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ABSTRACT. We study the non-autonomous variational problem:

inf
(φ,θ)

{∫ 1

0

(
k

2
φ′2 +

(φ− θ)2

2
− V (x, θ)

)
dx
}

where k > 0, V is a bounded continuous function, (φ, θ) ∈ H1([0, 1]) × L2([0, 1])

and φ(0) = 0 in the sense of traces. The peculiarity of the problem is its setting in the
product of spaces of different regularity order. Problems with this form arise in elastostat-
ics, when studying the equilibria of a nonlinear Timoshenko beam under distributed load,
and in classical dynamics of coupled particles in time-depending external fields. We prove
the existence and qualitative properties of global minimizers and study, under additional
assumptions on V , the existence and regularity of local minimizers.

1. SETTING OF THE PROBLEM

Let us indicate by L2 := L2([0, 1],R) and H1 := H1([0, 1],R) the usual Lebesgue and
Sobolev spaces, and by H1

∗ ⊂ H1 the subspace of functions φ verifying φ(0) = 0 in the
sense of traces. For k a strictly positive constant and V : [0, 1] × R → R a bounded
continuous function, we study the variational problem:

(1.1) inf
(φ,θ)∈S

{∫ 1

0

(
k

2
φ′2 +

(φ− θ)2

2
− V (x, θ)

)
dx
}

where the pair (φ, θ) is searched in

S := H1
∗ × L2.

In the following, we endow S with the natural product metric and topology. In particu-
lar, when we talk about a local minimizer of a functional F defined over S, we mean a
pair (φ̃, θ̃) ∈ S such that F (φ̃, θ̃) ≤ F (φ, θ) for every (φ, θ) belonging to a sufficiently
small open ball, centered in (φ̃, θ̃), with respect to this product topology. Clearly, in our
terminology, every global minimizer of a functional defined on S is also a local minimizer.
The problem admits, for instance, the following physical interpretations:

(1) φ, θ represent the kinematical descriptors of an inextensible, geometrically non-
linear Timoshenko beam submitted to a distributed load depending on V ;

(2) φ, θ represent the Lagrangian coordinates of two bodies Bφ, Bθ having quadratic
attractive interaction potential and x represents time; Bφ has mass k while Bθ has
negligible mass but is sensitive to an external time-dependent (electric or mag-
netic) field depending on V .
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FIGURE 1. A schematic representation of a Timoshenko beam. Notice
that the inextensibility assumption (1.4) makes it possible to interpret
the variable x as a curvilinear abscissa along the middle line (the dashed
curve in the picture).

In the following we mainly refer to the first interpretation. Let us therefore recall that a
Timoshenko beam is a one-dimensional elastic body whose kinematics is described by a
curvilinear parametrization χ : [0, 1]→ R2 and an extra kinematical variable φ interpreted
as the orientation of the cross-section, hence it is the angle between the cross-section of
the beam and a reference axis. A schematic representation of a Timoshenko beam is shown
in Fig.1.
When the material behavior is assumed to be linear and the model is also geometrically lin-
earized, we get the original formulation of the Timoshenko beam elastic energy functional
(see [20, 21]), namely

(1.2)
∫ 1

0

(
k

2
(φ′)2 +

(φ− χ′2)2

2

)
dx,

where χ2 is the vertical component of χ. If geometric nonlinearities are considered, the
elastic energy of the beam reads as follows (for a detailed derivation, see [3]):

(1.3)
∫ 1

0

(
k

2
φ′2 +

(φ− θ)2

2

)
dx,

where it was assumed that the beam has length 1 and is inextensible, that is

(1.4) ||χ′||2 ≡ 1.

The bending coefficient k belongs to R+ and the function θ verifies χ′ = (cos θ, sin θ).
The potential due to a distributed load b(x) is

∫ 1

0

(
b(x) · χ(x)

)
dx which can be rewritten,

using an integration by parts, as
∫ 1

0

(
B(x) · χ′(x)

)
dx, where B(x) =

∫ 1

x
b(ξ)dξ and the

kinematical constraint

(1.5) χ(0) = 0

was imposed. Notice that (1.3) reduces to (1.2) under the smallness assumption χ′2 =
sin θ ≈ θ. The minimization of the total energy, if the load is uniform and has zero
horizontal component, is therefore of the form (1.1) with

(1.6) V (x, θ) = b(1− x) sin θ,
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where b > 0 corresponds to the load density per unit length. Adding to the constraint (1.5)
the further requirement

(1.7) φ(0) = 0,

we obtain the conditions usually expressed saying that the beam is horizontally clamped
at one of its extremes. Notice that, in the variational formulation (1.1), the constraint (1.7)
is contained in the definition of S, while the constraint (1.5) has to be taken into account
when reconstructing the vector fieldχ(x) from θ(x). The case in which V does not depend
on x was studied in [3], while a numerical investigation of the case with distributed load
was performed in [13].
The variational problem (1.1) is close to a model-case of non-autonomous, not strictly
convex problem. The absence of a term with θ′2 makes the integrand not (strictly) convex
in the highest order derivative (so that convergence of minimizing sequences is not granted
by standard arguments) and at the same time settles the problem in the “asymmetric” space
H1 × L2. When k = 1, an effective way to see the above mentioned asymmetry of the
problem is writing it follows:

inf
φ,θ

{
1

2

(
‖φ‖2H1 + ‖θ‖2L2

)
− (φ, θ)L2 −

∫ 1

0

V (x, θ)dx
}
.

When k 6= 1, an analogous representation can be obtained considering an equivalent metric
on H1.
The results developed herein all hold when V is given by (1.6). However, we will not
limit ourselves to this form of V for the existence and the main properties of the global
minimizer.
Specifically, in Section 2 the existence of a global minimizer of problem (1.1) will be
proved assuming that V is a bounded continuous function. Some general properties verified
by global minimizers will be established under the further assumption that θ → V (x, θ)
admits a global maximum at a > 0 (independently of x) and that V (x,−θ) < V (x, θ) for
θ ∈ [0, a] and for almost every x ∈ [0, 1]. In Section 3, the existence and regularity of local
minimizers, different from the global ones, will be studied under the assumption that V is
given by (1.6), and that both b and k/b are sufficiently small. The main motivation of this
study is the existence of minimizers with similar properties in the simpler cases of Euler
beam under distributed load (see [11, 10]) and of Timoshenko beam under concentrated
end load (see [3]).

2. GLOBAL MINIMIZERS

Let us assume that function V in (1.1) is a bounded continuous function. We remark
that, since we do not have a term depending on θ′ in the integral (1.1), the fact that a
minimizing sequence (φn, θn) has a bounded energy does not provide any information for
the derivatives of θn. Hence, the weak convergence in L2 of θn to a function θ does not
imply that θ minimizes the energy, so the usual direct method of the calculus of variations
must be used with caution.
Let us reformulate problem (1.1) as

(2.1) inf
(φ,θ)∈S

F (φ, θ),
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with

(2.2) F (φ, θ) =

∫ 1

0

(
k

2
φ′2 +

(φ− θ)2

2
− V (x, θ)

)
dx.

We establish the existence of a minimizer of F (φ, θ) in the following proposition.

Proposition 2.1. Assume that k > 0 and that V is a bounded continuous function on
[0, 1]× R. Then Problem (2.1) admits a solution.

Proof. Fix M > |V |. Then F (0, 0) ≤ M and the infimum can be searched among func-
tions (φ, θ) satisfying F (φ, θ) ≤M and such functions satisfy∫ 1

0

k

2
φ′2dx ≤ 2M.

The infimum can therefore be searched assuming that ‖φ‖H1
∗
≤ C for some constant C

depending only on M and k, so that it follows that ‖φ‖C0([0,1]) ≤ ‖φ‖H1
∗
≤ C.

Let us define the function H : [0, 1]× R2 → R as

H(x, φ, θ) := −φθ +
θ2

2
− V (x, θ),

so that we have

F (φ, θ) =

∫ 1

0

(
k

2
φ′2 +

φ2

2
+H(x, φ, θ)

)
dx.

Let us now set, for any x ∈ [0, 1] and φ ∈ [−C,C],

(2.3) K(x, φ) := inf
θ∈R

(H(x, φ, θ)).

It is easy to check that any real number θ satisfying H(x, φ, θ) ≤ H(x, φ, 0) ≤ M ,
satisfies |θ| ≤ D := C +

√
2M + C2. Therefore the set of solutions of problem (2.3) is

a non-empty closed subset of the compact [−D,D]. For every x ∈ [0, 1], let us indicate
by θφ(x) the smallest solution of (2.3). Being lower-semicontinuous, θφ is a measurable
function, and being bounded it is in L2([0, 1]).
Let (xn, φn) be a sequence converging to (x, φ). Up to a subsequence, θφn converges to
some θφ ∈ [−D,D] and we have

H(xn, φn, θφn) = K(xn, φn) ≤ H(xn, φn, θφ).

