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IMMEDIATE BLOWUP OF ENTROPY-BOUNDED CLASSICAL

SOLUTIONS TO THE VACUUM FREE BOUNDARY PROBLEM

OF NON-ISENTROPIC COMPRESSIBLE NAVIER–STOKES

EQUATIONS

XIN LIU AND YUAN YUAN˚

Abstract. This paper considers the immediate blowup of entropy-bounded clas-
sical solutions to the vacuum free boundary problem of non-isentropic compressible
Navier–Stokes equations. The viscosities and the heat conductivity could be con-
stants, or more physically, the degenerate, temperature-dependent functions which
vanish on the vacuum boundary (i.e., µ “ µ̄θα, λ “ λ̄θα, κ “ κ̄θα, for constants
0 ď α ď 1{pγ ´ 1q, µ̄ ą 0, 2µ̄ ` nλ̄ ě 0, κ̄ ě 0, and adiabatic exponent γ ą 1).

With prescribed decaying rate of the initial density across the vacuum bound-
ary, we prove that: (1) for three-dimensional spherically symmetric flows with non-
vanishing bulk viscosity and zero heat conductivity, entropy-bounded classical solu-
tions do not exist for any small time, provided the initial velocity is expanding
near the boundary; (2) for three-dimensional spherically symmetric flows with non-
vanishing heat conductivity, the normal derivative of the temperature of the classical
solution across the free boundary does not degenerate, and therefore the entropy
immediately blowups if the decaying rate of the initial density is not of 1{pγ´1q
power of the distance function to the boundary; (3) for one-dimensional flow with
zero heat conductivity, the non-existence result is similar but need more restrictions
on the decaying rate.

Together with our previous results on local or global entropy-bounded classical
solutions (Liu and Yuan, SIAM J. Math. Anal. (2) 51, 2019 ; Liu and Yuan, Math.
Models Methods Appl. Sci. (9) 12, 2019 ), this paper shows the necessity of proper
degenerate conditions on the density and temperature across the boundary for the
well-posedness of the entropy-bounded classical solutions to the vacuum boundary
problem of the viscous gas.

1. Introduction and main results

1.1. Equations. In this paper, we study the motion of non-isentropic viscous gas
connecting vacuum via free boundary. The gas occupied domain is denoted by Ωptq Ă
R

n, n “ 1, 2, 3, which is assumed to be a simply connected, open domain evolving
with the gas flow.

In Ωptq, the non-isentropic viscous gas flow is modeled by the non-isentropic com-
pressible Navier–Stokes equations (CNS):

$

’

’

&

’

’

%

ρt ` div pρuq “ 0 ,

pρuqt ` div pρu b uq ` ∇p “ div pµp∇u ` p∇uq⊺q ` λdivu Inq ,

cvBtpρθq ` cvdiv pρuθq ` pdivu “
µ

2
|∇u ` p∇uq⊺|2 ` λpdivuq2 ` κ∆θ ,

(1.1)
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2 X. LIU AND Y. YUAN

where the space-time variables are py, tq P R
nˆr0,8q, and ρ, u, p, and θ represent the

scalar density, the velocity field, the pressure potential, and the absolute temperature,
respectively. µ, 2µ`nλ and κ are the shear viscosity, the bulk viscosity and the heat
conductivity, respectively and in this paper they are assumed to be constants, or
temperature-dependent functions which vanish on the vacuum boundary :

µ “ µ̄θα, λ “ λ̄θα, κ “ κ̄θα, where constants µ̄ ą 0, 2µ̄ ` nλ̄ ě 0, κ̄ ě 0, α ě 0.

(1.2)
Here µ, λ, κ are constants when α “ 0. Such a setting of the viscosities agrees with
the kinetic theory of gas dynamic, in which the CNS is derived from the Boltzmann
equations through the Chapman–Enskog expansion. More precisely, if the intermolec-
ular potential varies as r´a with r being the molecule distance and a being a positive
constant, then µ, λ satisfy

µ “ µ̄θ
a`4

2a , λ “ λ̄θ
a`4

2a , κ “ κ̄θ
a`4

2a . (1.3)

Obviously, our setting (1.2) is the general form of (1.3). We refer the interested
readers to Chapman–Cowling [2] and Li–Qin [31] for the Chapman–Enskog expansion.

We assume that the gas is polytropic. The pressure potential p, the specific inner
energy e, and the entropy s are related by the following equations of state, satisfying
the Gibbs–Helmholtz equation:

p “ Rρθ “ Āespγ´1q{Rργ , e “ cvθ, (1.4)

where γ ą 1, R ą 0, and cv “ R
γ´1

ą 0 are referred to as the adiabatic exponent,

the universal gas constant, and the specific heat coefficient, respectively. Here Ā is a
positive constant.

On the moving gas–vacuum interface Γptq :“ BΩptq, the normal stress balance
condition is given by

pµp∇u ` p∇uq⊺q ` λdivu In ´ pInqn “ 0, on Γptq, (1.5)

and Γptq evolves in time with the gas flow on the boundary, i.e.,

VpΓptqq “ pu ¨ nq|Γptq, (1.6)

where VpΓptqq and n are the normal velocity of the evolving interface and the exterior
unit normal vector on Γptq, respectively. System (1.1) with (1.5) is complemented
with the following initial data,

pρ,u, θqpy, t “ 0q “ pρ0,u0, θ0qpyq, y P Ω0 :“ Ωp0q, (1.7)

where ρ0, θ0 ą 0 in Ω0 and ρ0 “ θ0 “ 0 on Ω0.
In this paper, we investigate solutions to system (1.1) with the following properties:

p-1. Initially density connects to vacuum continuously;
p-2. Entropy remains bounded as long as solutions exist.

That is, we consider solutions to system (1.1) with bounded entropy and vacuum free
boundary. In particular, property p-1 implies that, thanks to the continuity equation
(1.1)

1
, density ρ vanishes on the moving boundary Γptq. Additionally, property p-2

implies that, thanks to (1.4), temperature θ vanishes on Γptq as well. Therefore, we
have

ρ “ 0, θ “ 0 on Γptq, (1.8)

provided our solutions with properties p-1 and p-2 exist.
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Moreover, we consider the initial density profile with

´ 8 ă ∇
n
pρ

1{δ
0 q ă 0 on Γ0 :“ BΩ0 (1.9)

for a positive constant δ, where ∇
n

is the outward normal derivative. When δ “
1{p1 ´ γq, such a singular boundary condition for the initial density profile is exactly
the physical vacuum condition (see (1.11)) in the isentropic case. Thanks to property
p-1, by denoting the distance function to the boundary Γ0 as dpyq, (1.9) implies that,
for y P Ω0 in a neighborhood of Γ0,

#

C´1

1
dδpyq ă ρ0pyq ă C1d

δpyq,

C´1

2
dδ´1pyq ă |∇

n
ρ0pyq| ă C2d

δ´1pyq
(1.10)

for some positive constants C1, C2 P p0,8q.
Without loss of generality, we consider solutions to (1.1) with properties p-1 and

p-2 in the following two cases:

Case 1. n “ 3 with spherical symmetry, and Ω0 “ Bpp0, 0, 0q, 1q, i.e., unit ball centered
at the origin;

Case 2. n “ 1 and Ω0 “ p0, 1q.

