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Abstract

Generalized polynomial chaos expansions are a powerful tool to study differential equations with
random coefficients, allowing in particular to efficiently approximate random invariant sets associated
to such equations. In this work, we use ideas from validated numerics in order to obtain rigorous a
posteriori error estimates together with existence results about gPC expansions of random invariant
sets. This approach also provides a new framework for conducting validated continuation, i.e. for rig-
orously computing isolated branches of solutions in parameter-dependent systems, which generalizes
in a straightforward way to multi-parameter continuation. We illustrate the proposed methodology
by rigorously computing random invariant periodic orbits in the Lorenz system, as well as branches
and 2-dimensional manifolds of steady states of the Swift-Hohenberg equation.

Keywords: generalized polynomial chaos; validated numerics; validated continuation; uncertainty
quantification

1 Introduction

Most of the mathematical models that are used nowadays to try and describe the world we live in, or
at least some very specific region or aspect of it, include some stochastic component. This randomness
can have various sources: sometimes we do not fully know or understand the mechanisms underlying
the phenomenon we are trying to describe, sometimes we need to account for the influence of events
occurring at much smaller scales than that of the full system, for which we cannot afford to solve too
accurately, and sometimes our model contains crucial parameters whose value can only be known up to
some uncertainty level.

A common mathematical framework to study this last situation is the one of random differential
equations, say a random ODE described by a nonlinear vector field f

X ′ = f(X, p), (1)

or more generally a random PDE, where p denotes a parameter whose value is not known precisely, and
is therefore represented by a random variable. In this work we assume that the probability distribution
of p is known, for instance through some preliminary statistical inference. In this situation, one would
like to understand and quantify as precisely as possible how the uncertainty in p affects the output of the
system [40].

If we want to study the global behavior of (1), one option is to use a Monte-Carlo type approach:
sample p according to its known distribution, and study for each sampled value pi the deterministic
system X ′ = f(X, pi). Of course, even in the deterministic case, understanding the global dynamics
of a system of nonlinear ODEs can already be a daunting task. Numerical simulations can then be of
great help to get some insights, in particular in order to study invariant sets (equilibria, periodic orbits,
invariant manifolds, connecting orbits, etc), which typically act as building blocks of the global dynamics.
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Another option to study problems with random parameters like (1), which has risen in popularity in
the last decades, is the usage of generalized polynomial chaos (gPC) expansions [20, 52]. The main idea
is to expand the random quantity of interest as a series with a well chosen basis, namely polynomials in
p which are orthogonal with respect to probability distribution of p. One is then left with computing
the (deterministic!) coefficients of this series expansion, and as in the Monte-Carlo approach we recover
a deterministic problem, and the ability to use existing algorithms for it. This strategy has proven very
effective in various contexts [27, 53], and in particular the recent work [8] showcases that gPC can be
used to approximate some random invariant sets generated by random ODEs of the form (1).

Once the gPC expansion has been computed, it readily provides quantitative information about the
way the randomness in p influences the solutions of the system. In order to be more concrete, let us
focus for instance on periodic orbits. With a gPC representation, we directly have access to the mean
and the variance of the period (which typically depends in a non-explicit, nonlinear way on p), and we
can also do cheaper Monte-Carlo simulations to estimate the full probability distribution of the period,
or to quantify the shape of the orbit in phase space, etc.

The above discussion exemplifies why gPC is a very powerful tool to quantify uncertainties, at least
if we had access to the exact gPC representation of the object of interest. However, in practice, the fact
that we heavily rely on numerical computations introduces an extra level of uncertainty. The two main
sources of approximations in the above procedure are: the fact that the (theoretically infinite) gPC series
expansion is truncated, because we can only compute finitely many coefficients, and the fact that the
deterministic algorithms used to compute these gPC coefficients also contain truncation errors (indeed
even for a fully deterministic nonlinear ODE, one cannot hope to compute exactly periodic orbits, or
more complicated invariant sets).

Regarding the truncation of the gPC expansion, it is known a priori that the truncation error decays
quickly (spectral convergence) when X depends smoothly on p [11, 16], and some tight convergence
results were even obtained recently in a non-smooth case [6]. However, when X is not known a priori,
these estimates cannot give any quantitative information about the truncation error. A posteriori error
estimators for gPC expansions have also been developed, especially in the context of random linear
elliptic PDEs [13, 15, 5], but also for more general random PDEs [10, 31, 32]. Yet again, for nonlinear
problems these estimators typically still contain some approximations and cannot provide fully rigorous
error bounds between the approximate solution and the exact one, if only because the existence of an
exact solution is not always readily available.

The purpose of this work is to quantify in a very explicit way all the errors involved in the computation
of some random invariant sets using gPC. For instance, if X̄ is a gPC representation of an approximate
random periodic solution that we obtained numerically, we are going to provide guaranteed a posteriori
estimates stating that there exists an exact random periodic solution X∗, with ‖X̄ −X∗‖ ≤ r in some
well chosen norm, where the error bound r will be explicit. In the context of deterministic dynamical
systems, such guaranteed a posteriori error estimates which also provide existence results go back at
least to the proof of the Feigenbaum conjecture [14, 26] (see also [45] for an even earlier work) and have
become more and more popular since then, mostly under the name of validated/rigorous numerics or
computer-assisted proofs. We will recall some of the main ideas behind these techniques in this work, and
refer to the survey papers [21, 22, 23, 39, 47] and books [34, 44] for a more in-depth overview of the field.
The main contribution of this work is to show that these ideas can be extended, in a computationally
efficient way, to dynamical systems with random coefficients.

Before proceeding further, let us present an alternate viewpoint for the techniques we develop in
this paper. The important starting observation is that, in any kind of gPC expansion, the probability
distribution of p only influences the choice of the expansion basis. Once a basis has been selected,
one can forget the random character of p, and simply view (1) as a deterministic parameter-dependent
problem. In that context, numerical continuation methods can be used, for instance to approximate a
curve of periodic orbits. This is exactly what we do with a gPC expansion, the only difference being
that traditional continuation methods would typically proceed by computing points close to one another
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along the curve, and glue them together in a low-order (say piece-wise linear) fashion, whereas here we
directly compute a larger chunk of curve at once, by looking for a higher order parameterization.

Numerical continuation can be used together with validated numerics to prove the existence of curves
of solutions and to get tight and explicit error bounds (see e.g. [3, 9, 48, 50, 51]), but up to now this
has mostly been done with the piece-wise linear approximations provided by usual predictor-corrector
techniques. The only exceptions seems to be the recent works [1, 2], where Taylor expansions in the pa-
rameter are used to compute and validate larger pieces of curve at once. The approach proposed in this
paper is very similar, but we generalize it to other kind of expansions bases, which proves to be sometimes
more efficient than using Taylor expansions. This framework also generalizes in a completely straightfor-
ward way to rigorous mutli-parameter continuation, which again provides a higher-order and more global
alternative to the existing techniques [17], which also rely on local piece-wise linear approximations.

The remainder of the paper is organized as follows. In Section 2, we introduce some of the tools that
will be required in this work, in particular well chosen sequence spaces provided with a discrete convolution
and a type of Newton-Kantorovich Theorem, and start with a basic example (Section 2.6) describing how
these tools can be combined to rigorously validate gPC expansions. We then explain in Section 3 how
this framework can be applied to random invariant sets, via the example of random periodic orbits in the
Lorenz system. This section ends with some comparisons regarding the performance of several choices
of polynomial bases. We continue with a different example in Section 4, namely the Swift-Hohenberg
equation, for which we rigorously compute parameter-dependent families of steady states. With this
example we focus more on the validation continuation viewpoint, and on how the proposed technique
interacts with bifurcations, and also discuss how to handle multiple parameters at once. We wrap up in
Section 5, where we summarize our work, and discuss the current limitations and possible extensions of
the proposed approach. All the codes associated with this work are available at [7].

2 Background material, notations and a basic example

In this section, we introduce some of the objects and tools that we make use of in this work. Most
of the material presented here is not original, and mainly included for the convenience of the reader,
and for the sake of fixing some notations. We discuss weighted `1 spaces of Fourier coefficients in
Section 2.1, and an extension where each Fourier coefficient is itself written as a gPC expansions together
with associated generalized convolutions structures in Section 2.2. We introduce notations for finite
dimensional projections in Section 2.3, and state a useful lemma for studying the norm of linear operators
on Schauder spaces in Section 2.4. We then recall a specific variation of the Newton-Kantorovich theorem,
which is a cornerstone of many computer-assisted technique, in Section 2.5, and then present a very easy
example where we use this theorem to validate a gPC expansion in Section 2.6.

