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Abstract. In this paper, we study min-max optimization problems on Riemannian manifolds.
We introduce a Riemannian Hamiltonian function, minimization of which serves as a proxy for
solving the original min-max problems. Under the Riemannian Polyak– Lojasiewicz condition on
the Hamiltonian function, its minimizer corresponds to the desired min-max saddle point. We also
provide cases where this condition is satisfied. For geodesic-bilinear optimization in particular, solving
the proxy problem leads to the correct search direction towards global optimality, which becomes
challenging with the min-max formulation. To minimize the Hamiltonian function, we propose
Riemannian Hamiltonian methods (RHM) and present their convergence analyses. We extend RHM
to include consensus regularization and to the stochastic setting. We illustrate the efficacy of the
proposed RHM in applications such as subspace robust Wasserstein distance, robust training of
neural networks, and generative adversarial networks.
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1. Introduction. In this paper, we consider the Riemannian manifold con-
strained min-max problem

(1.1) min
x∈Mx

max
y∈My

f(x, y),

where Mx,My are complete Riemannian manifolds and f : Mx ×My −→ R is a
jointly smooth real-valued function. The aim is to find a global saddle point (x∗, y∗)
that satisfies for all (x, y) ∈Mx ×My,

(1.2) f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗).

Examples of Riemannian manifolds of interest include the sphere manifold, the Stiefel
manifold, the manifold of orthogonal matrices, the manifold of doubly stochastic
matrices, and the symmetric positive definite manifold, to name a few [3, 14, 80, 12].

When both Mx,My are the Euclidean space, problem (1.1) reduces to the clas-
sical min-max problem, which has been widely studied for applications including ad-
versarial training [49], robust learning [21], non-linear feature learning [71, 5, 36, 37],
generative adversarial networks [24, 7, 79], constrained optimization [11], multi-task
learning [35, 33], and fair statistical inference [48], among others. When f is con-
vex in x and concave in y (convex-concave), the existence of a global saddle point is
guaranteed by the well-established minimax theorem [62, 82]. Algorithms converging
to such saddle points include the optimistic gradient descent ascent (OGDA) algo-
rithm [70] and the extra-gradient algorithm (EG) [23], which have been analyzed in
[61, 57, 58, 56]. For the general nonconvex-nonconcave setting, however, the saddle
point, be it local or global, may not exist [39], and it remains challenging to establish
convergence for both OGDA and EG.

∗University of Sydney (andi.han@sydney.edu.au, junbin.gao@sydney.edu.au).
†Microsoft India (bamdevm@microsoft.com, pratik.jawanpuria@microsoft.com).
‡IIIT Hyderabad India (pawan.kumar@iiit.ac.in).

1

ar
X

iv
:2

20
4.

11
41

8v
3 

 [
m

at
h.

O
C

] 
 2

4 
A

ug
 2

02
3

mailto:andi.han@sydney.edu.au
mailto:junbin.gao@sydney.edu.au
mailto:bamdevm@microsoft.com
mailto:pratik.jawanpuria@microsoft.com
mailto:pawan.kumar@iiit.ac.in


2 A. HAN, B. MISHRA, P. JAWANPURIA, P. KUMAR, J. GAO

On Riemannian manifolds, there exist cases where many nonconvex (or noncon-
cave) functions turn out to be geodesic convex (or concave), a generalized notion of
convexity on Riemannian manifolds [84]. This ensures the existence of a global saddle
point on manifolds under the generalized min-max theorem [85, 92]. Furthermore,
there is a growing interest in the Riemannian min-max problem (1.1) with applica-
tions such as low-rank tensor learning [34, 63], orthonormal generative adversarial
networks [60, 17], subspace robust Wasserstein distances [65, 46, 30, 38], and adver-
sarial neural network training [28]. It is, therefore, motivating to study the min-max
problem on manifolds.

Nevertheless, existing works that systematically study the Riemannian min-max
problem are sparse. In [28], a Riemannian gradient descent ascent (RGDA) method
has been proposed, yet the analysis is restricted to My being a convex subset of the
Euclidean space and f(x, y) being strongly concave in y. A recent paper [92] has for-
mally characterized the optimality conditions of the Riemannian min-max problem for
geodesic convex geodesic concave functions. A Riemannian corrected extra-gradient
(RCEG) algorithm has been proposed and analyzed. A follow-up work [40] completes
the analysis of RGDA and RCEG under geodesic (strongly) convex (strongly) concave
settings.

Contributions. In this paper, we propose a class of methods for solving the
min-max problem (1.1) on Riemannian manifolds, which we call Riemannian Hamil-
tonian methods (RHM). The idea is to minimize the squared norm of the Riemannian
gradient of (1.1), known as the Riemannian Hamiltonian. Minimizing the Hamilton-
ian function serves as a good proxy for solving problem (1.1). Under the Riemannian
Polyak– Lojasiewicz (PL) condition [91] on the Hamiltonian function, its minimizer
recovers the desired saddle point. A key motivation to consider the proxy problem
instead of the original min-max problem is for geodesic-bilinear problems, where solv-
ing the proxy problem leads to the correct direction towards global optimality while
existing methods either cycle or converge extremely slowly (discussed in Section 3.3).
In addition, the Hamiltonian gradient methods have been considered for solving min-
max problems in the Euclidean space, which show great promise in accelerating and
stabilizing the convergence to saddle points [1, 8, 53, 47]. This paper generalizes many
of those analysis to Riemannian manifolds.

It should be emphasized that the proposed generalization to manifolds is nontriv-
ial as the analysis for the Euclidean counterparts, such as in [1], rely heavily on the
matrix properties of the Jacobian. Generalization to Riemannian manifolds require
adherence to Riemannian operations independent of the matrix structure. Another
challenge is to deal with the varying inner product (Riemannian metric) structure on
manifolds. We handle the above by devising novel proof strategies and proposing a
metric-aware Riemannian Hamiltonian function that respects the manifold geometry.

In particular, we show global linear convergence of any Riemannian solver to sad-
dle points of problem (1.1) as long as the Riemannian Hamiltonian of f satisfies the
Riemannian PL condition [91]. We show this occurs when f is geodesic strongly con-
vex geodesic strongly concave, and also for some nonconvex functions with sufficient
geodesic linearity. We additionally extend the proposed RHM to incorporate a consen-
sus regularization and to the stochastic setting, and prove their convergence. Existing
Riemannian algorithms for solving (1.1) such as [92] make use of the exponential map
to update the iterates on the manifolds. In this work, we discuss convergence results
with exponential as well as general retraction maps on manifolds.

We empirically show the convergence of our proposed RHM algorithms for dif-
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ferent min-max functions and compare them with existing baselines. We further
demonstrate the usefulness of RHM algorithms in various applications such as learn-
ing subspace robust Wasserstein distance, robust training of neural networks and
training of generative adversarial networks.

Organizations. The rest of the paper is organized as follows. Section 2 reviews
the preliminary knowledge on Riemannian geometry and Riemannian optimization as
well as introduces various functions classes on Riemannian manifolds. We also briefly
discuss the existing literature on mix-max optimization in the Euclidean space and on
Riemannian manifolds. In Section 3, we propose the Riemannian Hamiltonian func-
tion and RHM algorithms, as well as analyze their convergence under the Riemannian
PL condition. We provide three cases when such condition is satisfied. Section 4 intro-
duces and analyzes the Riemannian Hamiltonian consensus method. Sections 5 and 6
extend the proposed methods to stochastic settings and to the case of retraction. In
Section 7, we empirically compare our algorithms with different baselines on various
applications. Section 8 concludes the paper.

2. Preliminaries. In this section, we give a brief overview of Riemannian ge-
ometry and relevant ingredients required for Riemannian optimization. For a more
complete treatment of the topic, see [3, 14]. We also briefly discuss some of the
existing works on min-max optimization.

2.1. Riemannian geometry and optimization.

Basic Riemannian geometry. Riemannian manifold M is a manifold with
a Riemannian metric, which is a smooth, symmetric positive definite function g :
TpM× TpM−→ R on every tangent space TpM, with p ∈M. It is usually written as
an inner product ⟨·, ·⟩p. The metric structure induces a norm for any tangent vector

ξ ∈ TpM, which is ∥ξ∥p :=
√
⟨ξ, ξ⟩p. For a linear operator on the tangent space

H : TpM−→ TpM, its operator norm is defined as ∥H∥p := maxξ∈TxM:∥ξ∥p=1 ∥H[ξ]∥p.
A geodesic on the manifold γ : [0, 1] −→ M is the locally shortest curve with

zero acceleration. The exponential map at p, Expp : TpM −→ M is defined as the
end point of a geodesic along the initial velocity. That is, Expp(ξ) = γ(1) where
γ′(0) = ξ, γ(0) = p for any ξ ∈ TpM. Riemannian distance is computed as d(p, q) =∫ 1

0
∥γ′(t)∥γ(t)dt where γ(t) is the distance minimizing geodesic connecting p, q ∈ M.

In a totally normal neighbourhood Ω where there exists a unique geodesic between
any p, q ∈ Ω, the exponential map has a well-defined inverse Exp−1

p :M−→ TpM and

the Riemannian distance can be written as d(p, q) = ∥Exp−1
p (q)∥p = ∥Exp−1

q (p)∥q.
Parallel transport Γq

p : TpM −→ TqM transports tangent vector along the geodesic
while being isometric, i.e., ⟨ξ, ζ⟩p = ⟨Γq

pξ,Γ
q
pζ⟩q for any ξ, ζ ∈ TpM.

Riemannian product manifolds. The product of Riemannian manifoldsM =
Mx ×My is a Riemannian manifold with the Riemannian metric defined as, for any

p = (x, y) ∈ M, and (u, u′), (v, v′) ∈ TpM, ⟨(u, u′), (v, v′)⟩p = ⟨u, v⟩Mx
x + ⟨u′, v′⟩My

y ,
where ⟨·, ·⟩Mx , ⟨·, ·⟩My are Riemannian metrics on Mx,My respectively. From the
metric, one can derive the geodesic, the exponential map, parallel transport, Rie-
mannian distance, which also admit a product structure. See more details in [14].

Riemannian optimization ingredients. Riemannian optimization treats the
constrained problem as an unconstrained problem on manifold by generalizing the
notions of gradient and Hessian. For a differentiable function h : M −→ R, the
Riemannian gradient at p, gradh(p) is a tangent vector that satisfies ⟨gradh(p), ξ⟩p =
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Dh(p)[ξ] for any ξ ∈ TpM where Dh(p)[ξ] is the directional derivative of h along
ξ. The Riemannian Hessian of h, Hessh(p) : TpM −→ TpM is a symmetric linear
operator, defined as the covariant derivative of the Riemannian gradient. For a bi-
function f : Mx ×My −→ R, we can similarly define Riemannian partial gradient
gradxf(x, y), gradyf(x, y) as Riemannian gradient for x, y, holding the other variable

constant. The Riemannian cross derivative grad2
xyf(x, y) : TxMx −→ TyMy is defined

as grad2
xyf(x, y)[u] := Dxgradyf(x, y)[u] and similarly for grad2

yxf(x, y).

Riemannian geodesic convex optimization. Geodesic convexity [89, 14] gen-
eralizes the notion of convexity to Riemannian manifold. A geodesic convex set Ω ⊆M
requires for any two points in the set, there exist a geodesic (onM) connecting them
that lies entirely in the set. From this definition, any connected, complete Riemann-
ian manifold is geodesic convex itself. A function h : Ω −→ R is geodesic convex if
for any p, q ∈ Ω, it satisfies that h(γ(t)) ≤ (1 − t)h(p) + th(q) for t ∈ [0, 1] and
γ is a geodesic connecting p, q. A function is geodesic linear if it is both geodesic
convex and geodesic concave. A twice differentiable function h is geodesic µ-strongly

convex if d2h(γ(t))
dt2 ≥ µ. We call a function h(p) g-(strongly)-convex if it is geodesic

(strongly) convex. Similarly, we call a function f(x, y) g-(strongly)-convex-concave if
it is geodesic (strongly) convex in x and geodesic (strongly) concave in y.

Next, we define the spectrum of a linear operator on the tangent space, which is
used to analyze the Riemannian Hessian as well as the Riemannian cross derivatives
in the subsequent sections.

Definition 2.1 (Spectrum of a linear operator). Consider a linear operator T :
V −→ W where V,W are two inner product spaces. If V = W , and T is symmetric,
i.e., T = T ∗, where T ∗ is the adjoint operator of T , then we say (λ, v) is an eigenpair
of T if T [v] = λv. In general, when V ̸= W , the singular value σ of T is the square
root of the eigenvalues of T ∗ ◦ T .

We use λmin/λmax and σmin/σmax to represent the smallest/largest eigenvalues
and singular values, respectively. We also use λ|min| to denote the minimum eigenvalue
in magnitude. Below, we introduce several function classes on manifolds, generaliz-
ing the Lipschitz continuity as well as the Polyak– Lojasiewicz condition from the
Euclidean space [74, 69]

Definition 2.2 (Lipschitz continuity [14]). Let L0, L1, L2 > 0.
(1). A real-valued function h :M−→ R is L0-Lipschitz continuous if for all p ∈M,

∥gradh(p)∥p ≤ L0.
(2). A vector field V ∈ X(M) is L1-Lipschitz continuous if for all p ∈ M and

s ∈ TpM such that q = Expp(s) ∈ Ω, a totally normal neighbourhood of p, it
satisfies ∥Γp

qV (q)− V (p)∥x ≤ L1∥s∥p.
(3). A linear operator H(p) : TpM −→ TpM is L2-Lipschitz continuous if for all

p ∈M and q = Expp(s) ∈ Ω, it satisfies ∥Γp
q ◦H(q) ◦ Γq

p −H(p)∥p ≤ L2∥s∥p.
Definition 2.3 (Polyak– Lojasiewicz (PL) condition on Riemannian manifold

[91, 42, 25]). A function h :M−→ R satisfies the PL condition on Riemannian man-
ifold if for any p ∈ M, there exists δ > 0 such that 1

2∥gradh(p)∥2p ≥ δ(h(p)− h(p∗)),
where p∗ = arg minp∈M h(p) is the global minimizer of h.

