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Abstract. It is common to model a deterministic response function, such as the output of a
computer experiment, as a Gaussian process with a Matérn covariance kernel. The smooth-
ness parameter of a Matérn kernel determines many important properties of the model in the
large data limit, including the rate of convergence of the conditional mean to the response
function. We prove that the maximum likelihood estimate of the smoothness parameter cannot
asymptotically undersmooth the truth when the data are obtained on a fixed bounded subset
of Rd. That is, if the data-generating response function has Sobolev smoothness ν0 > d/2,
then the smoothness parameter estimate cannot be asymptotically less than ν0. The lower
bound is sharp. Additionally, we show that maximum likelihood estimation recovers the true
smoothness for a class of compactly supported self-similar functions. For cross-validation
we prove an asymptotic lower bound ν0 − d/2, which however is unlikely to be sharp. The
results are based on approximation theory in Sobolev spaces and some general theorems that
restrict the set of values that the parameter estimators can take.
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1 Introduction
Gaussian process interpolation is commonly used to approximate a deterministic response or
data-generating function which may, for example, represent the output of a computer exper-
iment (Sacks et al., 1989). A zero-mean Gaussian process is defined by a positive-definite
covariance kernel Kθ with parameters θ ∈ Θ. To ensure that Gaussian process interpolation
yields a good approximation and reasonable quantification of uncertainty for the response func-
tion at unseen data locations, it is necessary to estimate the kernel parameters from the data. Due
to its flexibility and interpretability, the Matérn class of stationary covariance kernels is often
preferred in applications (Stein, 1999). Let ν, σ, and λ be positive smoothness, magnitude, and
scale parameters, respectively. A Matérn kernel on Rd is defined as

Kν(x, y) = σ2c(ν)

(√
2ν ∥x− y∥

λ

)ν
Kν

(√
2ν ∥x− y∥

λ

)
for x, y ∈ Rd, (1.1)

where Kν is the modified Bessel function of the second kind of order ν and c(ν) a positive
ν-dependent scaling factor. Much is known about fixed-domain asymptotics of various estimators
for the parameters σ and λ (as well as σ2λ2ν for a fixed ν) for Matérns and related kernels in
both the Bayesian setting where the response function is assumed to be a Gaussian process (e.g.,
Ying, 1991; Loh, 2005; Anderes, 2010; Bachoc et al., 2017) and the frequentist setting where the

*Journal reference: T. Karvonen (2023). Asymptotic bounds for smoothness parameter estimates in Gaussian process
interpolation. SIAM/ASA Journal on Uncertainty Quantification, 11(4):1225–1257.
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response function is a fixed deterministic function (Xu and Stein, 2017; Karvonen et al., 2020). As
it defines assumed degree of differentiability of the response function and is microergdic (Stein,
1999, Section 6.2), the smoothness parameter ν is arguably the most important parameter of
a Matérn kernel. While it is common to fix ν beforehand, doing so is problematic when the
smoothness of the response function is unknown (though data-driven estimation of σ and λ may
overcome these issues):

• If the model undersmooths the truth (i.e., the response function is smoother than assumed),
uncertainty quantification is reliable, in the sense that the response function is contained
in a credible set centered at the conditional mean for some fixed credible level [see (4.1)
and (4.2)]. However, this comes at the cost of (likely) sub-optimal approximation accuracy.

• If the model oversmooths the truth, the approximation quality is best possible, in that the
Narcowich–Ward–Wendland escape theorem [see (4.3)] guarantees convergence of the
conditional mean to the response function with a rate that is worst-case optimal in any
Sobolev space which contains the response function. However, uncertainty quantification
may be unreliable.

The effects of under- and oversmoothing in the frequentist setting, as well as connections to the
literature on construction of adaptive confidence and credible sets, are discussed in more detail in
Section 4.1.

Maximum likelihood estimation is perhaps the most popular data-driven approach to select
the parameters of a Matérn kernel. It seems that the only theoretical results concerning maximum
likelihood estimation of the smoothness parameter of a Matérn-type kernel have been obtained
by Chen et al. (2021) and Petit (2023), who consider the periodic version of the Matérn kernel
on [0, 1]d (see Stein, 1999, Section 6.7) and show that maximum likelihood estimators are
consistent. Szabó et al. (2015) and Knapik et al. (2016) have derived results for maximum
likelihood smoothness estimation in a related white noise model. Loh (2015); Loh et al. (2021);
and Loh and Sun (2023) construct other smoothness estimators for the Matérn model whose
consistency they prove under certain sampling schemes on [0, 1]d. Other work on maximum
likelihood estimation, as well as cross-validation, of parameters in Gaussian process and related
models can be found in Bachoc (2013); Szabó et al. (2013); Szabo and Rousseau (2017); Bachoc
et al. (2017); Xu and Stein (2017); and Hadji and Szábo (2021). This article contains what appear
to be the first theoretical results on maximum likelihood estimation (as well as cross-validation)
of the smoothness parameter of the Matérn class on subsets of Rd. These results are described
next for maximum likelihood estimation. In short, we prove that (a) asymptotic undersmoothing
is not possible and (b) smoothness is estimated consistently for a class of compactly supported
self-similar functions.

Let f0 be a real-valued response function that is defined on a sufficiently regular bounded
connected open subset Ω of Rd, such as Ω = (0, 1)d, and suppose that {xi}∞i=1 is any quasi-
uniform sequence (see Definition 3.4) of pairwise distinct points in Ω. Let

ν̂f0ML(Xn) = argmin
ν∈Θ

{
f0(Xn)

TKν(Xn)
−1f0(Xn) + log detKν(Xn)

}
,

where Θ ⊂ (0,∞) is some interval, denote any maximum likelihood estimate of the smoothness
parameter ν given the data vector f0(Xn) = (f0(x1), . . . , f0(xn)) ∈ Rn consisting of noiseless
evaluations of f0 at the points Xn = {xi}ni=1. Here Kν(Xn) ∈ Rn×n is the kernel matrix
for the Matérn kernel (1.1) with elements (Kν(Xn))ij = Kν(xi, xj). Let Θ = [νmin, νmax] for
0 < νmin < νmax < ∞ be an interval large enough that the bounds and limits below can hold and
suppose that the scaling factor c(ν) is bounded away from zero and infinity on Θ (e.g., being a
continuous function of ν). The function f0 is an element of Hα(Ω), the Sobolev space of order
α > d/2, if it admits an extension fe : Rd → R (i.e., fe|Ω = f0) whose Fourier transform f̂e
satisfies ∫

Rd

(1 + ∥ξ∥2)α|f̂e(ξ)|2 dξ < ∞.
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See Section 3.1 for more details on Sobolev spaces. We prove that inclusion in a Sobolev space
implies an asymptotic lower bound on the maximum likelihood estimate.

No undersmoothing — Theorem 3.11. Let ν0 > d/2. If f0 is an element of Hν0(Ω), then

lim inf
n→∞

ν̂f0ML(Xn) ≥ ν0. (1.2)

This bound is sharp in the sense that for every ε > 0 there is f0 ∈ Hν0(Ω) such that

lim sup
n→∞

ν̂f0ML(Xn) ≤ ν0 + ε.

Let ν(f0) = sup{ν > 0 : f0 ∈ Hν(Ω)} be the smoothness of f0. From (1.2) we get

lim inf
n→∞

ν̂f0ML(Xn) ≥ ν(f0).

As satisfying as it would be, it does not follow that ν̂f0ML(Xn) → ν(f0). In the context of density
estimation and the Gaussian white noise model, it is well known that consistent estimation of
smoothness and construction of adaptive confidence sets over Sobolev classes is impossible (Pi-
card and Tribouley, 2000; Giné and Nickl, 2010; Bull, 2012; Szabó et al., 2015; Nickl and Szabó,
2016; Giné and Nickl, 2016, Chapter 8). Additional self-similarity assumptions are needed to
exclude “inconvenient” or “deceptive” functions whose smoothness cannot be estimated (see in
particular Szabó et al., 2015, Section 3). In this vein, we say that f0 is β-self-similar if it admits
an extension fe such that

sup
ξ∈Rd

∥ξ∥2β+d |f̂e(ξ)|2 < ∞ and
∫
∥ξ∥≥R

|f̂e(ξ)|2 dξ ≥ CR−2β

for some positive C and R0 and all R ≥ R0. The Fourier transform of a prototypical fe that
satisfies these conditions is of order ∥ξ∥−(β+d/2) as ∥ξ∥ → ∞. See Section 3.2 for more
details on self-similar functions. We prove that maximum likelihood estimation of smoothness
is consistent if f0 is self-similar and supported on Ω. Because ν(f0) = β if f0 is β-self-similar
(see Lemma 3.2), in our context “consistency” simply means that the true smoothness of f0 is
recovered.

Consistent estimation for self-similar functions — Theorem 3.12. If f0 is ν0-self-similar and
has its support contained in Ω, then

lim
n→∞

ν̂f0ML(Xn) = ν0.

Except for the requirement that f0 be supported in Ω in the latter theorem, the assumptions
of our results are not particularly restrictive. More detailed discussion on the assumptions is
deferred to Section 3.3.3.

Because the samples of a Gaussian process with a Matérn covariance kernel of smoothness
ν0 have Sobolev smoothness ν0 but the reproducing kernel Hilbert space (RKHS) of the kernel
is norm-equivalent to the Sobolev space of smoothness ν0 + d/2 (e.g., Steinwart, 2019; see
Sections 3.1 and 3.5 for more details), the results indicate that maximum likelihood estimation
recovers the smoothness for which f0 “resembles” a sample from the corresponding Gaussian
process rather than the smoothness for which f0 is an element of the RKHS of the kernel. When
f0 is a zero-mean Gaussian process whose covariance kernel is a Matérn of smoothness ν0, then
Corollary 3.14, a straightforward consequence of Theorem 3.11, states that

lim inf
n→∞

ν̂f0ML(Xn) ≥ ν0 almost surely.

However, we emphasise that when f0 is assumed a deterministic function, it does not have to
be (nor should it be thought of as) a fixed sample path from a Gaussian process with some
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Matérn kernel—or in any other way related to some other stochastic process. We also consider
leave-one-out cross-validation estimation, for which we however can supply no upper bounds or
results pertaining to self-similar functions. Even our lower bounds for cross-validation are likely
to be off by d/2.

Our proofs make use of RKHSs and techniques from approximation theory in Sobolev spaces.
This particular approach has begun to gain popularity in various corners of the Gaussian process
literature roughly within the past decade (e.g., Bull, 2011; Stuart and Teckentrup, 2018; Briol
et al., 2019; Wang et al., 2020; Wynne et al., 2021). In Section 2, we begin by proving a
number of general results (Theorems 2.3, 2.5 and 2.7) on parameter sets which cannot contain
the parameter estimates. The essence of these results is that maximum likelihood estimation and
cross-validation attempt to find the simplest possible model, as quantified by the rate of decay of
the conditional variance, that adequately explains the data. Section 3 is then devoted to applying
the general results to estimation of the Matérn smoothness parameter. In Section 4.2, we discuss
the application of Theorem 2.7 to estimation of the scale parameter of infinitely smooth stationary
kernels, such as the Gaussian kernel, though are unable to furnish any rigorous proofs.