2.1 Fourier coefficients and `1 spaces

It will be convenient to represent several of the solutions we look for in this work as Fourier series, such
as

u(t) =
∑
k∈Z

uke
ikt.

A natural function space to work with is then to consider the set of Fourier coefficients having some
prescribed decay rate.

Definition 2.1. Let (X, ‖ · ‖) be a normed vector space and ν ≥ 1. We define

`1ν(Z, X) =

{
u = (un)n∈Z ∈ XZ, ‖u‖`1ν(Z,X) :=

∑
n∈Z
‖un‖ν|n| <∞

}
.
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In the sequel, we sometimes shorten `1ν(Z, X) into `1ν when knowledge about the set of indices and X is
not relevant or clear from context.

Remark 2.2. As soon as ν > 1, the coefficients of an element of `1ν decay at least geometrically, which
means the associated function has analytic regularity. This might be seen as a strong requirement, but
it should rather be thought of as a precise information: if it happens that the solutions we are dealing
with have analytic regularity, by choosing such weighted spaces for the a posteriori analysis we will be
able to prove that they do have said regularity. If we had to deal with less smooth solutions, we could use
different spaces [28].

We recall that the discrete convolution makes weighted `1 spaces into Banach algebras, as soon as the
weights are submultiplicative. This Banach algebra property is going to be very useful for obtaining the
validation estimates.

Lemma 2.3. Let (X, ‖ · ‖) be a Banach algebra, with multiplication denoted by ∗, and ν ≥ 1. Given u
and v in `1ν(Z, X), we can define their convolution product u~ v by

(u~ v)k =
∑
l∈Z

ul ∗ vk−l ∀ k ∈ Z,

and we have

‖u~ v‖`1ν ≤ ‖u‖`1ν ‖v‖`1ν ,

i.e., `1ν(Z, X) is a Banach algebra for the multiplication ~.

For a deterministic periodic solution, each coefficient uk is simply a complex number and we will
therefore use the above definition with X = C. However, in the presence of a random parameter p in the
system, each uk will also be random, and therefore expressed using a gPC expansion. In that case, uk
will itself be a sequence of coefficients and X an associated sequence space.

In the next subsection, we recall the necessary ingredients for equipping spaces of gPC coefficients
with a Banach algebra structure, so as to be able to use the above Lemma.

2.2 Linearization formulas and generalized convolution products

Most of the material presented in this subsection about the relationships between orthogonal polynomials
and Banach algebras can be found (in a different context) in the lecture notes [42]. We also refer to the
appendix of [8] for discussions related to implementation issues.

In this work, any quantity x (a Fourier coefficient, the period of a periodic orbit, etc) which depends
on a parameter p will be written using gPC expansions, i.e.

x(p) =
∑
n∈N

xnφn(p),

where (φn)n∈N is basis of polynomials.
The basis of gPC is that, when p is a random variable having a density function %p with finite

moments, one should use for the basis (φn)n∈N orthogonal polynomials with respect to %p, i.e. such that∫
φmφn%p = 0 as soon as m 6= n.

Example 2.4. Here are a couple of examples, which are particular cases of Jacobi polynomials, that
which we make use of in this work

• The Legendre polynomials Pn, which correspond to %p(t) = 1
21(−1,1)(t);

• The Chebyshev polynomials of the first kind Tn, which correspond to %p(t) = 1
π
√

1−t2 1(−1,1)(t);
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• The Chebyshev polynomials of the second kind Un, which correspond to %p(t) = 2
π

√
1− t21(−1,1)(t);

• The Gegenbauer or ultraspherical polynomials Cµn , µ > − 1
2 , µ 6= 0, which correspond to %p(t) =

22µ−1µB(µ,µ)
π (1− t2)µ−

1
2 1(−1,1)(t).

We point out that, for a given %p, each orthogonal polynomial φn is only defined up to a multiplicative
constant, and a normalization condition is required in order to uniquely characterize them. In this work,
we choose the condition φn(1) = 1 for all n. With this normalization, we recover the traditional definition
of the Legendre and Chebyshev polynomials of the first kind, but the usual Chebyshev polynomials of the
second kind and Gegenbauer polynomials have to be renormalized. The reason behind this normalization
choice is explained in Lemma 2.10.

Finally, we will also use the monomial basis φn(p) = pn, in order to compare the performances of
gPC expansions with the one of Taylor expansions.

For a more complete description of gPC choices and their relations to the Askey scheme, see [54].

Definition 2.5. Let η ≥ 1. We define

`1η(N,C) =

{
x = (xn)n∈N ∈ CN, ‖u‖`1η(N,C) :=

∑
n∈N
|xn|ηn <∞

}
.

In the sequel, we always use η as a weight when we consider a space of gPC coefficients, and ν for the
Fourier coefficients, in order to better know at a glance which type of object we are currently dealing with.

Remark 2.6. As in the previous subsection, these spaces encode regularity properties. Indeed, having
η ≥ 1 will be sufficient to ensure that, for any x in `1η, the corresponding function

p 7→
∑
n∈N

xnΦn(p),

is at least continuous (see Lemma 2.10), and even analytic when η > 1 [43, Theorem 8.2]. Thereby,
we will often not distinguish between a sequence x = (xn)n∈N in `1η and the corresponding function
x : p 7→

∑
n∈N xnΦn(p), and use the same symbol to denote both.

Given two functions x(p) and y(p) written as gPC expansions, we now want to define a product on
the sequence space `1η(N,C) corresponding to the multiplication x(p)y(p).

Definition 2.7. Let (φn)n∈N be a family of (univariate) real polynomials such that φn is of degree n for
all n. The linearization coefficients (αm,nk )

k,m,n∈N for this family are the real numbers such that

φmφn =

n+m∑
k=0

αm,nk φk, ∀ k, n,m ∈ N, (2)

with αm,nk = 0 for all k > m+ n.

Definition 2.8. Given linearization coefficients, we define the generalized convolution product ∗ (asso-
ciated to the linearization coefficients, or equivalently to the polynomial basis) of two sequences of complex
numbers x = (xn)n∈N and y = (yn)n∈N by

(x ∗ y)k =

∞∑
m=0

∞∑
n=0

xmynα
m,n
k , ∀ k ∈ N.

The generalized convolution product of coefficients corresponds to the pointwise product of functions,
at least formally. The Lemma below gives sufficient conditions for the generalized convolution product
to be well defined, and for this identification to be justified.
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Lemma 2.9. Let η ≥ 1 and (αm,nk )
k,m,n∈N be linearization coefficients such that

m+n∑
k=0

|αm,nk | = 1, ∀ m,n ∈ N. (3)

Then, for any x and y in `1η(N,C), the generalized convolution product x∗y (associated to the linearization
coefficients) is well defined, belongs to `1η(N,C), and

‖x ∗ y‖`1η ≤ ‖x‖`1η ‖y‖`1η ,

i.e., `1η(N,C) is a Banach algebra for ∗.

Proof. We simply use the triangle inequality and exchanges sums:

‖x ∗ y‖`1η =
∑
k∈N
|(x ∗ y)k| η

k

≤
∑
m∈N

∑
n∈N
|xm|ηm |yn|ηn

∑
k∈N
|αm,nk |ηk−n−m,

which allows us to conclude since αm,nk = 0 for k > m+ n and η ≥ 1.

Lemma 2.10. Let (φn)n∈N be either:

• the monomial basis,

• the Legendre polynomials Pn,

• the Chebyshev polynomials of the first kind Tn,

• the Chebyshev polynomials of the second kind Un (normalized so that Un(1) = 1),

• the Gegenbauer polynomials Cµn (normalized so that Cµn(1) = 1).

Then, the associated linearization coefficients satisfy (3). In particular, the corresponding generalized
convolution product provides `1η(N,C) with a Banach algebra structure.

Moreover, for any η ≥ 1 and any x = (xn)n∈N in `1η(N,C), the associated function x(p) =
∑
n∈N xnφn(p)

satisfies

‖x‖C0 := sup
p∈[−1,1]

|x(p)| ≤ ‖x‖`1η .

Proof. The first part of the Lemma is known more generally, for a large class of Jacobi polynomials
(see [18, 19]), and is based on the nonnegativity of the linearization coefficients. In our context, we have
explicit formula for those coefficients in each case [35], which are indeed nonnegative. It then suffices to
evaluate (2) at 1 to get (thanks to the normalization condition)

1 =

m+n∑
k=0

αm,nk ,

and therefore (3).
The second part of the Lemma is a direct consequence of the fact that, with our choice of normalization,

|φn(p)| ≤ 1 for all p in [−1, 1], see [35].
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2.3 Finite dimensional projections

In practice, we approximate elements in `1η(N,C) by finite dimensional vectors (or equivalently truncated
series).