1.2. Literature review. There have been a huge number of literatures concerning
the CNS. For the Cauchy and first initial boundary value problems, when there are
positive lower bounds of the initial density profiles (i.e., ρ ě ρ ą 0), the local well-
posedness of classical solutions has been investigated by Serrin [52], Nash[47], Itaya
[23], Tani [55]. The pioneering works of Matsumura and Nishida [43, 44] showed
the global stability of equilibria for the heat conductive flows with respect to small
perturbations. Later, Hoff and Smoller [19] proved that vacuum states do not occur
in the gas described by the one-dimensional CNS, provided no vacuum states are
present initially. Such a conclusion is also true for three-dimensional and spherically
symmetric case away from the origin ([15]), however, it is not confirmed without the
symmetry in multi-dimensional case.

When the density profile contains vacuum state (i.e., ρ ě 0), Cho and Kim [6, 5]
showed the local well-posedness of the CNS for isentropic and heat conductive flows
with some compatible conditions. With small initial energy, Huang, Li, Xin [22, 21]
established the global well-posedness for the isentropic and heat-conductive flows.
However, These solutions have infinite entropy in the vacuum area. In fact, as pointed
out by Xin and Yan [56, 57], the classical solutions with bounded entropy to the CNS
without heat conduction will blow up in finite time due to the appearance of vacuum
state. Such a result also was extended to the heat-conductive CNS in [4, 28]. Recently,
Li, Wang and Xin [29] showed that there does not exist any local-in-time classical
solution in the inhomogeneous Sobolev space to the CNS if vacuum exists in general.

In order to establish a solution to the CNS with bounded entropy and vacuum
states, the studies above motivate us to consider the free boundary problem, and
investigate singular boundary conditions of the profiles across the vacuum boundary.
When the density connects to the vacuum on the moving boundary with a jump,
the local well-posedness theory and the global stability of equilibria can be tracked
back to Solonnikov, Tani, Zadrzyńska, and Zaja̧czkowski, [54, 58, 59]. On the other
hand, when the density profile connects continuously to vacuum across the moving
boundary, Jang, Masmoudi, Coutand, Lindblad, and Shkoller established the local
well-posedness in [25, 27, 7, 8, 9] for isentropic inviscid flows with physical vacuum
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condition, i.e., the sound speed of the fluid c “
a

P 1pρq is 1{2´Holder continuous
across the vacuum boundary:

´ 8 ă ∇
n
pc2q ă 0 on Γptq. (1.11)

The physical vacuum condition was first proposed by [32] when he studied the self-
similar solutions to compressible Euler with damping; see [41, 61, 62] for the global
smooth solutions to this model around the self-similar solutions. Condition (1.11)
also commonly appears in other physical models: the stationary solutions to the
compressible Euler–Poisson or CNS–Poisson equations (i.e., Lane–Emden solutions)
which models gaseous stars [1], and self-similar expanding solutions to compressible
Euler equations [53]; see [12, 13, 38, 40, 39, 18, 17, 48] for the global smooth solutions
to these equations. We also refer to the readers to [26] for the investigations of the
existence of classical solutions to the 1-D compressible Euler equations under the
assumption of different behaviours of the initial density at the boundary. In the case
of viscous flows, the extra viscosities bring more regularities to the velocity field.
Consequently, the degeneracy is comparably causing fewer troubles; see [37, 33, 24,
16, 30, 60, 34, 46, 42, 14] for the isentropic flows.

However, few studies of free boundary problems of non-isentropic flows are avail-
able. The first author studied of the free boundary problem for non-isentropic flows
by investigating the equilibria of the radiation gaseous stars in [34], in which the
degeneracy of density and temperature near the vacuum boundary are established.
Later in [35], we first proved the existence and uniqueness of the local-in-time strong
solutions to the free boundary problem of the full CNS (constants µ, 2µ` 3λ, κ ą 0).
In [35], we impose more general decay rates of the initial density and temperature
near the vacuum boundary, i.e., the first line of (1.10) and

´ 8 ă ∇
n
pθ0q ă 0 on Γ0. (1.12)

Actually, the above condition (1.12) can be automatically fulfilled for the solution
after the initial time thanks to the Hopf’s lemma of the degenerate parabolic type
equation; see Theorem 1.3 below. We also established a class of globally degenerate
large solutions to the free boundary problem of the CNS with only constant shear
viscosity and without bulk viscosity and heat conductivity (µ ą 0, 2µ` 3λ, κ “ 0) in
[36]. We would like to point out that the entropy of the solutions we found in [35, 36]
can be bounded, which is totally different from the blowup results of the Cauchy
problem in [56, 29]. Recently Chen et.al. [3] offered different a priori estimates
in conormal Sobolev spaces for the local-in-time solutions, with fewer compatibility
conditions but under the the physical vacuum condition in the isentropic case (i.e.,
(1.10) with δ “ 1{pγ ´ 1q). Also see some works on other models of non-isentropic
flows in [20, 11, 45, 51, 50, 49].

This work is the first step towards studying the dynamics of flows with bounded

entropy and degenerate, temperature-dependent transport coefficients in
the setting of vacuum free boundary problems. Before establishing the energy es-
timates and the well-posedness theorems, it is important to first study the bound-
ary behaviors of classical solutions if they exist, and then to investigate the proper
singular boundary conditions of the profiles across the vacuum boundary. Inspired
by the work of [29], we propose some non-existence theorems to the vacuum free
boundary problem of the non-isentropic CNS: it is proved in this paper that in the
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three-dimensional case and 0 ď α ď 1{pγ ´ 1q, when the heat conductivity does
not vanish, the normal derivative of the temperature of the classical solution across
the free boundary does not vanish, and the entropy will immediately blowup if the
physical vacuum condition is not satisfied (δ “ 1{pγ ´1q). When the heat conductiv-
ity vanishes but the bulk viscosity does not, the classical solution does not exist for
any short time provided that (1.10) is satisfied and the initial velocity is expanding
near the boundary (see (1.13) below). We also have a similar non-existence result
for the one-dimensional case, but with more restrictions on the parameter δ, α and
the decaying condition of the initial velocity. Such non-existence theorems show that
in the previous well-posedness results ([35, 36]), singular boundary conditions across
the vacuum boundary imposed on the initial data are reasonable.

In contrast to the Cauchy problem in [29], where the velocity and its derivatives of
classical solutions have to vanish on the vacuum boundary, the behaviors for the veloc-
ity on the vacuum boundary are not clear for the free boundary problem. Moreover, in
the case of the degenerate, temperature-dependent viscosities and heat-conductivity,
the ellipticity of the momentum and temperature equations in Lagrangian coordinates
may degenerate on the vacuum boundary, and in this case the maximum principles in
[29] cannot be applied. This calls for new analysis on the boundary behaviors of the
velocity and entropy, and more general maximum principles for degenerate parabolic
equations. To the best of our knowledge, this paper is the first study concerning
the ill-posedness of the vacuum free boundary problem of non-isentropic CNS. Our
result demonstrates that singular boundary conditions across the vacuum bound-
ary in the previous well-posedness results ([35, 36]) are reasonable. Moreover, our
result provides a first-step investigation of the well-posedness theory of the vacuum
free boundary problem for non-isentropic viscous flows with degenerate, temperature-
dependent transport coefficients.

