types of discharging rules.



We also define the opposite rules that tell how much charge a 3-face or a 3-vertex receives
according to the previous rules. Thus, we define the charges w3, 40 = —wa.e,30,» that a 3-vertex
receives from an incident d-face, the charges w3, 4/ = —wqys3, that a 3-face receives from a
vertex-adjacent d-face and the charges w3, 00 = —wa e 3, that a 3-face receives from an
edge-adjacent d-face. Note that, by the definition, the functions (w;);es are symmetric in a sense
that: wadr = wdrda e and Wi e d ' r = Wdrr d e

To each of these rules (w;);er, we associate a variable of our Linear Program, so that a
solution to the Linear Program will assign to each rule the amount of charge it transfers.

Constraints of the Linear Program Now we have the variables of the Linear Program, let
us explain what are the constraints. We basically want that, at the end of the procedure, all the
vertices and faces have a non negative charge.

In order to understand how the charge is modified around a vertex, we need to know the
configuration of the faces and vertices around it. A configuration around a d-face f =[f1,..., fd]
(see Figure 2) is a cyclic ordering [d;]i<2q4 € ({3v} UNx3)?? such that, for every 1 < i < d:

e if v; is a 3-vertex, doj+1 = 3v.
o if v; is a 4-vertex, the face vertex-adjacent to f with the common vertex v; is a do;41-face.

e the face edge-adjacent to f with the common edge v;v; 41 is a dg;-face.

3,6%,3v,3,4,4,30,5,3v,6"]

Figure 2: Example of a configuration around a 5-face

A configuration around a 3-vertex v is the triple of integers corresponding to the degrees of
the faces incident to v.

Let us now explain what will be the constraints of our Linear Program. The goal of the proof
is to transfer charges in order to get a non-negative final charge for every face and every vertex
outside of configurations in C. Thus, the charge transferred (w;);e;r must satisfy the following
constraints.

Let f be a face of degree d. For each configuration [d;];<24 around f, we can construct the
set of variables I([d;];<24) C I that will be applied on f. In order to have a non-negative final
charge for f given an initial charge d — «, the charges transferred (wj;);e; must verify that, for
every possible configuration, we have:

(d—a)— Z wi =0 (%)

i€l([d;]ic2a)
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Likewise, the constraint on a configuration around a 3-vertex is of the form:

B—a)— Z wi =0 (xx)

i€l([di]ig3)

Note that the constraints (x) and (xx) only depend to the configurations represented by a cycle
of the form [d;] and thus the constraints are well-defined. Observe also that there is no constraint
associated with vertices of degree at most 2, or 4. The former are reducible by Lemma 3.2. The
latter are actually not affected by our rules: no charge is taken nor given to them (so that when
a = 4, their initial and final charge is 0).

4.2 Trimming the Linear Program

The current encoding ensures that Theorem 4.1 holds. However, in its current state, our linear
program contains infinitely many variables and configurations, which is obviously problematic.
We will therefore trim it to obtain a finite program that will be enough to still get a weaker
version of Theorem 4.1 (by adding some hypothesis on the set C of configurations). At the end
of this operation, we get a finite linear program whose solutions are solutions of the initial one.
However, the converse is not necessarily true: some proof power is lost, and the harsher the
trimming, the weaker our system will be. So, for the trimming, we have to find the balance
between relevant information to get a proof and number of variables and constraints (and then
running time). In what follows, we explain how we can trim the LP to get a proof of Theorem 1.2,
it might be slightly different if we want to prove other statements.

The trimming is twofold. First, we reduce the number of variables. We do so by not
considering the exact length of faces as long as they are larger than some threshold. Increasing
the threshold increases the proof power of the technique, to the price of the running time. In our
case, we fix the threshold to six, meaning that we do not distinguish hexagons from heptagons,
octagons, etc. More precisely, when considering the variables wg ¢ 3v.r,Wd,¢,3.7 Wd 0,0 3,77y WE
now assume that d € {5,6%} and (¢,7,¢,r") € {3,4,5,67}*, so that our linear program now has
finitely many variables.

We then reduce the number of constraints. Since the rules we consider are local (in the sense
they only consider incident faces and vertices of a face or a 3-vertex), note that there are at
most 4 configurations to consider for a 3-vertex and, for each d > 3, at most 52¢ of them for
a d-face. Therefore, the only reason for which we get infinitely many constraints is that d can
take any value greater than 2.

To solve this, we end this section by proving that only six properties imply that the final
charge of 6*-faces is non-negative, provided we reduce some finite set Cg+ of configurations. This
allows us to replace all the constraints for faces of size at least 6 by setting the value of some
variables of our Linear Program and reducing some set Cg+ of configurations.

We define the six discharging rules T on 6 -faces as follows:

T1 A 6T -face gives charge % to each incident 3-vertex.

T2 A 6T -face f gives charge % to each edge-adjacent 3-face z if there is a 3-face vertex-adjacent
to f and edge-adjacent to x.