Definition 2.11. Given N in N, we define the projector ΠN : CN → CN as follows:

(ΠNx)n =

{
xn n < N,

0 n ≥ N,

and

ΠN `
1
η(N,C) :=

{
x ∈ `1η(N,C), ΠNx = x

}
.

We use similar projectors for Fourier series, i.e. `1 spaces of sequences indexed by Z. In order not to
use too many different notations, we keep the same letter Π to also denote these projectors, but make
sure to always use the letter N to refer to gPC indices, and K to refer to Fourier indices.

Definition 2.12. Given K in N and a vector space X, we define the projector ΠK : XZ → XZ as follows:

(ΠKu)k =

{
uk |k| < K,

0 |k| ≥ K,

and

ΠK`
1
η(Z, X) :=

{
u ∈ `1η(Z, X), ΠKu = u

}
.

In the case where X = `1η(N,C), given N in N we denote by ΠK,N the composition of ΠK with ΠN

(applied component-wise). That is, for u = (uk)k∈Z in
(
`1η(N,C)

)Z
,

ΠK,Nu = (. . . , 0, 0,ΠNu−K+1,ΠNu−K+2, . . . ,ΠNuK−2,ΠNuK−1, 0, 0 . . .) ,

and

ΠK,N`
1
η(Z, `1η(N,C)) :=

{
u ∈ `1η(Z, `1η(N,C)), ΠK,Nu = u

}
.

2.4 Operator norms

Controlling operator norms will be crucial in our work, and we are often going to rely on the following
statement.

Lemma 2.13. Let X be a Banach space with a Schauder basis (ej)j∈N and a norm ‖·‖ of the form∥∥∥∥∥∥
∑
j∈N

xjej

∥∥∥∥∥∥ =
∑
j∈N
|xj |wj , (4)

for some prescribed weights wj > 0. Then, for any bounded linear operator B on X,

‖B‖ = sup
j∈N

1

wj
‖Bej‖ .

Moreover, for any disjointed subsets I and J of N such that I ∪ J = N, if we denote by XI and XJ the
subspaces of X having (ej)j∈I and (ej)j∈J as Schauder bases,

‖B‖ = max

 sup
x∈XI
x 6=0

‖Bx‖
‖x‖

, sup
x∈XJ
x 6=0

‖Bx‖
‖x‖

 . (5)
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Proof. For any x =
∑
j∈N xjej in X, we simply use the triangle inequality to get

‖Bx‖ ≤
∑
j∈N
|xj | ‖Bej‖ ≤

(
sup
j∈N

1

wj
‖Bej‖

)∑
j∈N
|xj |wj ,

hence ‖B‖ ≤ supj∈N
1
wj
‖Bej‖. However, for any j in N,

1

wj
‖Bej‖ =

‖Bej‖
‖ej‖

≤ ‖B‖ ,

which proves (4). The identity (5) then simply amounts to

sup
j∈N

1

wj
‖Bej‖ = max

(
sup
j∈I

1

wj
‖Bej‖ , sup

j∈J

1

wj
‖Bej‖

)
.

2.5 A kind of Newton-Kantorovich theorem

As is the case in many works on validated numerics, a crucial tool in our argument is a kind of Newton-
Kantorovich theorem [36], which allows us to validate a posteriori a numerically obtained solution.

Given a map F defined on a Banach space X , and an approximate zero x̄ of F , this theorem provides
us with sufficient conditions guaranteeing the existence of a genuine zero x∗ of F near x̄, together with
explicit error bounds between x̄ and x∗.

Theorem 2.14. Let X and Y be Banach spaces, F be a C1 map from X to Y, x̄ an element of X , A a
linear injective map from Y to X , and r∗ in (0,+∞]. Assume there exist nonnegative constants Y , Z1

and Z2 such that

‖AF(x̄)‖X ≤ Y (6a)

‖I −ADF(x̄)‖X ≤ Z1 (6b)

‖A (DF(x)−DF(x̄))‖X ≤ Z2 ‖x− x̄‖X ∀ x ∈ BX (x̄, r∗), (6c)

where DF denotes the Fréchet derivative of F , ‖·‖X simultaneously denotes the norm on X and the
associated operator norm, and BX (x̄, r∗) is the closed ball of center x̄ and radius r∗ in X . If these
constants satisfy

Z1 < 1 (7a)

2Y Z2 < (1− Z1)2, (7b)

then, for any r satisfying

1− Z1 −
√

(1− Z1)2 − 2Y Z2

Z2
≤ r < min

(
1− Z1

Z2
, r∗
)

(8)

there exists a unique zero x∗ of F in BX (x̄, r).

As previously mentioned, similar results already appeared many times, especially in the computer-
assisted proof literature (see, e.g., [4, 12, 37, 55]), and we refer to [46] for a detailed proof, which merely
consists in applying the contraction mapping theorem to x 7→ x−DF(x̄)−1F(x).

Remark 2.15. In practice, applying this theorem requires two main ingredients: a good enough approx-
imate solution x̄ so that Y is small enough, and a good enough approximate inverse A of DF(x̄) so
that (7a) holds. For a given Z1 satisfying (7a) and Z2, the condition (7b) tells us in a quantitative way
how small Y has to be (and therefore, in some sense, how good of an approximate solution x̄ has to be),
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for the existence of a nearby true solution to be guaranteed. Let us also mention that the injectivity as-
sumption for A is usually automatically satisfied as soon as (6b) and (7a) hold, thanks to some structural
properties of A, as we will see whenever we apply Theorem 2.14 in this work.

Conceptually, defining a suitable A, which is not only a good approximate inverse of DF(x̄) but also
simple enough that all the estimates (6) can be obtained, is often the crucial part. For deterministic
problems, say a periodic orbit in (1) for a given value of p, this A is often defined as a finite rank
perturbation of a somewhat simple operator (for instance a diagonal operator). In this work, we will see
how to generalize this construction to parameter dependent problems.

Finally, let us point out that the codomain Y of F is inconsequential, as it does not appear anywhere
in the estimates (6). The only thing that really matters is that the composition AF does map X into
itself.

2.6 A basic example

In this subsection, we showcase on a very simple example how the Banach algebra structure of gPC
expansions presented in Section 2.2 and Theorem 2.14 can be combined to provide a fully rigorous
uncertainty quantification for an algebraic problem.

Let p be a uniform random variable on [−1, 1]. Assume we are given a function g as a truncated
Legendre series:

g(p) =

Ng−1∑
n=0

gnPn(p), (9)

with some given Ng and coefficients (gn)0≤n≤Ng such that g is positive on [−1, 1], and that we want to

compute x = x(p) =
√
g(p). For a given g, and a given truncated Legendre series x̄ = x̄(p) approximating√

g(p), we are going to derive a fully computable a error bound between this approximate gPC represen-

tation and the true object
√
g(p). While this example in itself is of limited interest, the techniques we

use to solve it generalize very well to more complicated and interesting problems, in particular when we
do not have a closed-form expression for x in terms of p, as we will see in the remaining sections of the
paper.

Proposition 2.16. Consider the function g of the form (9) with Ng = 6, g0 = 2, g1 = −1, g5 = −1/2

and gn = 0 otherwise. Let x̄ = x̄(p) =
∑5
n=0 x̄nφn(p), where the coefficients x̄n are given in Table 1.

Both g and x̄ are represented in Figure 1.
There exists a unique x∗ in `11(N,R) satisfying x∗(p) =

√
g(p) for all p in [−1, 1] and ‖x̄− x∗‖`11 ≤

0.074.

Proof. We consider η = 1, and the map F : `1η(N,R)→ `1η(N,R) defined by

F (x) = x ∗ x− g ∀ x ∈ `1η,

where we identify the function g with its sequence of Legendre coefficients, and ∗ is the generalized
convolution product associated to the Legendre basis.

We are going to apply Theorem 2.14 to the map F , with X = Y = `1η(N,R), and x̄ as an approximate
solution (in practice x̄ was obtained by using Newton’s method on the finite dimensional projection
ΠNg F ΠNg of F ). In order to do so, we first need to define a linear map A on `1η(N,R), which should be a
good enough approximate inverse of DF (x̄), in the sense that (6b) should be satisfied with Z1 < 1. Since
DF (x̄) is nothing but the multiplication operator x 7→ (2x̄) ∗ x, we compute numerically an element a in
ΠNg`

1
η such that 2x̄ ∗ a ≈ 1 (see Table 1), and define A as the multiplication operator by a, i.e.

Ax = a ∗ x ∀ x ∈ `1η.

We are now ready to derive bounds Y , Z1 and Z2 satisfying assumption (6).

9



• For the Y bound, we simply have

AF (x̄) = a ∗ (x̄ ∗ x̄− g) .