The following lemma shows the connection between smoothness of a function on
manifold and its Lipschitz Riemannian gradient, which is fundamental for convergence
analysis.

Lemma 2.4 (Lipschitz Riemannian gradient and smoothness [14]). For a func-
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tion h : M −→ R, its Riemannian gradient is L1-Lipschitz continuous if and only if
∥Hessh(p)∥p ≤ L1 for all p ∈ M. Suppose h has L1-Lipschitz Riemannian gradi-
ent, then h is L1-smooth on M with |h(q) − h(p) − ⟨gradh(p), s⟩p| ≤ L1

2 ∥s∥
2
p, for all

q = Expp(s) ∈ Ω and p ∈M.

Notations. Here, we summarize the main notations used in the paper. We use
∇,∇2, grad, and Hess to represent the Euclidean gradient, Euclidean Hessian, Rie-
mannian gradient, and Riemannian Hessian respectively. The boldface ∇ is used to
denote the Riemannian connection. For a bi-function f(x, y), we denote ∇xf(x, y),
∇yf(x, y) as the partial Euclidean derivative with respect to x, y, respectively, if
x, y ∈ Rd. Similarly for x, y ∈ M, gradxf(x, y), gradyf(x, y) denote the partial Rie-

mannian gradients. We also make use of grad2
xyf(x, y), grad2

yxf(x, y) to represent the

Riemannian cross derivatives. We use ⟨·, ·⟩Mp to represent the Riemannian metric at
p ∈ M. When the manifold considered is clear, we omit the superscript for clarity.
Furthermore, we use ⟨·, ·⟩2 to denote the Euclidean inner product.

2.2. Min-max optimization. Here we discuss related works on min-max opti-
mization both in the Euclidean space and on Riemannian manifolds.

In Euclidean space. In the Euclidean space (i.e., Rn), the standard gradient
descent ascent (GDA) that follows the min-max gradient is known to cycle or di-
verge for simple convex-concave objectives [52]. To address the cycling issue, the
optimistic gradient descent ascent algorithm (OGDA) [70] modifies the GDA update
to include an additional gradient momentum. On the other hand, the extra-gradient
algorithm (EG) [23] employs an additional min-max gradient step at every iteration.
As shown in [55, 56], both OGDA and EG methods approximate the proximal point
method [73] and converge sublinearly under convex-concave settings [61, 57] and lin-
early under strongly-convex-strongly-concave settings [87, 55].

However, for the more general nonconvex-nonconcave settings, finding a global
saddle point satisfying (1.2) is difficult and several existing works [18, 4, 50, 79] aim
to find a local saddle point that satisfies (1.2) in a local neighbourhood. It should be
noted that when the function is convex-concave, all local saddle points are global.

A necessary set of conditions for the saddle points is that they satisfy the first-
order stationarity, i.e., the gradients with respect to x and y vanish. This motivates the
Euclidean Hamiltonian gradient descent (EHGD) [53, 8, 1, 47] approach for solving the
min-max problem, which minimizes the sum of the squares of the gradient norms with
respect to x and y. It should be noted that EHGD works under the assumption that
all such stationary points are global min-max saddle points [1, 47]. Cases are discussed
where this assumption is satisfied, which allows EHGD to converge to a global min-
max saddle point of the original min-max problem [1, 47]. Further, studies [53, 8, 1, 47]
demonstrate good empirical performance of EHGD in a variety of applications.

It should be noted that EHGD approaches have only been studied for uncon-
strained problems in the Euclidean space. Challenges in the constrained settings
appear with definition of the Hamiltonian and subsequent analysis.

On Riemannian manifolds. There is a growing theoretical and empirical in-
terest in solving min-max problems under Riemannian optimization framework [46,
30, 28, 92]. An extension of the GDA algorithm to manifolds, named RGDA, has been
proposed in [28]. However, [28] considers a min-max setting in which the minimization
problem (in x) is on a manifold, but the maximization problem (in y) is on a convex
set. In addition, it analyzes the convergence when the maximization problem over
y is strongly concave. Hence, [28] does not study the general Riemannian min-max
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problem (1.1). It discusses the convergence of their algorithm to first-order station-
ary points of the min-max problem. Additionally, they propose different stochastic
extensions of their algorithm and analyze their convergence.

Recently, [92] has proposed a Riemannian corrected extra-gradient algorithm
(RCEG) for the Riemannian min-max problems (1.1), which contains two steps. First,
RCEG takes a step similar to the RGDA update. Then, starting from the newly ob-
tained point, RCEG combines the RGDA direction with the direction of the first step.
In the g-convex-concave settings, this correction allows [92] to prove (local) conver-
gence of RCEG to global min-max saddle points of (1.1). The convergence is however
analyzed only for averaged iterates. After the submission of this work, we notice
that a recent paper [40] proves both last-iterate and average-iterate convergence of
RCEG to saddle points under g-convex-concave and g-strongly-convex-concave set-
tings. They also discuss average-iterate and last-iterate convergence of RGDA under
g-convex-concave and g-strongly-convex-concave settings, respectively. Nevertheless,
the convergence analysis requires a bounded domain (and curvature) and a carefully
chosen stepsize that depends on the curvature and diameter bound of the domain. In
contrast, we have shown in this work global convergence to saddle points with stepsize
that only depends on the Lipschitz constants of the objective.

More details on the RGDA and RCEG algorithms as well as the comparisons on
the convergence analysis are in Appendix C.

3. Riemannian Hamiltonian gradient methods. As mentioned earlier, the
Euclidean Hamiltonian approach [53, 8, 1, 47] is a popular approach to tackle the
min-max problem (1.1) when Mx and My are restricted to the Euclidean space.
Specifically, the Euclidean Hamiltonian function E is defined as,

(3.1) E(x, y) :=
1

2
∥∇xf(x, y)∥22 +

1

2
∥∇yf(x, y)∥22,

where ∇xf(x, y) and ∇yf(x, y) are the partial derivatives of f with respect to x and
y, respectively. Here, ∥ · ∥2 denotes the Frobenius norm. The global minimum of the
function E is attained when E(x, y) = 0, i.e., ∇xf(x, y) = 0 and ∇yf(x, y) = 0. This
corresponds to a first-order stationary point of the function f . Hence, minimization
of E in (3.1), becomes a good proxy to solve the original min-max problem.

Building on the Euclidean Hamiltonian approach, generalization to the Riemann-
ian min-max problem (1.1) requires understanding of first-order stationary points on
manifolds Mx and My. These are necessarily identified with the points where the
Riemannian gradient of f vanishes. This leads to our proposed Riemannian Hamil-
tonian function as

(3.2) H(x, y) :=
1

2
∥gradxf(x, y)∥2x +

1

2
∥gradyf(x, y)∥2y,

where gradxf(x, y) and gradyf(x, y) are the Riemannian partial gradients of f with re-

spect to x and y respectively. Here, ∥gradxf(x, y)∥2x = ⟨gradxf(x, y), gradxf(x, y)⟩Mx
x

is the square of the gradient norm in the Riemannian metric sense onMx. Similarly,

∥gradyf(x, y)∥2y = ⟨gradyf(x, y), gradyf(x, y)⟩My
y is the square of the norm on My.

Remark 3.1. The proposed Riemannian Hamiltonian function (3.2) generalizes
the Euclidean Hamiltonian function (3.1) in two different ways:

1) Equation (3.2) implicitly embeds the manifold geometry ofMx,My into the
Hamiltonian function.
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2) Equation (3.2) generalizes the Euclidean metric considered in (3.1) to a Rie-
mannian metric. This generalization allows to use other varying metrics for
min-max problems in the Euclidean space, e.g., the Fisher information metric
[20] or real-projective space metrics [3, Chapter 2].

It should be noted that the Riemannian Hamiltonian (3.2) can be viewed on the
product manifold M =Mx ×My, i.e., for p = (x, y) ∈M, the Riemannian gradient
is gradpf(p) = (gradxf(x, y), gradyf(x, y)), and therefore, H(x, y) = ∥gradpf(p)∥2p.
Hence, we propose to solve the following problem on the product manifold as

(3.3) min
p∈M

{
H(p) =

1

2
∥gradf(p)∥2p

}
.

Similar to the EHGD approaches [1, 47], we work with the following assumption.

Assumption 1. The objective f admits at least one stationary point and all sta-
tionary points are global min-max saddle points.

It is worth noticing that under Assumption 1, solving (3.3) is equivalent to solving
(1.1). On Riemannian manifolds, Assumption 1 holds when f is g-convex-concave.

We now show that the Riemannian gradient of the Riemannian Hamiltonian H(p)
admits a simple expression.

Proposition 3.2. Riemannian gradient of H is gradH(p) = Hessf(p)[gradf(p)].

Proof. First, we see that H is a smooth function on the manifold due to the
smoothness of f and its Riemannian gradient (formally characterized later in Propo-
sition 3.6). For any smooth vector field U : M −→ TM, denoted as U ∈ X(M),
we have UH = ⟨gradH, U⟩, where ⟨·, ·⟩ is the Riemannian metric (on any tangent
space). Let ∇ be the Riemannian connection (or the Levi-Civita connection) of
M, which provides a way to differentiate vector fields on manifolds. By definition,
the Riemannian connection satisfies the metric compatibility property [3, 14], i.e.,
U⟨V,W ⟩ = ⟨∇UV,W ⟩ + ⟨V,∇UW ⟩ for any vector fields U, V,W . Also, by defini-
tion, application of the Riemannian Hessian of f : M −→ R along a vector field U is
Hessf [U ] = ∇Ugradf . Based on these claims, we show

UH =
1

2
U⟨gradf, gradf⟩ = ⟨∇Ugradf, gradf⟩ = ⟨Hessf [U ], gradf⟩

= ⟨Hessf [gradf ], U⟩,

where the last equality follows from the self-adjoint property of the Riemannian Hes-
sian. The proof is complete by noticing ⟨Hessf [gradf ], U⟩ = ⟨gradH, U⟩ for any U .

Remark 3.3. The importance of the varying metric in the proposed Riemannian
Hamiltonian (3.2), can be observed in Proposition 3.2, where we obtain a simple
expression for the Riemannian gradient of H. This allows to connect the properties
of H with that of the min-max objective f , discussed in detail later in Section 3.2.

Remark 3.4. It should be noted that for the Euclidean case when x ∈ Rm, y ∈ Rn,
existing works [8, 1, 47] analyze the Hamiltonian methods in the form of J⊤v, where
J is an asymmetric Jacobian matrix and v is the min-max gradient (∇xf(x, y),
−∇yf(x, y)). For the same setting, however, Proposition 3.2 obtains the Hamil-
tonian gradient as H∇f , where H and ∇f are the (Euclidean) Hessian matrix and
gradient vector ∇f = (∇xf(x, y),∇yf(x, y)), respectively. This is not surprising as
J⊤v = H∇f . Proposition 3.2 allows to analyze the performance of the Riemannian
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Algorithm 3.1 Riemannian Hamiltonian methods (RHM)

1: Initialize p0 = (x0, y0) ∈M.
2: for t = 0, ..., T do
3: Compute the step ξ(pt) from the gradient gradH(pt) = Hessf(pt)[gradf(pt)].
4: Update pt+1 = Exppt

(
ξ(pt)

)
.

5: end for
6: Output: pT .

Hamiltonian approach in terms of the symmetric Riemannian Hessian operator. The
analysis in [1, 47] heavily rely on the matrix structure of J and makes use of the
linear algebraic properties of the Jacobian. Our approach, thanks to Proposition 3.2,
adheres to general Riemannian manifolds as we directly deal with the operator, which
is independent of the matrix structure. Hence, many of the subsequent analysis in
this paper differ from [1, 47].

To minimize the Riemannian Hamiltonian (3.3), one can apply first-order Rie-
mannian solvers including Riemannian steepest descent [88], Riemannian conjugate
gradient [72], or second-order solvers, such as Riemannian trust-regions [2, 13], pro-
vided the Hessian (or approximated Hessian) of the Hamiltonian is available. We refer
to such class of methods for solving min-max problems on manifolds collectively as
Riemannian Hamiltonian methods (RHM). Its procedures are outlined in Algorithm
3.1, where the step ξ(pt) is computed depending on the selected solver.

Remark 3.5. We remark that Algorithm 3.1 aims to solve a proxy optimization
problem (3.3) where we only require the first-order information, i.e., gradH(p). Al-
though the Hessian of f , i.e., Hessf(p)[gradH(p)] is used in Algorithm 3.1, this es-
sentially corresponds to the gradient information of the proxy problem. Furthermore,
from the computational perspective, Algorithm 3.1 only requires one evaluation of
Hessian-vector product per iteration. This is much more efficient than second-order
methods, such as Riemannian trust region [2, 13] or cubic regularized Newton methods
[6] that require at least several oracles to such Hessian vector product each iteration.
Finally, when Hessian of f is unavailable, we find finite difference approximation is
sufficient to achieve convergence in practice.

We analyze the performance of the proposed RHM. In particular, we aim to ob-
tain the global minimizer p∗ of H, which satisfies H(p∗) = 0 with RHM. However,
this may not always be numerically tractable without additional structures on the
Riemannian Hamiltonian. One such structure is assuming the Riemannian Hamilton-
ian is g-convex, for which RHM converges to the optimal p∗ (g-convexity guarantees
convergence to global optimality). This, however, may not lead to interesting problem
classes for f . Moreover, there is no guarantee that H is a g-convex even when f is
g-convex-concave.