T3 A 6T -face f gives charge % to each edge-adjacent 3-face x if f and x have a common vertex
incident to two 4-faces.

T4 A 6*-face f gives charge % to each edge-adjacent 3-face x if we are not in case T2 or T3.

T5 A 6"-face f gives charge % to each vertex-adjacent 3-face x if there is a 4-face edge-adjacent
to f and x.



T6 A 6T -face f gives 0 to each vertex-adjacent 3-face x such that T5 does not apply.

In other words, we fix some variables in our Linear Program, namely if (¢,,¢',7") € {3,4,5,6%}*,
we set:

_ 2
T1 We+ 0,300 — 3-
_ _ 2
T2 we+ 1033 = Wet 333 = We+ 0,33 70 = 5-
_ _ 2
T3 we+ 10344 = Wet+ 4437 = 5

T4 If € #3, 7 #3, (0,0) # (4,4) and (r,7") # (4,4), then we+ g g3, = %.

T5 Wet r34 = Wot 43, = 3-
T6 If £ # 4 and r # 4, then wg+ 43, = 0.
We now prove that the main result of this section, namely that our trimming is correct.

Lemma 4.2. Assume the charges transferred (w;)ier satisfy T. There is a finite set of configu-
rations Cg+ such that for every graph not containing them, the final charge of every 6% -face is
non-negative.

Assuming that Lemma 4.2 holds, we directly obtain Theorem 4.1 when we consider a set of
configurations containing Cg+. Indeed, our trimmed Linear Program satisfies T, which ensures
that the rules we obtain yield non-negative weights on 6*-faces. Moreover, the constraints
corresponding to 5~ -faces and 3-vertices stayed unchanged, hence these faces and vertices also
end with non-negative weight. We end this section with the proof of Lemma 4.2.

Proof. Let f be a face of degree d > 6, with an initial charge of d — 4. We will analyse how
much charge is lost by f when applying rules T1-T6. To this end, we will make the charge
go through some intermediate stop before reaching its final destination. More precisely, we will
restate the rules so that the charge goes through some edges of the boundary of f. Thus, f gives
the charges to edges and then the edges will give the charges to the 3-faces and 3-vertices. This
equivalent reformulation, quite standard in discharging proofs, permits to simplify the analysis
of the charge leaving f.

Consider the different cases where the rules with positive charge are applied (see Figure 3):

o if f gives % to an incident 3-vertex v by T1, we say that f gives % to the two edges incident
with v which are on the boundary of f.

e if f gives charge to an edge-incident 3-face x by T2-T4, we first give % to their common
edge e. If moreover T2 or T3 applies, we also split the remaining % between the edges of
f incident to e if their common endpoint satisfies the condition of the rule.

e if f gives charge to a vertex-incident 3-face by T8, let v be their common vertex and let
y be the 4-face edge-incident to x and f. If f is vertex-incident to another 3-face sharing
an edge with y, then f gives % to each edge incident to f and v. Otherwise, it gives % to
its common edge with y.

Let Cg+ be the set of all structures leading to more than % transiting through an edge. Note
that the amount of charge transiting through an edge uv depends only on the configuration of
4~ -faces incident to u and v. Therefore, Cg+ contains finitely many configurations.

Now, if no such configuration arises in G, then at most % goes through each of the d edges.
Therefore, the final charge of the face fis d — 4 — %l, which is non-negative when d > 6. This
concludes the proof. O



%
f

Figure 3: Charge transfers from a 6*-face f to x passing by edges.

We postpone the exact description of configurations in Cg+ to Section 5.4, where we show
their reducibility (either manually or using our heuristic).

4.3 The final algorithm

We now have all the ingredients to present our program. Let D be the set of all configurations
around faces and 3-vertices represented by the cycles [d;] and let C be a set of forbidden con-
figurations. For every configuration [d;] of D, we have a constraint of the form (%) or (xx). We
solve the following linear program:

max « subject to
a,w

(d—a)— Z wi =20 for d > 3 and [d;]i<aq € D\ C
i€1([dili<24)

(3—04)— Z wiZOfOI‘ [di]iggeD\C
i€1([ds]igs)

The linear program returns the maximum « and a set of charges (w;);cr such that the final
charge of every face and vertex not in a configuration from C is non-negative after applying the
rules with the charges (w;)icr.

If the maximum « is greater or equal to 4, then the constraints are in particular verified for
« = 4. This means that each vertex and face not appearing in a configuration from C ends with
non-negative charge, even if the initial charges are deg(x) — 4 and the total charge is negative by
Equation (1). We thus obtain that C is unavoidable, which ends the proof, provided that each
configuration of C is reducible.

At the beginning, there is no chance that the linear program will output some « > 4 since we
have not set any constraint on our planar graph. So the maximum « given by our solver will be
less than 4. So our Linear Program will output the maximum value of o we can obtain and for
which extreme point of the polyhedron of the feasible region we can obtain it (an extreme point
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of a Linear Program being defined as the intersection of the constraints tight on this point). In
particular, it ensures that if we want to improve the solution one of these constraints has to be
removed.