2 General Results
This section reviews basic facts about Gaussian process interpolation and RKHSs and proves
some general results on maximum likelihood estimation and cross-validation of covariance kernel
parameters.

2.1 Gaussian Process Interpolation
Let Ω be an arbitrary infinite set which we call a domain throughout this article. By kernel we
mean a function Kθ : Ω× Ω → R which is symmetric and positive-definite, in that

n∑
i=1

n∑
j=1

aiajKθ(xi, xj) > 0 (2.1)

for any n ∈ N, any pairwise distinct x1, . . . , xn ∈ Ω, and any non-zero vector (a1, . . . , an) ∈ Rn.
All kernels in this article are parametrised by some collection of parameters θ in a feasible
parameter set Θ. Equation (2.1) implies that for any set X = {xi}ni=1 ⊂ Ω of n pairwise
distinct points the kernel matrix Kθ(X) ∈ Rn×n with elements (Kθ(X))ij = Kθ(xi, xj) is
positive-definite and thus invertible. A Matérn kernel (1.1) with any positive parameters is an
example of a kernel on Ω = Rd.

That a stochastic process fGP is a zero-mean Gaussian process with covariance Kθ implies
that for any points X the vector (fGP(x1), . . . , fGP(xn)) is an n-dimensional normal random
vector with mean zero and covariance Kθ(X). Suppose that a deterministic response function
f0 : Ω → R is modelled as a Gaussian process fGP. Conditioning this process on the exact
evaluations (i.e., data) f0(X) = (f0(x1), . . . , f0(xn)) ∈ Rn of f0 at some distinct points X
yields a conditional Gaussian process with the mean

µθ,f0(x | X) = E[fGP(x) | X, f0(X)] = Kθ(x,X)TKθ(X)−1f0(X) (2.2)

and variance

Vθ(x | X) = Var[fGP(x) | X, f0(X)] = Kθ(x, x)−Kθ(x,X)TKθ(X)−1Kθ(x,X), (2.3)

where Kθ(x,X) is an n-vector with elements (Kθ(x,X))i = Kθ(x, xi). Note that the variance
can depend on f0 only if θ is estimated from the data f0(X).
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2.2 Reproducing Kernel Hilbert Spaces
Every symmetric positive-definite kernel Kθ : Ω× Ω → R induces a unique reproducing kernel
Hilbert space (RKHS), H(Kθ). This space consists of functions f : Ω → R and is equipped with
an inner product ⟨·, ·⟩θ and the associated norm ∥·∥θ. The terminology comes from the kernel Kθ

having the reproducing property

⟨f,Kθ(·, x)⟩θ = f(x) for all f ∈ H(Kθ) and x ∈ Ω. (2.4)

It may be difficult to determine if a given function is contained in the RKHS based merely on the
algebraic form of the kernel and the function. However, many general properties of the kernel,
such as its continuity or degree of differentiability, are inherited by the functions in H(Kθ) (e.g.,
Steinwart and Christmann, 2008, Section 4.3). Results on the relationship between RKHSs of
stationary kernels whose Fourier transforms decay polynomially on Rd and Sobolev spaces are
reviewed in Section 3. See the textbooks Berlinet and Thomas-Agnan (2004) and Paulsen and
Raghupathi (2016) for a wealth of additional information on RKHSs.

Most of our proofs rely on the connection between Gaussian process interpolation and optimal
interpolation in an RKHS. The history of this rather well known connection goes back at least
to the work of Kimeldorf and Wahba (1970). We refer to Berlinet and Thomas-Agnan (2004,
Section 2.4); Scheuerer et al. (2013); and Kanagawa et al. (2018, Section 3) for recent reviews
on the topic. In short, the Gaussian process conditional mean equals the unique minimum-norm
interpolant in the RKHS and the conditional variance is the squared worst-case approximation
error. That is,

µθ,f0(· | X) = argmin
s∈H(Kθ)

{
∥s∥θ : s(xi) = f0(xi) for every i = 1, . . . , n

}
(2.5)

and
Vθ(x | X) = sup

∥f∥θ≤1

|f(x)− µθ,f (x | X)|2 (2.6)

for every x ∈ Ω. Note that the correspondence (2.5) does not require that f0 be an element of
H(Kθ). From (2.6) it is straightforward to derive the fundamental error estimate

|f(x)− µθ,f (x | X)| ≤ ∥f∥θ Vθ(x | X)1/2, (2.7)

which holds for every f ∈ H(Kθ) and x ∈ Ω.

2.3 Parameter Estimation in a General Setting
Let {xi}∞i=1 be a set of pairwise distinct points in Ω and denote Xn = {xi}ni=1. Given evaluations
of f0 at points Xn, a maximum likelihood estimate, θ̂f0ML(Xn), of θ is any minimiser of the function

ℓf0ML(θ | Xn) = f0(Xn)
TKθ(Xn)

−1f0(Xn) + log detKθ(Xn), (2.8)

while a leave-one-out cross-validated estimate, θ̂f0CV(Xn), is any minimiser of the function

ℓf0CV(θ | Xn) =

n∑
i=1

[
(f0(xi)− µθ,f0(xi | Xi

n))
2

Vθ(xi | Xi
n)

+ logVθ(xi | Xi
n)

]
,

where we use superscripted i to denote that the ith point has been removed (i.e., Xi
n = Xn\{xi});

see, for example, Section 5.4 in Rasmussen and Williams (2006). The following lemmas are
useful. Here we use the convention Vθ(x | X0) = Vθ(x | ∅) = Kθ(x, x).

Lemma 2.1. It holds that log detKθ(Xn) =
∑n

i=1 logVθ(xi | Xi−1).
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Proof. The claim follows from straightforward iteration of the variance formula (2.3) and the
block determinant identity

det

(
a b
bT C

)
= det(C)(a− bTC−1b)

for any a ∈ R, b ∈ Rn−1 and any invertible C ∈ R(n−1)×(n−1).

Lemma 2.2. For any f0 : Ω → R we have

f0(Xn)
TKθ(Xn)

−1f0(Xn) = ∥µθ,f0(· | Xn)∥2θ . (2.9)

Moreover, if f0 ∈ H(Kθ), then

f0(Xn)
TKθ(Xn)

−1f0(Xn) = ∥µθ,f0(· | Xn)∥2θ ≤ ∥f0∥2θ .

Proof. Equation (2.9) follows from the expression for the conditional mean in (2.2) and the fact,
which is a consequence of the reproducing property in (2.4), that∥∥∥∥∥

n∑
i=1

aiKθ(·, xi)

∥∥∥∥∥
2

θ

=
n∑

i=1

n∑
j=1

aiaj⟨Kθ(·, xi),Kθ(·, xj)⟩θ = aTKθ(Xn)a

for any a = (a1, . . . , an) ∈ Rn. The inequality is a consequence of the minimum-norm
interpolation property in (2.5) and the fact that f0 trivially interpolates itself.

From the block matrix inversion formula one easily obtains the relatively well known (e.g.,
Xu and Stein, 2017, Section 4.2.2) expansion

f0(Xn)
TKθ(Xn)

−1f0(Xn) =

n∑
i=1

(f0(xi)− µθ,f0(xi | Xi−1))
2

Vθ(xi | Xi−1)
. (2.10)

Applying (2.10) and Lemma 2.1 to (2.8) shows that the objective functions for maximum
likelihood estimation and cross-validation are of similar form. It should therefore be no surprise
that the two parameter estimation methods share many properties (an additional interesting
connection can be found in Fong and Holmes, 2020).

2.3.1 Lower Bounds

The following theorem yields lower bounds on smoothness parameter estimates.

Theorem 2.3. Let ∆ ⊂ Θ and θ0 ∈ Θ.

1. If B is a set of real-valued functions on Ω such that

lim sup
n→∞

sup
θ∈∆

sup
f0∈B

[
∥µθ0,f0(· | Xn)∥2θ0 +

n∑
i=1

log
Vθ0(xi | Xi−1)

Vθ(xi | Xi−1)

]
< 0, (2.11)

then θ̂f0ML(Xn) /∈ ∆ for every f0 ∈ B when n is sufficiently large.

2. If B is a set of real-valued functions on Ω such that

lim sup
n→∞

sup
θ∈∆

sup
f0∈B

n∑
i=1

[
(f0(xi)− µθ0,f0(xi | Xi

n))
2

Vθ0(xi | Xi
n)

+ log
Vθ0(xi | Xi

n)

Vθ(xi | Xi
n)

]
< 0, (2.12)

then θ̂f0CV(Xn) /∈ ∆ for every f0 ∈ B when n is sufficiently large.

6



Proof. Let us consider maximum likelihood estimation first. Let θ ∈ Θ. Lemmas 2.1 and 2.2
yield

ℓf0ML(θ0 | Xn) = ∥µθ0,f0(· | Xn)∥2θ0 + log detKθ0(Xn)

≤ ∥µθ,f0(· | Xn)∥2θ + ∥µθ0,f0(· | Xn)∥2θ0 + log detKθ0(Xn)

= ∥µθ,f0(· | Xn)∥2θ + ∥µθ0,f0(· | Xn)∥2θ0 +
n∑

i=1

logVθ0(xi | Xi−1)

= ∥µθ,f0(· | Xn)∥2θ + ∥µθ0,f0(· | Xn)∥2θ0

+

n∑
i=1

[
logVθ(xi | Xi−1) + log

Vθ0(xi | Xi−1)

Vθ(xi | Xi−1)

]

= ℓf0ML(θ | Xn) + ∥µθ0,f0(· | Xn)∥2θ0 +
n∑

i=1

log
Vθ0(xi | Xi−1)

Vθ(xi | Xi−1)
.

It now follows from (2.11) that ℓf0ML(θ0 | Xn) < infθ∈∆ ℓf0ML(θ | Xn) for every f0 ∈ B when n
is sufficiently large, which means that the maximum likelihood estimate, being a minimiser of
ℓf0ML(· | Xn), must be outside of ∆ for all f0 ∈ B when n is sufficiently large. The proof for
cross-validation is analogous.

The role of θ0 in Theorem 2.3 is somewhat subtle. For θ = θ0 the logarithmic terms in (2.11)
and (2.12) are non-negative. Because the non-logarithmic terms are always non-negative, this
means that θ0 cannot be an element of ∆. Therefore one should select θ0 such that the set ∆ can
be made as large as possible. When we consider smoothness estimation for Matérns in Section 3,
assumptions (2.11) and (2.12) are verified by taking θ0 and ∆ such that [specifically, see (3.25)
and (3.26)]

lim
n→∞

sup
θ∈∆

Vθ0(xn | Xn−1)

Vθ(xn | Xn−1)
= 0, (2.13)

which states that the conditional variance should decay faster for the parameter θ0 than for any
parameter θ ∈ ∆. Because the conditional variance is the supremum over the unit ball of the
RKHS by the equivalence in (2.6), the limit in (2.13) implies that H(Kθ0) is essentially smaller
as a set than H(Kθ) for any θ ∈ ∆. Note that (2.13) is not necessary for (2.11) and (2.12) to
hold. For example, RKHSs of two Matérn kernels in (1.1) with any positive scale parameters λ1

and λ2 are norm-equivalent; see (3.5) and (3.6). If one is estimating the scale parameter and ∆ is
an interval bounded away from zero and infinity, the ratio in (2.13) cannot tend to zero.