As H is continuous, passing to the limit we get

K(x, φ) ≤ H(x, φ, θφ) = limK(xn, φn) ≤ H(x, φ, θφ) = K(x, φ).

Hence K is a bounded continuous function. By standard arguments of the calculus of
variations (see for instance Tonelli’s existence theorem in [7]), the problem

(2.4) inf
φ

∫ 1

0

(
k

2
φ′2 +

φ2

2
+K(φ, x)

)
dx

admits a solution φ̄ in H1
∗ ([0, 1]) and

inf
(φ,θ)

F (φ, θ) ≤ F (φ̄, θφ̄) = inf
φ

∫ 1

0

(
k

2
φ′2 +

φ2

2
+K(φ, x)

)
dx ≤ inf

(φ,θ)
F (φ, θ).

Hence, the pair (φ̄, θφ̄) is a solution to Problem (1.1). �
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Remark 2.2. In principle, the minimizer whose existence has been established in Proposi-
tion 2.1 may fail very badly to be unique, even whether the related Problem (2.4), which is
a classical problem of calculus of variations, admits a unique solution φ̄.
Suppose, for instance, that V (x, θ) has the following form:

V (x, θ) = g
(
θ − f(x)

)
where g is such that ∂

2H
∂θ2 = 1− g′′(θ− f(x)) > 0 when (θ− f) belongs to some open set

I . Then every ξ such that
ξ − φ− g′(ξ − f(x)) = 0

is a solution of problem (2.3) if ξ − f ∈ I .
Suppose now that φ̄|A ≡ f |A on a set A ⊂ [0, 1] of positive measure, and that the equation
s = g′(s) has two distinct solutions s1, s2 ∈ I such that, for θ1(x) = s1 + φ(x) and
θ2(x) = s2 + φ(x), we have

H(x, φ, θ1) = H(x, φ, θ2).

Then the problem (2.3) is solved by both θ1 and θ2. In these hypotheses, (φ̄, θ∗) is a
minimizer of F for every θ∗ defined as follows:

θ∗ = θ1 for x ∈ B , θ∗ = θ2 for x ∈ A \B , θ∗ = θφ̄ for x ∈ [0, 1] \A
where B ⊂ A is a (completely arbitrary) subset of positive measure.
Pathological phenomena of this type are well known (similar problems were already dis-
cussed, for instance, in the classical works [23, 24]), and are usually addressed by means
of relaxation theory (see e.g. [12], Chapter III), which however has not been developed,
to the best of our knowledge, for problems living in the product of Sobolev spaces of dif-
ferent regularity order. In the following, we will be mainly concerned with cases in which
V (x, θ) does not produce such pathological multiplicity of minimizers.

We shall prove now some properties of the global minimizers of Problem (1.1). In addition
to the information they provide on the problem, these results will ensure that the local
minimizers studied in Section 3 are necessarily not global minimizers.

Lemma 2.3. Assume, in addition to the assumptions of Proposition 2.1, that there exists
a > 0 such that for almost every x ∈ [0, 1], for every θ ∈ R, V (x, θ) ≤ V (x, a) and for
every θ ∈ (0, a], V (x,−θ) < V (x, θ). Then any minimizer (φ̃, θ̃) of (1.1) takes values in
[0, a]× [0, a].

Proof. Define Ṽ by Ṽ (x, θ) = V (x, θ) if θ < a, Ṽ (x, θ) = V (x, a) if θ ≥ a, so that Ṽ
now satisfies, for almost every x ∈ [0, 1] and for every θ ∈ R, Ṽ (x, θ) ≤ Ṽ (x, a) and
Ṽ (x, θ) ≤ Ṽ (x, |θ|). We set

(2.5) F̃ (φ, θ) :=

∫ 1

0

(
k

2
φ′2 +

(φ− θ)2

2
− Ṽ (x, θ)

)
dx.

Clearly F̃ ≤ F . Moreover, we have that

F̃ (|φ̃|, |θ̃|) ≤ F̃ (φ̃, θ̃) and F̃ (min(|φ̃|, a),min(|θ̃|, a)) ≤ F̃ (|φ̃|, |θ̃|)
as all integrands in (2.5) do not increase with these replacements. Set

(φ̄, θ̄) := (min(|φ̃|, a),min(|θ̃|, a)).
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As these functions take values in [0, a], we have F̃ (φ̄, θ̄) = F (φ̄, θ̄). Hence

F (φ̄, θ̄) ≤ F̃ (φ̃, θ̃) ≤ F (φ̃, θ̃) ≤ F (φ̄, θ̄).

This implies that the previous inequalities were in fact equalities. Since
∫ 1

0
k
2φ
′2dx does

not decrease when replacing |φ̃| by min{|φ̃|, a}, it follows that |φ̃(x)| ≤ a almost every-
where (and thus everywhere as φ̃ is continuous). Moreover, since

∫ 1

0
(φ−θ)2

2 dx does not
decrease when replacing |φ̃| and |θ̃| by min{|φ̃|, a} and min{|θ̃|, a}, it follows that the
sets {x, |φ̃(x)| > a} and {x, |θ̃(x)| > a} coincide up to a null set. Thus |θ̃(x)| ≤ a
almost everywhere. Finally, noting that for every θ ∈ (0, a], we have V (x,−θ) < V (x, θ)

a.e. on [0, 1], and that
∫ 1

0
Ṽ (x, θ)dx does not decrease when replacing θ̃ by |θ̃|, it follows

that the set {x ∈ [0, 1] : θ̃(x) ∈ [−a, 0)} has null measure, hence θ̃(x) ≥ 0 almost
everywhere. �

Proposition 2.4. In addition to the assumptions of Lemma 2.3, assume that, for every x ∈
[0, 1], the function θ → V (x, θ) is of class Ck(R), with k ≥ 2, and satisfies ∂2V

∂θ2 (x, θ) 6= 1

in [0, 1] × [0, a]. If (φ̃, θ̃) is a minimizer of (1.1), then θ̃ ∈ Ck−1(R) and φ̃ ∈ Ck+1(R).
Moreover, if V is a C∞ (Cω) function, then both φ̃ and θ̃ are C∞ (Cω) functions.

Proof. For every x ∈ [0, 1], we have

θ̃ = min
θ

(
− φ̃(x)θ +

θ2

2
− V (x, θ)

)
so θ̃(x) has to solve

(2.6) − φ̃(x) + θ̃ − ∂V

∂θ
(x, θ̃) = 0

Let us set f(x, θ) := θ − ∂V
∂θ (x, θ). By the hypotheses of Lemma 2.3, for every x ∈ [0, 1]

we have
∂V

∂θ
(x, 0) > 0 and

∂V

∂θ
(x, a) = 0,

thus
f(x, 0) < 0 and f(x, a) = a.

By Lemma 2.3, θ̃ takes values in [0, a], so, by hypothesis we have

(2.7)
∂f

∂θ
(x, θ) = 1− ∂2V

∂θ2
(x, θ) 6= 0.

As a consequence, f is strictly increasing with respect to θ in [0, 1]× [0, a], and for every
x ∈ [0, 1] there exists a unique value of θ̃ ∈ [0, a] such that (2.6) holds.
By the inverse function theorem, there exists a function g : [0, a]× [0, 1]→ [0, a], with the
same regularity of f , hence of class Ck−1, such that

(2.8) θ̃(x) = g(x, φ̃(x)).

As a consequence, θ̃ ∈ C0([0, 1]). Since (φ̃, θ̃) is a minimizer, we have

dF (φ̃, θ̃)[ξ, 0] =

∫ 1

0

(
kφ̃′ξ′ + (φ̃− θ̃)ξ

)
dx = 0, ∀ξ ∈ C∞c ([0, 1]),

hence

(2.9) kφ̃′ξ′ + (φ̃− θ̃)ξ = 0.
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Since θ̃ is continuous, (2.9) implies that φ̃ is C1. Then, using again (2.8), we obtain that θ̃
is of class C1 and by (2.9) we get that φ̃ if of class C2. Hence, by a standard argument, we
obtain

(2.10) kφ̃′′ = φ̃− θ̃,
and iterating (2.8) and (2.10) we obtain the desired regularity.
If V is of class C∞, then by induction both φ̃ and θ̃ are of class C∞.
Assume finally that V is real-analytic. Applying the real-analytic version of the inverse
function theorem (see e.g. [16], p. 47) to (2.6), we can replace θ in (2.9) by an analytic
function G(φ, x) to obtain the boundary value problem:

−kφ′′ + φ−G(φ, x) = 0,

φ(0) = 0,

φ′(1) = 0,

which will be solved pointwise by φ̃. By Cauchy-Kovalevskaya theorem (for an ODE
version, which is in fact a particular case, see for instance [19], theorem 4.1) we obtain
φ̃ ∈ Cω([0, 1]) as well, whence θ̃ ∈ Cω([0, 1]) too. �

From the previous proof, it is clear that the regularity of local minimizers of F depends on
the possibility to invert the function f , which is ensured if (2.7) holds. As a consequence,
we have the following result.