Our algorithm returns this set of tight constraints, each of them corresponding to some
configurations in . Now, our goal is to prove that some of these configurations are reducible.
If this is possible, we can remove the corresponding constraints from the linear program (the
configurations are added in the set of reducible configurations C), which (hopefully) allows the
maximum value of « to increase.

We now repeat the loop again and again until either we end up with a > 4 (and hence the
theorem is proven), or we fail to prove that some configuration is reducible (which means the
system has not enough expression power to prove the theorem, and a less harsh trimming has
to be considered). To sum up, we represent on Figure 4 the behavior of our program.

Generate the set
D of configurations

|

= C6+

|

Linear program

forbidding C

+—C:=CUT

FAILURE:
SUCCESS: a<4
a=>4 \
/ ’ Set of tight constraints ‘
Charges (w;)ier to
have non-negative final v

charges forbidding C Set T' of tight

configurations

|

Set T" of configu-
rations to forbid

Figure 4: Construction of a proof using the discharging method.

Implementation. Our system is implemented in Python and runs on a standard laptop. The
code can be found at https://gitlab.com/lucas.de_meyer/square-coloring-stage.

As a pre-processing step, we generate the set D of all configurations (filtering out symmetries)
as well as the initial linear program. As shown before, we just need the configurations around
the 3-vertices, the 3-faces and the 5-faces, so configurations of length respectively 3, 6 and 10.
Generating all these configurations takes nearly 20 minutes and it can be done just once, since
we then only remove some constraints.

Afterwards, at each iteration, the program removes the reducible configurations from D,
generates the corresponding linear program and solves it, in less than 2 minutes in total.

In our approach, we update manually the set C of reducible configurations. Indeed, the
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linear program returns a set of tight configurations and, among them, we choose at least one of
their subgraphs which we can reduce. Note that this choice is not random, we instead aim at
removing as many tight constraints as possible from D.

After a dozen iterations (for less than an hour of computation in total), we are able to get a
set C of 40 configurations such that the associated Linear Program has a solution where o = 4.
A more precise description of this set is provided in the next section. By Lemma 4.2, we obtain
the following.

Theorem 4.3. The minimum counter-example G contains a configuration from C U Cg+ .

5 Reducing configurations

The goal of this section is to conclude the proof of Theorem 1.2 by reducing the configurations
from CUCg+. We first present another program in Section 5.1 that allows us to reduce 28 out of
the 40 configurations in C. We then reduce manually the 12 remaining configurations from C in
Section 5.3, using some auxiliary results proved in Section 5.2. Finally, we conclude the proof in
Section 5.4 by showing that if G contains a configuration from Cg+, it actually contains another
configuration from C.

5.1 A heuristic

How to reduce configurations. We start with a description of a generic method used to
reduce a configuration C. We follow the lines of the proof of Lemma 3.2. Recall that our goal
is, assuming that our counterexample G contains C, to provide a graph G¢ with less vertices
(or edges) than G and such that one can extend a distance-2 coloring « of G¢ with 12 colors
(which exists by minimality) to a coloring of G. For our purposes, G¢ will most of the time be
defined by removing from G some vertices involved in C.

For each vertex v € V(C), the coloring a forbids some colors for v and we can consider L(v)
the set of free colors of v, that is the set of colors ¢ such that no vertex at distance at most
2 from v in V(Gg) is colored c¢. Each set L(v) has a minimum possible size ¢(v) which is the
total number of colors minus the number of vertices of V(G¢) at distance at most 2 from v.
Let H be the graph whose vertices are the uncolored vertices of GG, with an edge between pairs
of vertices within distance 2 in G. Let £ be the function that asigns to every vertex v € H the
integer £(v). Our goal is to show, that H is ¢-choosable. If we can prove it, it ensures that any
possible coloring of G¢ (and in particular a distance-2 12-coloring) can be extended to G, which
proves that C' is reducible.

Graph choosability is well-known to NP-hard. To improve performance, instead of solving
this problem exactly, We implement an heuristic algorithm A that, given a graph H and ¢ :
V(H) — N, if A(H, f) returns True, then H is ¢-choosable. And then, we apply A on each
of the graphs H obtained from the 41 configurations given by our Linear Program algorithm.
If A returns True, we have proved that the configuration C' is reducible. Note however that a
negative answer does not imply the non-choosability of the graph, nor the irreducibility of C.