Since all the elements involved, namely a, x̄ and g, belong to ΠNg`
1
η, or equivalently are polynomials

of degree at most Ng − 1, AF (x̄) is a polynomial of degree at most 3(Ng − 1). Its coefficients, and
therefore its norm, can thus be computed explicitly, and we can take Y = ‖a ∗ (x̄ ∗ x̄− g)‖`1η .

• For the Z1 bound, notice that I − ADF (x̄) is simply the multiplication operator by 1 − a ∗ (2x̄).
Therefore its operator norm is equal to the norm of 1 − a ∗ (2x̄), which can also be computed
explicitly, and we can take Z1 = ‖1− 2a ∗ x̄‖`1η .

• Finally, for the Z2 bound, A (DF(x)−DF(x̄)) is the multiplication operator by 2a ∗ (x − x̄),
therefore we can take Z2 = ‖2a‖`1η and r∗ = +∞.

In principle, one could evaluate the obtained bounds Y , Z1 and Z2 for a, x̄ and g given in Table 1 by
hand, and then check whether the conditions (7) hold. To do it by hand would of course be a waste of
time, and become very impractical for higher dimensional problems. Therefore, we evaluate these bounds
with a computer, but with interval arithmetic [33, 44] rather than the usual floating point arithmetic, so
as to control rounding errors and ensure that the numbers we obtain for Y , Z1 and Z2 do satisfy (6). We
obtain

Y = 0.06509919865113, Z1 = 0.07544522585888, Z2 = 1.18378588092726.

Hence (7a) holds, and we check that (7b) holds as well. Moreover, the definition of Z1 together with (7a)
imply that a ∗ x̄ is invertible, therefore so is a (because `1η is a commutative ring), and we do have that
A in injective. We can thus apply Theorem 2.14, and according to (8), there exists a unique zero x∗ of
F in B`1η (x̄, r) for all r ∈ [rmin, rmax), with

rmin = 0.073908425226395, rmax = 0.781015206412929.

The computational parts of the proof can be reproduced by downloading the Matlab code at [7], and
running script BasicExample.m (in order to get a rigorous proof including rounding error control, you
also need Intlab [38]).

-1 -0.5 0 0.5 1

0.5

1

1.5

2

2.5

3

3.5

Figure 1: The input function g and the approxi-
mate solution x̄ which is validated a posteriori in
Proposition 2.16.

n x̄ a

0 1.397466142483791 0.367312683971841

1 -0.361966926543100 0.100133468883877

2 -0.034437671606020 0.030295726801934

3 -0.010225992059514 0.014887942068709

4 -0.025424456095587 0.023944696446413

5 -0.184395889766637 0.055318422290860

Table 1: The coefficients of x̄ and a used in Proposi-
tion 2.16 and in its proof.
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Remark 2.17. Let us assume again that p is a uniform random variable on [−1, 1]. If we had only
computed x̄ numerically as an approximation of

√
g(p), we would “know” for instance that

E
(√

g(p)
)
≈ E (x̄(p)) = x̄0 = 1.397466...,

but without any guarantee regarding the precision of the approximation. With Proposition 2.16, we get
a fully guaranteed (even rounding errors are accounted for) a posteriori estimate controlling the distance
between

√
g(p) and x̄, which proves that∣∣∣E(√g(p)

)
− x̄0

∣∣∣ ≤ rmin ≈ 0.074.

It turns out that this estimate is rather conservative, but more precise results can be obtained by looking
for x̄ (and then for a), in a larger dimensional subspace. For instance, if we look for x̄ in ΠN `

1
η with

N = 20 instead of N = 6, we already get an error bound rmin of the order of 10−4, and with N = 50 we
get again a much more precise approximation, together with a validation radius rmin of less than 10−8,
which tells us in particular that

E
(√

g(p)
)

= 1.39729844± 10−8.

For more details, simply run script BasicExample.m with different values of N .

3 A posteriori validation of parameter-dependent periodic or-
bits for the Lorenz system

In this section, we study periodic orbits in the Lorenz system
x′ = σ(y − x)

y′ = ρx− y − xz
z′ = −βz + xy,

(10)

with the usual parameter values σ = 10, β = 8/3, but assuming ρ is of the form

ρ = ρ̄+ δp, (11)

where ρ̄ = 28, δ ≥ 0 is a given constant, and p varies in [−1, 1]. We can either think of p as being
a random variable taking values in [−1, 1], in which case the p-depending periodic orbits are random
periodic orbits, or consider a deterministic continuation problem in p.

3.1 Setting

We follow the framework developed in [8] for the approximation of random periodic orbits based on
Fourier×gPC expansions, and extend it to include the a posteriori validation of the obtained truncated
expansions. We look for x, y and z of the form

x(t, p) =
∑
k∈Z

xk(p)eiΩ(p)t, (12)

where each Fourier coefficient xk(p) as well as the unknown frequency Ω(p) are also expanded as series,
this time with the appropriate gPC basis

xk(p) =
∑
n∈N

xk,nφn(p), Ω(p) =
∑
n∈N

Ωnφn(p). (13)
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A natural space in which to apply Theorem 2.14 so as to validate an approximate solution X̄ =
(Ω̄, x̄, ȳ, z̄) is then given by

X = `1η(N,C)×
(
`1ν
(
Z, `1η(N,C)

))3
, (14)

for some ν, η ≥ 1 to be specified later. For X = (Ω, x, y, z) in X , we consider the norm

‖X‖X := |Ω|+ ‖x‖`1ν(Z,`1η(N,C)) + ‖y‖`1ν(Z,`1η(N,C)) + ‖z‖`1ν(Z,`1η(N,C)) .

We assume that the linearization cofficients of the chosen gPC basis satisfy (3), so that Lemma 2.10 and
then Lemma 2.3 apply, i.e. `1η(N,C) is a Banach algebra for the generalized convolution product ∗, and

then `1ν
(
Z, `1η(N,C)

)
is itself a Banach algebra for the convolution product ~.

Introducing the linear operator K, which to any sequence x ∈ `1ν
(
Z, `1η(N,C)

)
associates the sequence

Kx defined as

(Kx)k = kxk ∀ k ∈ Z, (15)

and plugging the Ansatz (12)-(13) into the Lorenz system (10), we can rewrite the resulting set of
equations on the Fourier×gPC coefficients in the form

F (X) = 0,

where X = (Ω, x, y, z) belongs to X , and F (X) =
(
F (x)(X), F (y)(X), F (z)(X)

)
with

F (x)(X) = −iK (Ω ~ x)− σx+ σy

F (y)(X) = −iK (Ω ~ y) + ρ~ x− y − (x~ z)

F (z)(X) = −iK (Ω ~ z)− βz + (x~ y) .

(16)

In the above equations, we identify an element of `1η(N,C) like Ω or ρ with its natural injection in

`1ν
(
Z, `1η(N,C)

)
, which allows us to write for instance Ω~x, which is nothing but the sequence (Ω ∗ xk)k∈Z,

where each Ω ∗ xk is an element of `1η(N,C).
This F is almost the one to which we will apply Theorem 2.14, but we first need to add a phase

condition to get rid of time-translation invariance and allow F to have isolated zeros. Here we depart
slightly from the framework introduced in [8], in which we used a Poincaré phase (or transversality)
condition, and instead impose

G(X) :=
∑
k∈Z

ik (xk ∗ conj(x̃k) + yk ∗ conj(ỹk) + zk ∗ conj(z̃k)) = 0, (17)

where (x̃, ỹ, z̃) is an approximate solution previously computed. This is inspired from the integral phase
condition ∫

〈u, ũ′〉 = 0,

which has proven to be more robust numerically [24], and turns out to also be more efficient regarding
the a posteriori validation.

Given truncation levels K and N in N, and an approximate periodic solution X̄ = (Ω̄, x̄, ȳ, z̄) in
ΠK,NX , we are going to try and validate this approximation using Theorem 2.14 for the map

F = (G,F ) (18)

and the space X . In order to do so, we first need to derive a suitable approximate inverse A of DF(X̄),
and then to obtain bounds satisfying (6). We accomplish these tasks in the next two subsections.

12



3.2 The approximate inverse A

If we were considering a deterministic periodic orbit (for a given value of p), and therefore working with

the space Xdeter = C ×
(
`1ν (Z,C)

)3
rather than X = `1η(N,C) ×

(
`1ν
(
Z, `1η(N,C)

))3
, a typical way to

construct A would be as follows. One would split the space into a finite part and a tail part

Xdeter = ΠKXdeter ⊕ (I −ΠK)Xdeter,

where ΠKXdeter = C ×
(
ΠK`

1
ν (Z,C)

)3
, and define A separately on both subspaces. For the finite part,

we would simply compute numerically an inverse AK of ΠKDF(X̄)ΠK which can be represented as a
(6K−2)× (6K−2) matrix with complex entries. For the tail part, i.e. the higher order modes, the parts
of F corresponding to the differential operator would be the most important one, and we would neglect
the rest to define A:

AXk := − 1

ikΩ̄
Xk, ∀ |k| ≥ K,

where Xk = (xk, yk, zk). This is but an example of a general strategy for defining approximate inverses
in the context of computer-assisted proofs, which consists in choosing A as a finite rank perturbation of
some leading order operator that can be inverted by hand, the finite rank part being directly related to
a finite dimensional projection of the map F .