Another interesting structure is the Polyak– Lojasiewicz (PL) condition. The PL
condition [69] amounts to a sufficient condition to establish linear convergence for
gradient-based methods to global optimality [41]. The Riemannian version of the PL
condition (Definition 2.3) has been studied in [91, 42, 93, 25]. In Section 3.1, we impose
the Riemannian PL condition on the Hamiltonian H as it allows convergence of RHM
to global optimality. It should be noted that functions satisfying the Riemannian
PL condition subsume g-(strongly)-convex functions. In Section 3.2, we discuss many
interesting function classes of f that allow the Hamiltonian H to satisfy the condition.
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3.1. Convergence analysis. To analyze the convergence of RHM, we focus on
the Riemannian steepest descent direction in the main text, i.e., ξ(pt) = −ηtgradH(pt)
with either fixed stepsize or variable stepsize computed from backtracking line-search
[15, 14]. We include the details of implementing the Riemannian conjugate gradient
and Riemannian trust-region methods together with their convergence analysis in
Appendix F. We make the following standard assumption [3, 14, 91, 78, 92] throughout
the rest of the paper. We assume that our manifoldsMx andMy are complete (and
so is M =Mx ×My).

Assumption 2. The objective f , its Riemannian gradient, and its Riemannian
Hessian are L0, L1, L2-Lipschitz continuous, respectively.

In the next proposition, we show that the Riemannian Hamiltonian H is L-smooth.

Proposition 3.6 (Smoothness of Riemannian Hamiltonian). Under Assump-
tion 2, the Riemannian Hamiltonian is L-smooth with L = L0L2 + L2

1, i.e., for any
p ∈M, q = Expp(ξ), it satisfies H(q) ≤ H(p) + ⟨gradH(p), ξ⟩p + L

2 ∥ξ∥
2
p.

Proof. According to Lemma 2.4, it is sufficient to show that the Riemannian
gradient of H is L-Lipschitz. From Proposition 3.2 and Assumption 2, we have for
any p ∈M, q = Expp(s) ∈ Ω, the domain of exponential map around p,

∥Γq
p gradH(p)− gradH(q)∥q = ∥Γq

p Hessf(p)[gradf(p)]−Hessf(q)[gradf(q)]∥q
≤ ∥Γq

p Hessf(p)[gradf(p)]−Hessf(q)[Γq
p gradf(p)]∥q

+ ∥Hessf(q)[Γq
pgradf(p)]−Hessf(q)[gradf(q)]∥q

= ∥Hessf(p)[gradf(p)]− Γp
q Hessf(q)[Γq

p gradf(p)]∥p
+ ∥Hessf(q)[Γq

pgradf(p)]−Hessf(q)[gradf(q)]∥q
≤ L2∥gradf(p)∥p ∥s∥p + L1∥Γq

p gradf(p)− gradf(q)∥q
≤ (L0L2 + L2

1)∥s∥p,

where we apply the triangle inequality and the isometry property of parallel trans-
port.

If the Hamiltonian H satisfies the Riemannian PL condition, then we show that
Algorithm 3.1 with the steepest descent update (RHM-SD) converges linearly to the
global minimizer of H.

We begin with the convergence result for RHM-SD with fixed stepsize.

Theorem 3.7 (Linear convergence of RHM-SD with fixed stepsize). Let f satisfy
Assumption 2 and H satisfy the Riemannian PL condition, i.e., 1

2∥gradH(p)∥2p ≥
δH(p) (with H(p∗) = 0). Consider Algorithm 3.1 using steepest descent direction with
fixed stepsize ηt = η = 1/L, where L = L0L2 + L2

1. Then, the iterates pt satisfy
∥gradf(pt)∥2pt

≤ (1− δ
L )t∥gradf(p0)∥2p0

.

Proof. From the smoothness of the Riemannian Hamiltonian H (Proposition 3.6,
Lemma 2.4) and the gradient update in Algorithm 3.1, we have

H(pt+1)−H(pt) ≤ −η∥gradH(pt)∥2pt
+

η2L

2
∥gradH(pt)∥2pt

= − 1

2L
∥gradH(pt)∥2pt

≤ − δ

L
H(pt),

where the last inequality employs the Riemannian PL condition. This leads to
H(pt+1) ≤ (1− δ

L )H(pt). Applying this result recursively completes the proof.
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Line-search methods are practically favourable because they adapt the stepsize
without requiring the knowledge of the Lipschitz constant L. Here, we consider the
backtracking line-search for choosing stepsize ηt for Riemannian steepest descent,
which is commonly used in practice. Given an initial stepsize η̄, the backtracking
line-search iteratively decreases the stepsize by a factor of ϱ ∈ (0, 1) until the Armijo-
type sufficient decrease condition is satisfied, i.e.,

(3.4) H(pt)−H(Exppt
(ηtζ(pt)) ≥ r1ηt⟨−gradH(pt), ζ(pt)⟩pt ,

for some update direction ζ(pt). The complete procedure is included in Appendix B.
We next present the convergence for RHM-SD with backtracking linesearch.

Theorem 3.8 (Linear convergence of RHM-SD with backtracking line-search).
Under the same setting as in Theorem 3.7, consider Algorithm 3.1 using the steepest
descent direction with backtracking line-search, parameters r1, ρ ∈ (0, 1), and an initial
stepsize η̄. Then, the iterates pt satisfy

∥gradf(pt)∥2pt
≤
(

1− 2 min

{
η̄r1,

2ϱ(1− r1)r1
L

}
δ

)t

∥gradf(p0)∥2p0
.

Proof. Given H is L-smooth, the proof follows from [14, Lemma 4.12] and the
Riemannian PL condition.

Remark 3.9. It should be highlighted that the convergence rates to global saddle
points obtained in Theorems 3.7, 3.8 are independent of the manifold curvature (which
we achieve via solving a proxy Hamiltonian problem (3.3)). In contrast, the linear
convergence rates shown in [92, 40] are curvature dependent.

3.2. Important problem classes for RHM. We now discuss the instances of
f where the Riemannian Hamiltonian satisfies the Riemannian PL condition (Defi-
nition 2.3). This allows RHM (Algorithm 3.1) to converge to global min-max saddle
points of (1.1).

From the expression of gradH(p) in Proposition 3.2, we observe that if all ei-
genvalues of Hessf(p) are lower bounded in magnitude (i.e., |λ| ≥ α > 0), then the
Riemannian Hamiltonian H satisfies the Riemannian PL condition with δ = α2. This
is because

(3.5)
1

2
∥gradH(p)∥2p ≥ α2H(p)︸ ︷︷ ︸
Riemannian PL condition

⇔ 1

2
∥Hessf(p)[gradf(p)]∥2p ≥

α2

2
∥gradf(p)∥2p︸ ︷︷ ︸

Required eigenvalue bound on Hessf(p)

.

Our aim, therefore, is to identify classes of f that satisfy the right hand side of (3.5).
We provide three cases where the Riemannian PL condition is naturally satisfied on
the Riemannian Hamiltonian H, which generalize the results in [1] to Riemannian
manifolds. These include the cases when the objective f is g-strongly-convex-concave
and when f is smooth with sufficient geodesic linearity.

In order to analyze function classes of f that lead to (3.5), we require the following
results on the Riemannian Hessian Hessf(p) of the product manifold M (which are
of independent interest as well).

1) Decomposition of the Riemannian Hessian Hessf(p) and adjoint property of
the cross derivatives. This is shown in Appendix D.

2) We establish general lower bounds on the eigenvalue magnitude of the Rie-
mannian Hessian, which we include in Appendix E.
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The above results help to bound the eigenvalues of Hessf(p) in terms of the spectrum
of Hessxf(x, y), Hessyf(x, y), and the cross derivatives grad2

xyf(x, y), grad2
yxf(x, y).

We now present the main results below.

Proposition 3.10 (Geodesic strongly convex strongly concave). Let f(x, y) be
geodesic strongly convex in x and geodesic strongly concave in y with parameter µ > 0.
Then, H satisfies the Riemannian PL condition (3.5) with δ = µ2.

Proof. We show that if there exists an eigenpair (λ, ξ) of Hessf(p) such that
|λ| < µ with p = (x, y), ξ = (u, v), then it leads to a contradiction. From the
expression of the Riemannian Hessian in Proposition D.1, we have

Hessxf(x, y)[u] + grad2
yxf(x, y)[v] = λu

Hessyf(x, y)[v] + grad2
xyf(x, y)[u] = λv.

This can be equivalently written as

⟨Hessxf(x, y)[u], u⟩x + ⟨grad2
yxf(x, y)[v], u⟩x = λ∥u∥2x(3.6)

⟨Hessyf(x, y)[v], v⟩y + ⟨grad2
xyf(x, y)[u], v⟩y = λ∥v∥2y.(3.7)

From (3.6), we obtain

(3.8) ⟨grad2
yxf(x, y)[v], u⟩x = −⟨u, (Hessxf(x, y)− λ id)[u]⟩x,

where id is the identity operator. From the symmetry of the Riemannian cross deriv-
atives (Proposition D.2), we can substitute (3.8) into (3.7), which gives

(3.9) ⟨Hessyf(x, y)[v], v⟩y − ⟨u, (Hessxf(x, y)− λ id)[u]⟩x = λ∥v∥2y.

The geodesic strong convexity in x and geodesic strong concavity in y leads to
Hessxf(x, y) ⪰ µ id and Hessyf(x, y) ⪯ −µ id respectively. Thus, the LHS of (3.9) is
smaller than −µ, which contradicts |λ| < µ. Thus, all eigenvalues of Hessf(p) satisfies
|λ| ≥ µ.

Proposition 3.11 (Smooth and geodesic linear). Let σmin(grad2
xyf(x, y)) ≥ τ >

0 and let f(x, y) be geodesic linear in one variable and has L1-Lipschitz Riemannian
gradient in another variable. Then, H satisfies the Riemannian PL condition (3.5)

with δ = τ4

2τ2+L2
1
.

Proof. Without loss of generality, we assume f(x, y) has L1-Lipschitz gradient in
x and geodesic linear in y. The geodesic linearity in y implies that Hessyf(x, y) = 0,
and therefore, we can apply Lemma E.1, which shows

λ2
|min|(Hessf(p)) ≥

σ4
min(grad2

xyf(x, y))

2σ2
min(grad2

xyf(x, y)) + ∥Hessxf(x, y)∥2x
.

Also, from Lemma 2.4, we have ∥Hessxf(x, y)∥2x ≤ L2
1. Finally, from the assumption

σmin(grad2
xyf(x, y)) ≥ τ , the proof is complete.

Proposition 3.12 (Smooth and sufficiently geodesic-bilinear). Let 0 < τ ≤
σ(grad2

xyf(x, y)) ≤ Υ and let f(x, y) has L1-Lipschitz Riemannian gradient for both x
and y. Define µ = λ|min|(Hessxf(x, y)), ρ = λ|min|(Hessyf(x, y)) and let the sufficient
geodesic-bilinearity condition holds: (τ2+µ2)(τ2+ρ2)−4L2

1Υ2 > 0. Then, H satisfies

the Riemannian PL condition (3.5) with δ =
(τ2+µ2)(τ2+ρ2)−4L2

1Υ
2

2τ2+ρ2+µ2 .
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Fig. 1: RGDA [28] fails to converge on the geodesic bilinear problem f(X,Y) =
log det(X) log det(Y). In particular, RGDA suffers from cyclic behaviour. RCEG [92,
40] converges very slowly. In contrast to RGDA and RCEG, the proposed Riemannian
gradient descent method on the Riemannian Hamiltonian function (RHM-SD) quickly
converges on such challenging bilinear problems. Notably, the proposed RHM-SD
achieves an optimality gap lower than 10−10 in just 12 iterations while RCEG takes
220 iterations.

Proof. We can directly apply Lemma E.2 and set a = 2τ2 + ρ2 + µ2 and b =
(τ2 + µ2)(τ2 + ρ2)− 4L2

1Υ2 > 0 by assumption.

It is worth noticing that the sufficient geodesic-bilinearity condition in Proposi-
tion 3.12 can be interpreted as requiring a sufficiently large weight on the geodesic-
bilinear component in the objective function f . To see this, suppose f(x, y) =
clf0(x, y) + f1(x) + f2(y) where f0 is geodesic linear in each x and y (i.e. bilinear)
with the weight cl > 0 and f1, f2 have L1-Lipschitz Riemannian gradient. Because
by definition, Riemannian Hessian of a geodesic linear function is zero, f has 2L1-
Lipschitz Riemannian gradient (by Lemma 2.4). Let τ0,Υ0 be the minimum and
maximum singular values of grad2

xyf0(x, y). Then, τ = clτ0,Υ = clΥ0. The suffi-
cient geodesic bilinearity condition is satisfied for cl ≥ 4L1Υ0/τ

2
0 . This is because

(τ2 + µ2)(τ2 + ρ2) > τ4 = c4l τ
4
0 ≥ 16L2

1c
2
l Υ2

0 = 16L2
1Υ2.

Remark 3.13. When f1(x) = f2(y) = 0, it should be noted that f(x, y) =
clf0(x, y) is geodesic bilinear. Additionally, H satisfies the Riemannian PL condi-

tion with δ =
c2l τ

2
0

2 .