In the following, we present some generic techniques that, once combined, allow to reduce 30
of the 41 configurations. It is worth mentioning that the method we provide here is generic for
any type of coloring problem. For the ease of exposition, we thus state the method for standard
(i.e. distance-1) coloring (that is, we simply want that adjacent vertices receive distinct colors).
This is not restrictive, indeed, recall that a distance-2 coloring of H is a distance-1 coloring of
H?.
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Happy vertices. Some vertices might be easy to color. We will get rid of them, to focus on
the hardest part of the instance. Let H be a graph and ¢ : V(H) — N. A vertex v is happy in
H for ¢ if ¢(v) > deg(v). Let v be a happy vertex in H for £. For any coloring of H — v, we can
extend the coloring to v for any list of length ¢(v), since we forbid at most deg(v) < ¢(v) colors.
Thus, if H — v is £-choosable, H is /-choosable. Hence, instead of coloring H, it is sufficient to
remove its happy vertices (without modifying the value of ¢ for the other vertices) and color the
remaining graph. This yields the following.

Lemma 5.1. Let v be a happy vertex of a graph H for a function £:V(H)w— N. If H — v is
{-choosable, then H 1is £-choosable.

Coloring a vertex. Let H be a graph, L be a list assignment and v € V(H). Suppose that we
want to color v with a color ¢ € L(v). For each neighbor u of v such that ¢ € L(u), the number
of free colors of u decreases.

Let 4,.: V(H) — N be the resulting numbers of colors, i.e. £, .(u) = |L(u) \ ¢| if v is a
neighbor of v, and ¢, .(u) = |L(u)| otherwise. Since reducing the sizes of the lists only makes
our task harder, we may actually assume that the list of every neighbor u of v has lost a color,
so that £, .(u) = ¢(u) — 1. Therefore, if H — v is ¢, .~choosable, then we can color H by simply
color v with ¢, remove ¢ from the list of its neighbors and color H — v.

Lemma 5.2. Let v be a vertex of H and f:V(H) — N. Let ¢, : V(H —v) — N defined by
by(u) = £(u) — 1) for every vertex uw # v. If H — v is £y,-choosable, then H is {-choosable.

Matrix of inclusion. We define a matriz of inclusion of (H,{) as a square {0, 1}-matrix of
size |V (H)| such that, for u,v € V(H):

M(u,v) =1 = (L(v) € L(u) = H is {-choosable)

Note that the identity matrix is a matrix of inclusion since the implication is trivial (L(u) €
L(u) being false for every u). Moreover, if £(u) < ¢(v), then L(v) € L(u). Therefore, we get the
following.

Lemma 5.3. Let M be a matriz of inclusion of (H,{) and assume that there is a pair u and v
such that M(u,v) =1 and £(u) < £(v). Then H is £-choosable.

The algorithm. Let H be a graph and ¢: V(H) — N be a function representing the number
of free colors for each vertex. By induction on H and according to the previous paragraphs, if
Algorithm 1, denoted by A, returns True, then H is f/-choosable.

Computing the matrix. The algorithm A computes a matrix of inclusion M of (H,¥) by
induction on H. As we already noted, we can initialize the matrix M as the identity matrix of
size |V (H)|. To update it, the algorithm takes some vertices u, v such that M (u,v) =0 and tests
whether it can set M (u,v) =1, i.e. (L(v) € L(u) = H is {-choosable). When stabilization is
reached, we return the matrix.

We now show how the algorithm proves that (L(v) € L(u) = H is {-choosable) for some
pair u,v such that M (u,v) = 0.

Suppose that L(v) is not included in L(u). We can thus color v with a color ¢ ¢ L(u) and
then |L(u)| does not decrease. Moreover, for each neighbor w of v such that M (u,w) = 1, then
we have two cases. Either ¢ € L(w) so L(w) € L(u) and H is ¢-choosable since M (u,w) = 1.
Otherwise, ¢ ¢ L(w) and |L(w)| does not decrease either when v gets color c.
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Algorithm 1: A(H, /)
Input: A graph H and a function ¢ : V(H) — N.
Output: If it returns True, then H is ¢-choosable.

1 if H is empty then
2 L return True

3 if H has a vertex v such that ¢(v) < 0 then
L return False (since v cannot be colored)

5 if H has a happy vertex v then
6 | return A(H —v,()

7 Compute a matrix of inclusion M of (H, /) by induction on H (see corresponding
paragraph).

8 if H has a pair of vertices u and v such that M (u,v) =1 and ¢(u) < {(v) then
L return True

10 return False

Let ¢ : V(H —v) — N be the updated lengths of the lists, i.e. ¢'(w) =¢(w)—1 when w is a
neighbor of v such that M (u,w) = 0, and ¢'(w) = ¢(w) otherwise. Now, if H —v is ¢’-choosable,
then H is ¢-choosable. In particular, if A(H — v, ') returns True, we can set M (u,v) = 1.

Running the program. We have applied our heuristic on each of our 40 configurations. It
manages to prove that 28 of them are reducible. These are depicted in Figure 5. We prove in
Section 5.3 that the 12 remaining configurations are reducible. Note that even if the algorithm
A fails to reduce some configurations, we still make use of the inclusion matrix it computes to
prove that the configurations are indeed reducible.

Figure 5: The configurations reduced by our heuristic. Black vertices have degree 3, the others
have degree 3 or 4.