For maximum likelihood estimation it is not necessary to use Lemma 2.1 to decompose the
determinant as a sum of variances. By writing

log detKθ0(Xn) = log detKθ(Xn) + log det
[
Kθ0(Xn)Kθ(Xn)

−1
]
,

we could have replaced (2.11) with the equivalent condition

lim sup
n→∞

sup
θ∈∆

sup
f0∈B

[
∥µθ0,f0(· | Xn)∥2θ0 + log

detKθ0(Xn)

detKθ(Xn)

]
< 0. (2.14)

Because the kernel matrix determinant is known as the model complexity and the data-fit term
∥µθ0,f0(· | Xn)∥θ0 quantifies how well the model fits the data, the condition (2.14) gives the
following interpretation of Theorem 2.3 for maximum likelihood estimation: If there is a
parameter θ0 such that the model for this parameter fits the data sufficiently well (i.e., the data-fit
is bounded or grows slowly) and each parameter in ∆ corresponds to a model more complex
than that for θ0 (i.e., the log-ratio of model complexities is sufficiently small or tends to negative
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infinity sufficiently fast), then the parameter estimate cannot be contained in ∆. That is, maximum
likelihood estimation prefers simple models that fit the data well.

The following corollary is a specialisation of Theorem 2.3 to a setting where Θ is an interval,
which we take to be any connected subset of R, and θ can be thought of as a smoothness
parameter, so that H(Kθ1) ⊊ H(Kθ2) whenever θ1 > θ2.1 Under suitable conditions, the
implication θ0 /∈ ∆ may then be expressed as an inequality that provides an asymptotic lower
bound on the smoothness estimates.

Corollary 2.4. Let Θ ⊂ R be an interval and θ0 ∈ Θ.

1. If B is a set of real-valued functions on Ω such that

lim sup
n→∞

sup
θ≤θ1

sup
f0∈B

[
∥µθ0,f0(· | Xn)∥2θ0 +

n∑
i=1

log
Vθ0(xi | Xi−1)

Vθ(xi | Xi−1)

]
< 0

for every θ1 < θ0, then
lim inf
n→∞

inf
f0∈B

θ̂f0ML(Xn) ≥ θ0.

2. If B is a set of real-valued functions on Ω such that

lim sup
n→∞

sup
θ≤θ1

sup
f0∈B

n∑
i=1

[
(f0(xi)− µθ0,f0(xi | Xi

n))
2

Vθ0(xi | Xi
n)

+ log
Vθ0(xi | Xi

n)

Vθ(xi | Xi
n)

]
< 0

for every θ1 < θ0, then
lim inf
n→∞

inf
f0∈B

θ̂f0CV(Xn) ≥ θ0.

Proof. Let Θ be an interval with endpoints aΘ ≤ bΘ that are possibly infinite. The claim follows
by applying Theorem 2.3 to ∆ = Θ ∩ [aΘ, θ1] for each θ1 < θ0 and using the definition of the
lower limit.

In Section 2.4 we shall assume that B is a subset of H(Kθ0), which simplifies the role of θ0
but renders the results somewhat sub-optimal.

2.3.2 Upper Bounds

The following theorem yields upper bounds on smoothness parameter estimates.

Theorem 2.5. Let Σ ⊂ Θ and suppose that B is a bounded subset of H(KθB ) for some θB ∈ Θ.

1. If
lim sup
n→∞

VθB (xn | Xn−1) < 1 (2.15)

and
lim inf
n→∞

inf
θ∈Σ

inf
f0∈B

ℓf0ML(θ | Xn) > −∞, (2.16)

then θ̂f0ML(Xn) /∈ Σ for every f0 ∈ B when n is sufficiently large.

2. Let b = supf0∈B ∥f0∥θB . If

lim sup
n→∞

max
1≤i≤n

VθB (xi | Xi
n) < exp(−b2) (2.17)

and
lim inf
n→∞

inf
θ∈Σ

inf
f0∈B

ℓf0CV(θ | Xn) > −∞, (2.18)

then θ̂f0CV(Xn) /∈ Σ for every f0 ∈ B when n is sufficiently large.
1See Gualtierotti (2015, Section 3.2) for a general treatment of such contractive inclusions of RKHSs.
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Proof. Let b = supf0∈B ∥f0∥θB < ∞. Let us consider maximum likelihood estimation first. By
Lemma 2.2 and (2.15),

ℓf0ML(θB | Xn) = ∥µθB ,f0(· | Xn)∥2θB +

n∑
i=1

logVθB (xi | Xi−1) ≤ b2+

n∑
i=1

logVθB (xi | Xi−1)

tends to negative infinity as n → ∞ uniformly over f0 ∈ B. It thus follows from (2.16) that

sup
f0∈B

ℓf0ML(θB | Xn) < inf
θ∈Σ

inf
f0∈B

ℓf0ML(θ | Xn)

for all sufficiently large n, which gives the claim for maximum likelihood estimation. The proof
for cross-validation is analogous, except that now we use (2.7) to get

ℓf0CV(θB | Xn) =

n∑
i=1

[
(f0(xi)− µθB ,f0(xi | Xi

n))
2

VθB (xi | Xi
n)

+ logVθB (xi | Xi
n)

]

≤
n∑

i=1

[
b2 + logVθB (xi | Xi

n)
]
,

which tends to negative infinity as n → ∞ by (2.17).

The assumptions (2.15) and (2.17) usually hold. For instance, if Ω is a compact metric space,
the sequence {xi}∞i=1 is dense in Ω, and Kθ is continuous, then supx∈Ω Vθ(x | Xn) → 0 as
n → ∞. That (2.17) can be likely improved somewhat is discussed later in Remark 2.8. The gist
of Theorem 2.5 is in the interplay between θB and Σ: By (2.15) and (2.17), both ℓf0ML(θB | Xn)
and ℓf0CV(θB | Xn) tend to negative infinity, which may be interpreted as θB being a plausible
parameter estimate. The assumptions (2.16) and (2.18) then state that no parameter in Σ is
plausible, which limits the size of ∆ by prohibiting θ ∈ ∆ such that H(KθB ) ⊂ H(Kθ). For if
this inclusion were true and Vθ(xn | Xn−1) tended to zero, both

ℓf0ML(θ | Xn) = ∥µθ,f0(· | Xn)∥2θ +
n∑

i=1

logVθ(xi | Xi−1) ≤ ∥f0∥2θ +
n∑

i=1

logVθ(xi | Xi−1)

and ℓf0CV(θ | Xn) would tend to negative infinity, thus violating (2.16) and (2.18). The following
corollary provides a version of Theorem 2.5 adapted to intervals and complements Corollary 2.4.

Corollary 2.6. Let Θ ⊂ R be an interval and θ0 ∈ Θ. Suppose that B is a bounded subset of
H(KθB ) for some θB ∈ Θ.

1. If

lim sup
n→∞

VθB (xn | Xn−1) < 1 and lim inf
n→∞

inf
θ≥θ1

inf
f0∈B

ℓf0ML(θ | Xn) > −∞,

for every θ1 > θ0, then
lim sup
n→∞

sup
f0∈B

θ̂f0ML(Xn) ≤ θ0.

2. Let b = supf0∈B ∥f0∥θB . If

lim sup
n→∞

max
1≤i≤n

VθB (xi | Xi
n) < exp(−b2) and lim inf

n→∞
inf
θ≥θ1

inf
f0∈B

ℓf0CV(θ | Xn) > −∞,

for every θ1 > θ0, then
lim sup
n→∞

sup
f0∈B

θ̂f0CV(Xn) ≤ θ0.

Unlike the assumption that B ⊂ H(Kθ0) in the next section, the purpose of the assumption
in Theorem 2.5 and Corollary 2.6 that B be a subset of some RKHS is only to guarantee that the
objective functions do not tend to negative infinity for all possible parameters.
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2.4 Parameter Estimation in an RKHS Setting
By assuming that B ⊂ H(Kθ0) we obtain a weaker version of Theorem 2.3.

Theorem 2.7. Let ∆ ⊂ Θ and θ0 ∈ Θ. Suppose that B is a bounded subset of H(Kθ0).

1. If

lim sup
n→∞

sup
θ∈∆

Vθ0(xn | Xn−1)

Vθ(xn | Xn−1)
< 1, (2.19)

then θ̂ML(Xn) /∈ ∆ for every f0 ∈ B when n is sufficiently large.

2. Let b = supf0∈B ∥f0∥θ0 . If

lim sup
n→∞

sup
θ∈∆

max
1≤i≤n

Vθ0(xi | Xi
n)

Vθ(xi | Xi
n)

< exp(−b2), (2.20)

then θ̂CV(Xn) /∈ ∆ for every f0 ∈ B when n is sufficiently large.

Proof. Let b = supf0∈B ∥f0∥θ0 < ∞. Let us consider maximum likelihood estimation first.
Because B ⊂ H(Kθ0), we get from Lemma 2.2 that

sup
θ∈∆

sup
f0∈B

[
∥µθ0,f0(· | Xn)∥2θ0 +

n∑
i=1

log
Vθ0(xi | Xi−1)

Vθ(xi | Xi−1)

]

≤ b2 +

n∑
i=1

sup
θ∈∆

log
Vθ0(xi | Xi−1)

Vθ(xi | Xi−1)
,

which tends to negative infinity as n → ∞ by (2.19). Therefore (2.11) holds, so that the claim
follows from Theorem 2.3. Let us then consider cross-validation. Because B ⊂ H(Kθ0), we
may use (2.7) to get

sup
θ∈∆

n∑
i=1

[
(f0(xi)− µθ0,f0(xi | Xi

n))
2

Vθ0(xi | Xi
n)

+ log
Vθ0(xi | Xi

n)

Vθ(xi | Xi
n)

]

≤
n∑

i=1

[
b2 + sup

θ∈∆
log

Vθ0(xi | Xi
n)

Vθ(xi | Xi
n)

]
≤ n

[
b2 + sup

θ∈∆
max
1≤i≤n

log
Vθ0(xi | Xi

n)

Vθ(xi | Xi
n)

]
,

which tends to negative infinity as n → ∞ by (2.20). Therefore (2.12) holds, so that the claim
follows from Theorem 2.3.

Remark 2.8. Suppose for simplicity that B = {f0}. It is likely that (2.20), and similarly (2.17),
can be improved to requiring simply that the upper limit be less than one. For had we used (2.10)
and (2.7) and proceeded as we did in the case of cross-validation, we would have arrived at the
similar assumption

lim sup
n→∞

sup
θ∈∆

Vθ0(xn | Xn−1)

Vθ(xn | Xn−1)
< exp(−∥f0∥2θ0)

for maximum likelihood estimation from

sup
θ∈∆

[
∥µθ0,f0(· | Xn)∥2θ0 +

n∑
i=1

log
Vθ0(xi | Xi−1)

Vθ(xi | Xi−1)

]

= sup
θ∈∆

n∑
i=1

[
(f0(xi)− µθ,f0(xi | Xi−1))

2

Vθ(xi | Xi−1)
+ log

Vθ0(xi | Xi−1)

Vθ(xi | Xi−1)

]

≤ n ∥f0∥2θ0 +
n∑

i=1

sup
θ∈∆

log
Vθ0(xi | Xi−1)

Vθ(xi | Xi−1)
.
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This indicates that using (2.7) should be avoided. It is straightforward to improve (2.7) to
|f(x)− µθ,f (x | X)| ≤ ∥f − µθ,f (· | X)∥θ Vθ(x | X)1/2. However, controlling the RKHS
norm ∥f − µθ,f (· | X)∥θ is challenging.

