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Abstract
This work develops an algorithm for PDE-constrained shape optimization based on Lipschitz

transformations. Building on previous work in this field, the p-Laplace operator is utilized to ap-
proximate a descent method for Lipschitz shapes. In particular, it is shown how geometric constraints
are algorithmically incorporated avoiding penalty terms by assigning them to the subproblem of find-
ing a suitable descent direction. A special focus is placed on the scalability of the proposed methods
for large scale parallel computers via the application of multigrid solvers. The preservation of mesh
quality under large deformations, where shape singularities have to be smoothed or generated within
the optimization process, is also discussed. It is shown that the interaction of hierarchically refined
grids and shape optimization can be realized by the choice of appropriate descent directions. The
performance of the proposed methods is demonstrated for energy dissipation minimization in fluid
dynamics applications.

Keywords: Shape optimization, Lipschitz transformations, p-Laplace, geometric multigrid, parallel computing

1 Introduction
In this paper we present a numerical scheme for the efficient treatment of geometrical constraints in
shape optimization within the context of fluid dynamics applications. Several advantages over other
well-known techniques are described, particularly how the need for penalty terms is relinquished in favor
of a more robust approach. Additionally, we argument how the presented algorithm is well-suited for
geometrical constraints of integral form, which are preserved up to a numerical tolerance during the
optimization process.

Constraints on the volume and barycenter are often required in fluid dynamics. This is particularly
true for the minimal drag problem of a free floating body, see [25, 18, 17, 20] Another example is in [3],
where a volume and perimeter constraints are considered for a structural optimization problem. A
constraint for minimum and maximum thickness is formulated in [2, 8] in order to meet requirements
stemming from the manufacturing process.

In order to preserve these constraints, we include them in the process of finding descent directions
in Banach spaces. This is especially challenging, since the geometrical constraints are of a different type
than that of the state equation, i.e. the governing partial differential equation (PDE). Meaning, that
the flow field is characterized by the stationary, incompressible Navier-Stokes equations, which lead to a
PDE constraint optimization problem over infinite dimensional Banach spaces. Whereas, the geometrical
constraints are given by a finite number of integral type constraints, independently of a finite element
model (see Section 2).

We focus on a well-established benchmark problem in the field of shape optimization constrained
by Navier-Stokes equations, where the shape of an obstacle located within a flow channel is to be
optimized with respect to the drag generated over its surface. In general, the optimization problem can
be summarized as determining a geometry Ω ⊂ Rd that minimizes a shape functional J . The functional
represents a physical quantity, e.g. drag of an obstacle or the energy dissipation associated with the flow
around an obstacle such that a fixed number of geometric constraints g(Ω) = 0 ∈ Rm is also fulfilled.
There are two major challenges in this problem, one concerning admissibility and optimality, and another
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related to the regularity of the obstacle’s shape. In addition, the aforementioned geometrical constraints
have to preserved in order to avoid trivial and non-feasible solutions.

Many popular approaches rely on strategies to simultaneously update state variables and Lagrange
multipliers of the constraints, for an overview see [4]. In other words, optimality and admissibility are
established simultaneously within one iteration. However, the optimization problems addressed here
tend to be non-meaningful or even unsolvable, provided that the constraints are not precisely fulfilled.
For instance, if the barycenter of the obstacle is not fixed, then the object would leave the domain. In
the same way the optimization procedure usually yields a trivial solution if the volume is not preserved,
because then the obstacle would be contracted to a single point. The second issue is the regularity of
initial and optimized shapes. On one hand, it might be essential that singularities can be represented in
the optimal shapes, e.g. kinks and sharp edges. On the other, it is necessary for the scalability of the
algorithm to apply multigrid methods as a grid-independent preconditioner for a Krylov subspace solver.
In addition, the discretization of the domain with a coarse grid must be able to adequately represent both
the surface of the obstacle and far field boundaries on the base level. Therefore during the optimization
process the descent directions and shape updates have to feature non-smooth characteristics.

A common approach in shape optimization is to map a reference domain Ω ⊂ Rd with d = 2 or d = 3,
to a perturbed domain (id + u)(Ω) := {x+ u(x) ∈ Rd : x ∈ Ω} with u ∈W 1,∞(Rd,Rd) such that id + u
is a Lipschitz homeomorphism, cf. [26, 7, 2]. Note that this does not require any parametrization of the
geometry, e.g. like in a CAD description with NURBS-surfaces. For the shape deformation we follow [6,
13] and consider the steepest descent direction in W 1,∞-topology with a p-Laplace relaxation and the
deformation vector field u then is the solution to a minimization problem. In contrast here we consider
a constraint optimization problem in order to take the geometric constraints into account.

The well-known fluid dynamic example for a minimal drag problem in [22] considers the volume
constraint, which is one dimensional. As the shape update is performed solely in the surface normal
direction, the corresponding Lagrange multiplier is given by the mean value of the deformation. In [16],
constraints as maximum thickness and volume have been taken into account via penalization of the
cost function. Even though this approach allows also for more general shape deformations the shape
update has to be rather small in order to keep the procedure numerically stable. Besides this one, two
other approaches have successfully been applied to shape optimization problems of this kind. Firstly,
an augmented Lagrange method can be used to determine the Lagrangian multipliers associated with
the geometric constraints, [3, 25, 2, 17]. However, this approach has difficulties that are challenging to
overcome, e.g. several parameters are problem dependent and have to be assigned to appropriate initial
values. Furthermore, the constraints first have to be violated in order to determine the desired multipliers
and the whole shape optimization problem has to be solved repetitively until the multipliers converge.
This can lead to unfeasible shapes throughout the optimization procedure, as was previously mentioned.
Secondly, the method of mappings [18, 11] enables for the fulfillment of the geometric constraints up to
machine accuracy. Therefore, the shape optimization problem only has to be solved once and within
each iteration only feasible geometries are computed. Here the state as well as the adjoint variables
are determined on the transformed domain by applying the perturbation of identity. Thus, the descent
vector field couples to all the constraints. Nevertheless, it is necessary to solve the fully coupled optimality
system as a whole which is challenging, not only from an implementation point of view, but because it
is computationally expensive.