5.2 Separating cycles

We now tackle auxiliary configurations whose reduction will make the other reductions easier.
Note that each cycle of G separates the plane in three connected components: its boundary, its
inside and its outside. We say that C is a separating cycle if both its inside and its outside
contain at least one vertex of G. A vertex of C is unbalanced if all its neighbors in V' \ C' are in
the same side of G[V '\ C] and is balanced otherwise. A separating cycle is k-balanced if at most
k vertices of C are balanced. The goal of this section is to show the following.
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Theorem 5.4. The graph G does not contain any 4-balanced separating cycle of length at most
5.

The rest of this subsection is devoted to prove this statement. Assume that G contains such
a separating cycle C. Let us denote by X = {z1,...,z,} the vertices of C in a cyclic ordering
(with ¢ < 5) and denote by Y the vertices of C' that are balanced (with |Y| < 4 and following
again the cyclic ordering of C'). Note that |Y| > 2 otherwise G would admit a cut vertex.

Let Gy (resp. G2) be the graph induced by the vertices of G inside (resp. outside) C' together
with their neighbors in C. Note that all the vertices of G lie either in G; or Ga, except for the
vertices of Y that appear in both graphs. We claim that the following holds:

Claim 5.5. [t is possible to add edges in G1 and Go to create two graphs Hi and Ho in such a
way that:

1. Hi,Hy € F,
2. for every pair of vertices y;,y; m 'Y, y; and y; are adjacent in Hy or Hs.
3. for every pair of vertices a,b € C that belong to H; fori € {1,2} then dp,(a,b) < dg(a,b).

Proof. All along the proof, whenever there exists 3 consecutive unbalanced vertices a,b,c in C
such that a,c € G; and b ¢ G;, we add the edge ac in Gj if it does not already exist. We call
this operation the saturation operation.

Note that in the graph G;, every vertex y of Y has degree at most 3. Moreover, its degree is
reduced by one more for every additional neighbor of y in C' which is not in G;. We distinguish
different cases depending on how many vertices of Y are consecutive in C.

Case 1. C contains four consecutive balanced vertices.
Without loss of generality, we can assume that Y = {x1,...,z4}. By definition, no other vertex
of C'isinY.

If C =Y and then, we simply add x;x3 in one graph and zsz4 in the second, which satisfies
all the points. Otherwise, exactly one vertex of C' is not in Y, w.l.o.g. in G;. Then we simply
add x1z3 in G and zoxy, r124 in Gs.

Case 2. C contains three consecutive balanced vertices.
Without loss of generality, we can assume that Y is x1,x2,x3 by Case 1. We can add ziz3 in
both graphs in order to get (2) and (3).

Case 3. C contains two consecutive balanced vertices.
Without loss of generality, we can assume that Y contains x1, zs.

First assume that Y only contains x1,z9. Then (2) indeed holds. For every i < 2, let z;
(resp. z}) the smallest (resp. largest) vertex of C'\ Y that is in G; (they might not exist and
might be the same). For ¢ < 2, we add the edges z/x1 and z2z; in H;. These edges together with
the saturation operation ensures that (3) also holds.

So C'is a 5-cycle and the set Y must contain a third vertex which is x4. We add the edge
xox4 (resp. x1x4) in the graph G; which does not contain x3 (resp. x5). So (2) holds. Moreover,
if both x3, z5 belong to the same graph G;, we add x124 to G; which ensures that (3) also holds.

Case 4. C does not contain consecutive balanced vertices.

Without loss of generality, we can assume that x; € Y. If it is the only one, the saturation
property ensures that the conclusion holds. Otherwise, since |Y| > 2 (otherwise we would have
two consecutive vertices in V), we can assume by symmetry that Y = {x1,z3}. We now simply
add an edge x1x3 in both graphs to get (2) and (3), which completes the proof. O
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Let us prove that we can conclude using Claim 5.5. Let Hy and Hs be the two graphs given
by Claim 5.5. By minimality, they both admit a distance-2 12-coloring. We use these colorings
and some recoloring steps to construct a distance-2 coloring of G with 12 colors, which ends the
proof of Theorem 5.4.

Note that in both colorings, the vertices of Y receive distinct colors by (3). So, free to
permute colors, we can assume that the vertices of Y are colored alike in both graphs and
moreover each vertex x; is colored i. Moreover, we also recolor the vertices of C'\ Y in such a
way that only colors {1,...,|C|} appear on C.