To see that Theorem 2.7 is weaker than Theorem 2.3, observe that assumptions (2.11)
and (2.12) can hold even when

∥µθ0,f0(· | Xn)∥2θ0 → ∞ or
(f0(xi)− µθ0,f0(xi | Xi

n))
2

Vθ0(xi | Xi
n)

→ ∞,

which, as we saw in the proof of Theorem 2.7, cannot happen if B ⊂ H(Kθ0). This weakness
of Theorem 2.7 is explained by the fact that B ⊂ H(Kθ0) is a “wrong” assumption to make
because the samples of a Gaussian process with covariance kernel Kθ are not elements of H(Kθ)
but of a somewhat larger RKHS (Driscoll 1973; we discuss this more in Sections 2.5 and 3.5).
That is, maximum likelihood estimation and cross-validation do not attempt to find θ0 such
that B ⊂ H(Kθ0) but θ0 for which the elements of B resemble, in some sense, the samples
of a Gaussian process with covariance kernel Kθ0 . We shall see this phenomenon in action in
Section 3 because for Matérn kernels on Rd the samples have d/2 orders of smoothness less
than the RKHS. By applying Theorem 2.7 to the setting where Θ is an interval we obtain the
following corollary.

Corollary 2.9. Let Θ ⊂ R be an interval and θ0 ∈ Θ. Suppose that B is a bounded subset of
H(Kθ0).

1. If

lim sup
n→∞

sup
θ≤θ1

Vθ0(xn | Xn−1)

Vθ(xn | Xn−1)
< 1 for every θ1 < θ0, (2.21)

then
lim inf
n→∞

inf
f0∈B

θ̂f0ML(Xn) ≥ θ0.

2. Let b = supf0∈B ∥f0∥θ0 . If

lim sup
n→∞

sup
θ≤θ1

max
1≤i≤n

Vθ0(xi | Xi
n)

Vθ(xi | Xi
n)

< exp(−b2) for every θ1 < θ0, (2.22)

then
lim inf
n→∞

inf
f0∈B

θ̂f0CV(Xn) ≥ θ0.

2.5 On Driscoll’s Theorem
The determinantal condition (2.14) has a connection to sample path properties of Gaussian
processes that is worth elucidating. Because the product of two positive-definite matrices has
positive eigenvalues, the inequality of arithmetic and geometric means yields

det
[
Kθ0(Xn)Kθ(Xn)

−1
]
≤
(
1

n
tr
[
Kθ0(Xn)Kθ(Xn)

−1
])n

. (2.23)

From (2.14) and (2.23) we obtain the following variant of Theorem 2.7 for maximum likelihood
estimation.

Theorem 2.10. Let ∆ ⊂ Θ and θ0 ∈ Θ. If B is a set of real-valued functions on Ω such that

lim sup
n→∞

sup
θ∈∆

sup
f0∈B

[
∥µθ0,f0(· | Xn)∥2θ0 + n log

(
1

n
tr
[
Kθ0(Xn)Kθ(Xn)

−1
])]

< 0, (2.24)

then θ̂f0ML(Xn) /∈ ∆ for every f0 ∈ B when n is sufficiently large.
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Suppose that Ω is a separable metric space, that {xi}∞i=1 is dense in Ω, and that the kernels
Kθ0 and Kθ are continuous. Driscoll (1973, Theorem 3) has proved that, under certain additional
assumptions,

lim
n→∞

tr
[
Kθ0(Xn)Kθ(Xn)

−1
]
< ∞ (2.25)

if and only if the samples from a Gaussian process with covariance kernel Kθ0 are contained
in H(Kθ) with probability one. In particular, setting θ = θ0 shows that the samples are not
contained in the RKHS of Kθ0 . See Lukić and Beder (2001) for the equivalence of (2.25) to a
nuclear dominance condition between Kθ and Kθ0 . If the set B is such that ∥µθ0,f0(· | Xn)∥2θ0
does not grow faster than linearly in n, which is the case if B is a bounded subset of H(Kθ0),
then (2.24) is implied by the following version of Driscoll’s condition (2.25) that is uniform over
θ ∈ ∆:

lim sup
n→∞

sup
θ∈∆

tr
[
Kθ0(Xn)Kθ(Xn)

−1
]
< C < ∞ (2.26)

for some C > 0. If (2.26) holds, then

lim sup
n→∞

sup
θ∈∆

[
n log

(
1

n
tr
[
Kθ0(Xn)Kθ(Xn)

−1
])]

≤ n log
C

n
= n logC − n log n,

which implies (2.24) if the RKHS norm is assumed to grow at most linearly.

3 Smoothness Estimation for Matérns
In this section we apply the results of Section 2 to estimation of the smoothness parameter ν of
the Matérn class in (1.1). We fix the positive magnitude and scale parameters σ and λ and write
the Matérn kernel of smoothness ν > 0 as

Kν(x, y) = Φν(x− y),

where the function

Φν(z) = σ2c(ν)

(√
2ν ∥z∥
λ

)ν
Kν

(√
2ν ∥z∥
λ

)
(3.1)

is defined on Rd. Recall that Kν is the modified Bessel function of the second kind of order ν. In
most results of this section we shall consider smoothness estimation over the bounded interval
Θ = [νmin, νmax] for 0 < νmin ≤ νmax < ∞ and employ the following assumptions on the positive
scaling factor c(ν):

inf
ν∈[νmin,νmax]

c(ν) > 0, (3.2a)

and
sup

ν∈[νmin,νmax]

c(ν) < ∞. (3.2b)

These assumptions hold if the scaling factor is a continuous function of ν. Let Γ denote the
Gamma function. The scaling factor c(ν) = 21−ν/Γ(ν), which is typically used because it
ensures that Kν tends pointwise to the Gaussian kernel

K(x, y) = σ2 exp

(
− ∥x− y∥2

2λ2

)
as ν → ∞ (Stein, 1999, pp. 49–50), is obviously continuous.

We use ≲n (with ≳n defined analogously) to denote an inequality that holds up to a constant
factor for all n ∈ N. That is, an ≲n bn means that there is a non-negative constant C such that
an ≤ Cbn for all n. We write an ≍n bn if an ≲n bn and an ≳n bn.
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3.1 Sobolev Spaces

The Fourier transform of f ∈ L2(Rd) is defined as f̂(ξ) =
∫
Rd f(x)e

−ixTξ dx. For α > 0, the
Sobolev space Hα(Rd) consists of functions f ∈ L2(Rd) such that

∥f∥2Hα(Rd) =

∫
Rd

(1 + ∥ξ∥2)α|f̂(ξ)|2 dξ < ∞. (3.3)

By the Sobolev embedding theorem, assuming that α > d/2 ensures that every element of
Hα(Rd) can be uniquely identified with a continuous function, in which case Hα(Rd) can be
interpreted as a space of functions rather than of their equivalence classes. If α is an integer, the
Sobolev space consists of functions whose weak derivatives up to order α exist and are in L2(Rd).
Moreover, every function in Hα(Rd) is ⌊α − d/2⌋ times differentiable in the classical sense.
On a subset Ω of Rd the Sobolev space Hα(Ω) is defined as the set of functions f : Ω → R for
which there exists an extension fe ∈ Hα(Rd) such that fe|Ω = f . The norm of Hα(Ω) is

∥f∥Hα(Ω) = min{∥fe∥Hα(Rd) : fe ∈ Hα(Rd) and fe|Ω = f}. (3.4)

We shall formulate all our auxiliary results in Hα(Rd) and use Hα(Ω) only in what we consider
to be main results of this section.

The RKHS of any stationary kernel of the form Kθ(x, y) = Φθ(x − y) for an integrable
and continuous Φθ : Rd → R can be expressed in terms of the Fourier transform of Φθ (Wend-
land, 2005, Theorem 10.12). Namely, H(Kθ) contains those square-integrable and continuous
functions f : Rd → R for which

∥f∥2θ =

∫
Rd

|f̂(ξ)|2

Φ̂θ(ξ)
dξ < ∞. (3.5)

The function Φν in (3.1), which defines the Matérn class, has the Fourier transform

Φ̂ν(ξ) =
1

Cν

(
2ν

λ2
+ ∥ξ∥2

)−(ν+d/2)

with Cν =
πd/2

σ2c(ν)2ν−1Γ(ν + d/2)

(
λ2

2ν

)ν

. (3.6)

Therefore the norm ∥·∥ν of the Matérn RKHS H(Kν) is

∥f∥2ν = Cν

∫
Rd

(
2ν

λ2
+ ∥ξ∥2

)ν+d/2

|f̂(ξ)|2 dξ. (3.7)

It is straightforward to compute that

Cν ∥f∥2Hν+d/2(Rd) min{1, bν} ≤ ∥f∥2ν ≤ Cν max{1, bν} ∥f∥2Hν+d/2(Rd) , (3.8)

where bν = (2ν/λ2)ν+d/2. This shows (as is well known) that H(Kν) is norm-equivalent to the
Sobolev space Hν+d/2(Rd), which is to say that H(Kν) = Hν+d/2(Rd) as sets and the norms
∥·∥ν and ∥·∥Hν+d/2(Rd) are equivalent.

3.2 Self-Similar Functions
Lower bounds on smoothness parameter estimates that we prove apply to any Sobolev function.
But to obtain upper bounds we need to work with a class of self-similar functions that we define
as follows.

Definition 3.1. Let β > 0. We say that a function f ∈ L2(Rd) is β-self-similar if

sup
ξ∈Rd

∥ξ∥2β+d |f̂(ξ)|2 < ∞ (3.9)
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and there are positive constants C and R0 such that∫
∥ξ∥≥R

|f̂(ξ)|2 dξ ≥ CR−2β (3.10)

for all R ≥ R0. A function on Ω is β-self-similar if it has a β-self-similar extension.

As discussed in the introduction, self-similarity assumptions are routinely used in the literature
on non-parametric statistics to exclude “inconvenient” or “deceptive” functions whose smoothness
cannot be estimated (Bull, 2012; Szabó et al., 2015; Nickl and Szabó, 2016). See in particular
Section 3 in Szabó et al. (2015). Functions such that

C1 ∥ξ∥−(β+d/2) ≤ |f̂(ξ)| ≤ C2 ∥ξ∥−(β+d/2)

for some positive C1 and C2 and all ξ outside some ball centered at the origin are prototypical
examples of β-self-similar functions because

sup
ξ∈Rd

∥ξ∥2β+d |f̂(ξ)|2 ≤ C2
2

and ∫
∥ξ∥≥R

|f̂(ξ)|2 dξ ≥ C2
1

∫
∥ξ∥≥R

∥ξ∥−2β−d
dξ = C2

1CdR
−2β (3.11)

for a certain positive constant Cd.

Lemma 3.2. If f ∈ L2(Rd) is β-self-similar, then f ∈ Hα(Rd) if α < β and f /∈ Hα(Rd) if
α > β.