In contrast, in this approach we use a second order method only to determine the steepest descent
direction in a first order shape optimization. This reduces the dimensions of the linear systems to be
solved. However, our otpimization scheme requires that the geometric constraints only depend on the
descent vector field u and not on the physical state variables, e.g. velocity or pressure. Therefore, the
optimality system can be solved sequentially starting with the state, then the adjoints to the state,
and finally the descent direction. This gives us the ability to handle problems with very large degrees
of freedom (DoFs), while fulfilling the geometric constraints up to an arbitrary tolerance. It may be
mentioned that the approach presented has analogies to optimization on manifolds and the investigations
carried out in [19, 24], although it is based on Hilbert space settings. We also want to mention the Uzawa
iteration [28] for solving a saddle point problem which occurs in the presented approach.

The remainder of this paper has the following structure: In section 2, the physical problem is intro-
duced and the basics of shape optimization in Banach spaces are recalled. Section 3 proposes an algorithm
which determines admissible shape deformation descent directions. In section 5, we demonstrate a scal-
able multigrid implementation for a fluid dynamics benchmark problem, while the performance of the
method is investigated in section 5.3. In section 6 the presented algorithm and numerical experiments
are recalled and summarized.
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Regarding the notation in the upcoming equationsD(·) denotes the Jacobian, for the spatial Euclidean
gradient operator we use ∇(·) and the directional derivatives with respect to a specific variable are
indicated via, for instance ∂

∂u (·)δu in direction δu. The shape derivative of the functional J(Ω) in
direction u is denoted by J ′(Ω)u as defined in (7).

2 Model Equations

Γin Γout

Γwall

Γwall

Γobs

Ω

Ωobs

Figure 1: Schematic view on a flow tunnel-like domain Ω with the obstacle Ωobs encircled by its surface
Γobs, wall boundaries Γwall, inflow Γin, and outflow Γout. The height of the flow tunnel is defined by
γ > 0.

In the present work, we propose an optimization methodology for PDE constraint shape optimization
problems of the abstract form

min
Ω∈S

j(Ω, y) (1)

s.t. e(Ω, y) = 0 (2)
g(Ω) = 0 (3)

where e denotes the PDE constraint on a state variable y. The mapping g refers to some finite dimensional
geometric constraints on the bounded Lipschitz domain Ω with boundary Γ = Γobs ∪ Γin ∪ Γout ∪ Γwall,
where Γobs is to be optimized. Furthermore, S denotes an abstract set of admissible shapes, as explained
for instance in [26, 7].

For some m ∈ N the geometric constraint is thus given as g : S → Rm. We assume the existence
of the mapping Ω 7→ y(Ω). Thereby, we obtain the reduced cost functional J(Ω) := j(Ω, y(Ω)). In
order to obtain sensitivities of the objective J we follow [26, 7, 3, 5]. For this purpose, the domain Ω is
parameterized in the sense of the perturbation of identity with the displacement field u : Rd → Rd. For
a sufficiently small u we thus obtain deformed configurations

Ω̃ := {x+ u : x ∈ Ω} (4)

of the reference shape Ω. For the sake of readability we abbreviate the perturbation of identity as

F : Ω→ Ω̃; F := id + u. (5)

Moreover, the previously mentioned abstract set of admissible shapes S can be further specified as

S :=
{
F (Ω) : F = id+ u, u ∈W 1,∞(Rd,Rd)

}
(6)

As parts of the boundary of Ω shall remain fixed, the displacement field u is chosen in such a way
that it vanishes on all boundaries of Ω which are not to be optimized. The directional shape derivative
of J evaluated in Ω in the direction u is then given in a natural way by

J(Ω̃) = J(Ω) + J ′(Ω)u+ o(‖u‖) where o(u)
‖u‖

‖u‖→0−→ 0. (7)
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Then we can interpret the shape optimization problem (1) to (3) locally, as a problem in Uad ⊆
W 1,∞(Rd,Rd). In the present work, Uad is the admissible set of displacements u defining the trans-
formation F , which inherently fulfills the geometric constraints (3) in the sense that g(F (Ω)) = 0. Note
that Uad 6= ∅ as u = 0 is an admissible transformation if the initial geometry Ω fulfills the geometrical
constraints, i.e. g(Ω) = 0. The crucial aspect of the present method, is to separate the geometric con-
straints (3) from the remaining PDE-constrained shape optimization problem (1) and (2), and move it
to the admissible set Uad of descent directions. In contrast to other popular approaches, where admissi-
bility is only guaranteed in the optimal configuration, we ensure that (3) is fulfilled in each optimization
step. This can be done, because the geometric constraints do not depend on the state y and rely on the
properties of the shape only.

For the computation of the shape derivative J ′(Ω)u, we utilize formally the method of Céa, see
for instance [2, section 4.6]. In the following, we consider the particular problem of minimizing energy
dissipation of the fluid flow mainly caused by an obstacle in a laminar, stationary flow, where the function

J(Ω) := j(Ω, v) = ν

2

∫
Ω
Dv : Dv dx (8)

is to be minimized. Here and in the following, we denote velocity v, the density-specific pressure p,
viscosity ν, and an inflow velocity v∞. As the PDE constraint e, with state variable y = (v, p), we
consider the stationary, incompressible Navier-Stokes equations

−ν∆v + (v · ∇)v +∇p = 0 in Ω
div v = 0 in Ω

v = 0 on Γobs ∪ Γwall

v = v∞ on Γin

Dv · n = pn on Γout.