We first explain that, up to permuting some colors, no vertices of N(Y') colored alike are
within distance 2 in G. We will then see how to recolor vertices in N(C') so that we obtain a
valid coloring of G. Let us denote by Z the vertices z of N(Y) \ C' with multiplicity (if z is a
neighbor of both y and y’ we put it twice in Z) such that the color of z is not a color of a vertex
of C. And let Z; = ZNV(G;) for i < 2. Note that since |Y| < 4, the sizes of both Z; and Z,
are at most 4. Also note that only colors {1,...,|C|} may appear on C, so we can freely use
the colors 6,...,12 (which contains 7 colors).

o If (at least) 2 vertices of Z; are colored the same for some ¢ < 2, then we recolor them
to color 6. Now we may recolor the at most two remaining vertices of Z; so that only
colors {6,7,8} appear on Z;. We may now recolor the vertices of Z3_; with colors from
{9,10,11,12}.

e Otherwise, assume that that |Z;| > |Z3|. Then we recolor the vertices of Z; with pairwise
distinct colors from {6,...,12} (which is possible since the set has size at most 4). Now,
we can greedily color vertices of Zs so that each vertex receives a different color from the
previously colored vertices in Z5 and from its distance-2 neighbors in Z;. Indeed, at each
step, at most 4 colors are forbidden.

A conflict is a pair of vertices at distance at most 2 in G that have the same colors. After
applying the previous operations, there is no conflict involving vertices in N(Y') anymore. There
is indeed no conflict between two vertices of G (resp. G2). Now consider a pair of vertices in
N(Y), one in each G;, and within distance two of each other (so that they share a common
neighbor in Y'). If one of them, called u, is colored with the color of some vertex y of Y the
other is not since, in at least one of Hy, Ho, u is at distance at most 2 from y by (2). If the
common color is not in {1,...,5}, every pair of vertices in N(Y) in G; and G2 adjacent to the
same vertex are colored differently by the above recoloring process and no vertex of N(Y') can
be colored with the color of a vertex of C' by assumption. So the only remaining conflicts implies
some vertex in N(C') and more precisely, for every vertex x of C'\'Y, if z is a neighbor of z, then
z can only be in conflict with a neighbor of x in C'\'Y which is in the other graph. In particular,
we have |Y| < 3 and z must have a color in {1,...,|C|}.

Let us now prove that if a vertex z in V(C') has the same color as some z; € Y then there is
no conflict involving z. Indeed, observe that each vertex of C' lies within distance 2 from x; in
either H; or Hy by (2) and (3), so it cannot be colored with the color of x;, hence of z. Moreover,
z and z; cannot be within distance 2 in G, otherwise they would also be within distance 2 in
H, or Hs. Therefore, z may only be in conflict with some vertices in C'\ Y.

We prevent that by recoloring N(C'\Y') with colors larger than |C|. Recall that |Y| < 3, hence
|Z1| < 3 and |Z3| < 3. Therefore, we fixed at most three colors in Hy (resp. Hj) corresponding
to the vertices in Z; (resp. Zs). So if there are at most two vertices z, 2’ of C'\'Y in Gy (resp.
G2), there remain four colors available to recolor their neighbors in G (resp. G2) avoiding the
colors {1,...,|C|} and from Z; (resp. Z3). Finally, there cannot be three vertices in C'\ Y in
G and one in C'\ 'Y in G since |Y'| > 2, which completes the proof of Theorem 5.4.
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5.3 Remaining configurations

We now reduce the 12 remaining configurations from C. For brevity, in what follows, when
reducing a configuration C, we only give the graph G¢ (that we denote by G’ when C is clear
from the context). We will not explicitly check that the adjacencies at distance 2 are preserved.
We only compute the number of forbidden colors for the vertices v of G that are not colored in
G

Lemma 5.6. The graph G does not contain a 3-vertex incident to a 3-face.

Figure 6: Forbidden configuration of Lemma 5.6

Proof. Assume that G contains a 3-vertex a incident to a 3-face [a,b,c] and a neighbor d (see
Figure 6 for an illustration). Define G’ = G —a+bd € F. By minimality, G’ admits a distance-2
12-coloring. This coloring is a partial coloring of G and forbids at most 44 2-3 = 10 < 12 colors
for a. So it can be extended into a distance-2 12-coloring of GG, which completes the proof. [J

Lemma 5.7. The graph G does not contain a 4-vertex incident with two 3-faces and a 4-face,
nor to a 3-face and three 4-faces.

Figure 7: Forbidden configurations of Lemma 5.7

Proof. Assume that G contains such a vertex. Using that G does not contain any 3-face edge-
incident to a 3-face and a 4-face (this is reduced by the heuristic), we are in one of the situations
depicted in Figure 7. In both cases, define G’ = G — a + bd + ce € F. By minimality, it admits
a distance-2 12-coloring. This coloring is a partial coloring of G and forbids at most 11 colors
for a, so it can be extended into a distance-2 12-coloring of GG, which completes the proof. [J

Lemma 5.8. The graph G does not contain a 3-vertezx incident to two 4-faces.

Proof. Assume that G contains a 3-vertex a incident to two 4-faces [a, b, ¢, d] and [a,d, e, f] (see
Figure 8 for an illustration). Define G' = G —a+bf € F. By minimality, it admits a distance-2
12-coloring.