Proof. By (3.9), there is a non-negative constant c such that

∥f∥2Hα(Rd) =

∫
Rd

(1 + ∥ξ∥2)α|f̂(ξ)|2 dξ ≤ c

∫
Rd

(1 + ∥ξ∥2)α ∥ξ∥−2β−d
dξ,

which is finite if α < β. Therefore a β-self-similar function is in Hα(Rd) for every α < β. On
the other hand, from (3.10) we get

∥f∥2Hα(Rd) =

∫
Rd

(1 + ∥ξ∥2)α|f̂(ξ)|2 dξ ≥
∫
∥ξ∥≥R

(1 + ∥ξ∥2)α|f̂(ξ)|2 dξ

≥ 2αR2α

∫
∥ξ∥≥R

|f̂(ξ)|2 dξ

≥ C2αR2(α−β)

for every R ≥ max{1, R0}. Therefore f /∈ Hα(Rd) if α > β.

We shall work with self-similar functions that are supported in a given open set. Let Ω ⊂ Rd

be an open set and define

Hβ
ss(Ω) = {f ∈ L2(Rd) : f is β-self-similar and the support of f is contained in Ω}.

It seems likely that the requirement that the functions be supported in Ω is not necessary in our
results; see the discussion in Section 3.3.3. The following basic construction shows that Hβ

ss(Ω)
is non-empty.

Lemma 3.3. Let Ω ⊂ Rd be an open set. For every β > d/2 there is f ∈ L2(Rd) such that the
support of f is contained in Ω and

C1(1 + ∥ξ∥2)−(β+d/2) ≤ |f̂(ξ)|2 ≤ C2(1 + ∥ξ∥2)−(β+d/2) (3.12)

for some positive C1 and C2 and all ξ ∈ Rd. This function is in Hβ
ss(Ω) and an element of

Hα(Rd) if and only if α < β.
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Proof. We may assume without loss of generality that Ω is any open ball. By first setting
ν = β/2−d/4 > 0 and then selecting σ and λ properly in (3.1) and (3.6), we obtain a function g
with the Fourier transform

ĝ(ξ) = (1 + ∥ξ∥2)−(β+d/2)/2.

There exists a non-negative bump function ϕ : Rd → R that (i) is supported on the unit ball, (ii)
satisfies supx∈Rd ϕ(x) = ϕ(0) = 1 and (iii) is infinitely differentiable and hence has a Fourier
transform which decays faster than any polynomial. The standard example of such a bump
function is given by

ϕ(x) = exp

(
− 1

1− ∥x∥2

)
if ∥x∥ < 1 and ϕ(x) = 0 if ∥x∥ ≥ 1. (3.13)

Because ϕ is radial, its Fourier transform is real-valued and therefore the function ϕ2 = ϕ ∗ϕ has
non-negative Fourier transform by the convolution theorem. Because ϕ is supported on the unit
ball, so are ϕ2 and f := ϕ2g. It remains to show that f satisfies other requirements in the lemma.

First, because the Fourier transform of ϕ decays faster than any polynomial, there is Cϕ > 0
such that

ϕ̂2(ξ) = ϕ̂(ξ)2 ≤ Cϕ(1 + ∥ξ∥2)−(β+d/2)/2

for all ξ ∈ Rd. From ∥ξ∥ ≤ ∥ξ − ω∥+ ∥ω∥ it follows that

|f̂(ξ)| =
∫
Rd

ϕ̂2(ω)ĝ(ξ − ω) dω

≤ Cϕ

∫
Rd

(1 + ∥ω∥2)−(β+d/2)/2(1 + ∥ξ − ω∥2)−(β+d/2)/2 dω

≤ Cϕ

∫
∥ξ−ω∥≤ 1

2∥ξ∥

(
1 +

∥ξ∥2

4

)−(β+d/2)/2

(1 + ∥ξ − ω∥2)−(β+d/2)/2 dω

+ Cϕ

∫
∥ξ−ω∥≥ 1

2∥ξ∥
(1 + ∥ω∥2)−(β+d/2)/2

(
1 +

∥ξ∥2

4

)−(β+d/2)/2

dω

≤ 2β+d/2Cϕ

[ ∫
Rd

(1 + ∥ω∥2)−(β+d/2)/2 dω

]
(1 + ∥ξ∥2)−(β+d/2)/2,

which establishes the upper bound in (3.12).
Because ϕ̂2 is continuous and ϕ̂2(0) =

∫
Rd ϕ2(x) dx > 0, there is a positive constant δ such

that cϕ := min∥ω∥≤δ ϕ̂2(ω) > 0. Therefore

|f̂(ξ)| =
∫
Rd

ϕ̂2(ξ − ω)ĝ(ω) dω ≥
∫
∥ξ−ω∥≤δ

ϕ̂2(ξ − ω)(1 + ∥ω∥2)−(β+d/2)/2 dω

≥ cϕ

∫
∥ξ−ω∥≤δ

(1 + ∥ω∥2)−(β+d/2)/2 dω.

Let Cd,δ be the volume of a d-dimensional δ-ball. For ∥ξ∥ ≥ δ we get

|f̂(ξ)| ≥ cϕ

∫
∥ξ−ω∥≤δ

(1 + ∥ω∥2)−(β+d/2)/2 dω

≥ cϕ

∫
∥ξ−ω∥≤δ

(1 + (∥ξ∥+ δ)2)−(β+d/2)/2 dω

≥ Cd,δ cϕ(1 + 4 ∥ξ∥2)−(β+d/2)/2

≥ 2−(β+d/2)Cd,δ cϕ(1 + ∥ξ∥2)−(β+d/2)/2.

The lower bound in (3.12) follows from this estimate and inf∥ξ∥≤δ |f̂(ξ)| > 0.
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It is clear that f satisfies (3.9), while (3.10) follows from a computation similar to (3.11).
Finally, that f ∈ Hα(Rd) if and only if α < β is a consequence of (3.12) and the fact that∫

Rd

(1 + ∥ξ∥2)α(1 + ∥ξ∥2)−(β+d/2) dξ < ∞

if and only if α < β.

3.3 Smoothness Estimation
Let Ω ⊂ Rd be a bounded set. The fill-distance hn,Ω of the points Xn = {xi}ni=1 is

hn,Ω = sup
x∈Ω

dist(x,Xn) = sup
x∈Ω

min
i=1,...,n

∥x− xi∥

and their separation radius qn is

qn =
1

2
min
i ̸=j

∥xi − xj∥ .

The fill-distance equals the radius of the largest ball in Ω which does not contain any of the points
in Xn, while an open ball with radius qn can contain at most one point in Xn.

Definition 3.4 (Quasi-uniformity). Suppose that Ω ⊂ Rd is bounded. A point sequence
{xi}∞i=1 ⊂ Ω is quasi-uniform on Ω if there is a positive constant cqu such that

qn ≤ hn,Ω ≤ cquqn for every n ∈ N. (3.14)

Quasi-uniform points cover the domain Ω in a sufficiently uniform manner, in that the ratio
between the distance of the two nearest points in Xn and the diameter of the largest empty region
in Ω which does not contain any of the points in Xn remains bounded from above and below.
Quasi-uniformity implies that (e.g., Wendland, 2005, Proposition 14.1)

qn ≍n hn,Ω ≍n n−1/d. (3.15)

Although the quasi-uniformity assumption is not satisfied by random points, extensions of
our results for random points may be possible by following Krieg and Sonnleitner (2023) and
considering Lp(Ω)-norms of the distance function dist(·, Xn) for p < ∞. The following
assumption on regularity of the domain Ω is needed in some of our results.

Assumption 3.5. The domain Ω ⊂ Rd is a bounded connected open set which satisfies an
interior cone condition and has a Lipschitz boundary.

See Definition 3.6 in Wendland (2005) for the interior cone condition and p. 189 in Stein
(1970) for the definition of a Lipschitz boundary. The former of the assumptions prohibits the
existence of pinch points on the boundary of Ω by requiring that each x ∈ Ω be a vertex of a cone
contained in Ω while the latter prescribes that the boundary of Ω is sufficiently regular. Standard
domains, such as (0, 1)d and open bounded convex sets, satisfy Assumption 3.5.

3.3.1 Variance Bounds

Propositions 3.6 and 3.7 provide upper and lower bounds on the conditional variance for Matérn
kernels. Although both propositions are well known in the literature (e.g., Novak, 1988; Novak
and Triebel, 2006), we include a full (and fairly thorough) proof of the latter proposition because
we need to keep track of the constants that appear in the bounds.
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Proposition 3.6. Suppose that Ω ⊂ Rd satisfies Assumption 3.5 and that the points {xi}∞i=1 are
such that hn,Ω ≲n n−1/d. Then

sup
x∈Ω

Vν(x | Xn) ≲n n−2ν/d

for every ν > 0.

Proof. This result is a direct consequence of Corollary 4.1 in Arcangéli et al. (2007) and the
norm-equivalence of H(Kν) and Hν+d/2(Rd). A slightly less general version would follow
from Proposition 3.6 in Wendland and Rieger (2005).

Proposition 3.7. Suppose that Ω ⊂ Rd is bounded, that c(ν) satisfies (3.2a), and that the points
{xi}∞i=1 are quasi-uniform. Then

inf
ν∈[νmin,τ ]

min
1≤i≤n

Vν(xi | Xi
n) ≳n n−2τ/d

for every τ ∈ [νmin, νmax].

Proof. Let τ ∈ [νmin, νmax] and ν ∈ [νmin, τ ]. Recall from (2.6) that

Vν(xi | Xi
n) = sup

∥f∥ν≤1

|f(x)− µν,f (xi | Xi
n)|

2
.

From this expression it follows that Vν(xi | Xi
n) ≥ |f(xi)|2 if f ∈ H(Kν) = Hν+d/2(Rd) is a

function such that ∥f∥ν ≤ 1 and f(x) = 0 for every x ∈ Xi
n since, as can be seen from (2.2), in

this case µν,f (· | Xi
n) ≡ 0. We now construct such a function.

Let ϕ be the bump function in (3.13). For any q > 0, define the function g : Rd → R via

g(x) = ϕ

(
x− xi

q

)
. (3.16)

This function is an element of Hν+d/2(Rd) for every ν > 0 because the Fourier transform of ϕ
decays faster than any polynomial, which implies that the Sobolev norm in (3.3) is finite. Suppose
that q ≤ 1. Equation (3.7) and the scaling properties of the Fourier transform give

∥g∥2ν = Cν

∫
Rd

(
2ν

λ2
+ ∥ξ∥2

)ν+d/2

|ĝ(ξ)|2 dξ

≤ Cνq
2d

∫
Rd

(
2ν

λ2
+ ∥ξ∥2

)ν+d/2

|ϕ̂(qξ)|2 dξ.