(9)

Here, we consider the adjoint approach for determining the directional shape derivative J ′(Ω)u. For
details on the adjoint Navier-Stokes equations, see e.g. [12, 27, 18, 20]. For details on the shape derivative
J ′(Ω)u of the objective function in (8), see e.g. [15, 18]. In order to approximate the steepest descent
direction u in

V∞0 :=
{
u ∈W 1,∞(Ω ∪ Ωobs,Rd) : ‖u‖W 1,∞(Rd,Rd) < 1, u = 0 a.e. Γin ∪ Γout ∪ Γwall

}
, (10)

following [2, Proposition 4.1], we introduce a p-Laplace relaxation with p > 2 with the corresponding
minimization problem

min
u∈V∞0

J ′(Ω)u

s.t. g(F (Ω)) = 0,
F = id + u,

(11)

inspired by [13] and [6]. This makes F a Lipschitz transformation, not only on the obstacle’s surface
Γobs, but also on the entire domain Ω. Thus, in a discretization the elements undergo deformations that
preserve mesh quality, as illustrated later in section 5. Therefore, let

V p0 =
{
u ∈W 1,p(Ω,Rd) : ‖Du‖Lp(Ω,Rd) ≤ 1, u = 0 a.e. on Γin ∪ Γout ∪ Γwall

}
(12)

and consider
min
u∈V p

0

1
p

∫
Ω

(Du : Du)p/2 dx+ J ′(Ω)u

s.t. g(F (Ω)) = 0,
F = id + u

(13)

where it is assumed that g(F (Ω)) : V p0 → Rm, u 7→ g((id + u)(Ω)), m ≥ 1. Notice that this is
consistent with (1) to (3) for g over a fixed Ω and a variable displacement field u. In order to address
the inconsistency between (10) and (12), we additionally assume that all displacements u ∈ V p0 are
sufficiently small. Thus, the admissible set S is locally parameterized by V p0 -deformations of Ω. In the
present work, m = d+ 1 refers to the barycenter and volume constraints∫

Ω
(x+ u) det(DF ) dx = 0, (14)∫

Ω
det(DF )− 1 dx = 0, (15)
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and without loss of generality, we assume that the barycenter of the initial domain Ω is located at the
origin 0 ∈ Rd of the domain, cf. [20]. For computational reasons, the mathematical domain is restricted
to the wetted domain, i.e. Ω without the shape Ωobs itself. Furthermore, due to the constant volume
constraint (15), we can omit in (14) the division by the reference volume and deformed domain Ω and
F (Ω), respectively. For the derivation of the optimality conditions of the steepest descent problem (13),
we define the Lagrangian function

L(u, λ) =1
p

∫
Ω

(Du : Du)p/2 dx+ J ′(Ω)u

+
d∑
i=1

λi

∫
Ω

(xi + ui) det(DF ) dx+ λd+1

∫
Ω

det(DF )− 1 dx
(16)

with λ = (λ1, . . . , λd, λd+1)T , where λ1, . . . , λd are associated with the barycenter (14) and λd+1 with
the volume constraint (15). In the following we want to recall some rules of differentiation. Therefore,
let δu, µu : Ω→ Rd, B : Ω→ Rd×d and

DF =
(

∂

∂xj
Fi

)
1≤i,j≤d

= I +Du (17)

the Jacobian of F . We specify the following useful formulae by applying the product and chain rule:

∂

∂u
DF δu = Dδu,

∂

∂u
det(DF ) δu = tr((DF )−1Dδu) det(DF ),

∂

∂u
(tr(DF B)) δu = BT :

(
d

du
DF δu

)
= BT : Dδu,

∂

∂u

(
(DF )−1) δu = −(DF )−1Dδu(DF )−1,

∂

∂u

(
tr((DF )−1Dδu)

)
µu = −DδuT : (DF )−1Dµu(DF )−1

= tr(−Dδu(DF )−1Dµu(DF )−1)
= tr(−(DF )−1Dµu(DF )−1Dδu).

(18)

By making use of the rules above, we obtain the derivatives of the Lagrangian (16) with respect to u in
the direction µu ∈ V p0 :

∂

∂u
L(u, λ)µu =

∫
Ω

(Du : Du)
p−2

2 (Du : Dµu) dx+ J ′(Ω)µu

+ (λ1, . . . , λd)T ·
∫

Ω
µu det(DF ) + (x+ u) tr((DF )−1Dµu) det(DF ) dx

+ λd+1

∫
Ω

tr((DF )−1Dµu) det(DF ) dx.

(19)

Together with the usual derivative with respect to λ into direction µλ ∈ Rd+1, the optimality system
reads

∂

∂u
L(u, λ)µu = 0 ∀ µu ∈ V p0

∂

∂λ
L(u, λ)µλ = 0 ∀ µλ ∈ Rd+1.