1.3. Main results. In the rest of the paper, we use W k,p, Hm to denote the classical
Sobolev space in Ωptq, Cm1

m2
pΩptq ˆ r0, T sq to denote the set of functions that are Cm1

continuous in space and Cm2 in time in the domain Ωptq ˆ r0, T s. The main results
of this paper are as follows:

Theorem 1.1. In the three-dimensional spherically symmetric case, that with positive
bulk viscosity and zero heat conductivity (i.e., 2µ̄ ` 3λ̄ ą 0, κ “ 0), assume that
0 ď α ď 1

γ´1
, and ρ0 satisfies (1.10), and that there exists r0 P p1 ´ d0, 1q such that

y

|y|
¨ u0pyq ą 0 for |y| “ r0;

y

|y|
¨ u0pyq ě 0 for r0 ă |y| ă 1, (1.13)

where d0 P p0, 1q is a small constant depending only on C1 and C2 in (1.10). Then
the vacuum free boundary problem (1.1), (1.5), (1.6), (1.7) and (1.8) has no solution
pρ, u, θq satisfying

ρ, θ P C1,1pΩptq ˆ r0, T sq X CpΩptq ˆ r0, T sq,

u P C2

1
pΩptq ˆ r0, T sq X CpΩptq ˆ r0, T sq

X L8p0, T ;W 2,8pΩptqqq,

ut P L8p0, T ;L8pΩptqqq,

with entropy s satisfying

s P L8p0, T ;W 1,8pΩptqqq, st P L2p0, T ;L8pΩptqqq, (1.14)
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for any positive time T .

Remark 1.2. The regularity of pρ, u, θq in Theorem 1.1 is weaker than those in [29]
(C1pr0, T s;HmpΩptqqq, m ě 3). In particular, the derivatives of ρ, θ are not required
continuous up to the boundary.

When 2µ ` 3λ “ 0 and κ “ 0, the well-posedness theory of the classical solutions
is quite different: the author ([36]) proved the existence of global-in-time classical
solutions with bounded entropy; moreover, the entropy of the self-similar solutions
founded in [36] is independent of time along the flow map, and thus if their entropy
and entropy derivatives are bounded initially, they remain so in the coming future.

Since s, st and sy are also continuous in Ωptq, thanks to this regularity of ρ, θ

and the positivity of ρ in Ωptq, (1.14) can be regarded as a condition describing the
boundary behaviors of s, st and sx.

Theorem 1.3. In the three-dimensional spherically symmetric case with nontrivial
heat conductivity (i.e., κ̄ ą 0), assume that 0 ď α ď 1

γ´1
.Then the solution pρ, u, θq

to the vacuum free boundary problem (1.1), (1.5), (1.6), (1.7) and (1.8) with

ρ P C1,1pΩptq ˆ r0, T sq X CpΩptq ˆ r0, T sq,

θ P C2

1
pΩptq ˆ r0, T sq X CpΩptq ˆ r0, T sq,

u P C2

1 pΩptq ˆ r0, T sq X L8p0, T ;W 2,8pΩptqqq,

ut P L8p0, T ;L8pΩptqqq

for any positive time T , has to satisfy that

∇
n
pθq ă 0 on Γptq. (1.15)

Moreover, if initially the first line of (1.10) is satisfied and θ P L8p0, T ;H1

0
pΩptqqq,

then the entropy is bounded in space-time if and only if δ “ 1{pγ ´ 1q.

Remark 1.4. θ P L8p0, T ;H1

0
pΩptqqq is the usual improved regularity for the solu-

tions to parabolic equations. In fact, when the transport coefficients are constants
and 2µ` 3λ ą 0, κ ą 0, the authors ([35]) proved the existence of locally-in-time so-
lutions pρ, u, θq satisfying u, θ P L8p0, T ;H3pΩptqqq, and ut, θt P L8p0, T ;H3pΩptqqq,
and such solutions could be classical with more regular initial data.

In [35], (1.15) is required initially but only used to ensure Θ ą 0 in Ωptq ˆ r0, T s.
In this paper, we find that (1.15) and Θ ą 0 can be automatically fulfilled thanks to
the maximum principle of the degenerate parabolic type equation.

(1.15) in Theorem 1.3 also holds without the spherical symmetry, since the Hopf’s
lemma and maximum principles for the degenerate parabolic operator hold for general
three-dimensional domains. We prove it in the spherical symmetry for simplicity.

In the one-dimensional case, without the special structure of the equations in three-
dimensional spherically symmetric case, there has to be more restrictions on the initial
data.

Theorem 1.5. In the one-dimensional case without heat conductivity (i.e., κ “ 0),
assume that 0 ď α ď 1

γ´1
, and ρ0 satisfies (1.10), and

0 ă
1

δpγ ´ 1q
ă mint

1

2
p
γ ´ 2

γ ´ 1
` αq, 1u,

u0

d1{2
P L2p0, 1q, (1.16)
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and

D Y0 P p0, d0q such that u0pY0q ă 0 and u0pyq ď 0 for @ 0 ă y ă Y0,

or D Y0 P p1 ´ d0, 1q such that u0pY0q ą 0 and u0pyq ě 0 for @ Y0 ă y ă 1,
(1.17)

where d0 P p0, 1q is a small constant depending only on C1 and C2 in (1.10). Then
the vacuum free boundary problem (1.1), (1.5), (1.6), (1.7), and (1.8) has no solution
pρ, u, θq satisfying

ρ, θ P C1,1pΩptq ˆ r0, T sq X CpΩptq ˆ r0, T sq,

u P C2

1
pΩptq ˆ r0, T sq X CpΩptq ˆ r0, T sq

X L8p0, T ;W 2,8pΩptqqq,

ut P L8p0, T ;L8pΩptqqq

with entropy s satisfying

s P L8p0, T ;L8pΩptqqq, st P L2p0, T ;L8pΩptqqq (1.18)

for any positive time T .

Note that (1.16) does not hold for the physical vacuum condition (δ “ 1{pγ ´ 1q).
Such a vacuum free boundary problem in the one-dimensional case might be well-
posed locally for initial data with proper decaying rate to the boundary.

This work is organized as follows: in Section 2 we prepare Hopf’s lemma and the
strong maximum principle for the degenerate parabolic operators used in our proof.
In the subsequent sections, we first consider the one-dimensional case, formulate the
vacuum free boundary problem in the Lagrangian coordinates and prove Theorem
1.5. Theorem 1.1 and Theorem 1.3 are proved in Sections 4 and 5.