In this work, for a random periodic orbit, we adopt this strategy with a slight twist, by trying to
mimic as much a possible the situation in the deterministic case, but replacing C by `1η(N,C) and the
multiplication on C by the generalized convolution product ∗.

We consider the same splitting as above, based only on the Fourier modes

X = ΠKX ⊕ (I −ΠK)X ,

where ΠKX = `1η(N,C) ×
(
ΠK`

1
ν

(
Z, `1η(N,C)

))3
. We will still refer informally to both subspaces as the

finite part and the tail part respectively, but we emphasize that ΠKX is only “finite” in terms of Fourier
modes, but remains an infinite dimensional subspace because we did not truncate anything in the gPC
components.

Remark 3.1. It is really crucial to take the “finite” part, i.e. the part on which the inverse will be
computed accurately, as ΠKX and not as ΠK,NX , otherwise the resulting A will not be a good enough
approximate inverse. Indeed, we are allowed to truncate in Fourier because of the regularizing properties
of the equation in t (which corresponds to the Fourier expansion), but there is no such regularization in
p (which corresponds to the gPC expansion).

Regarding the tail part, we first compute numerically an approximate inverse Υ of Ω̄ in ΠN `
1
η(N,C),

i.e. such that Υ ∗ Ω̄ ≈ 1. Then, we define A in the tail in a similar way as above, except 1
Ω̄
Xk now

becomes Υ ∗Xk.
For the finite part, we will also compute numerically an approximate inverse AK of ΠKDF(X̄)ΠK .

However, ΠKDF(X̄)ΠK is no longer finite dimensional, but can be identified with a linear operator on(
`1η(N,C)

)6K−2
. To make things slightly more concrete, this means we can still represent ΠKDF(X̄)ΠK

as a (6K − 2) × (6K − 2) matrix, except each entry is now a linear operator on `1η(N,C) rather than a
complex number. The key point here is that each of these linear operators is not any linear operator,
but a multiplication operator, and can therefore be represented compactly by an element of `1η(N,C)
(analogously to the way complex numbers in the deterministic case actually represent multiplication
operators on C). Therefore, we compute an approximate inverse AK of ΠKDF(X̄)ΠK under the form
of a (6K − 2) × (6K − 2) matrix of multiplication operators on `1η(N,C), represented by (6K − 2)2

elements of ΠN `
1
η(N,C). Each of these multiplication operator is still of infinite rank, but the fact

they are multiplications (generalized convolutions) with elements of ΠN`
1
η(N,C) means that AK can be

represented and stored on a computer.
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To summarize, we define the linear operator A by
AΠK(X) = AKΠKX

AXk =
1

−ik
Υ ∗Xk, |k| ≥ K,

(19)

where Υ∗Xk must be understood as (Υ ∗ xk,Υ ∗ yk,Υ ∗ zk), andAK is a linear operator on
(
`1η(N,C)

)6K−2

which takes the form of (6K− 2)2 multiplication operators with elements of ΠN`
1
η(N,C) (which are com-

puted numerically so that AK ≈
(
ΠKDF(X̄)ΠK

)−1
).

Remark 3.2. In practice, one of the main limiting factors for computer-assisted proofs like the ones we
are using here is the dimension of the finite part of A, and the computing power and memory requirement
associated to it. Given the type of expansion were are using, namely bi-infinite series, it is remarkable that
the number of complex numbers needed to represent this finite part scales likes K2N (it is actually equal
to (6K − 2)2N), rather than like K2N2. This is possible because we take advantage of the multiplication
operator structure.

3.3 Bounds for the a posteriori validation

Now that A has been defined in (19), we are left with deriving estimates Y , Z1 and Z2 satisfying (6).
Once a proper framework has been obtained, including an appropriate definition of A and a suitable
choice of sequence space, the derivation of these estimates is by now standard in the computer-assisted
proof literature. Therefore, we only go into the details when they are specific to the new structure of A
that is used in this work.

We recall that the map F we are considering is defined in (16)-(18), the space X in (14), and that the
approximate solution X̄ belongs to ΠK,NX , i.e. is a trigonometric polynomial of degree at most N − 1,
whose coefficients are polynomials of degree at most K−1. Similarly, we assume that x̃, ỹ and z̃ involved
in the phase condition (17) all belong to ΠK,N`

1
ν

(
Z, `1η(N,C)

)
.

3.3.1 The bound Y

As was the case in the example of Section 2.6, obtaining a Y bound satisfying (6a) is rather straightfor-
ward, as we can simply take

Y :=
∥∥AF(X̄)

∥∥
X .

The only thing to notice is that AF(X̄) has only finitely non-zero coefficients, hence it can be computed
exactly on a computer, up to rounding errors which are taken care of by the use of interval arith-
metic. Indeed, having X̄ in ΠK,NX means F(X̄) belongs to Π2K−1,2N−1X , and that AF(X̄) belongs to
Π2K−1,3N−2X , hence the above defined Y is computable in finitely many operations.

3.3.2 The bound Z1

In order to obtain a Z1 estimate, we need to bound the operator norm of B := I − ADF(X̄). To that
end, we use the following splitting (see Lemma 2.13)

‖B‖X = max

 sup
X∈Π2K−1X

X 6=0

‖BX‖X
‖X‖X

, sup
X∈(I−Π2K−1)X

X 6=0

‖BX‖X
‖X‖X

 . (20)

In order to handle the first part, we will use the following lemma, which is a direct consequence of the
Banach algebra property of Lemma 2.10 and of the usual computation of `1 operator norms.

14



Lemma 3.3. Let B be a linear operator on `1ν
(
Z, `1η(N,C)

)
, represented as an infinite matrix (Bk,l)k,l∈Z

of linear operators on `1η(N,C), and assume that each of those is in fact a multiplication operator by an

element bk,l in `1η(N,C). Then, denoting by ‖b‖`1η the infinite matrix of real numbers
(
‖bk,l‖`1η

)
k,l∈Z

, we

have that

‖B‖`1ν(Z,`1η) =
∥∥∥‖b‖`1η∥∥∥`1ν = sup

l∈Z

1

ν|l|

∑
k∈Z
‖bk,l‖`1η ν

|k|.

This lemma easily generalizes to a linear operator defined on X (or on a subspace of X ), and allows

us to get a computable upper-bound Zfinite1 of the first supremum in (20). Indeed, for X in Π2K−1X
and B = I−ADF(X̄), BX belongs to Π3K−2X , which means we only have finitely many multiplications
operators on `1η whose norm we need to compute in order to control this supremum over Π2K−1X . Finally,
since we assumed that all the multiplication operators in A were with elements of ΠN `

1
η(N,C), each of

those multiplication operators in B are with elements of Π2N−1`
1
η(N,C), which have only finitely many

non-zero coefficients, which makes their norm fully computable.
Regarding the second part of the splitting, if X belongs to (I −Π2K−1)X , then DF(X̄)X is in

(I −ΠK)X , and therefore so is ADF(X̄)X. Hence, still assuming X belongs to (I −Π2K−1)X , BX is
in (I −ΠK)X , we can write BX rather explicitly since it does not involve AK : for |k| ≥ K we get

(BX)k = Xk −ADFk(X̄)X

=

xkyk
zk

+
1

ik
Υ ∗

 −ikΩ̄ ∗ xk − σxk + σyk
−ikΩ̄ ∗ yk + ρ ∗ xk − yk − (x̄~ z + x~ z̄)k
−ikΩ̄ ∗ zk − βzk + (x̄~ y + x~ ȳ)k


=
(
1−Υ ∗ Ω̄

)
∗

xkyk
zk

+
1

ik
Υ ∗

 −σxk + σyk
ρ ∗ xk − yk − (x̄~ z + x~ z̄)k
−βzk + (x̄~ y + x~ ȳ)k

 ,

which yields

‖BX‖X ≤
∥∥1−Υ ∗ Ω̄

∥∥
`1η
‖X‖X

+
1

K

((
σ ‖Υ‖`1η + ‖(z̄ − ρ) ~ Υ‖`1ν(`1η) + ‖ȳ ~ Υ‖`1ν(`1η)

)
‖x‖`1ν(`1η)

+
(

(σ + 1) ‖Υ‖`1η + ‖x̄~ Υ‖`1ν(`1η)

)
‖y‖`1ν(`1η) +

(
‖x̄~ Υ‖`1ν(`1η) + β ‖Υ‖`1η

)
‖z‖`1ν(`1η)

)

≤

∥∥1−Υ ∗ Ω̄
∥∥
`1η

+
1

K
max

σ ‖Υ‖`1η + ‖(z̄ − ρ) ~ Υ‖`1ν(`1η) + ‖ȳ ~ Υ‖`1ν(`1η)

(σ + 1) ‖Υ‖`1η + ‖x̄~ Υ‖`1ν(`1η)

‖x̄~ Υ‖`1ν(`1η) + β ‖Υ‖`1η


 ‖X‖X .