(20)

As the derivatives with respect to λ can directly be taken form (16), we omit the details here. In order
to solve the nonlinear system (20) we require the linearization

∂2

∂u2L(uk, λk)(µu, δu) + ∂

∂λ ∂u
L(uk, λk)(µu, δλ) = − ∂

∂u
L(uk, λk)µu ∀µu ∈ V p0 (21)

∂

∂u ∂λ
L(uk, λk)(δu, µλ) = − ∂

∂λ
L(uk, λk)µλ ∀µλ ∈ Rm (22)
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and the updates
uk+1 = uk + δu, λk+1 = λk + δλ (23)

where

∂2

∂u2L(u, λ)(δu, µu) =∫
Ω

(p− 2)(Du : Du)
p−4

2 (Du : Dδu)(Du : Dµu) + (Du : Du)
p−2

2 (Dδu : Dµu) dx

+ (λ1, . . . , λd)T ·
∫

Ω

(
δu tr((DF )−1Dµu) + µu tr((DF )−1Dδu)

+ (x+ u)
(
tr(−(DF )−1Dµu(DF )−1Dδu) + tr((DF )−1Dδu) tr((DF )−1Dµu)

) )
det(DF ) dx

+ λd+1

∫
Ω

(
tr(−(DF )−1Dµu(DF )−1Dδu) + tr((DF )−1Dδu) tr((DF )−1Dµu)

)
det(DF ) dx.

(24)

Reviewing the first integral in (24), one observes that these terms do not exist for p < 4, where Du :
Du = 0 holds on a set of non-zero measure. However, this issue does not appear in the defect equation
(19), since there all exponents are non-negative. We thus modify the first integral in (24) to∫

Ω
(p− 2)(Du : Du+ εΘ(4− p))

p−4
2 (Dµu : Du)(Dδu : Du)

+(Du : Du+ ε)
p−2

2 (Dµu : Dδu) dx
(25)

where Θ denotes the Heaviside function and ε > 0 a sufficiently small constant. Notice that, within
Newton’s method in (21) and (22), this modification only affects the linearization and not the defect.
Thus, solutions of the original problem (13) are still obtained upon convergence. Adding ε in (25) serves
two purposes. On the one hand guarantees invertibility and on the other it prevents divide-by-zero
operations in the first term.

3 Optimization Algorithm
In this section we describe an algorithm for the solution of (13). By the restriction of descent directions to
maintain g(F (Ω)) = 0, it is guaranteed that the geometric constraints are fulfilled up to a given tolerance
at each iteration of the optimization process and not only on the limit. The geometric constraints
considered here, i.e. barycenter and volume of a free floating obstacle are particularly challenging to
handle. In an augmented Lagrangian or even pure penalty approach, the violation of g = 0 in one
iteration might lead to a strong overshoot of the shape deformation. This causes oscillation of the shape
because the geometry is unfeasible in each iteration.For example, in particular at low Reynolds number
flows, a major influence to the minimization of the energy dissipation is associated with the displacement
of the flow by the obstacle. Also minimizing the volume minimizes the energy dissipation. At higher
Reynolds number flows a descent direction is to move the obstacle downstream. From a practical point
of view this can only be solved by carefully adjusting initial values of the multipliers λ, the penalty
factors, and the penalty increment values. Thus, the practical attractiveness of the approach outlined
here is that there are less heuristic and problem-dependent quantities to be adjusted. The user only has
to provide the convergence criteria, the parameters of the step size control, and the values corresponding
to the sequence of p, i.e. pmax and pinc.

From a mathematical point of view, the computational price one has to pay is the following: The
set of admissible descent directions is not convex anymore, but the solution manifold of the nonlinear
equation g(F (Ω)) = 0. For example, having computed an admissible step up does not imply that 1

2up is
also admissible. This makes a step size control expensive, since the geodesics on the solution manifold
are not straight lines in this case. In algorithm 1 the step size control is thus handled by scaling the
shape sensitivity J ′(Ω) with a decreasing sequence σ = (1, 1

2 ,
1
4 , . . . ).

As a note, for numerical reasons it might prove profitable to multiply equation (20) with 1/σ. For
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Algorithm 1 Shape Optimization Steepest Descent Method
Require: Ω, pmax

1: y ← Solve primal problem
2: y0 ← y
3: Compute objective Φ0 = J(Ω)
4: repeat
5: y∗ ← Solve adj. problem
6: σ ← 1
7: while True do
8: p← 2
9: ū← 0

10: while p ≤ pmax do
11: (up, λ)← NewtonSolver(ū, σ, y, y∗)
12: ū← up
13: Increase p
14: end while
15: Update geometry Ω with upmax

16: y ← Solve primal problem
17: Compute objective Φ = J(Ω)
18: if Φ ≥ Φ0 then
19: Update geometry Ω with −upmax

20: σ ← σ/2
21: y ← y0
22: else
23: Φ0 ← Φ
24: y0 ← y
25: break
26: end if
27: end while
28: until ‖upmax‖W 1,p(Ω) < ε1

Algorithm 2 Newton’s Method for p-Laplacian Problem
1: function NewtonSolver(up, σ, y, y∗)
2: λ← 0
3: repeat
4: (A,B,ru,rλ) ← Assemble(u,λ, y, y∗) according to (26)
5: (δup , δλ)← SchurSolver(A,B, ru, rλ, δup , δλ)
6: up ← up + δup

7: λ← λ+ δλ
8: until ‖δup

‖W 1,p(Ω) + ‖δλ‖2 < ε2
9: return (up, λ)

10: end function

Algorithm 3 Schur Complement Product
1: function SchurComplementProduct(A, B, w)
2: for i = 1, . . . ,m do
3: b← b+B(:, i)wi
4: end for
5: Solve Az = b
6: for i = 1, . . . ,m do
7: bi ← −B(:, i)T z
8: end for
9: return b

10: end function

7



the sake of readability we abbreviate the linearized optimality system (21) and (22) using the symbols

Aδu := ∂2

∂u2L(uk, λk)(µu, δu) ∀ µu ∈ V p0,h

Bδλ := ∂

∂u dλ
L(uk, λk)(µu, δλ) ∀ µu ∈ V p0,h

BT δu := ∂

∂λ ∂u
L(uk, λk)(δu, µλ) ∀ µλ ∈ Rd

ru := − ∂

∂u
L(uk, λk)µu ∀ µu ∈ V p0,h

rλ := − ∂

∂λ
L(uk, λk)µλ ∀ µλ ∈ Rd.