2. The Maximum principles and Hopf’s lemma

In this section, we will prepare Hopf’s lemma and the strong maximum principle
for the degenerate parabolic operator

Lw :“ a0px, tqBtw ´ apx, tqB2

xw ´ bpx, tqBxw ´ cpx, tqw, (2.1)

where a0, a, b, and c are continuous on r0, d0s ˆ r0, T s (or r1 ´ d0, 1s ˆ r0, T s, respec-
tively), and satisfy that, for some constant C P p0,8q,

0 ă a,
a0

a
ă C in p0, d0q ˆ r0, T s por in p1 ´ d0, 1q ˆ r0, T s, respectivelyq,

and
b

a
ą ´C, ´

Ca

d
ă c ď 0 in r0, d0s ˆ r0, T s

por
b

a
ă C, ´

Ca

d
ă c ď 0 in r1 ´ d0, 1s ˆ r0, T s, respectivelyq.

(2.2)
Here d0 ď 1{4, and d “ mintx, 1 ´ xu is the distance to 0 and 1 defined as in the
introduction, a0 and a might degenerate at the boundary. Thanks to 0 ď αpγ´1q ď 1,

the operators ρ0Bt`L1, ρ0Bt`L3, and ρ0Bt`L̃3 in (3.15), (4.8), and (5.4) respectively
in the subsequent sections are the form of L.

The idea of the proof is classical; see [10] for the classical parabolic operator, and
[29] for the parabolic operator with degenerate coefficient in temporal derivative.
The crucial point is to verify that the auxiliary functions satisfy the same differential
inequality (2.4) in the case that of more degenerate coefficients; see (2.9) for instance.
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Recall that for a bounded domain D in R
n ˆ R

`, its parabolic boundary BpD

is the subset of the boundary BD such that for any point px0, t0q P BpD, the set
Blpx0q ˆ pt0 ´ l2, t0s X pRn ˆ R

`qzD is nonempty for any small l ą 0. The non-
negative and non-positive parts of a function w are denoted as w` “ maxtw, 0u and
w´ “ ´mintw, 0u, respectively, such that w “ w` ´ w´. We start with the weak
maximum principle.

Lemma 2.1 (Weak maximum principle). Suppose that Q is an open domain, QT :“
Q ˆ p0, T s, and w P C2

1
pQT q X CpQT q.

(i) If w satisfies
Lw ă 0 in QT , (2.3)

and w attains its non-negative maximum at px0, t0q, then px0, t0q P BpQT .
(ii) If w satisfies

Lw ď 0 in QT , (2.4)

then
max
QT

w ď max
BpQT

w`. (2.5)

(iii) If w satisfies
Lw ą 0 in QT , (2.6)

and w attains its non-positive minimum at px0, t0q, then px0, t0q P BpQT .
(iv) If w satisfies

Lw ě 0 in QT , (2.7)

then
min
QT

w ě ´max
BpQT

w´. (2.8)

Proof. We focus on the proofs of (iii) and (iv). The proofs of the rest are similar and
left to readers.

To prove (iii), assume that w attains its non-positive minimum at some point
px0, t0q inside QT . Since c ď 0, we have

wpx0, t0q ď 0, wtpx0, t0q ď 0, wxpx0, t0q “ 0, wxxpx0, t0q ě 0,

and thus Lw ď 0 at px0, t0q, which contradicts (2.6).
To prove (iv), consider φpε, x, tq :“ wpx, tq ` εt for ε ą 0, which satisfies

Lφ “ Lw ` εa0 ą 0 in QT .

If w attains a negative minimum at some point in QT , then φpε, ¨q also attains a
negative minimum at some point in QT , provided ε ą 0 is small enough. This is a
contradiction to the conclusion (iii) for φ. Therefore, (iv) is proved. �

Proposition 2.2 (Hopf’s lemma). (i) Suppose that w P C2

1
pp0, d0q ˆ p0, T sq X

Cpr0, d0s ˆ r0, T sq satisfying the inequality (2.4) throughout p0, d0q ˆ p0, T s,
and a point p0, t0q satisfying wp0, t0q ě 0 and wp0, t0q ą wpx, tq for any px, tq
in the neighborhood D of p0, t0q:

D :“ tpx, tq; px ´ lq2 ` pt0 ´ tq ă l2, 0 ă x ă
l

2
, 0 ă t ď t0u,

where 0 ă l ă d0, t0 ´
3l2

4
ą 0,

it holds that
Bxwp0, t0q ă 0.
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(ii) Suppose that w P C2

1
pp1´ d0, 1q ˆ p0, T sq XCpr1´ d0, 1s ˆ r0, T sq satisfying the

inequality (2.7) throughout p1 ´ d0, 1q ˆ p0, T s, and a point p1, t0q satisfying
wp1, t0q ď 0 and wpx, tq ą wp1, t0q for any px, tq in the neighborhood D of
p1, t0q:

D :“ tpx, tq; px ´ 1 ` lq2 ` pt0 ´ tq ă l2, 1 ´
l

2
ă x ă 1, 0 ă t ď t0u,

where 0 ă l ă d0, t0 ´
3l2

4
ą 0,

it holds that

Bxwp1, t0q ă 0.

Proof. It suffices to prove (ii). For px, tq P D, we define the auxiliary functions

qpβ, x, tq “ e´βrpx´1`lq2`pt0´tqs ´ e´βl2 ,

φpε, β, x, tq “ wpx, tq ´ wp1, t0q ´ εqpβ, x, tq,

where β and ε are constants to be determined.
On the boundary Σ1 defined by (away from the point p0, t0q)

Σ1 :“ tpx, tq; px ´ 1 ` lq2 ` pt0 ´ tq ă l2, x “ 1 ´
l

2
, 0 ď t ă t0u,

there exists ε0 P p0, 1q small enough such that wpx, tq ´wp1, t0q ą ε0. Since 0 ď q ď 1

in D, φpε0, β, x, tq ą 0 on Σ1.
While on the boundary Σ2 defined by

Σ2 :“ tpx, tq; px ´ 1 ` lq2 ` pt0 ´ tq “ l2, 1 ´
l

2
ď x ď 1, 0 ď t ă t0u,

q “ 0, and thus φpε0, β, x, tq ě 0 on Σ2 due to the property of wp1, t0q.
Now we check the sign of Lφ. Since w satisfies (2.7), we have

Lφpε0, β, x, tq ě cw0p1, t0q ´ ε0Lqpβ, x, tq ě ´ε0Lqpβ, x, tq.

Moreover, direct calculation yields that

´ceβrpx´1`lq2`pt0´tqsqpβ, x, tq “ ´cp1 ´ eβrpx´1`lq2`pt0´tqs´βl2q

ď ´cp´1qpβrpx ´ 1 ` lq2 ` pt0 ´ tqs ´ βl2q

ď ´cβpl2 ´ px ´ 1 ` lq2q ď ´2βlcd

ď 2βlCa, since ´
Ca

d
ă c ď 0,

and therefore, one has

eβrpx´1`lq2`pt0´tqsLqpβ, x, tq

“ ´ 4apx ´ 1 ` lq2β2 ` ar
a0

a
` 2 ` 2

b

a
px ´ 1 ` lqsβ

´ ceβrpx´1`lq2`pt0´tqsq

ďap´C´1β2 ` Cβ ` 2βlC ` Cq.

Therefore, when β0 is large enough,

Lφpε0, β0, x, tq ě ´ε0e
´β0rpx´1`lq2`pt0´tqsap´C´1β2

0 ` Cβ0 ` Cq ą 0. (2.9)
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To summarize, with small ε0 and large β0, one has
#

Lφpε0, β0, x, tq ą 0 in D,

φpε0, β0, x, tq ě 0 on BpD.
(2.10)

It follows from (iv) in Lemma 2.1 that

φpε0, β0, x, tq ě 0 in D.