Corollary 2.5. Let V : [0, 1] × R → R be a bounded function of class Ck, with k ≥ 2,
such that

∂2V

∂θ2
(x, θ) 6= 1, ∀(x, θ) ∈ [0, 1]× R.

If (φ̃, θ̃) is a local minimizer of F , then θ̃ ∈ Ck−1(R) and φ̃ ∈ Ck+1(R). Moreover, if V
is a C∞ (Cω) function, then both φ̃ and θ̃ are C∞ (Cω) functions.

Lemma 2.3 and Proposition 2.4 apply to the problem (1.1) with

V (x, θ) = b(1− x) sin θ and a =
π

2
.

As a consequence, we can give the following result.

Lemma 2.6. If (φ̃, θ̃) solves problem (2.1)-(2.2) with V (x, θ) = b(1 − x) sin θ, then φ̃ is
strictly increasing.

Proof. Since for every (x, θ) ∈ [0, 1]× [0, π/2] we have

∂2V

∂θ2
(x, θ) = −b(1− x) sin θ ≤ 0,

we can apply Proposition 2.4 and φ̃ is an analytic function. Therefore, it is piecewise
monotonic and cannot be constant on an open interval without being constant (and thus
equal to zero, as φ̃(0) = 0) on [0, 1]. We therefore just have to exclude that there exist
0 ≤ α < β ≤ 1 such that φ̃ is strictly decreasing on [α, β]. Suppose now the contrary.
Then define, on the interval [α, 1], the functions

f(x) := max{φ̃(α), φ̃(x)}
and

g(x) :=

{
f(x), if f(x) 6= φ̃(x),

θ̃(x), otherwise.
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It is easily seen that f ∈ H1
∗ and g ∈ L2. Moreover, 0 ≤ φ̃(x) ≤ f(x) ≤ π

2 and
0 ≤ θ̃(x) ≤ g(x) ≤ π

2 . We have further that, a.e. on [0, 1], f ′(x) ≤ φ̃′(x) and that
|f − g| ≤ |φ̃− θ̃|. Since sin(·) is strictly increasing in [0, π2 ], we also have sin θ̃ ≤ sin g. It
follows that replacing (φ̃, θ̃) by (f, g) on [α, 1] the value of the functional (2.2) decreases,
which is absurd. �

Fig. 2 shows a numerical computation of the global minimizer of F with V = b(1 −
x) sin θ, with b = 1 and k = 0.01. It can be seen that φ̃ is strictly increasing, as it is
ensured by Lemma 2.6.

π
2

10

φ̃

θ̃

FIGURE 2. A numerically evaluated solution of (1.1) with V (x, θ) =
b(1− x) sin θ, b = 1 and k = 0.01.

We end this section with the following result, which stems from the proof of Proposition
2.4 and it will be useful for the study of local minimizers different from the global one.

Corollary 2.7. Let V (x, θ) = b(1 − x) sin θ and b < 1. Then there exists a unique map
Θ: H1

∗ → L2 such that for all (φ, θ) ∈ H1
∗ × L2 we have

F (φ,Θ(φ)) ≤ F (φ, θ).

Proof. As in the proof of Proposition 2.4, let us set

f(x, θ) = θ − ∂V

∂θ
(x, θ) = θ + b(1− x) cos θ.

Under the hypothesis b < 1, the function f is strictly increasing. By the inverse function
theorem, there exists a unique analytic function g : [0, 1]× R→ R such that

f(x, g(x, φ))− φ = 0

for every x ∈ [0, 1] and φ ∈ R. Hence, we define the map Θ: H1
∗ → L2 as follows:

(Θ(φ))(x) := g(x, φ(x)),

where we notice that, being φ ∈ H1
∗ ⊂ C0, Θ(φ) is continuous, hence belongs to L2. �
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3. LOCAL MINIMIZERS

The study of local minimizers in elastostatics is typically not easy, and fully general
methods for establishing the existence of local minimizers which are not global ones, as
famously asked by J.M. Ball in Problem 9 of [1], have not yet been found. In this section,
we address the existence of local minimizers (different from the global one) of a particular
case of the functional defined in (2.5), which we will indicate by Fb,k : S→ R, defined as

(3.1) Fb,k(φ, θ) =

∫ 1

0

(
k

2
φ′2 +

(φ− θ)2

2
− b(1− x) sin θ

)
dx.

In particular, our main result is Theorem 3.1, which ensures the existence of a local min-
imizer (φ̃, θ̃) such that φ̃(x) < 0 for all x ∈ (0, 1]. We therefore extend the results of
[3, 11, 10], where similar local minimizers where found for nonlinear Euler beams un-
der distributed load and nonlinear Timoshenko beams under concentrated end-load (which
leads to an autonomous variational problem).

Theorem 3.1. Let Fb,k : S → R be as in (3.1). If both b and k/b are sufficiently small,
then there exists a local minimizer (φ̃, θ̃) of Fb,k such that

φ̃(x) < 0, ∀x ∈ (0, 1].

A numerically evaluated local minimizer when b = 1 and k = 0.01 is shown in Fig. 3.

xλ

−π
2

−π

− 3π
2

0
1

φ̃

θ̃

φ∗
λ

FIGURE 3. A numerically evaluated local minimizer of (3.1) with b = 1
and k = 0.01.

From the statement of Theorem 3.1 it is immediately clear that the ratio k/b plays a central
role in the existence of local minimizers different from the global one. For the sake of
presentation, for every fixed b, k > 0 we will indicate by λ the inverse of that ratio, hence

λ =
b

k
,

so we will prove some of the following results provided that λ is sufficiently large.
A key ingredient for our proof is the function φ∗λ, which is given by the following definition.
Indeed, as we are going to see during the different steps of the proof, it provides a “natural”
upper bound for the component φ of the local minimizers, as it can be noted in Fig. 3.
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Definition 3.2. For every b, k > 0 we denote by λ the ratio b/k and we define the function
φλ : [0, 1]→ R as

(3.2) φ∗λ(x) = max

{
λ

2
x2
(x

3
− 1
)
− 1

2
x2,−π

}
.

We denote by xλ the least x such that φ∗ = −π, that is:

xλ = min

{
x ∈ [0, 1] : φ∗λ(x) = −π

}
,

which is well defined if λ is sufficiently large. Moreover, we set

(3.3) C∗λ :=

{
φ ∈ H1

∗ : φ(x) ≤ φ∗λ(x), ∀x ∈ [0, 1]

}
and

S∗λ := C∗λ,ε × L2 ⊂ S.

The main idea of the proof of Theorem 3.1 is showing that the global minimizer of Fb,k in
S∗, denoted by (φ̃, θ̃), is strictly less than φ∗λ, except in 0. The special form of φ∗λ implies
that φ̃ can “touch” it only at xλ, and this is proved in Subsection 3.1. Subsection 3.2 is
devoted to prove that φ̃(xλ) is actually also strictly less then φ∗λ(xλ) = −π. As a first step
we show that if b is sufficiently small and b/k = λ remains constant, then φ̃ is arbitrarily
close, with respect to the C1 norm, to the minimizer of the Euler beam problem, hence to
the global minimizer of

φ 7→
∫ 1

0

(
φ′2

2
− λ(1− x) sinφ

)
dx,

subject to φ(0) = 0 and φ(x) ≤ φ∗λ(x). As a second step, we prove that if λ is sufficiently
large, and thus if k/b is sufficiently small, then such a minimizer is strictly less then −π
at xλ. In Subsection 3.3 we formally give the proof of Theorem 3.1, recollecting all the
previous results and using a Γ–convergence argument to show that (φ̃, θ̃) is indeed a local
minimizer on the whole set S.

3.1. General results for minimizers in S∗λ. In this section we provide some results that
hold for the minimizers of Fb,k in S∗λ, independently of b, k > 0. As a first step, we give
the following existence result.

Proposition 3.3. For every b, k > 0, there exists a global minimizer of Fb,k in S∗λ.

Proof. The set C∗λ ⊂ H1
∗ is convex and closed with respect to the L∞ norm and therefore

it is closed with respect to the weak convergence in H1. Since the minimizing sequences
weakly converge in H1, their weak limit belongs to C∗λ (see for instance Theorem 7.3.7 in
[25]). �

Since S∗λ is a closed set with boundary, a global minimizer does not satisfy the Euler-
Lagrange equations in general. However, the form of φ∗λ allows us to prove that this is
actually the case, as stated by the following proposition, which is the main result of this
subsection.