(26)

With V p0,h a discrete approximation of V p0 used for a finite element discretization of (21) and (22), which
then leads to the saddle point problem.(

A B
BT 0

)(
δu
δλ

)
=
(
ru
rλ

)
(27)

where A ∈ Rn×n and B ∈ Rn×m. In order to solve for the increments δu and δλ, we formally apply one
block wise Gauss elimination and obtain(

A B
0 −BTA−1B

)(
δu
δλ

)
=
(

ru
rλ −BTA−1ru

)
(28)

where S := −BTA−1B is the so-called Schur complement operator. In order not to explicitly compute
A−1 a equation system with A is solved instead. In general, the optimality system (20) of problem
(1) to (3) is highly nonlinear. Especially with increasing values of p the solution process becomes more
challenging unless a good initial guess u0

p is provided. To overcome this issue, and to reduce computational
effort, we consider a finite sequence pk := pinit + kpinc where pinit := 2. First, the solution for pinit with
initial upinit = 0 and λ = 0 is computed. Thereafter the solution of the constraint pk-Laplacian problem
(13) is used as an initial guess for the pk+1-Laplacian problem, cf. [17]. Here, with the choice of pmax
we adjust the approximation quality of Lipschitz deformations.

The overall optimization procedure is outlined in algorithm 1. The steepest descent method is
reflected in the loop spanning from lines 4 to 29, where the necessary optimality condition is checked.
Here, y again denotes the state variable of the PDE constraint e, which we refer to as the primal problem.
Nested within this loop, a step-size control operates in the lines 8 to 28. It checks whether the proposed
next shape F (Ω) leads to an improvement of the objective function, in terms of the displacement field
up. If not, then the parameter σ is reduced. Note that, in contrast to the classical backtracking line
search in linear spaces, we have to recompute the descent direction up hereafter. This is due to the fact
that by shortening the step-length, we can not follow straight lines towards 0 ∈ V p0 , but have to stay
within the solution manifold of the non-linear geometric constraints g(F (Ω)) = 0. In line 5 the adjoint
PDE is solved, which yields the adjoint state y∗. After this, the shape sensitivity J ′(Ω) can be evaluated
in line 6, which depends on y and y∗.

In line 11 of algorithm 1, the nonlinear solver for the steepest descent problem (13) is called, which
can be seen in algorithm 2. The key part of this solver is the solution to the saddle point problem (27)
in the Schur complement form (28). This could be realized with a variety of iterative solvers, which
are not further specified here. Popular approaches for these kind of problems are the Uzawa iteration
and the Arrow-Hurwicz algorithm. For this purpose, algorithm 3 outlines the computational steps for a
matrix-vector product with S.

4 Numerical Methodology
Results of the present study are obtained from the open-source toolbox UG4 [29]. This simulation
framework has MPI-based parallelization, and features a geometrical multigrid preconditioner [10]. The
grid partitioning and load balancing scheme is based on ParMetis [14].

Stable P2−P1 finite elements were used to discretize the governing nonlinear Navier-Stokes equations
(9) and their linearization, therefore no additional stabilization is required. Moreover, the viscosity is
ν = 0.02 in all cases. The same setting was used to discretize the linear adjoint problem, cf. [20, 18] and
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the references therein. As regards the p-Laplace relaxation problem, for which the optimality system is
described in (28), P1 Lagrange shape functions were employed. Computational grids consist of triangular
(2d) and tetrahedral elements (3d). They were generated using GMSH [9].

The simulations followed the workflow proposed in algorithm 1. At the beginning of each optimization
step, the steady, incompressible flow, described by Navier-Stokes equations (9), was computed followed by
the solution of the corresponding adjoint system. The p-Laplacian descent algorithm algorithm 1 initially
employed pinit = 2.0 and incremented p by pinc = 0.19. The given maximum values of p read pmax = 4.8
[pmax = 4.1] for the computed 2d [3d] test cases. Termination criteria of algorithm 1 and algorithm 2
were always set as ε1 = 1E−5 and ε2 = 1E−8, respectively. The modification term introduced in (25)
reads ε = 1E−8 for all cases.

As a practical note, care must be taken to correctly interpolate the values of v, p, and their respective
adjoints. These are involved in the assembly of J ′, which is present in (28). The geometrical constraints
are part of this system of equations. It has been described that they lead to anm×m system of equations,
so their discretization is not within a finite element space but in Rm. For the investigated case cases,
m ∈ {3, 4} in 2d and 3d, respectively. Thus, we use a direct solver to find the solution of the Schur
complement system.

The corresponding codes used for these results can be found in the online repository [21].

5 Results
This section presents results for 2d and 3d fluid dynamics applications. They either refer to an initial
square (2d) or cube (3d) centrally placed in a rectangular flow domain at low Reynolds number, i.e.
Re = 1 · H/ν = 20, where H refers to the length of the initial edges. The employed box-domain is
outlined in Fig. 1. It spans 20 units in length and γ = 6 units in height (2d, 3d) and depth (3d),
respectively, and the flow enters the domain through the left vertical boundary. The inflow profile on
Γin features a peak unit-value in the center of the inlet plane and is described by

v∞ =
(

max
{

0,
d∏
i=2

cos(π|xi|
δ

)
}
, 0, . . . , 0

)
∈ Rd

where δ corresponds to the inlet height.
The central aspect of the paper is the creation and removal of geometrical singularities. Emphasis is

placed on illustrating and explaining how the corners of the obstacle are removed during the optimization
process, as well as how tips are generated to reach an optimal shape. A crucial aspect is the evolution of
the mesh quality during an optimization. We utilize the 2d studies, to compare the mesh quality of the
optimal and the initial design by means of the ratio ρ between the radii of circumcircle and incircle, and
report the extreme values of the interior angles of the triangulation. Moreover, we describe the behavior
of the proposed algorithm in two different 3d configurations, where the surface of the obstacle is highly
resolved.