Therefore, we can define

Ztail1 =
∥∥1−Υ ∗ Ω̄

∥∥
`1η

+
1

K
max

σ ‖Υ‖`1η + ‖(z̄ − ρ) ~ Υ‖`1ν(`1η) + ‖ȳ ~ Υ‖`1ν(`1η)

(σ + 1) ‖Υ‖`1η + ‖x̄~ Υ‖`1ν(`1η)

‖x̄~ Υ‖`1ν(`1η) + β ‖Υ‖`1η

 ,

and finally Z1 := max
(
Zfinite1 , Ztail1

)
which satisfies (6b).
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3.3.3 Z2

As in the example of Section 2.6, our map F is quadratic, which allows us to take r∗ = +∞. In particular,
for any X and X ′ in X we have

D2G(X̄)(X,X ′) = 0

D2F (X̄)(X,X ′) = iK

Ω ~

x′y′
z′

+ Ω′ ~

xy
z

+

 0
−x~ z′ − x′ ~ z
x~ y′ + x′ ∗ y

 ,

where K was introduced in Section 3.1. Therefore∥∥AD2F(X̄)(X,X ′)
∥∥
X ≤ ‖AK‖X (|Ω| ‖X ′‖X + |Ω′| ‖X‖X )

+ ‖A‖X
(
‖x‖`1ν(`1η)

(
‖y′‖`1ν(`1η) + ‖z′‖`1ν(`1η)

)
+ ‖x′‖`1ν(`1η)

(
‖y‖`1ν(`1η) + ‖z‖`1ν(`1η)

))
≤ max (‖AK‖X , ‖A‖X ) ‖X‖X ‖X

′‖X ,

and Z2 := max (‖AK‖X , ‖A‖X ) satisfies (6c) (with r∗ = +∞).

Remark 3.4. To be precise, in the above definition of Z2 we replace the norm of A and AK by easily
computable upper bounds of their norms, obtained using Lemma 3.3.

This estimate could also be made slightly sharper, by noticing that some “columns” of A and KA are
always multiplied by zero in the above computation of AD2F(X̄)(X,X ′), and can therefore be excluded
from the norm computation.

3.4 Results

We are now ready to rigorously validate approximate periodic solutions of (10)-(11) represented as trun-
cated Fourier×gPC series, by proving the existence of a true solution within a distance at most r of the
approximate one, for an explicit value of r.

Approximate solutions using truncated Fourier×gPC series were already obtained in [8, Section 6], but
without guarantee regarding their accuracy, which is what we add in this paper, thanks to Theorem 2.14
and the estimates derived up to now in this section. Here is an example of the kind of results we can
obtain with this approach.

Theorem 3.5. Take the parameter values ρ̄ = 28, δ = 10 in (11), the generalized convolution prod-
uct (Definition 2.8) associated to the Legendre polynomials Pn, the weights ν = η = 1 in the defi-
nition of X (14), and the truncation parameters K = 100 and N = 15. Consider the approximate
Fourier×Legendre solution X̄ in ΠK,NX of (10)-(11), which can be downloaded at [7], and for which a
couple of orbits are represented on Figure 2.

There exists a periodic solution X∗ in X of (10)-(11), such that
∥∥X∗ − X̄∥∥X ≤ rmin = 1.3724×10−4.

This is the unique solution in the open ball of center X̄ and radius rmax = 1.382× 10−3 in X .

Proof. We consider F as in (16)-(18), A as in (19), and evaluate the bounds Y , Z1 and Z2 (with r∗ = +∞)
obtained in Section 3.3. We get

Y = 3.62368...× 10−5 Z1 = 0.72214... Z2 = 201.067...,

hence assumptions (7) are satisfied. From (6b) and (7a) we know that A must be surjective, and that
the tail part of A is bijective (Ztail1 < 1 yields

∥∥1−Υ ∗ Ω̄
∥∥
`1η
< 1, therefore Υ is invertible). The finite

part AK of A is only surjective a priori, but since AK can be represented as a (finite) matrix over the
commutative ring `1η, surjectivity implies injectivity and we do have that A is injective. Theorem 2.14
then yields the announced results, with

rmin =
1− Z1 −

√
(1− Z1)2 − 2Y Z2

Z2
and rmax =

1− Z1

Z2
.
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Figure 2: Several approximate periodic orbits of the Lorenz system (10)-(11), for ρ = 18 (p = −1) in red,
ρ = 28 (p = 0) in green, and ρ = 38 (p = 1) in blue, all encoded in the Fourier×gPC expansion X̄, and
validated in Theorem 3.5.

The computational parts of the proof, namely the computation of the finite part AK of A and the
evaluation of the bounds, can be reproduced using script Lorenz.m available at [7] (with Intlab [38] for
the required interval arithmetic computations).

Remark 3.6. Since we used a Legendre expansion in p, the solution X∗ described in Theorem 3.5 would
be a natural gPC representation of a random periodic orbit of (10)-(11) where p is a uniform random
variable in [−1, 1]. We would then directly get statistics about the random periodic orbit, for instance an
approximation of the expectation of its frequency

E (Ω∗) ≈ Ω̄0 = 1.5993...,

together with a guaranteed error bound ∣∣E (Ω∗)− Ω̄0

∣∣ ≤ rmin.
Moreover, the obtained solution contains a precise description of a periodic orbit for each p in [−1, 1],

therefore it could also be used to compute statistics of a random periodic orbit assuming a different
distribution for p. For instance, if p has a density %p, then we get an approximation of the expectation
of its frequency

E (Ω∗) ≈ E
(
Ω̄
)

=

N∑
n=0

Ω̄n

∫ 1

−1

Pn(s)%p(s)ds,

and an error bound∣∣E (Ω∗)− E
(
Ω̄
)∣∣ =

∣∣∣∣∣
∞∑
n=0

Ω∗n

∫ 1

−1

Pn(s)%p(s)ds−
N∑
n=0

Ω̄n

∫ 1

−1

Pn(s)%p(s)ds

∣∣∣∣∣
≤
∞∑
n=0

∣∣Ω∗n − Ω̄n
∣∣ ∫ 1

−1

%p(s)ds

=
∥∥Ω∗ − Ω̄

∥∥
`1η

≤ rmin,
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since Ω̄n = 0 for n ≥ N and each |Pn| is bounded by 1 on [−1, 1].
If p does not have a uniform distribution, the approximate solution obtained using Legendre polynomi-

als will be less accurate (at least in L2 norm) than the one obtained with the gPC basis associated to %p,

and one then has to do extra computations a posteriori, like the integrals
∫ 1

−1
Pn(s)%p(s)ds. Nonetheless,

since the cost of the validation can change significantly from one choice of basis to the other (see the
discussion below), the natural choice of gPC basis (i.e. the one associated to %p) might not always be the
cheapest option.

In the above discussion, we mostly adopted the viewpoint of random periodic orbits, but Theorem 3.5
also provides us with a deterministic continuation result, namely the existence (and precise description)
of a branch of periodic orbits for ρ going from ρ̄ − δ = 18 to ρ̄ + δ = 38. If there is no underlying
random distribution for p, we are completely free from the gPC paradigm, and should try to chose the
best expansion basis, where of course one has to specify in which sense we mean best. In the following
we investigate two criteria:

• For each basis, what is the smallest value of N for which the validation is successful?

• For a fixed N , what is the minimal validation radius rmin obtained which each basis?

The first criterion is related to the cost of the validation, both in terms of computational time and memory
requirement (see Remark 3.2). The second one assesses the accuracy of the obtained approximation, or
at least the accuracy that can be guaranteed.

The output of these comparisons is described in Table 2 regarding the cost of the validation, and
in Table 3 regarding the accuracy. In both cases we considered (10)-(11) with ρ̄ = 28 and δ = 10, a
fixed truncation level K = 100 for the Fourier modes, and weights ν = η = 1 in the norm on X . These
experiments can be reproduced using script Lorenz.m available at [7] (with Intlab [38] for the required
interval arithmetic computations).