Proposition 3.4. Let (φ̃, θ̃) be a global minimizer of Fb,k in S∗λ, then

(3.4) kφ̃′′ = φ̃− θ̃, a.e. on [0, 1].
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Some preliminary definitions and results are required to prove Proposition 3.4. In fact,
an important step of the proof is showing that φ̃ is sufficiently smooth on the intervals
[0, xλ] and [xλ, 1] (see Lemma 3.9); this can be achieved by exploiting the techniques
given by [17], which have been used in different contexts to achieve the desired regularity
of constrained minimizers (see e.g. [8, 14]). An important consequence of Proposition 3.4
and of the special definition of φ∗λ is that the constrained minimizer (φ̃, θ̃) ∈ S∗λ is such
that φ̃ equals φ∗λ on 0 and, at most, on xλ: in other words φ̃(x) < φ∗λ(x) for all x 6= 0, xλ.

Definition 3.5. For every φ ∈ C∗λ, we define the set of infinitesimal admissible variations
of φ in C∗λ, denoted by V∗λ, the set

(3.5) V∗λ(φ) :=

{
ξ ∈ H1

∗ ([0, 1]) : ξ(x) ≤ 0 if φ(x) = φ∗λ(x)

}
.

Lemma 3.6. Let (φ̃, θ̃) be a global minimizer of Fb,k in S∗λ, then

(3.6) φ̃− θ̃ = −b(1− x) cos θ̃, a.e. on [0, 1].

Proof. For every η ∈ C∞0 ([0, 1]) ⊂ L2([0, 1]) we have

dFb,k(φ̃, θ̃)[0, η] = −
∫ 1

0

(
φ̃− θ̃ + b(1− x) cos θ̃

)
η dx = 0,

from which (3.6) follows. �

Lemma 3.7. Let (φ̃, θ̃) be a global minimizer of Fb,k on S∗λ, then

φ̃(x) ≥ −3

2
π, ∀x ∈ [0, 1].

Proof. Reasoning by contradiction, if there exists x1 ∈]0, 1] such that φ̃(x1) < − 3
2π, by

continuity there exists x0 ∈]0, x1[ such that φ̃(x0) = − 3
2π. Therefore, we can define the

functions φ1, θ1 : [0, 1]→ R as

φ1(x) =

{
φ̃(x), if x ≤ x0,

− 3
2π, if x > x0,

and θ1(x) =

{
θ̃(x), if x ≤ x0,

− 3
2π, if x > x0.

Since φ̃(x1) < − 3
2π, we have

∫ 1

x0
φ̃′2dx ≥

∫ x1

x0
φ̃′2dx > 0, hence

Fb,k(φ̃, θ̃)− Fb,k(φ1, θ1) =

∫ 1

x0

(
k
φ̃′2

2
+

(φ̃− θ̃)2

2

)
dx

+

∫ 1

x0

b(1− x)(1− sin θ̃)dx ≥
∫ 1

x0

k
φ̃′2

2
dx > 0,

contradicting the minimality of (φ̃, θ̃). �

Lemma 3.8. If (φ̃, θ̃) is a global minimizer of Fb,k in S∗λ, then

φ̃(x) < −π, ∀x ∈ (xλ, 1].

Proof. Being a global minimizer of Fb,k, the restriction of (φ̃, θ̃) on the interval [xλ, 1], is
a global minimizer for the functional

(φ, θ) 7→
∫ 1

xλ

(
k
φ′2

2
+

(φ− θ)2

2
− b(1− x) sin θ

)
dx
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with the conditions φ(xλ) = φ̃(xλ) ≤ −π and φ(x) ≤ −π. As a consequence, the
pair (φ̃1, θ̃1) := (π − φ̃, π − θ̃) is the global minimizer of the same functional under the
conditions φ(xλ) = π − φ̃(xλ) ≥ 0 and φ(x) ≥ 0. Thus, by Lemma 2.6, φ̃1 is strictly
increasing, so φ̃ is strictly decreasing. Since φ̃(x) ≤ φ∗λ(x) = −π for all x ∈ [xλ, 1], we
obtain the thesis. �

Lemma 3.9. If (φ̃, θ̃) is a global minimizer of Fb,k in S∗λ, then

φ̃|[0,xλ] ∈W 2,∞([0, xλ],R)

and

(3.7) φ̃|[xλ,1] ∈W 2,∞([xλ, 1],R).

Proof. Thanks to Lemma 3.8, every ξ ∈ C∞([0, 1],R) with compact support in (xλ, 1)
is an admissible variation. As a consequence, the regularity indicated by (3.7) can be
obtained by standard arguments.
Therefore, from now on in this proof, we restrict our study on the interval [0, xλ]. For the
sake of presentation, we simply write φ̃ instead of φ̃|[0,xλ] and, similarly, the sets C∗λ and
V∗λ(φ̃) have to be meant as defined on the interval [0, xλ]. Since (φ̃, θ̃) is a global minimizer
for Fb,k, φ̃ is a global minimizer for the functional G : Cλ → R defined as

G(φ) :=

∫ xλ

0

(
k

2
(φ′)2 +

(φ− θ̃)2

2

)
dx,

so it satisfies

dG(φ̃)[ξ] =

∫ xλ

0

(
kφ′ξ′ + (φ− θ)ξ

)
dx ≥ 0, ∀ξ ∈ V∗λ(φ̃).

Set y = φ̃ − φ∗. Since φ∗ is of class C2 on [0, xλ], our thesis can be obtained by proving
that y ∈ W 2,∞([0, xλ]), thus by showing that y′ ∈ W 1,∞([0, xλ]). Defining the function
z : [0, xλ]→ R as

z := y + φ∗ − θ̃ − (φ∗)′′,

we can write the differential of G as follows:

dG(φ̃)[ξ] =

∫ xλ

0

[
k(y′ + (φ∗)′)ξ′ + (y + φ∗ − θ̃)ξ

]
dx

=

∫ xλ

0

[
ky′ξ′ + (y + φ∗ − θ̃ − (φ∗)′′)ξ

]
dx =

∫ xλ

0

(
ky′ξ′ + zξ

)
dx.

For all x ∈ [0, xλ], φ̃(x) ≤ φ∗λ(x) and, by Lemma 3.7, φ̃(x) ≥ −3/2π. Hence, φ̃ is
bounded and, by (3.6), θ̃ ∈ L∞([0, xλ]). As a consequence, z ∈ L∞([0, xλ]). Let us
define

J =

{
x ∈ [0, xλ] : φ̃(x) = φ∗(x)

}
∪ {0, xλ} and I = [0, xλ] \ J.

The set I is an open set, hence it is a countable union of pairwise disjoint open intervals
and we can write

I =
⋃
i∈A

]ai, bi[,
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whereA is a countable set. Let us consider an arbitrary scalar field ν ∈W 1,2
0 ([0, xλ]) such

that ν(x) = 0 for all x ∈ J . As a consequence, both ν and −ν are infinitesimal admissible
variations of φ̃ in Cλ and we have

dG(φ̃)[ν] =
∑
i∈A

∫ bi

ai

(
ky′ν′ + zν

)
dx = 0,

hence, for the arbitrariness of V ,∫ bi

ai

(
ky′ν′ + zν

)
dx = 0, ∀i ∈ A.

By a standard argument, we obtain that y′ is absolutely continuous in I and it satisfies

(3.8) − ky′′ + z = 0, a.e. in I.

For an arbitrary ξ ∈W 1,2
0 ([0, xλ]), if we set η(x) = max{ξ(x), 0}, then

ζ(x) = ξ(x)− η(x) ∈ V∗λ(φ̃),

hence
dG(φ̃)[ζ] ≥ 0.

By (3.8), partial integration reduces to∫
I

(ky′η′ + zη)dx =
∑
i∈A

(y′(bi)η(bi)− y′(ai)η(ai)).

Since y = 0 in J and y < 0 in I we have

y′(bi) ≥ 0, y′(ai) ≤ 0, ∀i ∈ A,
except for y′(0) and y′(1), but in that cases η(0) = η(xλ) = 0. As a consequence,∫

I

(ky′η′ + zη)dx ≥ 0,

and we have

0 ≤ dG(φ̃)[ζ] =

∫ xλ

0

(ky′ξ′ + zξ)dx−
∫
J

(ky′η′ + zη)dx−
∫
I

(ky′η′ + zη)dx

≤
∫ xλ

0

(ky′ξ′ + zξ)dx−
∫
J

(ky′η′ + zη)dx,

hence ∫ xλ

0

(ky′ξ′ + zξ)dx ≥
∫
J

(ky′η′ + zη)dx.

Since y = 0 on J , then y′ = 0 a.e. on J (cf. [15] Lemma 7.7) and we obtain

(3.9)
∫ xλ

0

(ky′ξ′ + zξ)dx ≥
∫
J

zη dx.