Consequently, since φpε0, β0, 1, tq “ 0, one can conclude that Bxφpε0, β0, 1, t0q ď 0,
and

Bxwp1, t0q ď ε0Bxqpβ0, 1, t0q ă 0.

�

We remark that the boundedness of a0
a
, i.e., the degenerate rate of the spatial de-

rivative coefficient is smaller than that of the temporal derivative coefficient, ensures
that the maximum principles and Hopf’s lemma work. The proofs of the strong max-
imum principle from Hopf’s lemma are routine, and thus they are omitted here. We
refer interested readers to [10, 29] for details.

Proposition 2.3 (Strong maximum principle). There exist small enough d0 such
that

(i) for any w P C2

1
pp0, d0qˆp0, T sqXCpr0, d0sˆr0, T sq satisfying the inequality (2.4)

throughout p0, d0q ˆ p0, T s, if w attains its non-negative maximum at some interior
point px0, t0q of p0, d0q ˆ p0, T s, then w ” wpx0, t0q in p0, d0q ˆ p0, T s;

(ii) for any w P C2

1 pp1´d0, 1qˆp0, T sqXCpr1´d0, 1sˆr0, T sq satisfying the inequality
(2.7) throughout p1 ´ d0, 1q ˆ p0, T s, if w attains its non-positive minimum at some
interior point px0, t0q of p1´ d0, 1q ˆ p0, T s, then w ” wpx0, t0q in p1´ d0, 1q ˆ p0, T s.

Corollary 2.4. Relaxing the constraints of c in (2.2) to ´Ca
d

ă c ď Ca0, the conclu-
sions of Proposition 2.3 continue to hold provided that the maximum of w for (i) (or
the minimum of w for (ii)) is exactly 0.

Proof. It suffices to prove (ii). Now we consider

φ :“ e´Ctw, L̃φ :“ Lφ ` Ca0φ “ e´CtLω ě 0 in p1 ´ d0, 1q ˆ p0, T s,

Therefore, if w attains its minimum 0 at some interior point px0, t0q of p1 ´ d0, 1q ˆ
p0, T s, φ attains its minimum 0 at the same interior point. In addition, thanks to

the assumption that ´Ca
d

ă c ď Ca0, L̃ satisfies the condition of coefficients (2.2).
Therefore, it follows from Proposition 2.3 that φ ” 0 in p1 ´ d0, 1q ˆ p0, T s, and thus
so does w. �

3. Proof of Theorem 1.5

3.1. Lagrangian formulation. In the case of n “ 1 and κ “ 0, we write u “ u and
Ωptq “ pω1ptq, ω2ptqq with Γptq “ ty “ ω1ptq, y “ ω2ptqu. Then (1.6) is reduced to

ω1
1ptq “ upω1ptq, tq, ω1

2ptq “ upω2ptq, tq, (3.1)
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and the vacuum free boundary problem with (1.1), (1.5), (1.6), (1.7), and (1.8) is
reduced to

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

ρt ` pρuqy “ 0 in Ωptq,

ρut ` ρuuy ` py “ pνuyqy in Ωptq,

cvpρθt ` ρuθyq ` puy “ νpuyq2 in Ωptq,

ρ ą 0, θ ą 0 in Ωptq,

ρ “ θ “ 0, νuy “ 0 on Γptq,

pρ, u, θq “ pρ0, u0, θ0q on Ω0 “ p0, 1q.

(3.2)

Here ν “ ν̄θα, ν̄ “ 2µ̄ ` λ̄ ą 0. Note that when α ą 0, νuy|Γptq “ 0 thanks to
θ|Γptq “ 0.

For x P Ω0 “ p0, 1q, define the flow map y “ ηpx, tq by the following ODE:
#

ηtpx, tq “ u ˝ ηpx, tq “ upηpx, tq, tq,

ηpx, t “ 0q “ η0pxq “ x.
(3.3)

Notice that, ω1ptq “ ηp0, tq and ω2ptq “ ηp1, tq thanks to (3.1). Then the Lagrangian
unknowns are denoted as:

f :“ ρ ˝ η, v :“ u ˝ η, Θ :“ θ ˝ η, S :“ s ˝ η. (3.4)

(1.4) implies that

S “ cv
`

logp
Θ

f γ´1
q ` logp

R

Ā
q
˘

. (3.5)

Consequently, system (3.2) can be written as
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

ft ` f vx
ηx

“ 0 in p0, 1q ˆ p0, T s,

fvt ` 1

ηx
pRfΘqx “ 1

ηx
pν vx

ηx
qx in p0, 1q ˆ p0, T s,

cvfΘt ` RfΘ vx
ηx

“ νpvx
ηx

q2 in p0, 1q ˆ p0, T s,

f ą 0, Θ ą 0 in p0, 1q ˆ p0, T s,

f “ Θ “ 0, ν vx
ηx

“ 0, on t0, 1u ˆ p0, T s,

pf, v,Θq “ pρ0, u0, θ0q on p0, 1q ˆ tt “ 0u.

(3.6)

Notice that vx “ Btηx. f can be solved from (3.6)
1

as

f “ ρ0{ηx. (3.7)

Moreover, we define

ζ :“
Ā

R
eSpγ´1q{R “ ρ

´pγ´1q
0

ηγ´1

x Θ, ζ0 “
θ0

ρ
γ´1

0

, (3.8)

and then an alternative form of (3.6) is,
$

’

’

’

&

’

’

’

%

ρ0vt ` p
Rρ

γ
0
ζ

η
γ
x

qx “ pν vx
ηx

qx in p0, 1q ˆ p0, T s,

cvρ
γ
0ζt “ νv2xη

γ´2
x in p0, 1q ˆ p0, T s,

νvx “ 0, ρ0 “ 0 at x “ 0, 1,

pv, ζq “ pu0, ζ0q on p0, 1q ˆ tt “ 0u.

(3.9)

Therefore, to prove Theorem 1.5, it suffices to prove the following theorem in the
Lagrangian coordinates:
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Theorem 3.1. When κ “ 0, the free boundary problem in the Lagrangian coordinates
(3.9) has no classical solution pv, ζq satisfying

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

v P C2

1
pp0, 1q ˆ r0, T sq X Cpr0, 1s ˆ r0, T sq

X L8p0, T ;W 2,8p0, 1qq,

vt P L8p0, T ;L8p0, 1qq,

ζ P C1,1pp0, 1q ˆ r0, T sq, ζ,
1

ζ
, ζx P L8p0, T ;L8p0, 1qq

ζt P L2p0, T ;L8p0, 1qq,

(3.10)

for any positive time T , provided that (1.10), (1.16) and (1.17) hold.

Throughout this section, we use C to represent the generic positive constant, and
“f „ g” to represent “ 1

C
|g| ď |f | ď C |g| ” for some constant C ą 0. “f “ Opgq”

means |f | ď Cg for some constant C ą 0 as x or y Ñ 0` or 1´.