Mind that the geometrical constraints are preserved during each optimization step for every value of
p, since they are incorporated to the system of equations. Their fulfillment is included in the convergence
condition set for Newton’s method in algorithm 2, therefore there is no need to provide results for their
fulfillment per step. Solving the nonlinear system of (20) implies solving the geometrical constraints
(14) and (15) to the error reduction tolerance set for Newton’s method. The major portion of the
computational effort in algorithm 1 is spent on solving the p-Laplace relaxed problem via the scheme
described in section 3. Particularly, lines 11-15 of algorithm 1 are computationally expensive, as will be
explained here and in section 5.3.

5.1 Two-dimensional studies
Simulations in the 2d domain were performed for several levels of refinement, to better describe the
removal of the geometrical singularities, as well as the mesh quality. Figure 2 compares the initial
design (red) with the converged design (blue), together with a contour plot of a deformation sequence
(gray). A robust removal of the box corners is clearly visible, as well as the creation of the tips in the
rear and the aft sections. As described in section 2, the geometrical constraints are preserved in all
optimization steps. This feature can be observed by the continuous transition between shape iterates
until an optimum is obtained. In contrast, in [20] bouncing of the shapes during the early stages of
the optimization is reported, which is related to an approximate solution of the geometrical constraints.
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Figure 2: Superposition of the deformation sequence for a 2d configuration. The obstacle’s initial shape
red is presented superimposed to the sequence of generated shapes gray until an optimal shape blue is
obtained upon convergence.

Figure 3 magnifies, the geometry and the mesh in the upper-left corner of the obstacle. The initial and
final shapes are presented on the top and bottom, respectively, for different grid refinement levels from
left to right. The figure displays that the smoothing occurs similarly on all grids, and the elements
around the initial singularity are not dramatically degenerated during the optimization. Towards the
last step, no indication of the initial geometric singularity is visible on the obstacle’s surface.

Figure 3: Removal of the geometrical singularity in the obstacle’s initial configuration across several levels
of refinement. For 4, 5, and 6 refinements the upper left corner of the box is smoothed via updating the
geometry Ω iteratively, as stated in line 16 in algorithm 1.

The mesh quality is investigated for the final step using 4, 5, and 6 levels of refinement. As outlined
in section 3, a series of shape iterates are obtained until an optimum, with respect to (8), is found. Mind
that the geometric multigrid preconditioner, which is used to allow for numerical scalability, requires
the generation of a grid hierarchy, of which we provide the base level, i.e. the coarsest mesh. This
implies that the simulations are based upon a predetermined mesh quality, and while the optimization
we propose in algorithm 1 aims at preserving grid quality, it doesn’t contemplate improving it with
respect to the initial geometry. Table 1 provides quality measurements for the final step, when the
optimal shape is found, using several grid refinement levels. Assessed data refers to the worst triangular
elements extracted from the 2d grid, i.e. the observed minimum and maximum interior angles, and the
largest radius ratio. We also compare the radius ratio between the last and first configurations. The value
of ρ0 = 1.468 indicates that the initial mesh does not have an ideal quality. Results also demonstrate
that, if p is high enough, the approximation of Lipschitz transformations, as seen in (10) and (12),
prevents a significant loss of mesh quality over mesh refinements. For the presented 2d cases, a value of
p = 4.8 yielded a sufficient approximation to p =∞ in terms of the mesh quality, while allowing for the
creation and removal of geometrical singularities. The mesh refinement study might reveal that a higher
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Refinements Elements Minimum angle Maximum angle Radius ratio ρ∞ ρ∞
ρ0

4 70 656 13.41 132.32 3.20 2.18
5 282 624 11.93 139.03 4.24 2.89
6 1 130 496 9.94 145.04 5.76 3.92

Table 1: Assessment of mesh quality evolution for several refinement levels observed in 2d; Displayed data
for minimum and maximum interior angles supplemented by the largest radius ratio of the triangulation
extracted for the last optimization step, where an optimal shape is reached. The last column compares
the largest radius ratio of the optimal shape (subscript ∞) and the initial configuration (subscript 0,
ρ0 = 1.468).

maximum p-values are necessary for the finer grids, since the quality slightly deteriorates. Nevertheless,
numerical stability must be taken into account when increasing this value, given that it is used in (24) as
an exponent. The latter fact turned out to be a limiting factor in our numerical simulations. However,
the measurement of the worst minimum and maximum angles express that the triangles, which have
undergone the largest deformation, are still not close to being critical.

5.2 Three-dimensional studies
Results for the 3d simulations refer to 4 levels of grid refinement. The computational grid has a total
of 4 980 736 tetrahedrons, and 49 152 triangles discretize the surface of the obstacle, Γobs, on the highest
refinement level. Our optimization scheme generates a series of deformation fields up that, applied to
the domain Ω, results in an optimal shape with respect to the energy dissipation (8).

Figure 4 presents iterated shapes from the initial to the final optimization step. It shows the down-
stream part of the geometry. For the reference shape the streamlines visualize a region where the flow
direction points backwards w.r.t. the main flow direction. Since this effect contributes to the energy
dissipation it vanishes during the optimization at an early stage. This phenomenon can be quantified
by observing the shear stress acting on the surface of the obstacle τ · e1 =

(
ν(Dv +DvT ) · n

)
· e1.