By (3.9), recalling that |η| ≤ |ξ|, we obtain∣∣∣∣ ∫ xλ

0

(ky′ξ′ + zξ)dx
∣∣∣∣ ≤ ‖z‖L∞‖ξ‖L∞ ,

whence∣∣∣∣∫ xλ

0

ky′ξ′ dx
∣∣∣∣ ≤ ∣∣∣∣∫ xλ

0

(ky′ξ′ + zξ)dx
∣∣∣∣+

∣∣∣∣∫ xλ

0

zξ dx
∣∣∣∣ ≤ 2‖z‖L∞‖ξ‖L∞ .
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Since ξ(0) = 0, then there exists a constant c1 such that ‖ξ‖L∞ ≤ c1‖ξ′‖L1 and we obtain∣∣∣∣∫ xλ

0

ky′ξ′ dx
∣∣∣∣ ≤ 2c1‖z‖L∞‖ξ′‖L1 , ∀ξ′ ∈ L1([0, xλ]).

Hence, y′ ∈ L∞([0, xλ]) by the Riesz representation theorem. Using again (3.9), there
exists a constant c2 such that∣∣∣∣∫ xλ

0

ky′ξ′ dx
∣∣∣∣ ≤ c2‖z‖L∞‖ξ‖L1 .

By a standard argument (see, for instance, [6, Proposition 8.3]), this suffices to conclude
that y′ ∈W 1,∞([0, xλ]). �

Now we are ready to prove Proposition 3.4.

Proof of Proposition 3.4. Let V∗λ(φ̃) be the set of all admissible infinitesimal variations of
φ̃ in Cλ, defined as in (3.5). Since (φ̃, θ̃) is a global minimizer,

(3.10) dFb,k(φ̃, θ̃)[ξ, 0] =

∫ 1

0

(
kφ̃′ξ′ + (φ̃− θ̃)ξ

)
dx ≥ 0, ∀ξ ∈ V∗λ(φ̃).

By Lemma 3.8, every function of class C∞ with compact support in (xλ, 1) belongs to
V∗λ(φ̃). As a consequence, by a standard argument we obtain that

kφ̃′′ = φ̃− θ̃, a.e. on [xλ, 1],

and we can reduce our analysis on the interval [0, xλ]. Let us now consider a variation in
V∗λ(φ̃) with compact support in (0, xλ). By Lemma 3.9, φ̃ ∈ W 2,∞([0, xλ]) so we can
integrate by parts (3.10) and obtain

(3.11) − kφ̃′′ + (φ̃− θ̃) = τ(x) ≤ 0, a.e. on [0, xλ],

where τ(x) = 0 if φ̃(x) < φ∗λ(x). Set

J =
{
x ∈ [0, xλ] : φ̃(x) = φ∗λ(x)

}
.

Since φ̃ ∈ W 2,∞([0, xτ ]), using [15, Lemma 7.7] we obtain that φ̃′′ = (φ∗λ)′′ a.e. on J .
Recalling also (3.6), we obtain

τ = −k(φ∗λ)′′ − b(1− x) cos θ̃ ≥ −k(φ∗λ)′′ − b(1− x)

= b(1− x) + k − b(1− x) = k > 0, a.e. on J.

As a consequence, from (3.11) we deduce that J is a set of measure zero and (3.4) follows.
�

Using Proposition 3.4 and exploiting again the properties of φ∗λ, we obtain that φ̃ can
coincide with φ∗λ only at 0 and xλ. More formally, we have the following result.

Corollary 3.10. Let (φ̃, θ̃) be a global minimizer of Fb,k in S∗λ. Then

φ̃(x) < φ∗λ(x), ∀x 6= 0, xλ.

Proof. Using again Lemma 3.8, it suffices to prove that φ̃(x) < φ∗λ(x) for all x ∈ (0, xλ).
Seeking a contradiction, let x̄ ∈ (0, xλ) be such that φ̃(x̄) = φ∗λ(x̄). Since φ̃(x) ≤ φ∗λ(x)
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for all x ∈ [0, xλ] and, by Lemma 3.9, φ̃ ∈W 2,∞([0, xλ]) ⊂ C1([0, xλ]) we have φ̃′(x̄) =
φ∗λ
′(x̄). Hence, we obtain

(3.12) 0 ≥ φ̃(x)− φ∗λ(x) =

∫ x

x̄

(∫ s

x̄

(φ̃− φ∗λ)′′(τ)dτ
)

ds, ∀x ∈ [x̄, xλ].

Since φ∗λ is defined by (3.2), we have

φ∗λ
′′(x) = − (λ(1− x) + 1) , on [0, xλ],

while (3.4) and (3.6) imply

φ̃′′(x) = − b
k

(1− x) cos θ̃ ≥ −λ(1− x) a.e. on [0, xλ].

As a consequence, from (3.12) we obtain that for every x ∈]x̄, xλ] we have

0 ≥
∫ x

x̄

(∫ s

x̄

(
− λ(1− τ) + λ(1− τ) + 1

)
dτ
)

ds =
(x− x̄)2

2
> 0,

which is absurd.
�

Remark 3.11. We notice that the proofs of Proposition 3.4 and of Corollary 3.10 rely only
on the second order derivative of φ∗λ. As a consequence, if we substitute this constraint with
another function with the same second order derivative we obtain analogous results. This
observation will be useful in the final part of our work, when we will use a Γ–convergence
argument to show the local minimality of (φ̃, θ̃).

3.2. Convergence to minimizers of the Euler beam. The following results are needed to
show that, also for x = xλ, the minimizer under φ∗λ does not “touch” the constraint. This
requires considerably more effort, and it is achieved through a comparison with the easier
cases represented by the functionals describing the nonlinear Euler beam under uniformly
distributed and concentrated load.
Recalling the definition of C∗λ given in (3.3), we define the functional Fλ : C∗λ → R as

(3.13) Fλ(φ) :=

∫ 1

0

( |φ′|2
2
− λ(1− x) sinφ

)
dx,

which corresponds to the energy functional of a nonlinear Euler beam under distributed
load (see e.g. [10]). Denoting by φ̃λ its minimizer, the main results of this subsection are
the following:

• if b is sufficiently small and b/k = λ, then the global minimizer (φ̃, θ̃) of Fb,k in
S∗λ is such that ‖φ̃(x)−φ̃λ(x)‖ is arbitrarily small: in other words, the solutions of
the problem of a nonlinear Timoshenko beam are similar to the ones of a nonlinear
Euler beam;

• if λ is sufficiently large, then φ̃λ(xλ) is strictly less then −π: this result will be
achieved by a limit process that can get rid of the autonomous component in the
functional (3.13).

Remark 3.12. The arguments used in the proofs of Proposition 3.4, of Lemma 3.9, and of
Corollary 3.10 can be easily applied to Fλ. Therefore, if φ̃λ is a minimizer of F in C∗λ, we
have

φ̃′′λ + λ(1− x) cos φ̃ = 0, a.e. on [0, 1],

and
φ̃λ(x) < φ∗λ(x) ∀x 6= 0, xλ.
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Proposition 3.13. Fix λ0 ∈ R and let (bn, kn)n∈N ⊂ R+ × R+ be such that

lim
n→∞

bn = 0 and
bn
kn

= λ0, ∀n ∈ N.

Let (φ̃n, θ̃n) ∈ S∗λ0
be the sequence of corresponding minimizers of Fbn,kn . Then, up to

considering a subsequence, φ̃n and θ̃n converge in the C1 norm and a.e., respectively, to
a function φ̃λ0 which is a global minimizer of the functional Fλ0 : C∗λ0

→ R.

Proof. By Proposition 3.4 and Lemma 3.6, for every n ∈ N the pair (φ̃n, θ̃n) satisfies
almost everywhere the following system of equations:{

−knφ̃′′n + φ̃n − θ̃n = 0,

φ̃n − θ̃n = −bn(1− x) cos θ̃n.

As a consequence,

φ̃′′n = − bn
kn

(1− x) cos θ̃n ≤ λ0,

so the sequence φ̃′′n is equibounded with respect to the norm of L∞([0, 1]). By the Ascoli-
Arzelà theorem, φ̃n converges, up to subsequences, in the C1([0, 1]) norm to a function
φ̃λ0 ∈ Cλ0 . By hypothesis, bn → 0, and using

θ̃n = φ̃n − bn(1− x) cos θ̃n, a.e. in [0, 1],

we obtain that θ̃ converges to φ̃λ0
a.e.. Therefore, by the dominated convergence theorem

we have

(3.14) lim
n→∞

1

kn
Fbn,kn(φ̃n, θ̃n)

= lim
n→∞

∫ 1

0

(
|φ̃′n|2

2
+
b2n(1− x)2 cos2 θ̃n

2kn
− bn
kn

(1− x) sin θ̃n

)
dx

=

∫ 1

0

(
|φ̃′λ0
|2

2
− λ0(1− x) sin φ̃λ0

)
dx = Fλ0

(φ̃λ0
).