This coloring is a partial coloring of G and forbids at most 2-3+2+41+1 =10 < 12 colors
for a, so it can be extended into a distance-2 12-coloring, which completes the proof. O
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Figure 8: Forbidden configuration of Lemma 5.8

The eight remaining configurations Cy to C7 are respectively illustrated by Figures 9 to 16.
In each drawing, 3-vertices are denoted by squares and 4~ -vertices by circles (i.e. we do not
know if they have degree 3 or 4). On the right, each vertex is either black, meaning we do not
have to color it (these vertices will be in G”), or it is labeled with the number of available colors
it has.

Lemma 5.9. Configuration Cy is reducible.

Figure 9: Configuration Cy

Proof. Assume that G contains Cy. We use the notation of Figure 9. Let G' = G —ac € F.
By minimality, it admits a distance-2 12-coloring «. Uncolor a,b,c. Now observe that no two
colored vertices of G within distance 2 have the same color under .

For each vertex v € {a, b, c}, let L(v) be the set of free colors of v and let £(v) be the minimum
possible size of L(v) (see Figure 9 for an illustration). We have to show that the graph induced
by a, b, ¢ is £-choosable. To this end, observe that we may color a, b, ¢ in that order. This yields
a distance-2 12-coloring of G, which completes the proof. U

To reduce configurations C to Cg depicted on Figures 10 to 15, we first apply Theorem 5.4
to prove that some vertices cannot be within distance 2 in a graph containing them. This will
then color them with the same color if they have a common available color, so that their common
neighbors lose only one color in their lists. The following claim can be easily checked on each of
the configurations:

Figure 10: Configuration C}

Claim 5.10. If G contains a configuration C € {C1,...,Cg}, then b and ¢ are at distance at
least 3 in G.
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Figure 12: Configuration Cj

Figure 15: Configuration Cg

19



We will need the following definition to conclude the reductions. Given a graph H and a
function ¢ : V(H) — N, we say that H is happy if H is empty or H contains a happy vertex v
such that H \ v is happy. Observe that if H is happy then H is ¢-choosable since we can color
greedily its vertices from the last happy vertex to the first. Note that even if the algorithm A
did not conclude to the reducibility, we make use the matrix of inclusions it computed.

Lemma 5.11. Configurations C to Cg are reducible.

Proof. Assume that G contains such a configuration C. Define Go¢ = G — a, which admits a
distance-2 12-coloring by minimality. Uncolor all vertices v of C, except in C' € {C5, Cg} where
we keep g, h colored. Let H be the subgraph of G? induced by the uncolored vertex of C. For
each vertex of H, denote by L(v) be the set of free colors for v and let ¢(v) be the minimum
possible size of L(v) (see Figures 10 to 15).

Applying the algorithm 4 on (H,¢), we obtain that H is ¢-choosable unless every vertex v
within distance 2 from a satisfies L(v) C L(a).

In particular, we have L(b) U L(c) C L(a) and |L(b) U L(c)| > |L(a)|, hence b and ¢ have a
common free color. By Claim 5.10, b and ¢ are not neighbors in G2, so we can color them both
with that common free color. Afterwards, one can easily check that the graph H —b— ¢ is happy,
which provides a distance-2 12-coloring of G and concludes the proof. U

We end this section with the reduction of the last configuration C7.

Lemma 5.12. Configuration C7 is reducible.

Figure 16: Configuration C%

Proof. Assume that G contains C7. We follow the notation of Figure 16. Let G’ =G—b e F, and
assume that G’ admits a distance-2 12-coloring. Uncolor all vertices of C7. For each uncolored
vertex v, let L(v) be the set of free colors of v and let £(v) be the minimum possible size of L(v).
Note that if two vertices are within distance 2 in G using edges not depicted on Figure 16, then
both their lists contain one more color than what is shown in the figure.

Claim 5.13. L(e), L(f), L(l) are equal lists of size 2.

Proof. Let a, B be two colors in L(b) \ L(i). Let us first assume that L(e) # {«a, 5}. So we first
can color e with another color, and then we color f,l. Observe that afterwards, L(b) # L(i) since
a or f3 still lies in L(b) but not in L(7). Now, we color a,d, h, j, g, k,c in that order. Each time
we color a vertex, either both L(b) and L(i) lose a color (in which case L(b) still contains « or
B but not L(7)), or one of the two does not lose a color. Therefore, at the end, when only b and
i remain to be colored, we have L(b) and L(i) both contain at least one color, and if they both
contain only one, then they are different. We may thus color b and 4, which yields a coloring of
G, a contradiction.
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Therefore, we must have L(e) = {«, 8}. If L(f) # L(e), we can color f with a color not in
L(e), then e with o. Now L(b) # L(i) since L(b) contains 5 but not L(i). We can then apply
again the previous argument to color G in the same order. Therefore, L(f) = L(e), and by
symmetry, we get the result. U

Let H be the subgraph of G? induced by {a,...,l}. Applying the algorithm A on (H, /), we
obtain that H is ¢-choosable unless L(v) C L(b) for all v within distance 2 from b. By symmetry,
the same holds for ¢, so we may assume that L(b) = L(c), and L(b) contains all the other lists.