3.3. The geodesic-bilinear example. Here, we give a motivating example to
show how the Riemannian Hamiltonian approach achieves convergence to global sad-
dle points. To this end, we consider the problem f(X,Y) = log det(X) log det(Y)
where X,Y ∈ Sd++, the set of d × d symmetric positive definite (SPD) matrices.
When endowed with the affine-invariant metric [12], i.e., ⟨U,V⟩X = tr(X−1UX−1V)
for any U,V ∈ TXSd++, the set becomes a Riemannian manifold. Under this metric,
one can show that the function is g-bilinear, i.e., geodesic linear in both X,Y, but not
g-strongly-convex-concave (Proposition 7.1). However, the Riemannian Hamiltonian
of the objective, i.e., H(X,Y) = 1

2

(
∥gradXf(X,Y)∥2X + ∥gradYf(X,Y)∥2Y

)
satisfies

the Riemannian PL condition (Proposition 7.2). This suggests that the vanilla Rie-
mannian gradient descent method for minimizing the Riemannian Hamiltonian (3.3)
converges to the global saddle points of f . In Appendix G, we show that the geodesic-
bilinear function f(X,Y) does not satisfy the min-max Riemannian PL condition on
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the original problem. This further justifies the merit of the proposed Hamiltonian
proxy problem (3.3) of f(X,Y) that satisfies the Riemannian PL condition.

On the other hand, the RGDA algorithm [28] follows the negative of the min-max
Riemannian gradient of f . Specifically, let M = Sd++ × Sd++ and P = (X,Y) ∈ M
be the product manifold and its elements. The min-max gradient of f is derived
as G(P ) =

(
gradXf(X,Y),−gradYf(X,Y)

)
= (X log det(Y),−Y log det(X)). We

compare this expression with the gradient of the Riemannian Hamiltonian, which is
gradH(P ) =

(
X log det(X),Y log det(Y)

)
. We observe that ⟨G(P ), gradH(P )⟩P = 0,

which implies that the min-max gradient of f is always orthogonal to the gradient
of its Riemannian Hamiltonian. In fact, such orthogonality holds for any g-bilinear
objective (see Proposition G.1 in Appendix G). Given that the negative Hamiltonian
gradient −gradH(P ) points to the global saddle points, the orthogonality of its di-
rection implies that RGDA provably cycles around the saddle points. For the RCEG
algorithm [92, 40], since it also makes use of the RGDA-style updates, we expect its
slow convergence for g-bilinear problems.

We illustrate the above findings in Figure 1, where we compare the Riemannian
Hamiltonian steepest descent method (RHM-SD) against both RGDA [28] and RCEG
[92, 40] with properly tuned stepsize. The convergence is measured in optimality gap,
i.e., |det(X) − 1| + |det(Y) − 1| given that the global saddle points of f satisfy
det(X∗) = det(Y∗) = 1 (Proposition 7.2). We observe that the proposed RHM-SD
takes only 12 iterations to obtain an optimality gap of lower than 10−10 for this
challenging setup. However, RGDA experiences cyclic behaviour, which matches our
analysis above. While RCEG incorporates a correction step for RGDA-style updates
to address the cycling issue, it still exhibits a slight cyclic behavior during the initial
phase but eventually converges (Figure 1(c)). Overall, RCEG takes 220 iterations
for the same optimality gap. From Figures 1(a) and 1(b), we also observe that per
iteration runtime cost of RHM-SD is similar to RCEG.

More details and discussions can be found in Section 7.1, where we generalize the
findings to include quadratic terms.

4. Riemannian Hamiltonian consensus method. In the Euclidean setting,
[53] proposes the consensus method for solving min-max problems in the Euclidean
space. The consensus method has also been viewed as a perturbation of the Euclidean
Hamiltonian method [1]. In this section, we propose an extension of RHM with steep-
est descent update, namely the Riemannian Hamiltonian consensus method (RHM-
CON), by combining the Hamiltonian gradient direction with the min-max gradient
direction. In practice, particularly for some deep learning applications, Assumption 1
may not satisfy. Thus solving the Hamiltonian proxy problem (3.3) may lead to unde-
sired stationary points that are not saddle points. The consensus direction provides a
regularization and is usually practically favourable for general nonconvex-nonconcave
min-max problem. We show such an example in Section 7.5.

The update of RHM-CON is given by

pt+1 = Exppt

(
− ηt ζ(pt)

)
= Exppt

(
− ηt

(
γ v(pt) + gradH(pt)

))
,

with γ ≥ 0 and v(pt) :=
(
gradxf(xt, yt),−gradyf(xt, yt)

)
is the min-max gradient

When γ = 0, this reduces to RHM-SD. The RHM-CON method is formalized in
Algorithm 4.1. Below, we provide the convergence result for RHM-CON.

Theorem 4.1 (Linear convergence of RHM-CON). Under Assumption 2 with
L = L0L2 + L2

1, suppose that the Riemannian Hamiltonian H satisfies the PL condi-
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Algorithm 4.1 Riemannian Hamiltonian consensus (RHM-CON) method

1: Input: Stepsize η and regularization parameter γ.
2: Initialize p0 = (x0, y0) ∈M.
3: for t = 0, ..., T do
4: Compute the min-max gradient v(pt) =

(
gradxf(xt, yt),−gradyf(xt, yt)

)
.

5: Compute the update direction ζ(pt) = γ v(pt) + Hessf(pt)[gradf(pt)].
6: Update pt+1 = Exppt

(
− ηt ζ(pt)

)
.

7: end for
8: Output: pT .

tion. Let c > 0 such that ∥ζ(pt)∥2 = ∥γ v(pt) + gradH(pt)∥2 ≥ c∥gradH(pt)∥2 for all
the iterates pt. Set γ <

√
δ, ηt = η ≤ 1

L , then Algorithm 4.1 converges with

∥gradf(pt)∥2pt
≤
(

1− ν
)t
∥gradf(p0)∥2p0

,

where ν = (cδ + δ − γ2)η − Lcδη2 > 0.

Proof. First, we highlight that

1

2
∥v(p)∥2p =

1

2
∥gradf(p)∥2p = H(p).

From the smoothness of Riemannian Hamiltonian (Proposition 3.6, Lemma 2.4) and
the update in Algorithm 4.1, we have

H(pt+1)−H(pt)

≤ −η⟨gradH(pt), ζ(pt)⟩pt
+

η2L

2
∥ζ(pt)∥2pt

= −η

2
∥gradH(pt)∥2pt

+
η

2
∥ζ(pt)− gradH(pt)∥2pt

−
(η

2
− η2L

2

)
∥ζ(pt)∥2pt

≤
(
− η

2
− ηc

2
+

η2Lc

2

)
∥gradH(pt)∥2pt

+
ηγ2

2
∥v(pt)∥2pt

≤ (−η − ηc + η2Lc)δH(pt) + ηγ2H(pt)

=
(
Lcδη2 − cδη − δη + ηγ2

)
H(pt),

where the second inequality follows from η ≤ 1
L (which gives η

2 −
η2L
2 ≥ 0) and the

lower bound on ∥ζ(pt)∥2pt
. The last inequality uses the PL condition and η ≤ 1

L < 1+c
Lc ,

which ensures −η
2 −

ηc
2 + η2Lc

2 < 0. From the choice of η and γ as well as the definition
of ν, we have ν > 0. This is because ν = η(cδ+ δ−γ2−Lcδη) ≥ η(δ−γ2) > 0. Thus,
H(pt+1) = (1− ν)H(pt) ensuring linear convergence. Applying this result recursively
completes the proof.

From Theorem 4.1, we see that linear convergence is achieved provided that
the weight γ on min-max gradient direction is sufficiently small. Also, we high-
light that a uniform parameter c > 0 always exists in a compact set as long as
γv(pt) ̸= −gradH(pt). This can be ensured by choosing a small value for γ.

5. Stochastic min-max optimization. Applications such as domain general-
ization, robust training, and generative adversarial networks yield a min-max problem



RIEMANNIAN HAMILTONIAN METHODS 15

with a stochastic function f , e.g., with a finite sum structure of the function [47]. Un-
der the stochastic setting, the objective function in (1.1) can be expressed as an
expectation, i.e.,

min
x∈Mx

max
y∈My

{
f(x, y) = Eω[f(x, y;ω)]

}
,

where ω ∈ D is a random variable following a certain distribution D. This implies an
expectation structure on the Riemannian Hamiltonian as

H(p) =
1

2

∥∥∥Eω

[
gradf(p;ω)

]∥∥∥2
p

=
1

2
EωEφ⟨gradf(p;ω), gradf(p;φ)⟩p,

for ω, φ ∈ D. Modifying Proposition 3.2 for the stochastic setting leads to

gradH(p) =
1

2
Eω,φ

[
Hessf(p;ω)[gradf(p;φ)] + Hessf(p;φ)[gradf(p;ω)]

]
.

Let gradHω,φ(p) := 1
2Hessf(p;ω)[gradf(p;φ)] + 1

2Hessf(p;φ)[gradf(p;ω)]. We can
modify RHM-SD by replacing the gradient of Hamiltonian with its stochastic version
(which we call RHM-SGD) as

gradHS,S′(pt) :=
1

|S||S ′|
∑

ω∈S,φ∈S′

gradHω,φ(p),(5.1)

where S = {ω1, ..., ω|S|},S ′ = {φ1, ..., φ|S′|} are randomly selected subsets with
ωi, φj ∈ D. The stochastic Hamiltonian gradient provides an unbiased estimate of
the full gradient, i.e., ES,S′ [gradHS,S′(p)] = gradH(p). We now show the convergence
result of RHM-SGD.

Theorem 5.1 (Convergence of RHM-SGD with fixed and decaying stepsize).
Let Assumption 2 hold with L = L0L2 + L2

1, and let the Riemannian Hamil-
tonian H satisfy the PL condition with parameter δ. Assume also that the vari-
ance of the stochastic gradient is bounded, i.e., Eω,φ∥gradHω,φ(pt)∥2pt

≤ G. Then,

RHM-SGD with fixed stepsize ηt = η < 1
2δ converges with E∥gradf(pt)∥2pt

≤ (1 −
2ηδ)tE∥gradH(p0)∥2p0

+ ηLG
4 . Also, RHM-SGD with decaying stepsize ηt = 2t+1

2δ(t+1)2 ,

converges with E∥gradf(pt)∥2pt
≤ LG

2δ2t .

Proof. The proof follows from [41, Theorem 4] and can be easily adapted to the
Riemannian manifold setting, and therefore, is omitted.

We can similarly consider the stochastic version of RHM-CON, which we denote
as RHM-SCON, with the update step as

ζS,S′(pt) = γ(vS(pt) + vS′(pt))/2 + gradHS,S′(pt),

where vS(pt) is the stochastic min-max gradient on sample set S. Theorem 5.1 can
be adapted to prove the convergence of RHM-SCON following similar assumptions
and analysis in Theorem 4.1.

6. Convergence under retraction. Existing algorithms for solving (1.1), such
as RCEG [92], employs the exponential map to update iterates on the manifolds.
However, in many cases, the computational cost of implementing the exponential
map for many Riemannian manifolds is prohibitive. An alternative is to consider the
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more general retraction operation [3, Chapter 4]. In this section, we show that the use
of retraction (instead of the exponential map) in RHM algorithms guarantees similar
convergence under an additional mild assumption.

Retraction Rp : TpM −→M is a map that satisfies for all p ∈ M, (1) Rp(0) = p
(2) DRp(0)[ξ] = ξ for all ξ ∈ TpM. From the definition, we observe that the expo-
nential map is a special case of retraction. In practice, when an efficient retraction
is available, the Hamiltonian gradient update can be performed via retraction, i.e.,
pt+1 = Rpt

(−η gradH(pt)). To analyze the convergence, we make the following addi-
tional assumption that bound the differential operator of the retraction map.

Assumption 3. There exists constants θ1, θ2 > 0 such that the retraction curve
c(t) := Rp(tξ) with ∥ξ∥p = 1 satisfies ∥c′(t)∥c(t) ≤ θ1 and ∥c′′(t)∥c(t) ≤ θ2 for all t
where c(t) ∈ U , where U is a compact subset ofM.

This assumption is always satisfied for a compact manifoldM. The compactness
appears to be necessary for retraction-based analysis for first-order algorithms [25,
78, 42, 14]. We remark that for the case of the exponential map, the retraction curve

coincides with the geodesic curve. Then, θ1 = 1 because ∥c′(t)∥c(t) = ∥Γc(t)
p ξ∥c(t) = 1

by isometric property of parallel transport. Also, θ2 = 0 from the definition of the
geodesic.

Proposition 6.1. Under Assumptions 2 and 3, the Riemannian Hamiltonian H
is retraction LR-smooth with LR = θ21L+θ2L1L0, i.e., for any p ∈M, q = Rp(ξ) ∈ U ,
we have H(q) ≤ H(p) + ⟨gradH(p), ξ⟩p + LR

2 ∥ξ∥
2
p.

Proof. For any retraction curve c(t) = Rp(tξ) with ∥ξ∥p = 1 and t ≥ 0 such that
c(t) ∈ U , we obtain

d2

dt2
H(c(t)) = ⟨HessH(c(t))[c′(t)], c′(t)⟩c(t) + ⟨gradH(c(t)), c′′(t)⟩c(t)

≤ Lθ21 + θ2∥Hessf(c(t))[gradf(c(t))]∥c(t)
≤ Lθ21 + θ2L1L0 = LR,(6.1)

where the second inequality applies the gradient of Hamiltonian is L-Lipschitz (Propo-
sition 3.6, Lemma 2.4) and Assumption 3. The last inequality follows from Assump-
tion 2. The proof from (6.1) to LR-smoothness of H is due to [31, Lemma 3.2], which
we include here for completeness.