Polynomial basis Legendre Chebyshev Chebyshev 2nd kind Gegenbauer µ = 20 Taylor

Minimal value of N 14 13 15 22 28

Table 2: We validate an approximate solution of (10)-(11) with ρ̄ = 28 and δ = 10, for several choices of
polynomial bases for the expansion in p. As soon as N is taken strictly smaller than the value indicated
here, the validation fails, typically because (7b) is no longer satisfied.

Polynomial basis Legendre Chebyshev Chebyshev 2nd kind Gegenbauer µ = 20 Taylor

Error bound 8.7× 10−7 7.6× 10−7 9.7× 10−7 1.5× 10−5 7.1× 10−4

Table 3: We validate an approximate solution of (10)-(11) with ρ̄ = 28 and δ = 10, for several choices
of polynomial bases for the expansion in p, but this time with a fixed truncation level N = 28. In each
case the validation is successful (meaning that the assumptions of Theorem 2.14 can be checked using the

estimates of Section 3.3), and the displayed error bound corresponds to rmin =
1−Z1−

√
(1−Z1)2−2Y Z2

Z2
.

The Chebyshev polynomials (of the first kind) prove to be the best choice in both metrics (cost and
accuracy), which is not surprising given their remarkable approximation properties [43], although the
difference with the Legendre polynomials or the Chebyshev polynomials of the second kind is barely
noticeable. On the other hand, there seems to be a significant difference between using a Chebyshev
expansion, and a Gegenbauer expansion (with µ = 20) or a Taylor expansion, in particular since the
latter require significantly more modes for the validation to be successful (Table 2), which is related to
the fact that they yield less accurate approximations (Table 3), at least in the X norm which is used
for the proof. While Taylor expansions were already used successfully to obtain impressive results about
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validated branches of stationary and perdiodic solutions of PDEs [1, 2], the present comparison suggests
that replacing the Taylor expansion by a Chebyshev expansion in the continuation variable would prove
even more efficient.

4 Validated continuation of steady states of the Swift-Hohenberg
equation

We now concentrate fully on the parameter continuation viewpoint, and consider as an example the
Swift-Hohenberg equation [41]

∂tu = −(1 + ∆)2u+ ρu− βu3, (21)

where u = u(t, x) is a scalar function, for which we compute and validate branches of equilibria. We
focus on the 1 dimensional case, where the spatial variable x belongs in (0, L) together with homogeneous
Neumann boundary conditions, which is already very rich, as is illustrated by the bifurcation diagram of
steady states represented in Figure 3. For the moment we keep β fixed, and take ρ as the continuation
parameter, which we again normalize by writing

ρ = ρ̄+ δp, (22)

where ρ̄ and δ ≥ 0 are given constants, and p varies in [−1, 1].

1 2 3 4
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2

1 2 3 4

0

0.5
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1.5

Figure 3: A numerical bifurcation diagram of steady states of (21), for β = 1 and L = 2π, represented
using two different projections: u(0) on the left, and ‖u‖`2 on the right. The red dots indicate numerically
detected bifurcation.

This problem has already been used as a test case for rigorous continuation methods. We re-emphasize
that the main novelty of our work in that regard is the fact that we also expand the solution in the
continuation parameter, with several choices of bases, including Chebyshev polynomials, which allows us
to represent and validate “in one go” large portions of the curves of solutions.

4.1 Setup for the validation

The validation setup is very similar to the one used in Section 3, so we go over it more briefly.
The homogeneous Neumann boundary conditions make it natural to expand the solution in Fourier

series in the x variable:

u(x, p) = u0(p) + 2

∞∑
k=1

uk(p) cos

(
kπ

L
x

)
=
∑
k∈Z

uk(p)ei
kπ
L x, (23)
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with u−k = uk, and we use a gPC expansion for the p variable

uk(p) =
∑
n∈N

uk,nφn(p). (24)

We look for solutions u = (uk,n)k∈Z
n∈N

in the space X = `1ν
(
Z, `1η(N,R)

)
where we impose that u−k,n =

uk,n for all k and n, and consider the norm

‖u‖X = ‖u‖`1ν(Z,`1η(N,R)) .

The zero-finding map F is defined as

F(u) = −
(
I −

(π
L
K
)2
)2

u+ ρ~ u− βu~ u~ u,

where the operator K is defined in equation (15). Given an approximate zero ū ∈ ΠK,NX , we construct
an approximate inverse A of DF(ū) as in Section 3.2, the main difference being that the −1

ik Υ factor in
the tail part of A is now taken as −1

λk
, where

λk :=

(
1− πk

L

)2

,

and we make sure to take the truncation level K large enough to ensure that λk cannot vanish for k ≥ K.
Regarding the bounds Y , Z1 and Z2 needed to apply Theorem 2.14, Y can again be computed by

simply evaluating AF(ū) (with interval arithmetic). For Z1, we again introduce B = I − ADF(ū) and
separate its norm using Lemma 2.13

‖B‖X = max

 sup
X∈Π3K−2X

X 6=0

‖BX‖X
‖X‖X

, sup
X∈(I−Π3K−2)X

X 6=0

‖BX‖X
‖X‖X

 .

As in Section 3.3.2, we can again compute explicitly an upper-bound Zfinite1 for the first supremum, and
control the second one by

Ztail1 =
‖ρ− 3β ū~ ū‖X

min
k≥K

λk
.

Finally, we can take Z2 = 6|β| ‖A‖X (‖ū‖X + r∗) for the last bound.

4.2 Results in the 1-parameter case

Here is an example of the type of results that can be obtained with this approach.

Theorem 4.1. Consider the 1D Swift–Hohenberg equation (21) with β = 1, L = 2π, ρ̄ = 2.9 and δ = 1.6
in (22), and the branch of approximate steady states ū represented in blue in Figure 4, whose precise
description in terms of Fourier×Chebyshev coefficients can be downloaded at [7]. Take also ν = η = 1.

With the notations introduced in Section 4.1, there exists a zero u∗ of F in X such that ‖ū− u∗‖X ≤
rmin = 3.8×10−4, and which is unique among all u in X such that ‖ū− u∗‖X ≤ rmax = 6.5×10−3. This
u∗ corresponds to an isolated branch of steady states of (21) with β = 1 and L = 2π, for ρ in [1.3, 4.5].

Proof. We again evaluate the bounds Y , Z1 and Z2, obtained in Section 4.1, check that assumptions (7)
are satisfied, and apply Theorem 2.14, which yields the existence and uniqueness statement for a zero u∗

of F near ū. The computational parts of the proof, namely the computation of the finite part AK of A
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Figure 4: Two specific portions of branches, in blue and green on the bifurcation diagrams at the top,
for which several solutions along the branch are represented at the bottom (left for the blue branch and
right for the green one). Regarding the solutions at the bottom, the lighter the color the smaller the
corresponding value of ρ. The whole blue branch has been validated in Theorem 4.1. The validation of
green branch failed, which is coherent with the fact that numerics suggest the presence of a bifurcation
crossing that branch.

and the evaluation of the bounds, can be reproduced using script SwiftHohenberg.m available at [7]
(with Intlab [38] for the required interval arithmetic computations).

It remains to be proven that the branch of steady states corresponding to u∗ is isolated. This is
essentially due to the fact that the `1η norm controls the C0 norm (Lemma 2.10), hence we can apply The-

orem 2.14 uniformly in p. To be more precise, for any p in [−1, 1] and u = (uk,n) in X = `1ν
(
Z, `1η(N,R)

)
,

we can consider u(p) = (uk(p)) which now belongs to `1ν (Z,R), with uk(p) as in (24). Thanks to
Lemma 2.10, we have that, for any p in [−1, 1]:

‖u(p)‖`1ν(Z,R) ≤ ‖u‖`1ν(Z,`1η(N,R)) . (25)

We also consider the map Fp, which is defined as F but with p fixed, and only acts on elements of
`1ν (Z,R). Similarly, we recall that A can be represented as an infinite matrix (Ak,l)k,l∈Z of operators on

`1η(N,C), and that each Ak,l is in fact a multiplication operator on `1η(N,R), represented by an element
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ak,l in `1η(N,R). Hence we can consider A(p) = (ak,l(p))k,l∈Z, which now acts on `1ν(Z,R), where

ak,l(p) =
∑
n∈N

(ak,l)n φn(p).