Here e1 is the first unit vector describing the main flow direction. For the 3d (cf. section 5.2) case
τ · e1 ∈ [−11.06, 1.27] for the initial shape and τ · e1 ∈ [−20.53,−1.12] for the final one, respectively.

(a)

(b)

Figure 4: Streamlines for the rear of the obstacle located in the wind tunnel.

Similar to the 2d case, the edges and corners displayed by the initial geometry are gradually removed
as part of the optimization process, cf. figure 5. Additionally, the tips created at the central upstream
and downstream ends shapes a streamlined body that does not feature any separation, as shown in row
(b) of ??.

11



Step Obstacle Tip Corners

0
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15

35
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Figure 5: Deformation sequence for optimization steps {0, 5, 15, 35, 50, 100}. The complete obstacle,
together with a detailed view of the geometrical singularity removal and generation process, are presented.
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Figure 5 shows a deformation sequence of the 3d case, starting from the initial configuration and
ending with an optimum obstacle surface. The figure focuses on the overall shape (left), an exemplary
corner of the initial geometry (center), as well as the location of the upstream end of the final geometry
(right). During the initial steps, the obstacle aligns to the flow, i.e. is stretched in the direction of
the flow and compressed in the other two directions. Edges begin to emerge from the round upstream
and downstream facing surfaces, thus creating the geometry observed in step 15. Subsequently, a round
cross section starts to take form in the center and as seen in step 35, where the final tip locations also
become more apparent. Recall that the mesh deformation corresponds to line 15 in algorithm 1. We
again emphasize that all shape iterates meet the volume and barycenter constraints, which are deemed
crucial for the success of this optimization scheme. Footprints of initial corners and edges are still visible
in the mesh at later stages of the optimization, e.g. step 50. However, they are completely smoothed
out towards the end of the simulation and only the macro elements, resulting from the grid hierarchy,
are visible.

The front tip is shown for step 100, where also the previously existing singularities have disappeared.
As mentioned in section 2, this approach optimizes the obstacle’s shape for the functional given in

(8). Therefore, results are provided in figure 6 for a 3d setting, which show how the generated shape,
after convergence of algorithm 1, consists of an optimum with respect to the cost function.

Figure 6 depicts the objective function plot evolution over 120 optimization steps using 3 and 4 levels
of grid refinement, respectively. The fact that the objective function (8) decreases monotonically is linked
to lines 15-26 of algorithm 1, where a line search strategy is implemented. Once the deformation field
is obtained for pmax, the geometry is updated and we get a new obstacle shape. The state equation
is solved and the cost function calculated to guarantee that the new shape iterate represents a descent
direction. As seen in lines 18-21, whenever the condition is false, the deformation is withdrawn and the
step size control value is reduced to repeat the unsuccessful step with a scaled shape sensitivity J ′. As
a further indicator for the convergence, we approximate the distance between the iterated shapes Ωk3ref
of the 3 refinements run to the optimal solution of the 4 refinements run Ω∞4ref . Figure 6 shows the
integrated volume that refers to the symmetric difference as

d(Ωk3ref ,Ω∞4ref) :=
∣∣Ωk3ref \ Ω∞4ref

∣∣+
∣∣Ω∞4ref \ Ωk3ref

∣∣ (29)

The integration is carried out using the boolean filters of the VTK library [1] with which a triangulation
of the surface of the volumes of interest can be obtained. A concatenation of the VTK boolean filters
gives us a surface triangulation together with its normal vector. Then, utilizing divergence’s theorem
the volume can be found.
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Figure 6: 3d results for 3 and 4 levels of refinement are compared. The energy dissipation, see (8), is
plotted against the difference between shapes of each refinement level per step.

5.3 Scalability Study
Weak scalability of the solution strategy for the p-Laplacian relaxed problem, from pinit = 2.0 up to pmax
is presented here. This solution strategy, described in section 3, is referred in these results as the p-solver.
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This corresponds to lines 11-15 of algorithm 1. It was studied for up to 262 144 cores in a 3d setting.
The study was carried out with the supercomputer Hawk at HLRS. It features 5632 compute nodes,
each with a dual-socket architecture and a total of 128 cores. Each core with a maximum frequency of
2.25GHz, and 256GB of RAM. The runs were carried out taking into account the hypercube topology of
the system to maximize core usage and minimize parallel communication overhead.

A 3d computational grid with 2 levels of refinement is used as an initial measurement in order to
optimize the number of cores used at the finest level. The wallclock times, speedup, and iteration counts
are shown in figure 7. An eight-fold increase in the number of cores is performed for each level of
refinement Results are presented for the solution of the nonlinear system of equations given in (20) via
its linearization in (21) and (22). This system is solved using Newton’s method with a BiCGStab as a
solver for the underlying linearization. The linear solver is set to absolute and relative error reductions
of 1E−10 and 1E−16, respectively. It is preconditioned by a geometric multigrid method with 3 pre-
and post smoothing steps via a Gauss-Seidel smoother within a V-cycle. An LU factorization solves the
base level gathered in a single core.
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(b) Speedup relative to 512 cores

Procs Refs Num.Elems DoFs Newton Its. Total Lin.Its. Lin.Its. (21)
512 2 77 824 44730 68 2080 394
4096 3 622 592 334 158 68 2458 472
32 768 4 4 980 736 2 581 014 68 2606 509
262 144 5 39 845 888 20 283 942 68 2912 577

(c) Iteration counts for one optimization step of the solver used to obtain up, lines 11-15 in algorithm 1.

Figure 7: Weak Scaling: Results for the first optimization step. Accumulated wallclock time for all p-
levels and speedup relative to 512 cores are shown. The number of Newton steps across several levels of
refinement, as well as the linear solver iterations are presented in relation to the number of tetrahedrons
per refinement level and the corresponding DoFs in the discretization of (27).