Observe that if e, h are within distance 2, then L(e) has size at least 3, which is incompatible
with Claim 5.13. Otherwise, if L(e) N L(h) # @, we can color e and h with the same color. In
that case, H — {e, h} has a happy coloring. Therefore, we may assume that L(e) and L(h) are
disjoint.

By Theorem 5.4, e and k cannot be within distance 2 in G. Moreover, if L(e) N L(k) # &,
we may color them with the same color and H — {e, k} is happy. Therefore we may assume that
Le)nL(k) = 2.

Since L(a) U L(h) U L(k) C L(b) and ¢(b) = 10, there are two vertices =,y € {a, h, k} such
that L(z) N L(y) # @. By Theorem 5.4, z,y cannot be within distance 2. Therefore, we can
color z and y with their common color, which does not appear on L(e), L(f) or L(l). Let ¢ be
the updated length of the lists, so that ¢'(z) = £(z) for each z € {e, f,l}. We can then check
that H — {x,y} is happy for . Therefore, G admits a distance-2 12-coloring, which concludes
the proof. O

5.4 Configurations in C4+

In order to prove that configurations of Cg+ are reducible, we actually show that each configu-
ration of Cgy gives rise to a configuration of C which is in turn reducible, as shown before. In
other words, our set of reducible configurations can actually can be restricted to only C.

Consider a configuration of Cgs.. By construction, this means that G contains an edge uv on
a 6"-face f such that more than % transits through uwv when applying the rules corresponding
to T (see Figure 3). Let f’ be the face sharing the edge uv with f.

We now consider several cases depending on which rules among T1-6 made some weight
transit through ww.

e Assume that T1 applies, i.e. by symmetry, deg(u) = 3. Note that, by Lemma 5.6, the
face f’ cannot be a triangle hence T4 cannot apply. Since more than % transits through
uwv, another rule must be used. This creates one of the following configurations of C: e—e

(T1), H@gc (T2), fm (T3), .@ or % (T5).

e Assume that T2 applies. If f’ is a triangle or T3 or T4 applies, we obtain a triangle
edge-incident to a triangle and a 4~ -face, which is reduced by our heuristic. Therefore, f’

is not a triangle and only T2 or T5 may apply. This creates %}% (T2) or % (T5).

e Assume that T3 applies, hence by definition, T4 does not apply. We now get configuration

Ch or LS it T5 applies. Moreover, if T3 applies a second time in such a way that more
than % transits through uv, then we obtain configuration Cj.

e Assume that T4 applies. Then it cannot be applied twice, hence T5 is applied, which

creates
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e Finally, assume that T5 is applied twice. Then both u and v are incident to triangles
(that are vertex-incident to f). In that case, only 2 x % transits through uv, contradicting
the hypothesis.

6 Further work

A first natural question raised by our work is the extension of our techniques to distance-2
choosability of planar graphs with maximum degree 4. Most of our proof technique still applies
to this case (namely, the use of Linear Programming, and the heuristic that automatically reduces
the configurations). However, when reducing separating cycles (Section 5.2), we permute some
colors, which is typically forbidden in the choosability setting. Due to that, our reductions of
C1 to C7 would need more involved arguments. No hope is yet lost for these configurations to
stay reducible, but the task seems more painful since one would need to tackle the cases where
the vertices we want to color alike are actually within distance 2 in GG, which might require to
consider many cases.

Our second long-term goal would consist in constructing a fully automatic system to prove
coloring results using (local) discharging. This requires several important improvements of our
system we describe below.

First, we need to improve the heuristic. We could use an exact algorithm, but this indeed
would have a prohibitive cost on the performances (see [16]). However, in the literature, the
configurations are most of the time reduced manually using only a few methods. Implementing
them would probably give enough power to obtain reasonable results and would probably allow
us to have a strong enough program to prove that reducible configurations of many articles are
indeed reducible. As a more concrete example, one can first implement the technique used to
reduce the configurations C to C%, where we show that some lists of colors should be disjoint
(and obtain a contradiction with the inclusion matrix).

A second aspect is the choice of the rule templates. While the literature contains a wealth
of different types of rules, most of the time, charge is not moved over large distances. The next
step is then probably to implement several classic rule templates and see what can be proved
using them.

Last, when our Linear Program returns a list of configurations such that one of them has to
be shown to be reducible, we often show that a sub-configuration of this configuration is actually
reducible. We recognize such configurations by experience. Reducing these sub-configurations
permits to drastically fasten the convergence of our algorithm. It is not completely clear how
many rounds would be needed if we only try to reduce configurations output by the Linear
Program rather than sub-configurations. In a long time perspective, it might be interesting to
see if learning algorithms can be used to detect sub-configurations that are likely to be reducible.
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