For any ξ ∈ TpM such that Rp(ξ) ∈ U , let α = ∥ξ∥p, ζ = ξ/∥ξ∥p and hence
ξ = αζ with ∥ζ∥p = 1. Applying Taylor’s Theorem on H ◦Rp gives

H(Rp(ξ))−H(p) = H(Rp(αζ))−H(Rp(0))

= α
d

dt
H(Rp(tζ))

∣∣∣
t=0

+
α2

2

d2

dt2
H(Rp(tζ))

∣∣∣
t=t̃

≤ α⟨gradH(p), ζ⟩p +
α2LR

2

= ⟨gradH(p), ξ⟩+
LR

2
∥ξ∥2p,

where t̃ ∈ [0, α]. Thus, the proof is complete.

Using Proposition 6.1, we show below that RHM-SD attains a linear convergence
rate with retraction.
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Theorem 6.2 (Linear convergence of RHM-SD under retraction). Under same
settings as in Theorem 3.7, suppose Assumption 3 holds, and the iterates stay in
the compact set U . Then, RHM-SD with retraction and η = 1/LR converges with
∥gradf(pt)∥2pt

≤ (1− δ
LR

)t∥gradf(p0)∥2p0
.

The proof is similar to the proof of Theorem 3.7 and is omitted. A similar analysis
with the retraction operation can be performed for other variants of RHM including
RHM-CON, RHM-SGD, and RHM-SCON.

7. Experiments. In this section, we discuss empirical performance of the pro-
posed Riemannian Hamiltonian methods for various min-max optimization problems
on manifolds. The algorithms are implemented in Matlab using the Manopt pack-
age [16] except for Section 7.4, 7.5 where we use Pytorch with the Geoopt package
[43]. We highlight that there exist many other manifold optimization packages, such
as ROPTLIB [32], Manopt.jl [10], Pymanopt [86], McTorch [51], and RiemOpt [83],
where RHM can also be implemented efficiently. We use the following acronyms for
the various RHM algorithms considered in this section.

• RHM-SD-F: RHM with steepest descent direction with fixed stepsize.
• RHM-SD: RHM with steepest descent direction with backtracking line search.
• RHM-CON: RHM consensus method with fixed stepsize (Section 4).
• RHM-CG: RHM with the conjugate gradient method.
• RHM-TR: RHM with the trust-region method where we use Hessian approx-

imation with finite differentiation [13].
• RHM-SGD: RHM with stochastic gradient (Section 5).
• RHM-SCON: RHM with stochastic consensus method (Section 5).

We compare the proposed Riemannian Hamiltonian methods with the Riemann-
ian gradient descent ascent (RGDA) [28] and the Riemannian corrected extra-gradient
(RCEG) [92]. As discussed previously, RGDA has not been studied and analyzed for
solving the general min-max problem (1.1), but when My is a convex subset of the
Euclidean space [28]. In our experiments, however, we extend RGDA to solve (1.1).

For all the experiments, we implement the algorithms with exponential map for
comparability with RCEG, except for the applications of subspace robust Wasserstein
distance (Section 7.3), robust training (Section 7.4) and generative adversarial net-
works (Section 7.5) where we implement with retraction map because the manifolds
considered do not have a well-defined logarithm map. Hence, for these applications,
RCEG is excluded for comparison. In robust training and generative adversarial net-
work experiments, we also test stochastic algorithms for RGDA and RHM. The codes
are available at https://github.com/andyjm3.

7.1. Geodesic quadratic bilinear optimization. The first example we con-
sider is

(7.1) f(X,Y) = cq(log det(X))2 + cl log det(X) log det(Y)− cq(log det(Y))2,

where X,Y ∈ Sd++, the set of d× d symmetric positive definite (SPD) matrices. The
weights cl, cq ≥ 0 control the balance between the linear and quadratic terms.

For X ∈ Sd++, the tangent space TXSd++ is the set of symmetric matrices. When
endowed with the affine-invariant (AI) metric, i.e., ⟨U,V⟩X = tr(X−1UX−1V), for
any U,V ∈ TXSd++, one can derive the geodesic, exponential map, and other Rie-
mannian optimization ingredients [26, 12, 67]. We include the expressions in Appendix
A. Here, we useMSPD to represent the SPD manifold with the AI metric. It is worth
noticing that the function (7.1) is nonconvex-nonconcave in the Euclidean space (with
details included in Appendix G).

https://github.com/andyjm3
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However, the log-det function is geodesic linear on SPD manifold with the AI
metric [84] and we show in the following proposition that f(X,Y) is g-convex-concave,
although not necessarily g-strongly-convex-concave.

Proposition 7.1. The function (7.1) is g-convex-concave on MSPD but not g-
strongly-convex-concave.

We next prove that the Riemannian Hamiltonian H of the objective (7.1) satisfies
the PL condition, which allows linear convergence of the proposed RHM algorithms.

Proposition 7.2. The Riemannian Hamiltonian of (7.1) satisfies the PL condi-
tion with δ = (4c2q + c2l )d2. A point (X∗,Y∗) is a global saddle point of (7.1) if and
only if it satisfies det(X∗) = det(Y∗) = 1.

In Proposition 7.2, we see that there exist a continuum of global saddle points. Con-
sequently, we define an optimality gap criterion as |det(X)− 1|+ |det(Y)− 1| for a
candidate point (X,Y).

Experiment settings and results. We consider d = 30 and discuss results on
various combinations of cq, cl. We compare our RHM with RGDA [28] and RCEG [92].
All the choices of stepsize are tunned to reflect the best performance except for RHM-
SD, RHM-CG, RHM-TR where the stepsizes are selected adaptively by the algo-
rithms. For RHM-CON, we set γ = 0.5. Convergence of an algorithm is measured in
terms of ∥gradf(pt)∥pt , which is equivalent to

√
2H(pt). This measure of convergence

has also been considered in [92] for min-max problems on manifolds. Algorithms are
stopped either when gradient norm falls below 10−10 or the max iteration has been
reached. Results are reported in Fig. 2.

From Fig. 2, we observe rapid convergence of RHM algorithms in all the settings.
The convergence for RGDA varies across different choices of cq, cl where it converges
faster when the weight on the quadratic term (cq) is relatively higher and is not able
to converge when cl increases. We also observe convergence for RCEG in all cases but
the rate is slower compared to RHM algorithms. In Fig. 2f, we further compare the
optimality gap where we observe all the proposed RHM algorithms reach below 10−10

at a faster rate than the baselines. The slopes of RHM-SD-F and RHM-CON are
steeper than that of RCEG (indicating better theoretical rates for RHM). Additional
results on optimality gap comparisons are in Fig. 5 in Appendix H. Finally, Fig. 2g
shows the runtime performance of various algorithms, with the markers indicating
the progress of respective algorithms per iteration. We observe that the per-iteration
computational cost of RHM is higher than RGDA. This is because RHM exploits
second-order information of f to compute the gradient of H. Also, we see that RCEG
can be costly because it requires evaluation of the exponential map twice and the
logarithm map once per iteration.

7.2. Robust geometry-aware PCA. Geometry-aware principal component
analysis (PCA) on MSPD [27] concerns dimensionality reduction for SPD matrices
while preserving geometric structures on the manifold. The robust PCA (or robust
Fréchet mean) on SPD manifolds has been considered in [92]. For a set of SPD
matrices Mi ∈ Sd++, i = 1, ..., n, the aim is to find the Fréchet mean M ∈ Sd++ that is
bounded away from zero, i.e.,

(7.2) min
M∈MSPD

max
x∈Sd

x⊤Mx +
α

n

n∑
i=1

dist2(M,Mi),
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(c) cq = 1, cl = 0.1
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0 5 10 15 20 25 30

Iteration

10-15

10-10

10-5

100

105

1010

O
pt

im
al

ity
 g

ap

RGDA
RCEG
RHM-SD-F
RHM-CON
RHM-SD
RHM-CG
RHM-TR

(f) cq = 1, cl = 10 (opt gap)

0 0.05 0.1 0.15

Time (s)

10-12

10-10

10-8

10-6

10-4

10-2

100

102

G
ra

dn
or

m

RGDA
RCEG
RHM-SD-F
RHM-CON
RHM-SD
RHM-CG
RHM-TR

(g) cq = 1, cl = 10 (time)

Fig. 2: Experiments on the geodesic quadratic bilinear problem (7.1) with d = 30,
under varying weights cq, cl. We observe that our RHM algorithms converge quickly
in all settings while baselines such as RGDA [28] and RCEG [92]. The performance
of RGDA varies greatly with the settings where it converges only for a few settings
and for the others RGDA fails to converge. RCEG presents a relatively more stable
convergence behavior than RGDA but with a rate that is slower than our proposed
RHM algorithms.

where α > 0 and Sd−1 := {x ∈ Rd : ∥x∥2 = 1} denotes the sphere manifold and
dist : Sd++ × Sd++ is the Riemannian distance on MSPD.

We first note that the function in (7.2) is geodesic strongly convex in M and
geodesic nonconcave in x. Also, it is difficult to verify the Riemannian PL condition
on the Hamiltonian of (7.2). Hence, this is a challenging problem instance as it does
not fall into the studied settings of the existing works [28, 92] including ours.

Experiment settings and results. For this problem, we follow the same set-
tings as discussed in [92] for generating the SPD matrices Mi with the eigenvalues
bounded in [µ0, µ1]. Following [92], we choose d = 50, n = 40, µ0 = 0.2, and µ1 = 4.5.
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(b) RGPCA (α = 3)

0 50 100 150 200 250 300

Iteration

10-5

10-4

10-3

10-2

10-1

G
ra

dn
or

m

RGDA
RHM-SD-F
RHM-CON
RHM-CG

(c) SRWD

Fig. 3: Convergence on the robust geometry-aware PCA (RGPCA) problem (7.2) with
d = 50, n = 40, µ = 0.2, L = 4.5, and subspace robust Wasserstein distance (SRWD)
problem on the example of fragmented hypercube [46]. We observe that the baselines
RGDA and RCEG fail to converge for α = 0.1 (approximately bilinear setting),
whereas the proposed RHM algorithms show convergence for α = 0.1 and α = 3.

The convergence results are presented in Figs. 3a and 3b, where we only include RHM-
SD-F, RHM-CON (γ = 0.5), and RHM-CG for clarity (RHM-TR performs similar to
RHM-CG). We observe that although RGDA and RCEG converge faster than RHM
when α = 3, they fail to converge when α = 0.1. The latter finding is not surprising
as both RGDA and RCEG seem to perform poorly on approximately bilinear prob-
lems (as also observed in Section 7.1). In contrast, we observe that RHM algorithms
converge in both the settings, which is also validated by our analysis in Section 3.2.
It is known that the conjugate gradient based methods outperforms steepest descent
methods on more challenging optimization problems. This explains the faster conver-
gence of RHM-CG over RHM-SD-F and RHM-CON. Overall, the results in Fig. 3
show the benefit of the Riemannian Hamiltonian modeling in non standard settings.

7.3. Subspace robust Wasserstein distance. We next consider the problem
of learning subspace robust Wasserstein distance [66, 46, 30], where the aim is to
compute the Wasserstein distance over the worst-case optimal transport cost on a
low-dimensional space. Given two discrete measures on Rd, µ =

∑m
i=1 aiδxi

, ν =∑n
j=1 bjδyj

where δx is the Dirac at location x. The weights ai, bj belong to the prob-
ability simplex, i.e.,

∑
i ai =

∑
j bj = 1. The objective (with entropy regularization)

is then given as

(7.3) min
Γ∈Π(µ,ν)

max
U:U∈St(d,r)

∑
i,j

(
Γi,j∥U⊤xi −U⊤yj∥22 + ϵ πi,j

(
log(πi,j)− 1

))
,

where St(d, r) := {U ∈ Rd×r : U⊤U = I} is the set of column orthonormal matrices
(d ≥ r), known as the Stiefel manifold. Π(µ, ν) := {Γ ∈ Rm×n : Γi,j > 0,

∑
i Γi,j =

bj ,
∑

j Γi,j = ai,∀ i, j} is the set of couplings, which forms the so-called doubly sto-
chastic manifold (or coupling manifold) [20, 80, 54].

Experiment settings and results. We follow the same experiment settings as
in [46, 30] and consider a uniform distribution over hypercube [−1, 1]d and a push-

forward map defined as T (x) = x + 2 sign(x)⊙ (
∑k

i=1 ei), where sign(x) extracts the
sign of x elementwise and {ei}di=1 are the canonical basis of Rd.

We choose d = 30, r = 5, k = 2, n = 100, ϵ = 0.2 and compare the proposed
RHM-SD-F, RHM-CON (γ = 0.5), RHM-CG with RGDA in Fig. 3c. RCEG cannot
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Fig. 4: (4a): Convergence on adversarial robust training of neural network (RTNN).
(4b): generative adversarial networks with orthonormal weights (OGAN). (4c): Ground
truth distribution. (4d), (4e): generated samples from RSGDA, RHM-SCON respec-
tively where we see RHM-SCON quickly converge to the ground truth distribution
while RSGDA suffers from mode collapse. The numbers in the parentheses indicate
the best tuned stepsizes for different algorithms.

be implemented to solve (7.3) because the doubly stochastic manifold does not have
a well-defined logarithm map. From the results, we see similar convergence speed of
all methods while due to the inbuilt line-search algorithm of RHM-CG, it converges
to a point with a smaller gradient norm.

7.4. Robust training of neural networks with orthonormal weights. We
next consider adversarial robust training of deep neural networks with orthonormal
weights [28]. Adversarial training of neural networks provide robust prediction against
small data perturbations. Orthonormality on parameters has shown to improve gen-
eralization accuracy as well as accelerate and stabilize convergence of neural network
models [9, 19, 90, 29]. This corresponds to optimization over the Stiefel manifold.