Since the generalized convolution product of coefficients corresponds to the pointwise product of functions,
we have that A(p)Fp(ū(p)) = (AF(ū)) (p), and by (25)

‖A(p)Fp(ū(p))‖`1ν(Z,R) ≤ ‖AF(ū)‖X ≤ Y,

for all p in [−1, 1]. Similarly,∥∥I`1ν(Z,R) −A(p)DFp(ū(p))
∥∥
`1ν(Z,R)

≤ ‖IX −ADF(ū)‖X ≤ Z1,

for all p in [−1, 1]. Indeed, for any linear operator B = (Bk,l)k,l∈Z acting on X , where each Bk,l is a

multiplication operator on `1η(N,R) represented by an element bk,l in `1η(N,R), we have (see Lemma 3.3)

‖B(p)‖`1ν(Z,R) =
∥∥∥(bk,l(p))k,l∈Z

∥∥∥
`1ν

≤
∥∥∥∥(‖bk,l‖`1η(N,R)

)
k,l∈Z

∥∥∥∥
`1ν

= ‖B‖X .

Finally, for any p in [−1, 1] and any v in B`1ν(Z,R)(ū(p), r∗), we get

‖A(p) (DFp(v)−DF(ū(p)))‖`1ν(Z,R) ≤ ‖A(p)‖`1ν(Z,R) ‖DFp(v)−DF(ū(p))‖`1ν(Z,R)

≤ ‖A(p)‖`1ν(Z,R) 6|β|
(
‖ū(p)‖`1ν(Z,R) + r∗

)
≤ Z2.

Hence, for each p in [−1, 1] we can apply Theorem 2.14 to the map Fp and the approximate solution
ū(p), which proves that the steady state u∗(p) of (21) is locally unique, and in particular there cannot
be a another branch of steady states of (21) bifurcating from u∗.

Remark 4.2. We used a Chebyshev expansion in p in Theorem 4.1 because we expect it to be the most
efficient choice to represent the branch of solutions. Indeed, while we could for instance have gotten a
similar result with a Taylor expansion, we would have needed to take at least N = 47 for assumption (7b)
to be satisfied, and N = 72 if we wanted to get an error estimate rmin which is as small as in Theorem 4.1,
whereas the current proof with a Chebyshev expansion uses only N = 15.

A remarkable part of Theorem 4.1 is that it guarantees that the portion of the branch that is validated
is isolated, i.e. we have a proof that there is no other branch of steady states connected to this part.
On the other hand, this means that we cannot hope to validate a part of a branch that goes through a
bifurcation. Indeed, if we try to validate the branch of steady states represented in green in Figure 4,
the proof fails because Z1 (in fact Zfinite1 ) remains larger than 1, no matter how large we take K and N .
This does not prove, but strongly suggests, that there is indeed a bifurcation on this part of the branch.
Computer-assisted proofs of the existence of bifurcations are possibles, but require more work, see for
instance [2, 3, 30, 49] and the references therein. If the parameter ρ is modeled by a random variable, one
may want to try and quantify how these possible bifurcations impact the behavior of the system, which
is for instance discussed in the recent work [25].

4.3 Extension to multi-parameter validated continuation

Let us now consider both ρ and β as varying parameters in (21), normalized as

ρ = ρ̄+ δρp1, β = β̄ + δβp2, (26)
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where ρ̄, β̄ and δρ, δβ ≥ 0 are given constants, and p1, p2 vary in [−1, 1]. Away from bifurcation points, we
expect to get a 2-dimensional manifold of steady states parametrized by p = (p1, p2). Using a bi-variate
gPC expansion, we can approximate and then rigorously validate such manifold of steady states. It is
remarkable that this generalization from the 1-parameter case requires only very minor modifications,
both in terms of the estimates and in terms of the code. The only other work we are aware of in which
validated multi-parameter continuation is studied is [17], in which the transition from the 1-parameter
case requires a significant effort.

Starting back from (23), we now consider a bi-variate expansion for each Fourier coefficient

uk(p) = uk(p1, p2) =
∑
n∈N2

uk,nφn(p),

where the new basis is simply obtained by taking the tensor product of two univariate bases:

φn(p) := φ(1)
n1

(p1)φ(2)
n2

(p2) ∀ n = (n1, n2) ∈ N2.

In the sequel we take the Chebyshev polynomials of the first kind for both φ
(1)
n1 and φ

(2)
n2 , but all the bases

mentioned up to now could be combined here. A generalized convolution product associated to such
bi-variate expansion can be defined in a straightforward way from the generalized convolution products
associated to each univariate basis, see e.g. [8, Appendix].

Up to changing the space to X = `1ν
(
Z, `1η1

(
N, `1η2(N,R)

))
' `1ν

(
Z, `1η(N2,R)

)
, to taking β = β̄+ δβp2

instead of β constant in F , and to replacing |β| by ‖β‖`1η2 (N,R) in the Z2 estimate, we can use exactly the

same setup as in Section 4.1 to validate an approximate 2-dimensional manifold of steady states.

Theorem 4.3. Consider the 1D Swift–Hohenberg equation (21) with L = 2π and the manifold of ap-
proximate steady states ū represented in Figure 5, whose precise description in terms of Fourier×gPC
coefficients can be downloaded at [7].

There exists a zero u∗ of F in X such that ‖ū− u∗‖X ≤ rmin = 4.4 × 10−3, and which is unique
among all u in X such that ‖ū− u∗‖X ≤ rmax = 8× 10−3. This u∗ corresponds to an isolated manifold
of steady states of (21) with L = 2π, for (ρ, β) in [2, 4]× [0.25, 1.75].

Proof. The proof again amounts to checking the assumptions of Theorem 2.14. The computational parts
of the proof, namely the computation of the finite part AK of A and the evaluation of the bounds, can
be reproduced using script SwiftHohenberg 2para.m available at [7] (with Intlab [38] for the required
interval arithmetic computations).

5 Conclusion

In this work, we introduced a new methodology to obtain fully rigorous a posteriori error bounds for
several types of gPC expansions (Legendre, Chebyshev of the first and the second kind, and Gegenbauer
expansions). We showcased via several examples that this strategy can be used in the context of random
invariant sets generated by random ODEs or PDEs, allowing to get a very precise and certified description
of random periodic orbits of ODEs and of random steady states of parabolic PDEs.

These techniques can also be seen through the lens of rigorous/validated numerics, and in this context
they provide a new way of rigorously computing curves or higher-dimensional manifolds of solutions in
parameter-dependent systems, generalizing an approach introduced recently in [2]. It is remarkable that
the memory requirements associated to this approach can be made to scale linearly with the dimension
of the gPC projection (see Remark 3.2).

We finish by mentioning possible generalizations but also current limitations and open questions
related to this work that we believe to be of interest.

• We only considered ODEs or PDEs with polynomial nonlinearities, which is a particularly conve-
nient framework to work in with spectral techniques. Yet, some non-polynomial nonlinearities can
be handled in a similar way, making use of ideas from automatic differentiation, see e.g. [29].
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Figure 5: A validated manifold of steady states of (21), for L = 2π, and (ρ, β) in [2, 4] × [0.25, 1.75],
represented using u(0) as a projection. The approximate manifold of steady states ū is composed of
K = 20 Fourier modes, N1 = 5 Chebyshev modes in ρ and N2 = 10 Chebyshev modes in β.

• While we only studied random steady states and random periodic orbits in this work, the proposed
approach generalizes in a straightforward way to rigorously compute other types of random invariant
sets, as soon as we already have the tools to rigorously compute them in the deterministic case,
which is for instance the case for invariant manifolds or connecting orbits.

• We restricted our attention to random parameters having somewhat classical distributions (namely
uniform distributions or at least symmetric beta distributions). For more exotic distributions, in
particular distributions that are obtained from data and have no analytic expression, one of the
main difficulty with our approach is that we require an explicit knowledge of the linearization
coefficients. We believe that generalizing the techniques of this paper to a wider class of random
parameters (maybe making use of a probability transform to recover a uniform distribution) would
be of interest.

• Even if we stick with classical distributions, for which the linearization coefficients are known an-
alytically, our approach can currently only handle bounded random parameters, and in particular
excludes Gaussian or exponential distributions. The main reason is that the corresponding orthog-
onal polynomials, namely Hermite and Laguerre polynomials, do not readily give rise to a discrete
convolution structure like the one we could make use of in this work (Lemma 2.10). Finding a
way to rigorously compute gPC expansions with those bases, which occur very naturally in many
problems, would also be of great interest.

• We conclude with a comment about the implementation. Because we wanted to handle several
different expansions in a uniform way, we did not take advantage of the fact that for some ex-
pansions (namely Chebyshev and Taylor expansions), the corresponding convolutions can be very
efficiently computed using FFT (or DCT) algorithms. If one wanted to focus solely on Chebyshev
expansions, which we would for instance recommend if one is only interested in the deterministic
parameter-continuation viewpoint, making use of the FFT could improve the performances of the
code significantly, especially for higher dimensional problems.
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