3.2. Boundary behaviour of vx and v. In this subsection, we will prove

Proposition 3.2. Suppose that (1.10) and (1.16) hold true, and that pv, ζq is the
classical solution to (3.9) with (3.10). Then vx|x“0,1 “ v|x“0,1 “ 0 for a.e. t P p0, T s.

Proof. Without loss of generality, thanks to the fact that v P L8p0, T ;W 2,8p0, 1qq
and pη0qx “ 1, we consider T ą 0 small enough such that

1

2
ă ηx ă 2 @ px, tq P r0, 1s ˆ r0, T s. (3.11)

Then (3.9)
2
, (3.10), and (3.11) imply that ζt „ νρ

´γ
0

v2x P L2pr0, T s, L8p0, 1qq. There-
fore,

vx “ Opν´ 1

2ρ
γ

2

0 q “ Opζ´α
2 ρ

γ´αpγ´1q
2

0 q “ Opdδpγ´αpγ´1qq{2q, a.e. t P r0, T s, (3.12)

which yields vxp0, tq “ vxp1, tq “ 0 provided that α ă γ{pγ ´ 1q.

On the other hand, to show vp0, tq “ vp1, tq “ 0, it suffices to show that
ş

1

0

v2

d
dx ă 8

holds for a.e. t P r0, T s. Multiplying (3.9)
1

by ρ´1

0 d´1v and integrating the resultant
equation on r0, 1s yields

1

2

d

dt

ż

1

0

v2

d
dx `

ż

1

0

v

ρ0d
p
Rρ

γ
0ζ

η
γ
x

qxdx ´

ż

1

0

v

ρ0d
pν

vx

ηx
qxdx “ 0. (3.13)

We estimates the last two integrals of the above equation one by one. First, direct
calculation yields

∣

∣

∣

∣

ż

1

0

v

ρ0d
p
Rρ

γ
0ζ

η
γ
x

qxdx

∣

∣

∣

∣

ď C

ż

1

0

ˆ∣

∣

∣

∣

ρ
γ´1

0 ζxv

d

∣

∣

∣

∣

`

∣

∣

∣

∣

ρ
γ´2

0 ρ1
0ζv

d

∣

∣

∣

∣

`

∣

∣

∣

∣

ρ
γ´1

0 ζv

d

∣

∣

∣

∣

˙

dy

ď C

ż

1

0

∣

∣dδpγ´1q´2v
∣

∣ dx ˆ p}ζx}L8 ` }ζ}L8q

ď C

ż

1

0

v2

d
dx ` C

ż

1

0

d2δpγ´1q´3dx ˆ p}ζx}2L8 ` }ζ}2L8q,

where we have applied the fact that

ηxx P L8pp0, 1q ˆ r0, T sq (3.14)



13

thanks to (3.3) and (3.10). Notice that }ζx}2L8 ` }ζ}2L8 is integrable in time thanks
to (3.10). The above integral is integrable if

2δpγ ´ 1q ´ 3 ą ´1, or equivalently δpγ ´ 1q ą 1.

Meanwhile, after applying integration by parts, one has

´

ż

1

0

v

ρ0d
pν

vx

ηx
qxdx “ ´

νvvx

ρ0dηx

ˇ

ˇ

ˇ

1

0
loooomoooon

I

`

ż

1

0

νv2x
ρ0dηx

dx
looooomooooon

II

`

ż

1

0

p
1

ρ0d
qx
νvvx

ηx
dx

looooooooomooooooooon

III

,

where

|I| ď C lim
xÑ0,1

dδp
γ`αpγ´1q

2
´1q´1 thanks to (3.12), II ě 0,

|III| ď C

ż

1

0

∣

∣

∣
dδpγ`αpγ´1q

2
´1q´2v

∣

∣

∣
dy thanks to (1.10) and (3.12)

ď

ż

1

0

v2

d
dy ` C

ż

1

0

dδppγ`αpγ´1qq´2q´3dy.

Consequently, I “ 0 and III is integrable provided that
#

δpγ`αpγ´1q
2

´ 1q ´ 1 ą 0,

δppγ ` αpγ ´ 1qq ´ 2q ´ 3 ą ´1,
or, equivalently γ ` αpγ ´ 1q ą 2 `

2

δ
.

As a consequence, with (1.16), (3.13) implies that

d

dt

ż

1

0

v2

d
dx ď C

ż

1

0

v2

d
dx ` Cp}ζx}2L8 ` }ζ}2L8q,

and it follows from Gronwall’s inequality that vd´1{2 P L8pr0, T s, L2p0, 1qq, which
concludes that v|x“0,1 “ 0 for a.e. t P r0, T s. Proposition 3.2 is proved. �

3.3. Proof of Theorem 3.1 by contradiction.

Proof of Theorem 3.1. Suppose that there exists a classical solution pv, ζq to (3.9)
with (3.10), (1.10), (1.16), and (1.17) for some time T ą 0. Without loss of generality,
we only consider in (1.17) that u0pY0q ă 0 and u0pyq ď 0, @ 0 ă y ă Y0. The other
scenario follows similarly.

Thanks to v P C2
1pp0, 1q ˆ r0, T sq XCpr0, 1s ˆ r0, T sq, it follows that vpY0, tq ă 0 for

t P r0, T 1s with some small 0 ă T 1 ă T . At the same time, (1.10), (3.10), and (3.14)
imply that

´p
Rρ

γ
0ζ

η
γ
x

qx “ ´
Rρ

γ
0ζ

η
γ
x

p
γpρ0qx
ρ0

`
ζx

ζ
´

γηxx

ηx
q “ ´dγδOp

1

d
q ă 0 in p0, d0q ˆ p0, T 1s,

for small enough d0 depending on C1 and C2 in (1.10). Thus, (3.9)
1

implies that v

satisfies the differential inequality

pρ0Bt ` L1qv :“pρ0Bt ´
ν

ηx
B2

x ´ p
ν

ηx
qxBxqv

“ ´ p
Rρ

γ
0ζ

η
γ
x

qx ă 0 in p0, d0q ˆ p0, T 1s.
(3.15)
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ρ0Bt ` L1 satisfies (2.2) for 0 ď αpγ ´ 1q ď 1 with

a0 “ ρ0, a “
ν

ηx
, b “ p

ν

ηx
qx, c ” 0,

a0

a
“ Opρ

1´αpγ´1q
0 q ă C,

b

a
“

ηx

ν
p
ν

ηx
qx “

η
αpγ´1q`1

x

ρ
αpγ´1q
0 ζα

p
ρ
αpγ´1q
0

ζα

η
αpγ´1q`1

x

qx

“
´pρ

αpγ´1q
0

qx

ρ
αpγ´1q
0

`
η
αpγ´1q`1

x

ζα
p

ζα

η
αpγ´1q`1

x

qx

¯

,

ą Op
1

d
q ´ C in p0, d0q ˆ r0, T 1s

por ă ´Op
1

d
q ` C in p1 ´ d0, 1q ˆ r0, T 1s, respectivelyq,

(3.16)

thanks to (1.10) and (3.10). We only need to consider the case when b is continuous;
otherwise, since p ν