It remains to show that φ̃λ0
is a minimizer for Fλ0

in C∗λ0
. By contradiction, let ψ ∈ C∗λ0

be such that Fλ0
(ψ) < Fλ0

(φ̃λ0
). Since

lim
n→∞

1

kn
Fbn,kn(ψ,ψ) = Fλ0

(ψ)

and (3.14) holds, there exist ε > 0 and n such that

1

kn
Fbn,kn(φ̃n, θ̃n) > Fλ0(φ̃λ0)− ε > Fλ0(ψ) + ε >

1

kn
Fbn,kn(ψ,ψ),

contradicting the minimality of (φ̃n, θ̃n). �

Proposition 3.13 entails that our aim is to study the behaviour of the minimizer φ̃λ ∈ C∗λ
of Fλ as λ goes to infinity. In particular, by Remark 3.12, we need to prove that if λ is
sufficiently large then φ̃λ(xλ) < −π. The next result provides a necessary condition for a
function whose graph passes through (xλ,−π) to be a minimizer. This condition involves
the left and right derivatives at xλ.
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Lemma 3.14. Let φ̃λ ∈ C∗λ be a minimizer of Fλ. If φ̃λ(xλ) = −π, then

(3.15) φ̃′λ(x−λ ) ≤ φ̃′λ(x+
λ ).

Proof. If φ̃λ is a minimizer, then for every ξ ∈ C∞0 ([0, 1]) such that

ξ(x) ≤ 0, ∀x ∈ [0, 1] and ξ(xλ) < 0,

we have dFλ(φ̃λ)[ξ] ≥ 0, hence∫ 1

0

(
φ̃′λξ

′ − λ(1− x) cos φ̃λ ξ
)

dx ≥ 0.

By Remark 3.12, φ̃λ does not coincide with φ∗λ except in 0 and, by hypothesis, in xλ.
Therefore, it satisfies the Euler-Lagrange equation both in (0, xλ) and in (xλ, 1) and an
integration by parts leads to

dFλ(φ̃λ)[ξ] =
(
φ̃′λ(x−λ )− φ̃′λ(x+

λ )
)
ξ(xλ) ≥ 0.

By the arbitrariness of ξ(xλ) < 0, we obtain (3.15). �

Due to Lemma 3.14, it becomes important to estimate the behaviour of the left and right
derivatives at xλ of the minimizer of Fλ among all the functions in Cλ whose graph passes
through (xλ,−π). To this aim, we separately study the functional in the two intervals
[0, xλ] and [xλ, 1] and we define the following sets

Lλ :=

{
φ ∈ H1([0, xλ],R) : φ(x) ≤ φ∗λ(x) ∀x ∈ [0, xλ], φ(0) = 0 and φ(xλ) = −π

}
and

Rλ :=

{
φ ∈ H1([xλ, 1],R) : φ(x) ≤ −π ∀x ∈ [xλ, 1], φ(xλ) = −π

}
.

On them, we define the functionals Lλ : Lλ → R and Rλ : Rλ → R as

(3.16) Lλ(φ) :=

∫ xλ

0

(
φ′2

2
− λ(1− x) sinφ

)
dx

and

(3.17) Rλ(φ) :=

∫ 1

xλ

(
φ′2

2
− λ(1− x) sinφ

)
dx.

Let `λ ∈ Lλ and rλ ∈ Rλ be the minimizers of Lλ and Rλ, respectively. Then a function
ψλ ∈ C∗λ such that ψλ(xλ) = −π is a minimizer of Fλ if and only if

(3.18) ψλ(x) =

{
`λ(x), if x ∈ [0, xλ],

rλ(x), if x ∈ [xλ, 1],

and, by Lemma 3.14, if

(3.19) `′λ(xλ) ≤ r′λ(xλ).

As a consequence, proving that (3.19) does not hold for λ sufficiently large implies that
the minimizers of Fλ in C∗λ does not pass through (xλ,−π). Fig. 4 and Fig. 5 show `λ and
rλ for λ = 15 and λ = 100, respectively. In Fig. 4, it can be noticed that (3.19) holds,
and indeed ψλ defined as in (3.18) is a global minimizer of Fλ in C∗λ. In Fig. 5, it can be
noticed that (3.19) does not holds, so the graph of the global minimizer φ̃λ does not pass
through the point (xλ,−π).
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xλ

−π

− 3π
2

0
1

FIGURE 4. The functions `λ and rλ for λ = 15; (numerically evalu-
ated); it can be noticed that `′λ(xλ) < r′λ(xλ) and the graph of φ̃λ passes
through (xλ,−π).

xλ

−π

− 3π
2

0
1

xλ

−π

− 3π
2

0
1

FIGURE 5. The functions `λ and rλ for λ = 100 (numerically eval-
uated); it can be noticed that `′λ(xλ) > r′λ(xλ), so by Lemma 3.14 a
function whose graph passes through (xλ,−π) cannot be a minimizer of
Fλ in C∗λ.

Before giving the estimates for `′λ(xλ) and r′λ(xλ), we need to define a functionG : R+ →
R as follows:

G(µ) =

∫ π

0

dσ√
µ+ 4π sinσ

.
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Remark 3.15. The function G is strictly decreasing, G(0) > 1 and limµ→∞G(µ) = 0. As
a consequence, there exists an unique E > 0 such that

(3.20)
∫ π

0

dσ√
E + 4π sinσ

= 1.

Remark 3.16. In both Lemma 3.17 and Lemma 3.18, we will exploit the following limit,
obtained from the definition of φ∗λ given in (3.2):

(3.21) lim
λ→∞

λx2
λ = 2π.

Lemma 3.17. Let `λ ∈ Lλ be the minimizer of Lλ. Let E > 0 be such that (3.20) holds.
Then

lim
λ→∞

xλ`
′
λ(xλ) = −E.

Proof. By the change of variable x = xλt, for every λ we can reparametrize the integral
functional Lλ defined in (3.16) on the interval [0, 1]. Hence, setting

ϕ(t) = φ(xλt) = φ(x),

we obtain

(3.22) Lλ(φ) =
1

xλ

∫ 1

0

(
1

2
(ϕ′)2 − λx2

λ(1− xλt) sinϕ

)
dt.

As a consequence, the function ˜̀λ : [0, 1]→ R, defined as ˜̀λ(t) = `λ(xλt), minimizes the
integral ∫ 1

0

(
1

2
(ϕ′)2 − λx2

λ(1− xλt) sinϕ

)
dt,

and it never equals the function ϕ∗λ(t) = φ∗λ(xλt). Therefore, it is a solution of the follow-
ing Dirichlet problem {

y′′ + λx2
λ(1− xλt) cos y = 0,

y(0) = 0, y(1) = −π.

Arguing similarly as in the proof of Proposition 3.13 and recalling (3.21), ˜̀λ converges in
the C1 norm to the minimizer z̃ of the functional

L(z) =

∫ 1

0

(
1

2
(z′)2 − 2π sin z

)
dt,

subject to

z(t) ≤ lim
λ→∞

ϕ∗λ(t) = lim
λ→∞

[
λx2

λ

2
t2
(xλ

3
t− 1

)
− x2

λ

2
t2
]

= −πt2, ∀t ∈ [0, 1].

Therefore, z̃ is a solution of the following Dirichlet problem{
z′′ + 2π cos z = 0,

z(0) = 0, z(1) = −π,

and

(3.23) lim
λ→∞

xλ`
′
λ(x−λ ) = lim

λ→∞
(˜̀λ)′(1) = z̃′(1).
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Being the minimizer of a suitably regular autonomous problem, z̃ is a monotone function
(see, e.g., [9, Theorem 3.1]), so we have that z̃′(t) ≤ 0 for all t ∈ [0, 1]. Since z′′ +
2π cos z = 0 is an autonomous differential equation, there exists E ∈ R such that

(3.24)
1

2
(z̃′)2 + 2π sin z̃ =

1

2
E, ∀t ∈ [0, 1].

Moreover, being z̃(1) = −π, we obtain that (z̃′(1))2 = E. Since z̃′(t) ≤ 0, we have
z̃′(1) = −

√
E and from (3.24) we obtain

z̃′√
E − 4π sin z̃

= −1.

Recalling that z̃(0) = 0 and z̃(1) = −π, with some easy computations we obtain∫ π

0

dσ√
E + 4π sinσ

= 1,

hence E satisfies (3.20). By Remark 3.16, there exists a unique E > 0 which satisfies
(3.20) and using also (3.23) we have

lim
λ→∞

xλ`
′
λ(x−λ ) = −

√
E.

�

Lemma 3.18. Let rλ ∈ Rλ be the minimizer of Rλ. Then

lim
λ→∞

xλr
′(xλ) = −2

√
π.

Proof. The proof is similar to the one of Lemma 3.17. By the change of variable x = xλt,
we re-parameterize the integral functionalRλ defined in (3.17) on the interval [1, 1/xλ]. As
a consequence, the function r̃λ : [1, 1/xλ] → R given by r̃λ(t) = rλ(xλt) is a minimizer
for the functional

ϕ 7→
∫ 1

0

(
1

2
(ϕ′)2 − λx2

λ(1− xλt) sinϕ

)
dt,

with the constraint r̃λ(1) = −π and r̃λ(t) ≤ −π. Let us notice that

(3.25) xλr
′
λ(xλ) = r̃λ(1).