A change of variables and some basic estimates based on q ≤ 1 and ν ≤ τ then yield

∥g∥2ν ≤ Cνq
d

∫
Rd

(
2ν

λ2
+

∥ξ∥2

q2

)ν+d/2

|ϕ̂(ξ)|2 dξ

= Cνλ
−(2ν+d)q−2ν

∫
Rd

(2νq2 + λ2 ∥ξ∥2)ν+d/2|ϕ̂(ξ)|2 dξ

≤ Cνλ
−(2ν+d)q−2ν

∫
Rd

(2ν + λ2 ∥ξ∥2)ν+d/2|ϕ̂(ξ)|2 dξ

≤ CνBλq
−2ν

∫
Rd

(2τ + λ2 ∥ξ∥2)τ+d/2|ϕ̂(ξ)|2 dξ,
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where Bλ = max{1, λ−(2τ+d)}. By assumption (3.2a), there is c > 0 such that Γ(ν + d/2) ≥ c
and c(ν) ≥ c for all ν ∈ [νmin, τ ]. Moreover, maxν>0(2ν)

−ν = e1/(2e). Thus

Cν =
πd/2

σ2c(ν)2ν−1Γ(ν + d/2)

(
λ2

2ν

)ν

≤ 2πd/2

σ2c2
max{1, λ2τ}(2ν)−ν

≤ πd/2

σ2c2
max{1, λ2τ} e1/(2e)

for all ν ∈ [νmin, τ ]. It follows that there is a constant C > 0 such that ∥g∥ν ≤ Cq−ν for every
ν ∈ [νmin, τ ]. Therefore the H(Kν)-norm of the function f = C−1qνg does not exceed one.

Set q = qn and assume that n is sufficiently large that qn ≤ 1 holds. It follows from ϕ
being supported on the unit ball and (3.16), as well as the definition of the separation radius, that
f(x) = 0 for every x ∈ Xi

n. By the argument given in the beginning of the proof and qn ≤ 1,

Vν(xi | Xi
n) ≥ |f(xi)|2 = C−2q2νn g(xi) = C−2q2νn ϕ(0) = C−2q2νn ≥ C−2q2τn

for every ν ∈ [νmin, τ ]. The claim then follows from the assumption that {xi}∞i=1 are quasi-
uniform and (3.15).

3.3.2 Some Norm Bounds

We need upper and lower bounds on the RKHS norm of the conditional mean. These are given in
Propositions 3.8 and 3.10, respectively.

Proposition 3.8. Suppose that Ω ⊂ Rd is bounded and that the points {xi}∞i=1 are quasi-uniform
on Ω. Let B be a bounded subset of Hτ+d/2(Rd) for τ > 0. Then

sup
f∈B

∥µν,f (· | Xn)∥2ν ≲n n2(ν−τ)/d

for every ν ≥ τ .

Proof. The claim follows from Lemma A.1 in Karvonen et al. (2020), quasi-uniformity, and the
norm-equivalence of H(Kν) and Hν+d/2(Rd).

The following lemma states that the Matérn norm for τ > 0 is weaker, in a uniform sense,
than that for all ν ≥ τ if the standard scaling c(ν) = 21−ν/Γ(ν) is used. It seems likely that this
lemma exists in some form in the literature. Note that for Sobolev norms we obtain from (3.3)
the simpler result that ∥f∥Hβ(Rd) ≤ ∥f∥Hα(Rd) if α ≥ β.

Lemma 3.9. Let τ > 0 and suppose that there is a positive constant Cτ such that

c(ν) ≤ Cτ

2νΓ(ν)
(3.17)

for all ν ≥ τ . Then there is a positive constant C such that

∥f∥2τ ≤ C ∥f∥2ν (3.18)

for all ν ≥ τ and f ∈ H(Kτ ), where we set ∥f∥ν = ∞ if f /∈ H(Kν). In particular, the
estimate (3.18) holds for all ν ∈ [τ, νmax] if τ ∈ [νmin, νmax] and c(ν) satisfies (3.2b).

Proof. It is straightforward to compute that the function

pτ,ν(x) =
(2τ/λ2 + x)τ+d/2

(2ν/λ2 + x)ν+d/2
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attains its maximum on [0,∞) at x = d/λ2. Therefore

max
x≥0

pτ,ν(x) =
(2τ/λ2 + d/λ2)τ+d/2

(2ν/λ2 + d/λ2)ν+d/2
=

(
λ2

2

)ν−τ
τ τ+d/2

νν+d/2
· (1 + d/(2τ))τ+d/2

(1 + d/(2ν))ν+d/2

≤
(
λ2

2

)ν−τ
τ τ+d/2

νν+d/2
(1 + d/(2τ))τ+d/2.

(3.19)

Let κτ = c(τ)2τ−1Γ(τ + d/2) and λτ = (1 + d/(2τ))τ+d/2. From (3.19) we get

∥f∥2τ =
πd/2

σ2κτ

(
λ2

2τ

)τ ∫
Rd

(
2τ

λ2
+ ∥ξ∥2

)τ+d/2

|f̂(ξ)|2 dξ

=
πd/2

σ2κτ

(
λ2

2τ

)τ ∫
Rd

pτ,ν(∥ξ∥2)
(
2ν

λ2
+ ∥ξ∥2

)ν+d/2

|f̂(ξ)|2 dξ

≤ πd/2

σ2κτ

(
λ2

2τ

)τ(
λ2

2

)ν−τ
τ τ+d/2

νν+d/2
λτ

∫
Rd

(
2ν

λ2
+ ∥ξ∥2

)ν+d/2

|f̂(ξ)|2 dξ

=
λττ

d/2

κτ
· πd/2

σ2νd/2

(
λ2

2ν

)ν ∫
Rd

(
2ν

λ2
+ ∥ξ∥2

)ν+d/2

|f̂(ξ)|2 dξ

=
λττ

d/2

κτ
· c(ν)2

ν−1Γ(ν + d/2)

νd/2
∥f∥2ν .

The claim then follows from (3.17) and the Gamma function asymptotics Γ(ν+d/2) ∼ νd/2Γ(ν)
as ν → ∞.

For self-similar functions whose support is contained in the domain the RKHS norm of the
conditional mean can be bounded from below by the following proposition, which originally
appeared as Theorem 8 in van der Vaart and van Zanten (2011).

Proposition 3.10. Suppose that Ω ⊂ Rd satisfies Assumption 3.5, that c(ν) satisfies (3.2b), and
that the points {xi}∞i=1 are quasi-uniform on Ω. Let τ ∈ (0, νmax]. Then for every f ∈ H

τ+d/2
ss (Ω)

we have
inf

ν∈[ν1,ν2]
∥µν,f (· | Xn)∥2ν ≳n n2(ν1−τ)/d−4(ν1−τ)δ (3.20)

for any δ ∈ (0, τ), ν1 ∈ [τ, νmax], and ν2 ∈ [ν1, νmax].

Proof. By the minimum-norm property (2.5) and Lemma 3.9, there is a positive constant C such
that

∥µν1,f (· | Xn)∥2ν1
≤ ∥µν,f (· | Xn)∥2ν1

≤ C ∥µν,f (· | Xn)∥ν
for all ν ∈ [τ, νmax]. It therefore suffices to prove (3.20) for the fixed smoothness ν = ν1 (i.e.,
when ν2 = ν1). Proposition 4.7 in Karvonen et al. (2020) with α = ν1 + d/2, β = τ + d/2 ≤ α
and γ = τ − δ + d/2 < β states that

∥µν1,f (· | Xn)∥2ν1
≳n n2γ(α/β−1)/d = n2(ν1−τ)/d−2(ν1−τ)δ/(d(τ+d/2)) (3.21)

if f ∈ Hγ(Rd) is such that |f̂(ξ)|2 ≥ C(1 + ∥ξ∥2)−(β+d/2) for some C > 0 and all ξ ∈ Rd

and the support of f is contained in Ω. This assumption on the decay of the Fourier transform
implies (3.10). However, by inspection of the proofs of Proposition 4.7 in Karvonen et al. (2020)
[specifically, the equation after (A.10)] and Theorem 8 in van der Vaart and van Zanten (2011)
we see that (3.10) is sufficient to establish (3.21). Moreover, that ⌊γ⌋ > d/2 may be relaxed to
γ > d/2 by using Corollary 4.1 of Arcangéli et al. (2007) to derive Equation (A.9) in Karvonen
et al. (2020). For any f ∈ H

τ+d/2
ss (Ω) we therefore have

∥µν1,f (· | Xn)∥2ν1
≳n= n2(ν1−τ)/d−2(ν1−τ)δ/(d(τ+d/2)) ≥ n2(ν1−τ)/d−4(ν1−τ)δ,

which completes the proof.
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3.3.3 Main Result for Matérns

Propositions 3.6 to 3.8 and 3.10 yield our main result on smoothness estimation in the Matérn
model. We shall use a parameter space of the following form:

Θ = [νmin, νmax] for νmin ∈ (0, νmax] and νmax ∈ (d/2,∞). (3.22)

Theorem 3.11. Let Θ be given in (3.22). Suppose that c(ν) satisfies (3.2a), that Ω ⊂ Rd satisfies
Assumption 3.5, and that the points {xi}∞i=1 are quasi-uniform on Ω. If B is a bounded subset of
Hν0(Ω) for ν0 ∈ (d/2, νmax], then

lim inf
n→∞

inf
f0∈B

ν̂f0ML(Xn) ≥ ν0 and lim inf
n→∞

inf
f0∈B

ν̂f0CV(Xn) ≥ ν0 − d/2. (3.23)

Moreover, the bound for maximum likelihood estimation is sharp if c(ν) satisfies also (3.2b), in
the sense that for every ε > 0 there is f0 ∈ Hν0(Ω) such that

lim sup
n→∞

ν̂f0ML(Xn) ≤ ν0 + ε. (3.24)

Proof. By (3.4), each f0 ∈ B ⊂ Hν0(Ω) may be identified with fe ∈ Hν0(Rd) such that
fe|Ω = f0 and the Sobolev norms of f0 and fe are equal. The set of these extensions fe is
bounded in Hν0(Rd). We may therefore proceed as if B were a bounded subset of Hν0(Rd).
Let ν̃ > 0 and ν1 ∈ Θ. Propositions 3.6 and 3.7 yield

sup
ν∈[νmin,ν1]

max
1≤i≤n

Vν̃(xi | Xi
n)

Vν(xi | Xi
n)

≲n
n−2ν̃/d

n−2ν1/d
= n−2(ν̃−ν1)/d. (3.25)

Because H(Kν0−d/2) is norm-equivalent to Hν0(Rd), the bound on the lower limit for ν̂f0CV(Xn)
follows by setting θ0 = ν̃ = ν0 − d/2 and θ1 = ν1 < ν0 − d/2 < ν̃ in Corollary 2.9, in which
case n−2(ν̃−ν1)/d → 0. Note that the lower limit holds trivially whenever ν0 − d/2 < νmin.

To prove the lower bound for the maximum likelihood estimator we shall apply Corollary 2.4
with θ0 = ν0. If ν0 < νmin, the lower bound holds trivially, so we may assume that ν0 ∈ Θ.
Setting ν̃ = ν0 and considering the case i = n (so that Xi

n = Xn−1) in (3.25) yields

sup
ν∈[νmin,ν1]

Vν0
(xn | Xn−1)

Vν(xn | Xn−1)
≲n n−2(ν0−ν1)/d. (3.26)

Proposition 3.8 with ν = ν0 and τ = ν0 − d/2 yields

sup
f0∈B

∥µν0,f0(· | Xn)∥2ν0
≲n n2(ν−τ)/d = n.

Therefore,

Qn(ν1) := sup
ν∈[νmin,ν1]

sup
f0∈B

[
∥µν0,f0(· | Xn)∥2ν0

+

n∑
i=1

log
Vν0(xi | Xi−1)

Vν(xi | Xi−1)

]

≲n n− 2(ν0 − ν1)

d

n∑
i=1

log i

= n− 2(ν0 − ν1)

d
log n!.