ηx
qx „ dδαpγ´1q´1, we consider the operator d1´δαpγ´1qpρ0Bt ` L1q,

i.e., setting

a0 “ ρ0d
1´δαpγ´1q, a “

ν

ηx
d1´δαpγ´1q, b “ p

ν

ηx
qxd

1´δαpγ´1q, c ” 0. (3.17)

Therefore, (2.2) is satisfied for ρ0Bt ` L1 provided that d0 is small enough.
Thanks to C2

1pp0, 1qˆr0, T sqXCpr0, 1sˆr0, T sq, (1.17), (3.15), and vp0, tq “ 0 from
Proposition 3.2, it follows from the strong maximum principle Proposition 2.3 that
v ă 0 in p0, Y0qˆr0, T 1s. However, it follows from Hopf’s lemma, i.e., Proposition, 2.2
that vxp0, tq ă 0 for t P r0, T 1s, which contradicts to Proposition 3.2. Consequently,
Theorem 3.1 is proved. �

4. Proof of Theorem 1.1

4.1. Lagrangian formulation. In the case of n “ 3 with spherical symmetry, we
write r “ |y|, upyq “ uprqy

r
, Ωptq “ Bpp0, 0, 0q, r̄ptqq, and Γptq “ tr “ r̄ptqu. Then

(1.6) is reduced to

r̄1ptq “ upr̄, tq, (4.1)

and the vacuum free boundary problem with (1.1), (1.5), (1.6), (1.7), and (1.8) is
reduced to

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

pr2ρqt ` pr2ρuqr “ 0 for 0 ă r ă r̄ptq,

pr2ρuqt ` pr2ρu2qr ` r2pr “ p2µ ` λqr2
`

pr2uqr
r2

˘

r

`r2p2µrur ` λr
pr2uqr
r2

q for 0 ă r ă r̄ptq,

cv
`

pr2ρθqt ` pr2ρuθqr
˘

` Rρθpr2uqr “ 4

3
µr2pur ´ u

r
q2

`p2

3
µ ` λqr2pur ` 2u

r
q2 ` κpr2θrqr for 0 ă r ă r̄ptq,

ρ ą 0, θ ą 0 for r ă r̄ptq,

ρ “ θ “ 0, 2µur ` λpur ` 2u
r
q “ 0 for r “ r̄ptq,

pρ, u, θq “ pρ0, u0, θ0q on Ω0,

(4.2)

Similarly as in the one-dimensional case, we define the flow map r “ ηpx, tq and
the Lagrangian unknowns as in (3.3) and (3.4), respectively. Note that now f “
x2ρ0{pη2ηxq.
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When k “ 0, we define ζ by

ζ :“
Ā

R
eSpγ´1q{R “ p

x2ρ0

η2ηx
q´pγ´1qΘ, with ζ |t“0ζ0 “

θ0

ρ
γ´1

0

. (4.3)

In the Lagrangian coordinates, system (4.2) can be written as
$

’

’

’

’

&

’

’

’

’

%

x2ρ0
η2

vt ` p
Rx2γρ

γ
0
ζ

η2γη
γ
x

qx “ p2µ ` λqpvx
ηx

` 2v
η
qx ` p2µx

vx
ηx

` λxpvx
ηx

` 2v
η
qq in r0, 1q ˆ p0, T s,

cv
x2γρ

γ
0

η2γη
γ
x
ζt “ 4

3
µpvx

ηx
´ v

η
q2 ` p2

3
µ ` λqpvx

ηx
` 2v

η
q2 in r0, 1q ˆ p0, T s,

2µ vx
ηx

` λpvx
ηx

` 2v
η
q “ 0 at x “ 1,

pv, ζq “ pu0, ζ0q on r0, 1q ˆ tt “ 0u.

(4.4)
To prove Theorem 1.1, it suffices to prove the following theorem in Lagrangian

coordinates:

Theorem 4.1. When 2µ̄`3λ̄ ą 0, κ “ 0, 0 ď α ď 1

γ´1
, the free boundary problem in

Lagrangian coordinates (4.4) has no solution pv, ζq for any positive time T satisfying,
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

v P C2

1
pr0, 1q ˆ r0, T sq X Cpr0, 1s ˆ r0, T sq

X L8p0, T ;W 2,8p0, 1qq,

vt P L8p0, T ;L8p0, 1qq,

ζ P C1,1pr0, 1q ˆ r0, T sq, ζ,
1

ζ
, ζx P L8p0, T ;L8p0, 1qq

ζt P L2p0, T ;L8p0, 1qq,

(4.5)

provided that initially (1.10) and (1.13) hold.

Similarly as before, we use “f „ g” to represent “ 1

C
|g| ď |f | ď C |g| ” for some

constant C ą 0. “f “ Opgq” means |f | ď Cg as x Ñ 1´.

4.2. Boundary behaviors of vx, v. In this subsection, we will prove

Proposition 4.2. Suppose that pv, ζq is the classical solution to (3.9) satisfying (4.5)
and (1.10). Then vxp1, tq “ vp1, tq “ 0 for a.e. t P r0, T s.

Proof. Since v P L8p0, T ;W 2,8p0, 1qq and pη0qx “ 1, then for small enough T , we
have

1

2
ă ηx ă 2 @ px, tq P r0, 1s ˆ r0, T s. (4.6)

It follows from the above, ζt P L2pr0, T s, L8r0, 1qq (from (3.10)) and (4.4)
2

that

ρ
´γ
0

t
4

3
µp

vx

ηx
´

v

η
q2 ` p

2

3
µ ` λqp

vx

ηx
` 2

v

η
q2u P L2pr0, T s, L8r0, 1qq.

Since µ ą 0, 2µ ` 3λ ą 0,

vx

ηx
´

v

η
,
vx

ηx
` 2

v

η
“ Opζ´α

2 ρ
γ´αpγ´1q

2

0
q “ Opdδpγ´αpγ´1qq{2q, a.e. t P r0, T s, (4.7)

Therefore, vxp1, tq “ vp1, tq “ 0 provided that α ă γ{pγ ´ 1q. �
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4.3. Proof of Theorem 4.1 by contradiction.

Proof of Theorem 4.1. Suppose that there exists a classical solution pv, ζq to (4.4)
with (4.5), (1.10), and (1.13) for some time T .

The fact that v P C2

1
pr0, 1qˆr0, T sqXCpr0, 1sˆr0, T sq implies that, thanks to (1.13),

v0prq ą 0 for |y| “ r0 for t P r0, T 1s with some small 0 ă T 1 ă T . In particular, we
still have (3.14) with the spatial domain replaced by p1 ´ d0, 1q. At the same time,
(1.10), (3.14), and (4.5) imply that, for a.e. t P p0, T q,

´p
Rx2γρ

γ
0
ζ

η2γη
γ
x

qx “ ´
Rx2γρ

γ
0
ζ

η2γη
γ
x

p
γpρ0qx
ρ0

`
ζx

ζ
´γp

x2

η2ηx
qxq “ dγδOp

1

d
q ą 0 in p1´d0, 1qˆr0, T s,

for small enough d0 depending on C1 and C2 in (1.10). Thus, (4.4)
1

implies that v

satisfies the differential inequality :

p
x2ρ0

η2
Bt ` L3qv :“

´x2ρ0

η2
Bt ´

2µ ` λ

ηx
B2

x ´ p
2p2µ ` λq

η
´

p2µ ` λqηxx
η2x

`
p2µ ` λqx

ηx
qBx ´ p´

2p2µ ` λqηx
η2

`
2λx

η
q
¯

v

“ ´ p
Rx2γρ

γ
0
ζ

η2γη
γ
x

qx ą 0 in pr0, 1q ˆ p0, T s.