In particular, we consider the adversarial training to defend against a universal
perturbation p proposed in [59]. The perturbation set we consider is the sphere
manifold Sd−1(r) := {p ∈ Rd : ∥p∥2 = r} with radius r. This requires the perturbed
samples to stay a certain distance away from the original ones, a strategy also applied
in [45]. Given a set of data-target pairs {(xi, yi)}ni=1 where xi ∈ Rd are the feature
vectors. The objective of adversarial training is

min
{Wℓ}L

ℓ=1:Wℓ∈St(dℓ,dℓ+1)
max

p∈Sd−1(r)

1

n

n∑
i=1

L
(
h(xi + p; {Wℓ}Lℓ=1), yi

)
,

where L(·, ·) is a loss function and h(·) represents the forward function of a neural
network.
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Experiment settings and results. The adversarial training is implemented
for classification tasks on MNIST images [44] where we include two hidden layers
of size 16 with the orthonormality constraint. We compare the proposed stochas-
tic version of RHM (RHM-SGD), detailed in Section 5, with Riemannian stochastic
gradient descent ascent (RSGDA) algorithm [28]. We highlight that RHM-SCON per-
forms similarly to RHM-SGD, and thus, we exclude its result for clarity. Because we
require dual sampling per-iteration to compute the stochastic Hamiltonian gradient
gradHS,S′(pt) = 1

|S||S′|
∑

ω∈S,φ∈S′ gradHω,φ(p), we choose the batch size to be 32 for

both S,S ′ and 64 for RSGDA. Hence, the per-iteration sampling cost is identical. We
measure convergence in terms of the relative Hamiltonian H(pt)/H(p0), where the
Hamiltonian is evaluated on the full training set. The stepsize is fixed for both the
algorithms.

We plot the convergence results (with the best tuned stepsize) in Fig. 4a, which
are averaged over five different runs. We see a clear advantage of RHM-SGD compared
to RSGDA with faster and more stable convergence.

7.5. Orthonormal generative adversarial networks. Generative adversar-
ial networks (GAN) [24, 8] are popular in generating synthetic samples by optimizing
a min-max game between a generator and a discriminator. The orthonormality con-
straint on weight parameters of the discriminator has shown to benefit the training
of GANs [17, 60]. In particular, given samples {xi}ni=1 we consider the following
min-max problem

min
{WG

ℓ }
max

{WD
ℓ }:WD

ℓ ∈St(dℓ,dℓ+1)

1

n

n∑
i=1

(
log(σ(D(xi))) + log(1− σ(D(G(zi))))

)
,

where D(·), G(·) represent the discriminator and generator with {WD
ℓ }, {WG

ℓ } denot-
ing their network weight parameters respectively. Here, σ(·) is the sigmoid function
and the prior zi is sampled from the standard normal distribution.

Experiment settings and results. Following [8], we train the GAN model on
2-d samples from a multimodal mixture of Gaussian distribution. The ground truth
is shown in Fig. 4c. Both the generator and discriminator have 5 hidden layers with
128 units and ReLU activation. The dimension of the prior zi is 64. For simplicity,
we add the orthonormal constraint only for the penultimate layer of the discriminator
model. For this experiment, we apply RHM-SCON with γ = 0.5 and compare against
RSGDA, both with fixed stepsize. The batch size is chosen to be 128 for RHM-SCON
and 256 for RSGDA. Similarly, the best choices of stepsize are reported, and the
results are averaged over five different runs.

The convergence in terms of the relative Hamiltonian are shown in Fig. 4b, where
we see RSGDA diverges while RHM-SCON is more stable. We also examine the
solution quality by providing the generated samples from both algorithms at iteration
104, 2× 104, and 3× 104 in Figs 4d and 4e respectively. We note that RSGDA results
in undesired mode collapse, an observation also made in [8] for training SGDA on
the Euclidean space. In contrast, RHM-SCON quickly converges and recovers the
ground truth distribution. Even though RHM-SGD converges to a lower Hamiltonian
value, its performance in recovery of the ground truth is poor, as shown in Fig. 6 in
Appendix H where the generated samples collapse to a single point. It indicates that
RHM-SGD converges to a stationary point which is not a saddle point (not surprising
as Assumption 1 may not be satisfied). This also highlights the practical benefit of
consensus regularization for RHM (Section 4), as evidenced in the good performance
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of RHM-SCON.

8. Concluding remarks. Building on the success of the Hamiltonian methods
for solving min-max problems in the Euclidean space, we have considered a more gen-
eral problem on manifolds, and proposed a Riemannian Hamiltonian function H that
respects the manifold geometry. This leads to a gradient expression (in Proposition
3.2) that allows simple analysis for the resulting optimization methods. Adapting
the proofs from the Euclidean space to Riemannian manifolds requires to forgo the
matrix structure of the ingredients, which includes addressing a varying inner product
(Riemannian metric). The proposed Riemannian Hamiltonian methods (RHM) come
with convergence guarantees and various extensions. The experiments validate the
good performance of RHM in different applications. As future work, one direction
is to explore the utility of RHM for more general nonconvex nonconcave problems
without the Riemannian PL assumption. In addition, the current convergence analy-
sis is measured in the Riemannian Hamiltonian, which is the gradient norm squared
of the original objective f . It remains a question whether linear convergence can be
maintained in terms of the optimality gap on function value of f .

Appendix A. Riemannian geometries of the considered manifolds.
In this section, we review the Riemannian optimization-related ingredients of

several manifolds that are considered in the experiments section. The expressions are
from the works [3, 14, 84, 80, 20, 54].

A.1. Symmetric positive definite manifold. Consider the set of the sym-
metric positive definite matrices of size d× d, Sd++ := {X : Rd×d : X⊤ = X,X ⪰ 0},
equipped with the affine-invariant Riemannian metric. The geodesic from X to Y
is given by γ(t) = X1/2(X−1/2YX−1/2)tX1/2. At X ∈ Sd++, the exponential map is
derived as ExpX(U) = X exp(X−1U) for any U ∈ TXSd++. The logarithm map is
LogX(Y) = X log(X−1Y). The Riemannian gradient of a function f : Sd++ :−→ R is
given by gradf(X) = X∇f(X)X, where ∇f(X) is the Euclidean partial derivative of
f at X.

A.2. Sphere manifold. It is defined as Sd−1 = {x ∈ Rd : ∥x∥2 = 1}, which is
an embedded submanifold of Rd with the tangent space expression TxSd−1 = {u ∈
Rd : x⊤u = 0}. It can be endowed with the standard inner product at the Riemannian
metric, i.e., ⟨u,v⟩x = ⟨u,v⟩2, for u,v ∈ TxSd−1. The orthogonal projection of any
v ∈ Rd to TxSd−1 is derived as Projx(v) = v − (x⊤v)x. The exponential map
along u ∈ TxSd−1 is Expx(u) = cos(∥v∥2)x+ sin(∥v∥2) v

∥v∥ and the logarithm map is

Logx(y) = arccos(xTy) Projx(y−x)
∥Projx(y−x)∥2

. The Riemannian gradient of f is Projx(∇f(x)),

where ∇f(x) is the Euclidean partial derivative of f at x.

A.3. Stiefel manifold. It is the set St(d, r) = {X ∈ Rd×r : X⊤X = I}. It
is a generalization of the sphere manifold to higher dimensions and can be similarly
endowed with the standard inner product as metric ⟨U,V⟩X = ⟨U,V⟩2 For the
experiments, we consider the popular QR-based retraction for approximating the
exponential map, i.e., RX(U) = qf(X+U), where qf(·) returns the Q-factor from the
QR decomposition for any tangent vector U.

A.4. Doubly stochastic manifold. The doubly stochastic manifold (or cou-
pling manifold) between two discrete probability measures µ =

∑m
i=1 aiδxi

, ν =∑n
j=1 bjδyj

is the set of couplings Π(µ, ν) := {Γ ∈ Rm×n : Γi,j > 0,
∑

i Γi,j =
bj ,
∑

j Γi,j = ai,∀ i, j} endowed with the Fisher information Riemnnanian metric.
The geometry has been developed in [20, 80, 54].
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Algorithm B.1 Backtracking line-search

1: Input: Current iterate pt ∈ M, search direction ξt ∈ Tpt
M, initial stepsize ϑ̄

and r1, ϱ ∈ (0, 1).
2: Initialize ϑ←− ϑ̄.
3: while h(pt)− h(Exppt

(ϑξt)) < r1ϑ⟨−gradh(pt), ξt⟩pt do

4: Set ϑ←− ϱϑ̄.
5: end while
6: Output: ϑ.

Without loss of any generality, we assume
∑

i ai =
∑

j bj = 1. The tangent

space at Γ ∈ Π(µ, ν) is given by TΓΠ(µ, ν) = {U ∈ Rm×n :
∑

i Ui,j =
∑

j Ui,j =
0,∀ i, j}. The Fisher information metric is defined as for U,V ∈ TΓΠ(µ, ν), ⟨U,V⟩Γ =∑

i,j(Ui,jVi,j)/Γi,j . For the experiments, we consider the Sinkhorn-based retraction.
The Sinkhorn-Knopp algorithm [81] is a popular approach for balancing non-negative
matrices to satisfy the row-sum and column sum constraint and later adapted to
solve the optimal transport problem efficiently [68]. Let A ∈ Rm×n,Ai,j > 0, and
denote Sinkhorn(A) as the output of applying the Sinkhorn-Knopp algorithm on A
with constraint defined by Π(µ, ν), i.e., Sinkhorn(A) ∈ Π(µ, ν). Subsequently, the
retraction is given by RΓ(U) = Sinkhorn(Γ⊙ exp(U⊘ Γ)), where exp, ⊙, and ⊘ are
elementwise exponential, product, and division operations, respectively.

Appendix B. Line-search methods and Wolfe conditions on Riemannian
manifolds. In this section, we present the Riemannian versions of the Armijo, Wolfe,
and strong Wolfe conditions [77].

Definition B.1. Consider an iterative algorithm for minimizing h : M −→ R,
producing pt+1 = Exppt

(ϑtξt) for some direction ξt ∈ Tpt
M and stepsize ϑt ∈ R. The

Armijo condition is h(pt)− h(pt+1) ≥ r1ϑt⟨−gradh(pt), ξt⟩, for some r1 ∈ (0, 1). The
(weak) Wolfe condition is the Armijo condition together with (B.1) and the strong
Wolfe condition is the Armijo condition with (B.2), where

⟨gradh(pt+1),DExppt
(ϑtξt)[ξt]⟩pt+1

≥ r2⟨gradh(pt), ξt⟩pt
(B.1)

|⟨gradh(pt+1),DExppt
(ϑtξt)[ξt]⟩pt+1

| ≤ r2|⟨gradh(pt), ξt⟩pt
|(B.2)

for some r2 ∈ (r1, 1). Here, DExp is the differential of the exponential operation.

The backtracking line-search for satisfying the Armijo condition has been used in
Riemannian steepest descent method [15].

One can generalize the analysis from the Euclidean space to show that there exists
a stepsize that satisfy the three conditions for arbitrary direction ξt. The backtracking
line-search for satisfying the Armijo condition is in Algorithm B.1. This has been used
in Riemannian steepest descent method [15]. The procedures that return stepsizes
satisfying the Wolfe conditions are in [75, 64].

Appendix C. Review of RGDA and RCEG. In this section, we provide
the details of the Riemannian gradient descent ascent [28] and Riemannian corrected
extra-gradient [92] algorithms for min-max optimization on manifolds.

RGDA simultaneously updates the variables in the direction of the min-max Rie-
mannian gradient, i.e.,

xt+1 = Expxt
(−ηt gradxf(xt, yt)), yt+1 = Expyt

(ηt gradyf(xt, yt)).
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RCEG first updates the variables to the point (wt, zt) along the min-max Rie-
mannian gradient. It then uses the obtained point to generate the final update, i.e.,

wt = Expxt
(−ηt gradxf(xt, yt)),

zt = Expyt
(ηt gradyf(xt, yt)),

xt+1 = Expwt
(−ηt gradxf(wt, yt) + Logwt

(xt)),

yt+1 = Expzt(ηt gradyf(wt, yt) + Logzt(yt)).

In [92], only convergence for g-convex-concave functions is analyzed, where the
authors show that RCEG converges sublinearly with averaged iterate under the fixed
stepsize η ≤ 1

2L1τζ,D
where τζ,D > 1 depends on the curvature and diameter of the

domain. Thus, the analysis is only local with domain-dependent rate of convergence.
The recent work [40] starts by showing average-iterate convergence of RCEG un-
der g-convex-concave functions and last-iterate convergence under g-strongly-convex-
concave functions. Nevertheless, similar assumptions on the bounded domain (and
also the curvature) is required. The stepsize also requires to be carefully selected,
which depends on the curvature and diameter bound. In addition, [40] proves conver-
gence for RGDA under similar settings. For g-strongly-convex-concave functions, the
last-iterate convergence of RGDA requires a diminishing stepsize, and for g-convex-
concave functions, the average-iterate convergence of RGDA require a stepsize that
again depends on the curvature and diameter bound.

Appendix D. Key propositions.
In this section, we derive the explicit expression for the Riemannian Hessian on

the product manifoldM =Mx×My and show that the cross derivatives are adjoint
with respect to the Riemannian metric.

Proposition D.1 (Riemannian Hessian of product manifold). Consider a prod-
uct Riemannian manifoldM =Mx ×My and f :M−→ R. For any p = (x, y) ∈ M
and ξ = (u, v) ∈ TxM, the Riemannian Hessian Hessf(p)[ξ] is derived as

Hessf(p)[ξ] =

(
Hessxf(x, y)[u] + grad2

yxf(x, y)[v]

grad2
xyf(x, y)[u] + Hessyf(x, y)[v]

)
.