From Stirling’s formula n! ∼
√
2πnn+1/2e−n as n → ∞ we get

2(ν0 − ν1)

d
log n! ∼ 2(ν0 − ν1)

d
n log n.
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Hence

Qn(ν1) ≲n n− 2(ν0 − ν1)

d
log n! → −∞

as n → ∞ for every ν1 such that 2(ν0 − ν1)/d > 0, which is equivalent to ν1 < ν0. We may
thus use Corollary 2.4 with θ0 = ν0.

We are left to prove that the lower bound for the maximum likelihood estimator is sharp in
the sense that for every ε > 0 there is f0 ∈ Hν0(Ω) for which (3.24) holds. We may assume that
ν0 + ε < νmax, for otherwise (3.24) holds trivially. We shall use Corollary 2.6. By Lemmas 3.2
and 3.3 and Proposition 3.10 with τ = ν0 + ε/2− d/2, ν1 = ν0 + ε, and δ sufficiently small,
there exists f0 ∈ Hν0(Rd) such that

inf
ν∈[ν1,ν2]

∥µν,f0(· | Xn)∥2ν ≳n n2(ν1−τ)/d−4(ν1−τ)δ = n1+ε/d−4(d/2+ε/2)δ

≥ n1+ε/(2d)
(3.27)

for every ν2 ∈ [ν1, νmax]. The lower bound (3.27) and Proposition 3.7 yield

Pn(ν1, ν2) := inf
ν∈[ν1,ν2]

ℓf0ML(ν | Xn)

= inf
ν∈[ν1,ν2]

[
∥µν,f0(· | Xn)∥2ν +

n∑
i=1

logVν(xi | Xi−1)

]

≳n n1+ε/(2d) − 2ν2
d

log n!,

(3.28)

so that Pn(ν1, ν2) → ∞ as n → ∞ by the same arguments that we used to control Qn(ν1)
above. The claim follows by applying Corollary 2.6 with θ0 = ν1 = ν0 + ε and B = {f0} for
every θ1 = ν2 > ν1.

As discussed in Section 2.4, Corollary 2.9 that we applied to cross-validation is weaker than
Corollary 2.4 that we applied to maximum likelihood estimation. Corollary 2.9 is capable of
establishing a lower bound ν0 only if B is a bounded subset of Hν0+d/2(Ω) while Corollary 2.4
is more flexible. The use of Corollary 2.4 to improve the lower bound for cross-validation would
require that one proved a variant of Proposition 3.8 to bound

n∑
i=1

(f0(xi)− µν,f0(xi | Xi
n))

2

Vν(xi | Xi
n)

from above when ν ≥ ν0. We do not presently know how to do this. Similarly, proving a version
of the upper bound (3.24) for cross-validation would require controlling the above quantity from
below.

The following theorem optimises Theorem 3.11 for the maximum likelihood estimator. For a
function f that is defined and square-integrable at least on Ω, let

ν(f) = sup{ν > 0 : f |Ω ∈ Hν(Ω)},

so that f ∈ Hν(f)−ε(Ω) for every ε ∈ (0, ν(f)). Wang and Jing (2022, Section 5.1.1) call ν(f)
the smoothness of f .

Theorem 3.12. Let Θ be given in (3.22). Suppose that c(ν) satisfies (3.2a), that Ω ⊂ Rd satisfies
Assumption 3.5, and that the points {xi}∞i=1 are quasi-uniform on Ω.

1. If f0 : Ω → R is such that ν(f0) ∈ (d/2, νmax], then

lim inf
n→∞

ν̂f0ML(Xn) ≥ ν(f0). (3.29)
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2. If f0 ∈ Hν0
ss (Ω) for ν0 ∈ (d/2, νmax] and c(ν) satisfies also (3.2b), then

lim
n→∞

ν̂f0ML(Xn) = ν0. (3.30)

Proof. The bound (3.29) follows from (3.23) because B = {f0} ⊂ Hν(f0)−ε(Ω) for every
sufficiently small ε > 0. Suppose that f0 ∈ Hν0

ss (Ω) and ν0 < νmax. Let ε > 0 be small enough
that ν0 + ε < νmax. With τ = ν0 − d/2, ν1 = ν0 + ε, and δ sufficiently small, Proposition 3.10
yields

inf
ν∈[ν1,ν2]

∥µν,f0(· | Xn)∥2ν ≳n n2(ν1−τ)/d−4(ν1−τ)δ = n1+2ε/d−4(d/2+ε)δ ≥ n1+ε/d

for every ν2 ∈ [ν1, νmax]. By bounding Pn(ν1, ν2) = infν∈[ν1,ν2] ℓ
f0
ML(ν | Xn) as in the proof

of Theorem 3.11 and applying Corollary 2.6 with θ0 = ν0 and B = {f0} to the parameter
space Θ = [νmin, νmax], we then get lim supn→∞ ν̂f0ML(Xn) ≤ ν0. If ν0 = νmax, this upper
bound holds trivially. To establish a matching lower bound, observe that, by Lemma 3.2,
f0|Ω ∈ Hν(Ω) for every ν < ν0. Therefore ν(f0) ≥ ν0, and it thus follows from (3.29) that
lim infn→∞ ν̂f0ML(Xn) ≥ ν0. This concludes the proof of (3.30).

Let us say a few words about the assumptions in Theorems 3.11 and 3.12. As discussed
earlier, Assumption 3.5 on the domain is non-restrictive. In comparison to other spatial sampling
assumptions employed in the literature, the quasi-uniformity assumption is rather non-restrictive
and generic. However, random points are not quasi-uniform. Significant relaxations of the quasi-
uniformity assumption may require a new assumption on the spatial homogeneity of f0. The
assumption that the parameter space is compact and bounded away from zero is not practically
restrictive. Generalisations to the case Θ = (0,∞) would require much more careful handling
of smoothness-dependent constant coefficients. For example, in the proof of (3.24) the two
terms that make up Pn(ν1, ν2) in (3.28) are bounded from below individually, which allows us
to ignore potential dependencies on ν2 in their constant coefficients.

That the self-similar functions for which the limit (3.30) is obtained are required to have
their supports in Ω is the most unsatisfactory part of Theorems 3.11 and 3.12. Because the
samples from a Gaussian process with a Matérn covariance kernel are not compactly supported,
this assumption is likely superfluous. The assumption propagates from Proposition 3.10 and
Theorem 8 in van der Vaart and van Zanten (2011) and to remove it a new technique to obtain
lower bounds on RKHS norms is needed.

3.4 Infinitely Smooth Functions
The following corollary shows that the parameter estimators detect infinite smoothness of the
response function. Here we obviously need to consider an infinite parameter space.

Corollary 3.13. Let Θ = [νmin,∞) for νmin > 0. Suppose that c(ν) satisfies (3.2a) for every
νmax > νmin, that Ω ⊂ Rd satisfies Assumption 3.5, and that the points {xi}∞i=1 are quasi-uniform
on Ω. If B is a bounded subset of Hν(Ω) for every ν > d/2, then

lim
n→∞

inf
f0∈B

ν̂f0ML(Xn) = lim
n→∞

inf
f0∈B

ν̂f0CV(Xn) = ∞.

Proof. The claims follow because the bounds (3.23) hold for every ν0 > d/2.

Even though the Matérn kernel, with proper parametrisation, tends to the infinitely smooth
Gaussian kernel as ν → ∞, it is not required in Corollary 3.13 that f0 be an element of the
RKHS of the Gaussian kernel or of an RKHS that contains the samples of a Gaussian process
with the Gaussian kernel. However, as we now argue, it is likely that membership in the Gaussian
RKHS causes the smoothness parameter estimates to diverge faster as n increases than if this
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were not the case. For simplicity, consider Theorem 2.7 and maximum likelihood estimation.
From the proof of Theorem 2.7 we see that ν̂f0ML(Xn) ≥ ν1 if f ∈ H(Kν0

) and

∥f0∥2ν0
+ sup

ν∈[νmin,ν1]

n∑
i=1

log
Vν0(xi | Xi−1)

Vν(xi | Xi−1)
< 0

for ν1 < ν0. Notably, the second term above does not depend on the response function. This
suggests (though does not rigorously prove) that the larger ∥f0∥2ν0

is, the larger an n is needed
for the maximum likelihood estimator to exceed ν1. Or, in other words, a fast rate of growth of
∥f0∥ν as ν increases ought to imply a slow rate of growth of ν̂f0ML(Xn). Next we estimate ∥f0∥ν
for two functions, of which one is not an element of the RKHS of the Gaussian kernel and the
other is.

Consider the Matérn kernel

Kν(x, y) =
21−ν

Γ(ν)

(√
ν |x− y|

)νKν

(√
ν |x− y|

)
for d = 1, where we have set σ = 1 and λ =

√
2. As ν → ∞, the Matérn kernel above tends to

the Gaussian kernel K(x, y) = exp(−(x− y)2/4). By the characterisation (3.5), the RKHS of
the Gaussian kernel consists of functions whose Fourier transforms satisfy∫

R
exp(ξ2)|f̂(ξ)|2 dξ < ∞. (3.31)

Consider the function f0(x) = 1/(1/4 + x2) with the Fourier transform f̂0(ξ) = exp(− |ξ| /2).
It is clear from (3.7) and (3.31) that this function is an element of every Matérn RKHS but not an
element of the RKHS of the Gaussian kernel. Now, from (3.7) we have

∥f0∥2ν = Cν

∫
R
(ν + ξ2)ν+1/2 exp(− |ξ|) dξ = 2Cν

∫ ∞

0

(ν + ξ2)ν+1/2 exp(−ξ) dξ

≥ 2Cν

∫ ∞

0

ξ2ν+1 exp(−ξ) dξ

= 2
√
π
Γ(ν)Γ(2ν + 2)

Γ(ν + 1/2)
ν−ν .

From Γ(ν + 1/2) ∼ Γ(ν)
√
ν and Stirling’s formula we get

Γ(ν)Γ(2ν + 2)

Γ(ν + 1/2)
ν−ν ∼ Γ(2ν + 2)ν−ν−1/2 ∼

√
2π

2ν+1/2

e2ν+1
(2ν + 1)ν+1,

which shows that ∥f0∥ν → ∞ very fast as ν → ∞. We therefore expect that for this response
function ν̂f0ML(Xn) grows rather slowly.

As a second example, consider the function f0(x) = (2
√
π )−1 exp(−x2/4) with the Fourier

transform f̂0(ξ) = exp(−ξ2). Unlike the previous function, this function is an element of the
Gaussian RKHS because∫

R
exp(ξ2)|f̂0(ξ)|2 dξ =

∫
R
exp(−ξ2) dξ =

√
π < ∞.
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Furthermore,

∥f0∥2ν = Cν

∫
R
(ν + ξ2)ν+1/2 exp(−2ξ2) dξ = Cνν

ν+1/2

∫
R

(
1 +

ξ2

ν

)ν+1/2

exp(−2ξ2) dξ

≤ Cνν
ν+1/2

∫
R
exp(ξ2)

√
1 +

ξ2

ν
exp(−2ξ2) dξ

=
√
π

Γ(ν)
√
ν

Γ(ν + 1/2)

∫
R

√
1 +

ξ2

ν
exp(−ξ2) dξ

∼
√
π

∫
R
exp(−ξ2) dξ

= π.