Using arguments similar to Lemma 3.7 and Lemma 3.8, we obtain that r̃λ(t) ∈ (− 3
2π,−π)

for all t ∈ (1, 1/xλ]. Therefore, it is the solution of the following Cauchy problem

(3.26)


z′′ + λx2

λ(1− xλt) cos z = 0,

z(1) = −π,
z′(1) = −νλ,

for a suitable νλ > 0. Let us show that νλ > 0 is upper bounded. For every λ we have

z′(t) + νλ =

∫ t

1

z′′(s)ds.

If λ is sufficiently large, 1/xλ > 2 and we can integrate the both sides of the previous
equation on the interval [1, 2]. Recalling that z(1) = −π and that z(2) > − 3

2π, we obtain

νλ = −
∫ 2

1

z′(t)dt+

∫ 2

1

∫ t

1

z′′(s)dsdt

= z(1)− z(2)−
∫ 2

1

∫ t

1

λx2
λ(1− xλs) cos z dsdt ≤ π + λx2

λ

2
.
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By (3.21), if λ is sufficiently large we have

νλ ≤
π + 2π

2
+
π

2
= 2π.

Therefore, there exists ν > 0 such that, up to subsequences, νλ → ν as λ → ∞ and,
on every compact set [1,M ], the solutions of (3.26) uniformly converges to the solution
w : [1,+∞)→ R of the following Cauchy problem

z′′ + 2π cos z = 0,

z(1) = 0,

z′(1) = −ν.
By the minimality conditions on r̃λ, in particular by r̃′λ(1/xλ) = 0, we obtain that ν > 0
is such that limt→∞ w(t) = − 3

2π and limt→∞ w′(t) = 0. Since z′′ + 2π cos z = 0 is an
autonomous differential equation, there exists a constant E > 0 such that

1

2
(w′)2 + 2π sinw = E,

and since sinw(1) = 0 we obtain

E =
1

2
ν2.

Moreover, since limt→∞ w(t) = − 3
2π and limt→∞ w′(t) = 0, we have that

E =
1

2
ν2 = lim

t→∞

1

2
(w′(t))2 + 2π sinw′(t) = 2π,

hence ν2 = 4π. Thus, using also (3.25), we obtain

lim
λ→∞

xλr
′(xλ) = lim

λ→∞
−νλ = −ν = −2

√
π.

�

3.3. Existence of local minimizers distinct form the global ones.

Lemma 3.19. Let (φ̃, θ̃) be a global minimizer of Fb,k in S∗λ, whose existence is ensured
by Proposition 3.3. Then, for sufficiently small b and sufficiently large λ, we have

φ̃(x) < φ∗λ(x), ∀x 6= 0.

Proof. By Corollary 3.10, we have that φ̃ can be equal to φ∗λ only in 0 and xλ. So our aim
is to prove that if b and k/b are sufficiently small (or equivalently if b is sufficiently small
and λ is sufficiently large), then

φ̃(xλ) < −π.
As a first step, let us show that if λ = b/k is sufficiently large, then φ̃λ(xλ) < −π,
where φ̃λ is the minimizer of the functional Fλ defined in (3.13). By Lemma 3.14 and the
definitions of `λ and rλ, we need to prove that for λ sufficiently large we have

`′λ(xλ) > r′λ(xλ),

namely we need to prove that (3.19) does not hold. Using Lemma 3.17 and Lemma 3.18,
it suffices to prove that

−
√
E > −2

√
π,

or, equivalently, that 4π > E. Since E satisfies (3.20) and G is a decreasing function, we
need to show that

1 = G(E) > G(4π).
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Since the sin(σ) > 0 for every σ ∈ (0, π), we have

G(4π) =

∫ π

0

dσ√
4π + 4π sinσ

<

√
π

2
< 1,

hence we infer that if λ is sufficiently large, then φ̃λ(xλ) < −π.
Therefore, let us fix such a λ. By contradiction, let (bn, kn)n∈N ⊂ R+×R+ be a sequence
such that bn → 0, bn/kn = λ for all n and the sequence of minimizers of Fbn,kn in S∗λ,
denoted by (φ̃n, θ̃n), is such that

φ̃n(xλ) = −π, ∀n ∈ N.

By Proposition 3.13, there exists a subsequence of φ̃n that converges uniformly to φ̃λ.
Since φ̃λ(xλ) < −π, this is absurd, and we are done.

�

Remark 3.20. Lemma 3.19 is not enough to conclude that (φ̃, θ̃) is a local minimizer of
the functional F in S, since φ̃ belongs to ∂C∗λ. Indeed, consider the sequence (fk)k ⊂ C∗

defined as follows:

fk =

{
kx, for x ∈ [0, k−3],

k−2, for x ∈ (k−3, 1].

Clearly we have ‖fk‖H1 → 0 when k → ∞. For every C-Lipschitz φ ∈ C∗λ, φ(x) +
fk(x) > 0 for x ∈ [0, k−3] if k > C. Therefore every Lipschitz-regular element of C∗

belongs to ∂C∗, hence φ̃ ∈ ∂C∗.
As a consequence of the previous remark, we need to show that there is a sufficiently small
open ball B̃ centered in φ̃ such that F (φ̃, θ̃) ≤ F (φ, θ) for every (φ, θ) ∈ B̃×L2. We obtain
this result by a Γ–convergence argument, for which we need the following definitions.

Definition 3.21. Fix b, k > 0 and set λ = b/k. For each real number ε > 0 we define the
function φ∗λ,ε : [0, 1]→ R as follows:

φ∗λ,ε(x) = max

{
λ

2
x2
(x

3
− 1
)
− 1

2
x2 + ε,−π

}
.

We denote by xλ,ε the least x such that φ∗λ,ε = −π, that is:

xλ,ε = min {x ∈ [0, 1] : φ∗n(x) = −π} ,
and we define

C∗ε :=
{
φ ∈ H1

∗ : φ(x) ≤ φ∗λ,ε(x), ∀x ∈ [0, 1]
}
.

Recalling the definition of Θ: H1
∗ → L2 given in Corollary 2.7, we define the functional

Fε : H1
∗ → R as follows:

Fε(φ) =

{
Fb,k(φ,Θ(φ)), if φ ∈ C∗ε ,

+∞, otherwise,

and the functional F : H1
∗ ([0, 1],R)→ R as follows:

F(φ) =

{
Fb,k(φ,Θ(φ)), if φ ∈ C∗,

+∞, otherwise.

Remark 3.22. If b < 1 and (φ̃, θ̃) ∈ S∗ is a global minimizer for Fb,k, then θ̃ = Θ(φ̃) a.e.,
thus

Fb,k(φ̃, θ̃) = F(φ̃).
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Lemma 3.23. For every b, k, ε > 0, Fε : H1
∗ → R admits a global minimizer, that we

denote by φ̃ε. Moreover,

(3.27) φ̃ε(x) < φ∗λ,ε(x), ∀x 6= xλ,ε.

Proof. Since C∗ε ⊂ H1
∗ is closed with respect to the L∞ norm, the existence of a global

minimizer can be obtained following the same proof of Proposition 3.3. Moreover, as
previously observed in Remark 3.11, the proof of Corollary 3.10 relies only on the second
derivative of φ∗, hence the analogous result given in (3.27) holds when we substitute φ∗

with φ∗ε . �

Lemma 3.24. Let (εn)n ⊂ R be a strictly decreasing sequence such that εn > 0 for each
n and εn → 0. Then the sequence of functionals Fεn Γ-converges to the functional F .
Therefore, if (φεn)n ⊂ H1

∗ is a sequence of absolute minimizers of Fεn , it converges in
L∞-norm to a minimizer of F .

Proof. Since εn is strictly decreasing, for every n ∈ N we have C∗λ ⊂ C∗λ,εn+1
⊂ C∗εn .

Therefore, the sequence Fn is pointwise non-decreasing, so that (see e.g. Remark 1.40 in
[5])

Γ- lim
n
Fn = sup

n
sc(Fn) = lim

n
sc(Fn) = lim

n
Fn = F ,

where sc(·) indicates the lower-semicontinuous envelope and the penultimate equality
holds because Fn is weakly lower-semicontinuous for every n. The second part of the
statement follows from the basic properties of Γ-convergence (see Theorem 1.21 in [5]).

�

We are finally ready to prove our main result.

Proof of Theorem 3.1. By Lemma 3.19, if b is sufficiently small and λ is sufficiently large,
any minimizer of Fb,k in S∗λ, denoted by (φ̃, θ̃), is such that φ̃(x) < φ∗λ(x) < 0 for every
x 6= 0. To prove Theorem 3.1, we need to prove that (φ̃, θ̃) is a local minimizer in the
whole set S = H1

∗ × L2. It is important to notice that we can choose λ large enough such
that φ̃(xλ) < φ∗λ(xλ) = −π and that we can assume that b < 1, so that Corollary 2.7 can
be applied to define the function Θ.
Seeking a contradiction, fix α > 0 and let B̃α ⊂ H1

∗ be the open ball with center φ̃ and
radius α with respect to the H1 norm. Then, by contradiction, there exists (φα, θα) ∈
B̃α × L2 such that

Fb,k(φα, θα) < Fb,k(φ̃, θ̃).