We measure the accumulated times and iteration counts for the routines in lines 11-15 of algorithm 1
for one optimization step. This can be understood as the time it takes to assemble the linearization,
initialize the grid hierarchy necessary for the geometric multigrid preconditioner, and apply the linear
solver until convergence within each call to the Newton’s solver. This is done for each value of p starting
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at pinit up to pmax with pinc intervals as explained in section 3. The time measurement starts for every
optimization at upinit and ends once the corresponding Newton solver for upmax has converged. The
speedup (b) is presented relative to the base measurement with 512 cores, and in (c) the iteration counts
are shown in relation to the number of DoFs and tetrahedral elements. The column of the total linear
iterations includes all the necessary calls to the linear solver used within the linearization. As shown
in (28), for each solution of the linear system of equations it is necessary to solve m + 2 times with
A−1. These include one time for the rhs in the second equation of (28), and m for the computation
of S. Addtionally, the first equation of (28) has to be solved for δu, whose iteration counts are shown,
individually, in the rightmost column of figure 7(c).

It can be seen that good scalability results are obtained for up to 262 144 cores. The communication
costs impose a time overhead significantly lower to the very large increase of the number of DoFs.
Altogether, the results show the need for using numerical solvers with grid independent convergence.
Recall that our target is to use the solution of the p-Laplace relaxed problem for the highest value of p,
i.e. pmax, as a deformation field to generate a series of shape iterates. Moreover, we do this by solving the
same problem for lower values of p, in order to have a good initial guess as we approach the maximum
p. The latter fact is necessary, since with each increment of pinc, our problem becomes more nonlinear,
implying it becomes more difficult to solve, particularly without a good initial guess. For the given
settings, pinit = 2.0 to pmax = 4.1 and an increment of pinc = 0.19, algorithm 2 has to be called thirteen
times. Newton’s method has to call the linear solver for each of these p values. Therefore, there is an
evident need for an efficient, fast, and computationally cheap preconditioner which allows for grid-size
independent bounds on the convergence rate of the iterative methods. This is possible with the geometric
multigrid method. One of the downsides is that this preconditioner requires a base level computational
mesh that describes a geometry that can be represented by a grid hierarchy, see [23], which implies that
care must be taken during the generation of the grid. Nevertheless, it is a very effective approach towards
solving for up with increments of the p value. The results in figure 7 show that the p-relaxed problem
becomes inexpensively solvable. Additionally, the benefits of the multigrid preconditioner are evident by
noticing how the Newton’s method is perfectly scalable in the number of steps needed for all refinement
levels, as well as in the slight increase in linear solver iterations between the initial and final runs. As
seen in the table, even when the number of DoFs increases by three orders of magnitude, the timings
and iteration counts are bound by the preconditioner.

Figure 8: The base level and the second level of refinement are compared for a 2d simulation for the
last step before convergence. The macro and refined triangular elements are shown in bold and thin
black lines, respectively. Given that the deformation field is restricted and applied throughout the grid
hierarchy, the coarsest grid is an interpolation of the finest.

In order to preserve numerical scalability across all optimization steps, it is necessary to apply the
deformation field across the complete grid hierarchy. This is shown in figure 8, where the base level is
compared to the finest grid with two refinements. It is visible how up is restricted and applied to all
levels, therefore generating an optimal coarse grid. Given that this implies an interpolation of the vector
field, and that by definition the obstacle’s surface on the coarsest grid has less nodes than the upper
levels, there is a slight mismatch between the two grids. However, this has no detrimental effects nor
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adds more computational complexity to the shape optimization scheme. Our scheme works on arbitrary
Lipschitz shapes. Therefore, it is not necessary to incorporate extra geometric information to the grid
hierarchy.

Overall, good weak scalability results were obtained for up to 39 million elements. This represents
an increase of three orders of magnitude, both in tetrahedrons as in DoFs, with a slight increase in
the necessary computational work in terms of linear iterations. Although the performance dropped
marginally from the ideal case, the wallclock times and speedup show that the numerical scheme we
propose for the solution of the p-Laplace relaxed problem could be used for problems with large numbers
of DoFs, corresponding to real-world industrial applications.

6 Conclusion
In this work we presented a steepest descent shape method based on W 1,p approximations of W 1,∞ for
shape optimization problems with PDE and fixed-dimensional geometric constraints. We demonstrated
that the algorithms works for general Lipschitz shapes since deformations allow singularities in the sur-
face to be smoothed or newly generated. Furthermore, we incorporated fixed-dimensional constraints
together with the PDE constraints into the optimization algorithm via a Schur Complement approach.
Compared to approximate algorithms such as the penalty based and augmented Lagrangian approaches,
we demonstrated a significant gain of robustness in the treatment of geometric constraints over the opti-
mization steps. Additionally, this work addressed line search schemes for the steepest descent direction
in W 1,∞, which -in contrast to the aforementioned Hilbert space methods- is here a nonlinear problem.
Moreover, this problem lives on the solution manifold of the nonlinear geometric constraints posing a
non-convex set in general.

The essential part of this work was to investigate the application of geometrical multigrid precondi-
tioners on hierarchical grid structures without needing any further information, such as curvature based
on spline surfaces. It was demonstrated that, via the shape optimization, a body-fitted hierarchical grid
structure is found for the optimal shape. Our numerical studies indicated that under this circumstances
the multigrid preconditioner features a mesh-independent solver for the deformation subproblem. As
a consequence, we were able to demonstrate that the proposed method exhibits weak scalability up to
262 144 CPU cores of the distributed-memory system Hawk at HLRS.
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