Therefore ∥f0∥ν is bounded as ν → ∞ and we can thus expect that ν̂f0ML(Xn) grows fast as n
increases.

3.5 Sample Paths
Let us then assume that f0 is a version of a zero-mean Gaussian process with a Matérn covariance
kernel Kν0

that has continuous sample paths (such a version always exists). It is well known
that under these assumptions almost all samples of f0 are in the Sobolev space of order ν0 − ε
for every ε > 0. Specifically, if Ω ⊂ Rd satisfies Assumption 3.5, then f0 ∈ Hν0−ε(Ω) almost
surely for every ε > 0. For results of this type, see Scheuerer (2010); Corollary 4.15 in Kanagawa
et al. (2018); Corollaries 4.5 and 5.7 in Steinwart (2019); Karvonen (2023); and Henderson
(2023). From this result we obtain a Bayesian version of Theorem 3.11.

Corollary 3.14. Let Θ be given in (3.22). Suppose that c(ν) satisfies (3.2a), that Ω ⊂ Rd

satisfies Assumption 3.5, and that the points {xi}∞i=1 are quasi-uniform on Ω. If f0 is a version of
a zero-mean Gaussian process with a Matérn covariance kernel Kν0

for some ν0 ∈ (d/2, νmax]
such that almost all of its samples are continuous, then

lim inf
n→∞

ν̂f0ML(Xn) ≥ ν0 and lim inf
n→∞

ν̂f0CV(Xn) ≥ ν0 −
d

2
almost surely.

Proof. Because f0 ∈ Hν0−1/k(Ω) almost surely for every k ∈ N, we obtain from Theorem 3.11
that

lim inf
n→∞

ν̂f0ML(Xn) ≥ ν0 −
1

k
almost surely

for every k ∈ N. The claims follow by taking intersections over k ∈ N of sets of measure one.
The proof for cross-validation is analogous.

As discussed in Section 3.3.3, the result in Corollary 3.14 for cross-validation is likely
sub-optimal. Because the samples are not supported on Ω, we are unable to exploit results that
require f0 to be an element of Hν0

ss (Ω). Nevertheless, Corollary 3.14 is a step towards showing
that the maximum likelihood and cross-validation estimators are consistent or strongly consistent.
Chen et al. (2021, Theorem 2.7) and Petit (2023) have proved consistency results for smoothness
estimators of periodic Matérn-type kernels.

4 Discussion
This section contains some discussion on the implications of the smoothness estimation results in
Section 3. We also discuss the use of Theorem 2.7 to estimate the scale parameter of an infinitely
smooth stationary kernel.
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4.1 Approximation and Uncertainty Quantification
Suppose that f0 ∈ Hν0+d/2(Ω) and that the assumptions of Theorem 3.11 are satisfied. We now
discuss what happens in the frequentist setting when a Matérn model of smoothness ν either
over- or undersmooths the truth. For a succinct review on the closely related topic of coverage
properties of Bayesian credible intervals we refer to Szabó et al. (2015, pp. 1391–2).
Undersmoothing: ν0 > ν. If the response function is smoother than the Matérn prior, the
current theory does not guarantee that the conditional mean tends to the response function with
a rate that adapts to the smoothness, except if (essentially) ν0 ≥ 2ν, in which case one can
expect the rate to be approximately n−2ν/d. This is known as superconvergence (Schaback,
2018) or the improved rate (Wendland, 2005, Section 11.5) of kernel-based approximation. See
Karvonen et al. (2020, Sections 3.4 and 4.5) and Tuo et al. (2020, Section 2.3) for discussion
on superconvergence in the context of Gaussian process interpolation. By (2.7) and the fact that
f0 ∈ Hν0+d/2(Ω) ⊂ Hν+d/2(Ω),

|f0(x)− µν,f0(x | Xn)| ≤ ∥f0∥ν Vν(x | Xn)
1/2 (4.1)

for every x ∈ Ω. Therefore f0 is contained in the credible set

Cn
ρ (f0) =

{
f : Ω → R : |f(x)− µν,f0(x | Xn)| ≤ ρVν(x | Xn)

1/2 for every x ∈ Ω
}

(4.2)

for any ρ ≥ ∥f0∥ν and n ∈ N. Reliable uncertainty quantification is therefore possible when the
model undersmooths, in that there is a fixed credible level for which the credible set centered
at the conditional mean contains the truth for all n. If f0 is smooth enough to benefit from
superconvergence (or other such phenomenon), then f0 ∈ Cn

ρn
(f0) can hold even for a sequence

(ρn)
∞
n=1 that decays fast. Since ∥µν,f0(· | Xn)∥2ν → ∥f0∥ν as n → ∞ if hn,Ω → 0 (e.g.,

Iske, 2018, Theorem 8.37), one may use (2.9) to construct a sequence (ρ̄n)
∞
n=1 with limit

ρ̄ = ∥f0∥ν = limn→∞ ρ̄n such that f0 ∈ Cn
ρ̄ (f0) for every n.

Oversmoothing: ν0 < ν. By the Narcowich–Ward–Wendland escape theorem (Narcowich
et al. 2006; see Wynne et al. 2021, Theorem 1 for a Gaussian process formulation), the Matérn
conditional mean tends to f0 ∈ Hν0+d/2(Ω) with a rate which depends on ν0:

sup
x∈Ω

|f0(x)− µν,f0(x | Xn)| ≲n n−ν0/d. (4.3)

The rate in (4.3) is worst-case optimal because from Propositions 3.6 and 3.7 and (2.6) it follows
that the worst-case error in Hν0+d/2(Ω) decays with the same n−ν0/d rate. This means that
oversmoothing does not have an adverse effect on the rate of convergence of the conditional
mean. However, the model may provide overconfident uncertainty quantification because, by a
combination of Propositions 3.6 and 3.7, the conditional standard deviation decays with a rate
n−ν/d, which is (potentially) faster than the rate on the right-hand side in (4.3). Therefore it is
possible that

lim sup
n→∞

|f0(x)− µν,f0(x | Xn)|
Vν(x | Xn)1/2

= ∞

for some x ∈ Ω, which implies there is no fixed ρ for which f0 is contained in the credible set
in (4.2) for all n ∈ N.

Theorem 3.11 ensures that maximum likelihood estimation cannot can yield a Gaussian
process model which is asymptotically undersmoothing. The conditional mean therefore tends to
the response function with a worst-case optimal rate. However, there is much statistical literature
on the impossibility of constructing, in the presence of noise, non-parametric confidence or
credible bands (or sets) that are adaptive over natural smoothness classes, such as Sobolev or
Hölder spaces, in the sense that (i) the band contains the truth with high probability and (ii) the
radius of the band decays with the worst-case optimal rate for any truth in one of the smoothness
classes (Low, 1997; Cai and Low, 2004; Robins and van der Vaart, 2006). While these results do
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not directly apply to our setting, they do suggest that it is likely that more restrictive assumptions
on f0 than membership in Sobolev spaces are necessary if it is to be guaranteed that uncertainty
quantification is not overconfident. In the context of the white noise and the Gaussian sequence
space model, it is known that adaptivity can be guaranteed over self-similar and related classes
that exclude “inconvenient” or “deceptive” response functions whose smoothness cannot be
estimated (Bull, 2012; Szabó et al., 2015; Nickl and Szabó, 2016). Theorem 3.12 and these
connections suggest that it is the class of self-similar Sobolev functions (or a closely related class)
for which one should attempt to establish non-overconfidence of uncertainty quantification.

4.2 Scale Estimation for Infinitely Smooth Kernels
Let λ > 0 be a scale parameter and consider the infinitely smooth Gaussian kernel

Kλ(x, y) = Φλ(x− y) = Φ

(
x− y

λ

)
, where Φ(z) = exp

(
− 1

2
∥z∥2

)
.

Rescaled Gaussian processes with Gaussian covariance kernel are studied in van der Vaart and
van Zanten (2009), while results on scale parameter estimation for a kernel related to the Gaussian
can be found in Hadji and Szábo (2021). The Fourier transform of Φ is

Φ̂(ξ) = (2π)d/2 exp

(
− 1

2
∥ξ∥2

)
,

and from the scaling properties of the Fourier transform we get

Φ̂λ(ξ) = λd Φ̂(λξ) = (2πλ2)d/2 exp

(
− 1

2
λ2 ∥ξ∥2

)
.

Recall from Section 3.1 that H(Kλ) contains those square-integrable and continuous functions
f : Rd → R for vwhich

∥f∥2λ =

∫
Rd

|f̂(ξ)|
2

Φ̂λ(ξ)
dξ =

1

(2πλ2)d/2

∫
Rd

exp

(
1

2
λ2 ∥ξ∥2

)
|f̂(ξ)|2 dξ < ∞. (4.4)

From (4.4) we see that H(Kλ0
) is a proper subset of H(Kλ1

) whenever λ0 > λ1, which is a
well-known result. The reasoning in Section 2.4 therefore suggests that (2.21) and (2.22) may
hold if f0 ∈ H(Kλ0) for some λ0 > 0 and, consequently,

lim inf
n→∞

λ̂f0
ML(Xn) ≥ λ0 and lim inf

n→∞
λ̂f0

CV(Xn) ≥ λ0.

Similar reasoning applies to many other infinitely smooth stationary kernels, such as the Cauchy
kernel defined by Φ(z) = (1 + ∥z∥2)−1, whose Fourier transforms decay with super-algebraic
rates.

However, to prove that either of the assumptions (2.21) or (2.22) holds for the Gaussian
kernel does not appear to be possible at the moment. Upper bounds on the conditional variance
of the form

sup
x∈Ω

Vλ(x | Xn) ≲n exp(−cλn
1/d log n),

where and cλ is a positive constant which depends on λ, are available in the scattered data approx-
imation literature (e.g., Rieger and Zwicknagl, 2010, Theorem 6.1) if Ω ⊂ Rd is bounded and
sufficiently regular and the points {xi}∞i=1 are such that hn,Ω ≲n n−1/d, but no corresponding
lower bounds exist. Moreover, the constant cλ in these results is unlikely to be optimal. The
result that is closest to being useful is a theorem in Karvonen (2022), which states that for the
univariate Gaussian kernel we have

C1,λ
1

(4λ2)nn!
≤ sup

x∈[−1,1]

Vλ(x | Xn) ≤ C2,λ n
−1/4e2

√
n/λ 1

(4λ2)nn!
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for sufficiently large n and positive constants C1,λ and C2,λ that depend on λ if Xn = {xn,i}ni=1

are the non-nested Chebyshev nodes xn,i = cos(π(i− 1/2)/n). See also Theorem 2 in Yarotsky
(2013). In this setting the rate of convergence is controlled by λ because

n1/4e−2
√
n/λ

(
λ2

λ2
0

)n

≲n

supx∈[−1,1] Vλ0
(x | Xn)

supx∈[−1,1] Vλ(x | Xn)
≲n n−1/4e2

√
n/λ0

(
λ2

λ2
0

)n

(4.5)

tends to zero if λ0 > λ and explodes if λ0 < λ. However, Equation (4.5) is clearly not sufficient
to establish either (2.21) or (2.22).
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