By definition of Θ, this implies

F(φα) ≤ Fb,k(φα, θα) < Fb,k(φ̃, θ̃) = F(φ̃).

Since (φ̃, θ̃) is a global minimizer of Fb,k in S∗ = C∗×L2, the previous chain of inequal-
ities implies that φα /∈ C∗. Let β > 0 such that φα ∈ C∗β . By Lemma 3.23, there exists a
global minimizer of Fβ , that we denote by φ̃β , and we have

Fβ(φ̃β) ≤ Fβ(φα) < F(φ̃).

Hence, φ̃β ∈ C∗β \ C∗ and there exists ε ∈]0, β] such that φ̃β ∈ C∗ε and{
x ∈ [0, 1] : φ̃β(x) = φ∗λ,ε(x)

}
6= ∅.
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Since C∗ε ⊆ C∗β , we have that we can take φ̃ε = φ̃β , that is φ̃β is actually a global min-
imizer of Fε. As a consequence, applying again Lemma 3.23, we have that φ̃ε(xλ,ε) =
φ∗λ,ε(xλ,ε) = −π. For the sake of presentation, an illustration of the above construction is
given in Fig. 6.

−π
2

−π

− 3π
2

0
1

xλ xλ,ε

φ̃ φ̃ε
φ∗
λ φ∗

λ,ε

−π
2

−π

− 3π
2

0
1

xλ xλ,ε

φ̃ φ̃ε
φ∗
λ φ∗

λ,ε

FIGURE 6. Convergence of minimizers in the Γ–convergence argument
for the proof of Theorem 3.1.

Now, consider a strictly decreasing sequence (αn)n ⊂ R+ that converges to 0. Applying
the previous construction, we can construct a strictly decreasing sequence (εn)n ⊂ R+

that converges to 0 and a sequence (φ̃εn)n ⊂ H1
∗ of global minimizers of Fεn such that

φ̃εn(xλ,εn) = −π.
By Lemma 3.24, the sequence (φ̃εn)n uniformly converges to a minimizer φ̄ of F . Since
limn→∞ xλ,εn = xλ we have

φ̄(xλ) = lim
n→∞

φ̃εn(xλ,εn) = −π.
By Lemma 3.19, this is a contradiction and, finally, we are done. �

3.4. Regularity of local minimizers. By Proposition 2.4, we obtain the following regu-
larity result for the local minimizers of Fb,k such that φ(x) < 0 in (0, 1], whose existence
is ensured by Theorem 3.1.

Corollary 3.25. Let (φ̃, θ̃) be a local minimizer of Fb,k(φ, θ) such that φ(x) < 0 in (0, 1].
If b ≤ 1, then both φ̃ and θ̃ are C∞.

A complementary result can be established assuming a lower bound on b (depending on x).
This is obtained in Proposition 3.27, after we establish a lemma showing that |φ̃− θ̃| cannot
exceed π. Proposition 3.27 entails that, in general, there is no hope to be able to “neglect”
the asymmetric nature of the variational problem, since the less regular component (θ) of
the local minimizers can actually live in L2 \H1.

Lemma 3.26. Let (φ̃, θ̃) be a local minimizer ofFb,k(φ, θ). Let
[
(2n− 1)π2 , (2n+ 1)π2

]
:=

In for (n ∈ Z). If φ̃(x̄) ∈ (In)◦ then θ̃(x) ∈ In a.e. on a neighborhood of x̄.
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Proof. First of all notice that, for every measurable subset M ⊂ [0, 1], we have that (φ̃, θ̃)
can be a (global or local) minimizer for Fb,k only if

(3.28) θ̃ = min
θ

(
(φ̃− θ)2

2
− b(1− x) sin θ

)
a.e. on M . Since the function sin(x ± (2n ± 1)π2 ) is an even function, it follows that, if

φ̃(x̄) ∈ (In)◦, the minimization of the term (φ−θ)2
2 implies θ̃(x) ∈ In a.e. on a neighbor-

hood of x̄. Supposing indeed θ̃(x) ∈ In±1, one can replace θ̃(x) by the symmetric value
with respect to (2n− 1)π2 (if φ̃ belongs to the left half of In) or with respect to (2n+ 1)π2
(if φ̃ belongs to the right half of In), obtaining the same value for the term b(1 − x) sin θ

and a strictly smaller value for the term (φ̃−θ)2
2 . �

Proposition 3.27. Suppose that there exists a local minimizer (φ̃, θ̃) of F (φ, θ) in S such
that φ̃(x) < −π2 for some x ∈ (0, 1) such that b > 1

1−x . Then θ̃ /∈ C0.

Proof. The function θ̃ must solve the localized problem

inf
θ

∫
S0

[
k

2
(φ̃′)2 +

(φ̃− θ)2

2
− b(1− x) sin θ

]
dx,

where S0 is any maximal sub-interval of [0, 1] such that φ̃(x) ∈ (In)◦ for x ∈ S0. There-
fore θ̃(x) ∈ I0 a.e. in S0.
On the other hand, θ̃ also solves the localized problem

inf
θ

∫
S−1

[
k

2
(φ̃′)2 +

(φ̃− θ)2

2
− b(1− x) sin θ

]
dx

where is any maximal sub-interval of [0, 1] such that φ̃(x) ∈ (I−1)◦ for x ∈ S−1. There-
fore θ̃(x) ∈ I−1 a.e. on S−1.
Since φ̃(0) = 0 and φ̃(x) < −π2 for some x ∈ (0, 1), there exist two nonempty such
intervals S0 and S−1. The continuity of φ̃ implies that θ̃ can be continuous only if θ̃(x) =

−π2 at those x such that φ̃(x) = −π2 . However we have:

∂

∂θ

(
θ2

2
− φθ − b(1− x) sin θ

) ∣∣∣∣
θ=φ=−π2

= 0,

∂2

∂θ2

(
θ2

2
− φθ − b(1− x) sin θ

) ∣∣∣∣
θ=−π2

= 1− b(1− x) < 0,

and therefore θ̃ cannot verify (3.28). This contradiction implies that θ̃(x) 6= −π2 , so θ̃ /∈
C0. �

4. FURTHER QUESTIONS

The results achieved in this paper open some new questions. The limit processes em-
ployed during the proof of Theorem 3.1 do not allow to estimate the lower bound for λ and
the upper bound for b that ensure the existence of a local minimizer (φ̃, θ̃) of Fb,k such that
φ̃(x) ≤ 0. By Corollary 3.10 and Proposition 3.13, the upper bound for b depends on λ: in
particular, it depends on the distance between φ̃λ, namely the minimizer of Fλ in C∗λ, and



26 A NON-AUTONOMOUS VARIATIONAL PROBLEM DESCRIBING A NONLINEAR TIMOSHENKO BEAM

−π at xλ. Even if giving such estimations is still an open problem, some numerical simu-
lations conducted by the authors suggest that if λ is greater than 42, then the minimizer of
Fλ does not “touch” φ∗λ, as it can be seen in Fig. 7.
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− 3π
2
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FIGURE 7. Two minimizers of Fλ in C∗λ: if λ = 42, then the mini-
mizer passes through (xλ,−π) and it is not a local minimizer of Fλ in
H1
∗ ([0, 1]); if λ = 43, then the minimizer does not meet φ∗λ and it is

indeed a local minimizer of Fλ in H1
∗ ([0, 1]).

It is natural to try to generalize the results developed herein in various directions.
Firstly, from the point of view of calculus of variations, it would be interesting to inves-
tigate what happens to local minimizers when the potential V has a more general form,
rather than the form b(1 − x) sin θ; this could be interesting for the application to one-
dimensional continua with more complicated microstructures than the one considered in
the Timoshenko beam, as for instance the ones investigated in [2, 4, 18, 22].
Secondly, from the point of view of elasticity theory, the generalization of the inextensibil-
ity constraint (1.4) leads, in its simplest form, to a further additive term in the integrand of
type C(‖χ′‖ − 1)2/2 and to a potential of the form

V (x, θ) = b‖χ′‖(1− x) sin θ,

and thus it also introduces new problems.
Finally, it is also natural to try to generalize the existence and regularity results concerning
the global minimizer (developed in Section 2) to problems living in Wm,p×Wn,p of type:

inf
u,v

∫
Ω

(
f(∇mu) + g(∇nv) + h(u− v)− V (x, u, v)

)
dx,

where Ω is a bounded domain of an Euclidean space and m is strictly larger than n. One
may expect that, assuming f, g, h nice enough and suitable boundary conditions, the term
in u − v should allow to gain Wm,p regularity for both elements of the minimizing pair
(ū, v̄).
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