Proof. From standard analysis, the Levi-Civita connection on a product manifold
M =Mx ×My (e.g., in [14, Exercise 5.4]) is given by

∇(Ux,Uy)(Vx, Vy) =
(
∇(x)

Ux
Vx + DyVx[Uy], DxVy[Ux] + ∇(y)

Uy
Vy

)
,

where Vx ∈ X(Mx), Vy ∈ X(My) are vector fields on respective manifolds and D is
the directional derivative. Further, DyVx : X(My) −→ X(Mx) and when evaluating
at (x, y), this is equivalently defined as DyVx(x, ·)(y) : TyMy −→ TxMx, which is the

directional derivative. ∇(x),∇(y) are the Levi-Civita connections onMx,My, respec-
tively. Applying the definition of the Riemannian Hessian, Hessf(p)[ξ] = ∇ξgradf(p),
we obtain the desired result.

Proposition D.2. For any (x, y) ∈ Mx ×My and (u, v) ∈ TxMx × TyMy, we
have ⟨grad2

yxf(x, y)[v], u⟩x = ⟨grad2
xyf(x, y)[u], v⟩y. Equivalently, grad2

yxf(x, y) is the

adjoint operator of grad2
xyf(x, y).

Proof. Let p = (x, y) and ξ = (u, v), ζ = (w, z) for any (u, v), (w, z) ∈ TxMx ×
TyMy. Then, from the self-adjoint property (symmetry) of the Riemannian Hessian,
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we have

(D.1) ⟨Hessf(p)[ξ], ζ⟩p = ⟨Hessf(p)[ζ], ξ⟩p,

for any ξ, ζ. Combining with Proposition D.1, the result (D.1) is equivalent to

⟨Hessxf(x, y)[u], w⟩x + ⟨grad2
yxf(x, y)[v], w⟩x + ⟨grad2

xyf(x, y)[u], z⟩y
+ ⟨Hessyf(x, y)[v], z⟩y

=⟨Hessxf(x, y)[w], u⟩x + ⟨grad2
yxf(x, y)[z], u⟩x + ⟨grad2

xyf(x, y)[w], v⟩y
+ ⟨Hessyf(x, y)[z], v⟩y.

Given that Hessx and Hessy satisfy the self-adjoint property, we obtain

⟨grad2
yxf(x, y)[v], w⟩x + ⟨grad2

xyf(x, y)[u], z⟩y
=⟨grad2

yxf(x, y)[z], u⟩x + ⟨grad2
xyf(x, y)[w], v⟩y.(D.2)

We can see (D.2) holds for any choice of (u, v), (w, z) and this only happens when
⟨grad2

yxf(x, y)[v], u⟩x = ⟨grad2
xyf(x, y)[u], v⟩y holds for any (u, v). To see this, con-

sider the vectorization of the tangent vectors as u,v,w, z. We also denote Bxy,Byx

as the matrix representation of the linear operators grad2
xyf(x, y), grad2

yxf(x, y) at
(x, y) respectively. Then (D.2) can be rewritten as

w⊤GxByxv + z⊤GyBxyu = u⊤GxByxz + v⊤GyBxyw,

where Gx,Gy are the (symmetric positive definite) metric tensors at x, y. This is
equivalent to

z⊤
(
GyBxy −B⊤

yxGx

)
u = v⊤(GyBxy −B⊤

yxGx

)
w,

which is satisfied for any u,v,w, z and any Gx,Gy as metric tensors. Hence, GyBxy =
B⊤

yxGx and the proof is complete.

Remark D.3. Proposition D.2 shows that the Riemannian cross derivatives are
symmetric with respect to Riemannian metric on respective manifolds. When Mx,
My are the Euclidean spaces, then Proposition D.2 is equivalent to the Schwarz’s
theorem of symmetric second-order derivatives.

Appendix E. Essential lemmas.
The following lemmas generalize [1, Lemmas 17, 28] to linear operators, specif-

ically in terms of the Riemannian Hessian operator. We first highlight that for two
operators T , T ∗ that are adjoint, we have λ(T ◦ T ∗) = λ(T ∗ ◦ T ) = σ2(T ) = σ2(T ∗).

Lemma E.1. Consider the Riemannian Hessian Hessf(p) where p = (x, y) ∈
Mx ×My. Suppose Hessyf(x, y) = 0. Then, λ|min|(Hessf(p)) ≥ σ2

min(Bxy)√
2σ2

min(Bxy)+∥Hx∥2
x

.

Proof. We consider the operator Hessf(p) ◦ Hessf(p) and study its eigenvalue.
First, we see that for any p = (x, y) ∈ Mx ×My and ξ = (u, v) ∈ TxMx × TyMy,
we have

Hessf(p)[ξ] =

(
Hessxf(x, y)[u] + grad2

yxf(x, y)[v]

grad2
xyf(x, y)[u]

)
,
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and therefore,

Hessf(p)[Hessf(p)[ξ]]

=

 Hessxf(x, y)[Hessxf(x, y)[u]] + Hessxf(x, y)[grad2
yxf(x, y)[v]]

+grad2
yxf(x, y)[grad2

xyf(x, y)[u]]

grad2
xyf(x, y)[Hessxf(x, y)[u]] + grad2

xyf(x, y)[grad2
yxf(x, y)[v]]

 .

Suppose (δ, ξ) is an eigenpair of the operator Hessf(p) ◦Hessf(p), which gives

Hessxf(x, y)[Hessxf(x, y)[u]] + Hessxf(x, y)[grad2
yxf(x, y)[v]]

+ grad2
yxf(x, y)[grad2

xyf(x, y)[u]] = δu,(E.1)

grad2
xyf(x, y)[Hessxf(x, y)[u]] + grad2

xyf(x, y)[grad2
yxf(x, y)[v]] = δv.(E.2)

Let Bxy = grad2
xyf(x, y), Byx = grad2

yxf(x, y), and Hx = Hessxf(x, y). Suppose

δ <
σ4
min(Bxy)

2σ2
min(Bxy)+∥Hx∥2

x
< σ2

min(Bxy). Then, we have Bxy ◦ Byx − δ id is invertible

where we use the fact that Bxy and Byx are adjoint. Hence, from (E.2) we have
v = −(Bxy ◦Byx− δ id)−1 ◦ (Bxy ◦Hx)[u]. Substituting the expression of v into (E.1)
yields

(E.3)
(
Hx ◦

(
id−Byx ◦ (Bxy ◦Byx − δ id)−1 ◦Bxy

)
◦Hx +Byx ◦Bxy − δ id

)
[u] = 0.

We next show that when

(E.4) δ <
σ4
min(Bxy)

2σ2
min(Bxy) + ∥Hx∥2x

< σ2
min(Bxy),

then (E.3) does not have a nontrivial solution in u (i.e., u ̸= 0), which leads to a
contradiction that ξ is an eigenvector. It suffices to show that for any δ satisfying the
condition (E.4), the following inequality

(E.5)
−δ∥Hx∥2x

σ2
min(Bxy)− δ

+ σ2
min(Bxy)− δ > 0,

holds, which violates (E.3). Here, we highlight Bxy is the adjoint of Byx, and therefore,
the eigenvalues λi(id − Byx ◦ (Bxy ◦ Byx − δ id)−1 ◦ Bxy) = −δ

σ2
i (Bxy)−δ

< 0 from the

singular value decomposition of Bxy. The roots of (E.5) are

r1 = σ2
min(Bxy) +

1

2
∥Hx∥2x −

√
(σ2

min(Bxy) +
1

2
∥Hx∥2x)2 − σ4

min(Bxy)

r2 = σ2
min(Bxy) +

1

2
∥Hx∥2x +

√
(σ2

min(Bxy) +
1

2
∥Hx∥2x)2 − σ4

min(Bxy).

One can show for any c1 > 0, 4c2 < c21, then 2c2
c1

< c1 −
√
c21 − 4c2. Let c1 =

σ2
min(Bxy) + 1

2∥Hx∥2x, c2 = 1
4σ

4
min(Bxy), we have the smaller root satisfies r1 >

σ4
min(Bxy)

2σ2
min(Bxy)+∥Hx∥2

x
> δ, Hence, there does not exist u ̸= 0 that satisfies (E.3), which

implies δ ≥ σ4
min(Bxy)

2σ2
min(Bxy)+∥Hx∥2

x
. This completes the proof.
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Lemma E.2. Consider the Riemannian Hessian Hessf(p), where p = (x, y) ∈
Mx ×My. Let Hx := Hessxf(x, y), Hy := Hessyf(x, y), Bxy := grad2

xyf(x, y), and

a = 2σ2
min(Bxy) + λ2

|min|(Hx) + λ2
|min|(Hy),

b =
(
σ2
min(Bxy) + λ2

|min|(Hx)
)(

σ2
min(Bxy) + λ2

|min|(Hy)
)

− σ2
max(Bxy)(∥Hx∥x + ∥Hy∥y)2.

Suppose that b > 0. Then, λ|min|(Hessf(p)) ≥
√

b
a .

Proof. Similarly to Lemma E.1, we consider the operator Hessf(p) ◦ Hessf(p),
i.e.,

Hessf(p)[ξ] =

(
Hessxf(x, y)[u] + grad2

yxf(x, y)[v]

Hessyf(x, y)[v] + grad2
xyf(x, y)[u]

)
,

and

Hessf(p)[Hessf(p)[ξ]]

=


Hessxf(x, y)[Hessxf(x, y)[u]] + Hessxf(x, y)[grad2

yxf(x, y)[v]]

+grad2
yxf(x, y)[Hessyf(x, y)[v]] + grad2

yxf(x, y)[grad2
xyf(x, y)[u]]

Hessyf(x, y)[Hessyf(x, y)[v]] + Hessyf(x, y)[grad2
xyf(x, y)[u]]

+grad2
xyf(x, y)[Hessxf(x, y)[u]] + grad2

xyf(x, y)[grad2
yxf(x, y)[v]].

 .

Suppose (δ, ξ) is an eigenpair of the operator Hessf(p) ◦Hessf(p), which gives

Hessxf(x, y)[Hessxf(x, y)[u]] + Hessxf(x, y)[grad2
yxf(x, y)[v]]

+ grad2
yxf(x, y)[Hessyf(x, y)[v]] + grad2

yxf(x, y)[grad2
xyf(x, y)[u]] = δu,(E.6)

Hessyf(x, y)[Hessyf(x, y)[v]] + Hessyf(x, y)[grad2
xyf(x, y)[u]]

+ grad2
xyf(x, y)[Hessxf(x, y)[u]] + grad2

xyf(x, y)[grad2
yxf(x, y)[v]] = δv.(E.7)

Denote Tx := Hx ◦ Hx + Byx ◦ Bxy − δ id and similarly for Ty := Hy ◦ Hy + Bxy ◦
Byx − δ id, where Hx = Hessxf(x, y), Hy = Hessyf(x, y) and Bxy = grad2

xyf(x, y),

Byx = grad2
yxf(x, y). Then, we can simplify (E.6) and (E.7) as

(E.8)
Tx[u] = −(Hx ◦Byx + Byx ◦Hy)[v]
Ty[v] = −(Hy ◦Bxy + Bxy ◦Hx)[u]

Suppose δ < b
a . Then, we can show Ty is invertible. This is because, for any c1 > 0,

4c2 < c21, we have 2c2
c1

< c1 −
√

c21 − 4c2. From the definition of a and b and setting
c1 = a, c2 = b, we have

2b

a
< 2σ2

min(Bxy) + λmin(Hx ◦Hx) + λmin(Hy ◦Hy)

−
√

(λmin(Hx ◦Hx)− λmin(Hy ◦Hy))2 + 4σ2
max(Bxy)(∥Hx∥x + ∥Hy∥y)2

< 2σ2
min(Bxy) + λmin(Hx ◦Hx) + λmin(Hy ◦Hy)

− |λmin(Hx ◦Hx)− λmin(Hy ◦Hy)|
≤ 2σ2

min(Bxy) + 2λmin(Hy ◦Hy),
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where we emphasize that Byx is the adjoint to Bxy and hence λ(Byx ◦Bxy) = λ(Bxy ◦
Byx) = σ2(Bxy) = σ2(Byx).

Hence, δ < b
a < σ2

min(Bxy)+λmin(Hy ◦Hy) and Ty = Hy ◦Hy +Bxy ◦Byx−δ id is
invertible, because λmin(Ty) ≥ σ2

min(Bxy)+λmin(Hy◦Hy)−δ > 0 by Weyl’s inequality.
Thus, (E.8) gives v = −T−1

y ◦ (Hy ◦Bxy + Bxy ◦Hx)[u]. Substituting this expression
for v into the first equation of (E.8) yields

(E.9)
(
Tx −

(
Hx ◦Byx + Byx ◦Hy

)
◦ T−1

y ◦
(
Hy ◦Bxy + Bxy ◦Hx

))
[u] = 0.

Nevertheless, we can verify when δ < b
a , (E.9) does not have any nontrivial solution

for u, which gives a contradiction. Specifically, we show the following inequality is
always satisfied under the condition on δ,

(λmin(Hy ◦Hy) + σ2
min(Bxy)− δ)−1σ2

max(Bxy)(∥Hx∥x + ∥Hy∥y)2

< λmin(Hx ◦Hx) + σ2
min(Bxy)− δ,(E.10)

which violates (E.9) for any u ̸= 0, because (E.10) would imply that

λmin

((
Tx −

(
Hx ◦Byx + Byx ◦Hy

)
◦ T−1

y ◦
(
Hy ◦Bxy + Bxy ◦Hx

)))
> 0,

subsequently (E.9) implies u = 0, hence, ξ = 0, a contradiction. It remains to show
that under δ < b

a , (E.10) is satisfied. That is, the roots of (E.10) are given by
1
2 (a±

√
a2 − 4b). We have shown that δ < b

a < 1
2 (a−

√
a2 − 4b). This implies (E.10)

is always satisfied and results in a contradiction. Hence, δ ≥ b
a , which completes the

proof.