(4.8)

ρ0Bt ` L3 satisfies (2.2) for 0 ď αpγ ´ 1q ď 1 in r1 ´ d0, 1s ˆ r0, T s , provided that d0
is small enough, by taking

a0 “ cv
x2ρ0

η2
, a “

2µ ` λ

ηx
, c “ p´

2p2µ ` λqηx
η2

`
2λx

η
q,

a0

a
“ Opρ

1´αpγ´1q
0 q ă C,

b

a
“

ηx

2µ ` λ
p
2p2µ ` λq

η
´

p2µ ` λqηxx
η2x

`
p2µ ` λqx

ηx
q,

ă
pρ

αpγ´1q
0 qx

ρ
αpγ´1q
0

` C ă ´Op
1

d
q ` C in p1 ´ d0, 1q ˆ r0, T s,

c

a
„ Op

pρ
αpγ´1q
0 qx

ρ
αpγ´1q
0

q and thus ´
Ca

d
ă c ď 0, in p1 ´ d0, 1q ˆ r0, T s,

(4.9)

thanks to (1.10) and (4.5). In the case that b is not continuous on r1´ d0, 1s ˆ r0, T s,
we can make the adjustment as (3.17).

Thanks to v P C2,1pr0, 1q ˆ r0, T sq XCpr0, 1s ˆ r0, T sq, (1.13), (4.8), and vp1, tq “ 0

from Proposition 4.2, it follows from the strong maximum principle Proposition 2.3
((iii) in Lemma 2.1 is enough) that v ą 0 in pr0, 1q ˆ r0, T s. However, it follows
from Hopf’s lemma Proposition 2.2 that vxp1, tq ă 0 for t P r0, T s, which contradicts
Proposition 4.2. Consequently, Theorem 4.1 is proved. �

5. Proof of Theorem 1.3

5.1. Lagrangian formulation. In the case of n “ 3 with spherical symmetry and
k ‰ 0, following transform of the flow map of Section 4, the reduced vacuum free
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boundary problem (4.2) can be written in the Lagrangian coordinates as
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

x2ρ0
η2

vt ` pRx2ρ0Θ

η2ηx
qx “ p2µ ` λqpvx

ηx
` 2v

η
qx ` p2µx

vx
ηx

` λxpvx
ηx

` 2v
η
qq in r0, 1q ˆ p0, T s,

cv
x2ρ0
η2

Θt ` Rx2ρ0Θ

η2ηx

pη2vqx
η2

“ 4

3
µηxpvx

ηx
´ v

η
q2

`p2

3
µ ` λqηxpvx

ηx
` 2v

η
q2 ` κppΘx

ηx
qx ` 2Θx

η
q in r0, 1q ˆ p0, T s,

Θ ą 0 in r0, 1q ˆ p0, T s,

Θ “ 0, 2µ vx
ηx

` λpvx
ηx

` 2v
η
q “ 0 at x “ 1,

pv,Θq “ pu0, θ0q on r0, 1q ˆ tt “ 0u.
(5.1)

Note that θ0 ą 0 in Ω0. To prove Theorem 1.3, it suffices to prove the following
theorem in Lagrangian coordinates:

Theorem 5.1. When κ̄ ą 0 and assume 0 ď α ď 1

γ´1
, the solution pv,Θq with

$

’

&

’

%

v P C2

1pr0, 1q ˆ r0, T sq X L8p0, T ;W 2,8p0, 1qq,

vt P L8p0, T ;L8p0, 1qq,

Θ P C2

1
pr0, 1q ˆ r0, T sq X Cpr0, 1s ˆ r0, T sq,

(5.2)

to the free boundary problem in Lagrangian coordinates for any positive time T , has
to satisfy that

Θxp1, tq ă 0 t P r0, T s. (5.3)

Moreover, if initially the first line of (1.10) is satisfied and θ P L8p0, T ;H1

0p0, 1qq,
then the entropy is bounded in space-time if and only if δ “ 1{pγ ´ 1q.

5.2. Proof of Theorem 5.1.

Proof of Theorem 5.1. Suppose that there exists a classical solution pv, θq to (4.4)
with (5.2), (1.10), and (1.13) for some time T .

(5.1)
2

implies that Θ satisfies the differential inequality

pcv
x2ρ0

η2
Bt ` L̃3qΘ :“

´

cv
x2ρ0

η2
Bt ´

κ

ηx
B2

x ´ κp
2

η
´

ηxx

η2x
qBx `

Rx2ρ0

η2ηx

pη2vqx
η2

¯

Θ

“
4

3
µηxp

vx

ηx
´

v

η
q2 ` p

2

3
µ ` λqηxp

vx

ηx
` 2

v

η
q2 ě 0 in p0, 1q ˆ r0, T s.

(5.4)

ρ0Bt ` L̃3 satisfies (2.2), except that the coefficient c satisfies the condition in Corol-
lary 2.4, for 0 ď αpγ ´ 1q ď 1 in r0, 1s ˆ r0, T s by taking

a0 “
x2ρ0

η2
, a “

κ

ηx
, b “ κp

2

η
´

ηxx

η2x
q, c “ ´

Rx2ρ0

η2ηx

pη2vqx
η2

,

a0

a
“ Opρ

1´αpγ´1q
0

q ă C,
b

a
“ ηxp

2

η
´

ηxx

η2x
q ă C, in r0, 1q ˆ r0, T s,

c

a0
„ Op

pη2vqx
η2

q and thus |
c

a0
| ă C, in p0, 1q ˆ r0, T s,

(5.5)

thanks to (1.10) and (5.2).
Thanks to (5.4), positivity of θ0 in r0, 1q ˆ r0, T s and Θp1, tq “ 0 from (5.1)

4
, it

follows from the strong maximum principle, Proposition 2.3, that Θ ą 0 in p0, 1q ˆ
r0, T s, and Hopf’s lemma, Proposition 2.2, that Θxp1, tq ă 0 for t P r0, T s, which is
exactly (1.15).
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If initially the first line of (1.10) is satisfied and θ P L8p0, T ;H1

0
pΩptqqq, then

Ā

R
eSpγ´1q{R “

Θ

ργ´1
„

Θ

dδpγ´1q
„ |∇

n
Θ| d1´δpγ´1q as d Ñ 0`,

where ργ´1 “ ρ
γ´1

0 px2η´2η´1
x qγ´1 „ ρ

γ´1

0 „ dδpγ´1q since v P C2
1pr0, 1q ˆ r0, T sq.

The entropy S is bounded if and only if 0 ă |∇
n
Θ| d1´δpγ´1q ă 8 as d Ñ 0`, i.e.,

δ “ 1{pγ ´ 1q. Consequently, Theorem 5.1 is proved. �
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