Appendix F. Analysis of RHM with conjugate gradient and trust-
region update steps. We provide the details on convergence analysis of min-
imizing the Riemannian Hamiltonian with the Riemannian conjugate gradient and
trust-region methods, i.e., we consider Algorithm 3.1 with the update step ξ(pt) com-
puted as conjugate gradient direction and trust-region step.

F.1. RHM with conjugate gradient (RHM-CG).

Theorem F.1 (Linear convergence of RHM-CG). Under the same settings as in
Theorem 3.7, consider Algorithm 3.1 with conjugate gradient direction ξ(pt) where βt

(used in update) and ηt are chosen such that ⟨ξ(pt),−gradH(pt)⟩ ≥ c∥gradH(pt)∥2pt

for some c > 0 and the Armijo condition (Definition B.1) is satisfied. Let η̃ =
mini=0,...,t ηi. Then, iterates pt satisfy ∥gradf(pt)∥2pt

≤ (1− 2r1η̃cδ)t∥gradf(p0)∥2p0
.

Proof. From the Armijo condition, we have for the stepsize ηt,

H(pt+1)−H(pt) ≤ r1ηt⟨gradH(pt), ζ(pt)⟩
≤ −r1ηtc∥gradH(pt)∥2pt

≤ −2r1ηtcδH(pt) ≤ −2r1η̃cδH(pt),

where the last inequality follows from the definition of η̃ and H(pt) ≥ 0 for all pt.
Applying the result recursively completes the proof.

We notice that the bound only requires a descent direction and a sufficient func-
tion decrease. Hence, we suspect a tighter bound exists when analyzing specific types
of conjugate gradient (with different βt types).

We also highlight that most, if not all, types of conjugate gradient methods satisfy
the conditions in Theorem F.1. See more discussions in [76]. As an example, consider
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the Fletcher-Reeves-type CG [22] with βt =
∥gradH(pt)∥2

pt

∥gradH(pt−1)∥2
pt−1

. If the stepsize ηt is

chosen to satisfy the strong Wolfe conditions (Definition B.1) with 0 < r1 < r2 <
1/2, then from [77, Lemma 4.1], the conditions in Theorem F.1 are satisfied with
⟨ξ(pt),−gradH(pt)⟩ ≥ 1−2r2

1−r2
∥gradH(pt)∥2.

F.2. RHM with trust-region (RHM-TR). For the Riemannian trust-region
(TR) method, the update step ξ(pt) is computed by (approximately) solving the
trust-region subproblem on the tangent space [3], i.e.,

(F.1) ξ(pt) = arg min
ξ∈TptM:∥ξ∥pt≤∆t

m̂pt(ξ) = H(pt) + ⟨gradH(pt), ξ⟩pt +
1

2
⟨Ht[ξ], ξ⟩pt

,

where Ht : Tpt
M −→ Tpt

M is a self-adjoint linear operator that approximates the
Hessian HessH(pt). Depending on how much decrease is provided by the obtained
direction, we either accept or reject the trust-region step and modify the radius ∆t.

Theorem F.2 (Convergence of RHM-TR). Under the same settings as in The-
orem 3.7 with L = L0L1 + L2

2, consider Algorithm 3.1 with ξ(pt) given by solving
(F.1) with truncated conjugate gradient. Assume further that ∥Ht − HessH(pt)∥pt

≤
LH∥gradH(pt)∥pt

. Let c = mini=0,...,t
∆i

L0L1
and L̃ = LHL0L1 + L. Then, the iterates

pt satisfy ∥gradf(pt)∥2pt
≤
(
1− 1

2 min{c, 1/L̃}ρ′δ
)t∥gradf(p0)∥2p0

.

Under an additional Lipschitzness condition on ∇2Ĥp, we can show around the
global minima p∗, there exists θ > 0, T > 0 such that for all t > T , the convergence is
superlinear with d(pt+1, p

∗) ≤ θd2(pt, p
∗).

Proof. First from Assumption 2, ∥gradH(pt)∥pt
= ∥Hessf(pt)[gradf(pt)]∥pt

≤
L1L0 and the operator norm of Ht is bounded as

∥Ht∥pt
≤ ∥Ht −HessH(pt)∥pt

+ ∥HessH(pt)∥pt
≤ LHL0L1 + L.

Also, the trust-region direction ξ(pt) returned by the truncated conjugate gradient
method satisfies a so-called Cauchy decrease inequality [3, eq. (7.14)], which gives

m̂pt
(0)− m̂pt

(ξ(pt)) ≥
1

2
∥gradH(pt)∥pt

min
{

∆t,
∥gradH(pt)∥pt

∥Ht∥pt

}
≥ 1

2
∥gradH(pt)∥pt

min
{
c∥gradH(pt)∥pt

,
∥gradH(pt)∥pt

∥Ht∥pt

}
≥ 1

2
min

{
c,

1

LHL0L1 + L

}
∥gradH(pt)∥2pt

≥ 1

2
min

{
c,

1

LHL0L1 + L

}
δH(pt).

where the second inequality follows from the definition of c and Assumption 2 where
Furthermore, from the acceptance rule,

H(pt+1)−H(pt) ≤ ρ′
(
m̂pt

(ξ(pt))− m̂pt
(0)
)
≤ −1

2
min

{
c,

1

LHL0L1 + L

}
ρ′δH(pt).

Hence, the linear convergence is proved by recursively applying the result. The super-
linear convergence simply follows from [3, Theorem 7.4.11] around any local minima.

Appendix G. On geodesic quadratic bilinear optimization.
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We first show an important result on the orthogonality of the min-max Rie-
mannian gradient and Riemannian gradient of the Riemannian Hamiltonian for any
g-bilinear function on arbitrary manifolds.

Proposition G.1. Let f(x, y) be a g-bilinear function on M =Mx ×My. De-
note G(p) = (gradxf(x, y),−gradyf(x, y)) ∈ TpM for p = (x, y) ∈M as the min-max
Riemannian gradient. Then for any p ∈ M, we have ⟨G(p), gradH(p)⟩p = 0 where
H(p) = 1

2∥gradf(p)∥2p is the Riemannian Hamiltonian of f .

Proof. First it is aware that for any g-bilinear function, we have Hessxf(x, y) =
Hessyf(x, y) = 0. Hence, from Proposition 3.2 and D.1, we show

gradH(p) = Hessf(p)[gradf(p)] =

(
grad2

yxf(x, y)[gradyf(x, y)]

grad2
xyf(x, y)[gradxf(x, y)]

)
.

Finally, we have

⟨G(p), gradH(p)⟩p = ⟨gradxf(x, y), grad2
yxf(x, y)[gradyf(x, y)]⟩x

+ ⟨−gradyf(x, y)), grad2
xyf(x, y)[gradxf(x, y)]⟩y

= ⟨gradyf(x, y), grad2
xyf(x, y)[gradxf(x, y)]⟩y

+ ⟨−gradyf(x, y)), grad2
xyf(x, y)[gradxf(x, y)]⟩y = 0

where we apply Proposition D.2.

Proof of Proposition 7.1. First, the expression of geodesic curve connecting any

X0,X1 ∈ MSPD is given by γ(t) = X
1/2
0 (X

−1/2
0 X1X

−1/2
0 )tX

1/2
0 . From [89, Propo-

sition 5.7], we see log det(X) is geodesic linear. That is, for the geodesic γ(t) join-
ing X0,X1 with γ(0) = X0, γ(1) = X1, it can be shown that log det(γ(t)) = (1 −
t) log det(X0) + t log det(X1). It remains to show (log det(X))2 is geodesic convex,

which is equivalent to show d2(log det(γ(t)))2

dt2 ≥ 0 for all t ∈ [0, 1] (second order charac-
terization of geodesic convexity [89]). Specifically, we show

d2(log det(γ(t)))2

dt2
= 2(log det(X1)− log det(X0))2 ≥ 0.(G.1)

The equality in (G.1) holds when X0 ̸= X1 while det(X0) = det(X1) and hence
d2(log det(γ(t)))2

dt2 > 0 is not always satisfied. Similar arguments hold for g-concavity
with respect to Y.

Proof of Proposition 7.2. The Riemannian gradient of f is derived as

gradXf(X,Y) =
(
cl log det(Y) + 2cq log det(X)

)
X

gradYf(X,Y) =
(
cl log det(X)− 2cq log det(Y)

)
Y.

Under the affine-invariant metric, the Hamiltonian is given by

H(X,Y) =
(4c2q + c2l )d

2

(
(log det(X))2 + (log det(Y))2

)
.

The gradient of Hamiltonian is given by gradXH(X,Y) = (4c2q + c2l )d log det(X)X
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and gradYH(X,Y) = (4c2q + c2l )d log det(Y)Y. Next, we verify

1

2

(
∥gradXH(X,Y)∥2X + ∥gradYH(X,Y)∥2Y

)
=

(4c2q + c2l )2d3

2

(
(log det(X))2 + (log det(Y))2

)
= (4c2q + c2l )d2H(X,Y).

In addition, from the definition of global saddle point in (1.2), the pair (X∗,Y∗) where
det(X∗) = det(Y∗) = 1, satisfies f(X∗,Y∗) = 0. Thus, we have

f(X∗,Y) = −cq(log det(Y))2 ≤ f(X∗,Y∗) ≤ cq(log det(X))2 = f(X,Y∗)

for all X,Y ∈ Sd++. Hence, the proof is complete.

Finally, we show that the geodesic-bilinear problem does not satisfy the min-max
Riemannian PL condition on the function f . To this end, we first need to define the
Riemannian min-max PL condition below.

Definition G.2 (Riemannian min-max PL condition). For a min-max prob-
lem minx∈Mx

maxy∈My
f(x, y), the objective satisfies the Riemannian min-max PL

condition if for a global saddle point (x∗, y∗), there exists a constant δ > 0 such that

1

2
∥gradxf(x′, y)∥2x′ ≥ δ

(
f(x′, y)− f(x∗, y)

)
, ∀y ∈M,

1

2
∥gradyf(x, y′)∥2y′ ≥ δ

(
f(x, y∗)− f(x, y′)

)
, ∀x ∈M.

Definition G.2 is equivalent to stating that the objective f(x, y) satisfies the Rie-
mannian PL in x and −f(x, y) satisfies the Riemannian PL in y. Such definition is
natural as it includes geodesic strongly convex strongly concave functions as special
cases.

Lemma G.3. The g-bilinear function f(X,Y) = log det(X) log det(Y) does not
satisfy Definition G.2.

Proof. We show the case for X. A similar statement also holds for Y. As the
global saddle point (X∗,Y∗) satisfies det(X∗) = det(Y∗) = 1, we have f(X∗,Y) =
0. In addition, the Riemannian gradient is gradXf(X′,Y) = X′ log det(Y) with
∥gradXf(X′,Y)∥2X′ = (log det(Y))2. On the other hand, the right-hand-side in
Definition G.2 is f(X′,Y) − f(X∗,Y) = log det(X′) log det(Y). It is clear that
1
2 (log det(Y))2 is not necessarily larger than δ log det(X′) log det(Y) for δ > 0 and
for all Y ∈ Sd++. Hence, the claim follows.

Appendix H. Additional experiment results.

H.1. Optimality gap for geodesic quadratic bilinear optimization. We
include additional convergence results in Fig. 5 on the optimality gap for the geodesic
quadratic bilinear optimization problem in Section 7.1.

H.2. Results of RHM-SGD for orthonormal GAN. We show the sample
collapse of RHM-SGD in Fig. 6.

H.3. Trace-logarithm bilinear optimization. We consider the ‘bilinear’ ex-
ample of [92] on the symmetric positive definite (SPD) manifold (endowed with the
affine-invariant metric), i.e.,

f(X,Y) = tr(LogX(X0)LogY(Y0))
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(d) cq = 1, cl = 1
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(e) cq = 1, cl = 10

Fig. 5: Experiments comparing optimality gap on the geodesic quadratic blinear
problem (7.1) with d = 30, under different weights cq, cl. We observe that the RHM
algorithms show a good rate of convergence in all the settings. In particular, RHM-
SD-F and RHM-CON significantly outperforms RCEG in all the settings indicating
better theoretical rates.

Fig. 6: Generated samples from RHM-SGD at 1, 2, 3× 104 iterations from left to right.
We see although RHM-SGD converges in Hamiltonian, the generated samples collapse
to a single point (zoom the figures to see the single point).

for X0,Y0 ∈ Sd++, where LogM(M′) = {M log(M−1M′)}S is the logarithm map on
the SPD manifold with log(·) representing the matrix principal logarithm. When the
manifold is simply the Euclidean space, the logarithm map reduces to LogM(M′) =
M′ −M. Hence, this resembles a bilinear problem on the manifold.

For the experiment setting, we consider γ = 0.2 for RHM-CON and X0 = Y0 = I.
The convergence results are shown in Fig. 7, where we notice that both RGDA and
RCEG oscillate while all the RHM algorithms are convergent. RHM-CON and RHM-
SD-F converge rapidly initially but subsequently have a slow rate of convergence due
to the hardness of the problem. RHM-CG, on the other hand, has a faster rate of
convergence.
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Fig. 7: Trace-logarithm bilinear problem on the SPD manifold. RGDA and RCEG
diverge while RHM algorithms are convergent (though RHM with steepest descent
has a slower rate of convergence).
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