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LARGE GLOBAL SOLUTIONS FOR ENERGY-CRITICAL NONLINEAR
SCHRÖDINGER EQUATION

RUOBING BAI, JIA SHEN, AND YIFEI WU

Abstract. In this work, we consider the 3D defocusing energy-critical nonlinear Schrödinger
equation

i∂tu+∆u = |u|4u, (t, x) ∈ R× R
3.

Applying the outgoing and incoming decomposition presented in the recent work [2], we
prove that any radial function f with χ≤1f ∈ H1 and χ≥1f ∈ Hs0 with 5

6
< s0 < 1,

there exists an outgoing component f+ (or incoming component f−) of f , such that when
the initial data is f+, then the corresponding solution is globally well-posed and scatters
forward in time; when the initial data is f−, then the corresponding solution is globally
well-posed and scatters backward in time.

1. Introduction

In this paper, we consider the Cauchy problem for the nonlinear Schrödinger equation
(NLS) in 3 spatial dimensions (3D)

{
i∂tu+∆u = µ|u|4u,

u(0, x) = u0(x),
(1.1)

with µ = ±1. Here u = u(t, x) : R× R3 → C is a complex-valued function. The case µ = 1
is referred to the defocusing case, and the case µ = −1 is referred to the focusing case.

The solution satisfies the conservation of mass and energy, defined respectively by

M
(
u(t)

)
:=

∫

R3

|u(t, x)|2dx = M(u0), (1.2)

and

E
(
u(t)

)
:=

1

2

∫

R3

|∇u(t, x)|2dx+
µ

6

∫

R3

|u(t, x)|6dx = E(u0). (1.3)

The general form of the equation (1.1) is the following
{
i∂tu+∆u = µ|u|pu, (t, x) ∈ R

1+d,

u(0, x) = u0(x).
(1.4)

The class of solutions to equation (1.4) is invariant under scaling

u(t, x) → uλ(t, x) = λ
2

pu(λ2t, λx), λ > 0,
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which maps the initial data

u(0) → uλ(0) := λ
2

pu0(λx).

Denote

sc =
d

2
−

2

p
,

then the scaling leaves Ḣsc norm invariant, that is,

‖u(0)‖Ḣsc = ‖uλ(0)‖Ḣsc .

The well-posedness and scattering theory for the equation (1.4) has been widely studied.
For the local well-posedness, Cazenave and Weissler [11] used the standard fixed point argu-
ment, and proved the equation (1.4) is locally well-posed in Hs(Rd) when s ≥ sc. Note that
in the case of s = sc (critical regime), the time of existence depends on the profile of initial
data rather than simply its norm. The fixed point argument can also be applied directly to
prove the global well-posedness and scattering for the equation (1.4) with small initial data
in Hs(Rd) when s ≥ sc.

Next, let us briefly review the large data global well-posedness and scattering theory
for energy-critical NLS (1.4). Bourgain [6] firstly obtained such result for the 3D and 4D
defocusing energy critical NLS with radial data in Ḣ1(R3) by introducing the induction on
energy method and spatial localized Morawetz estimate. Moreover, Grillakis [20] provided
a different proof for the global well-posedness part of the result by Bourgain [6]. Tao [30]
later generalized the results in [6, 20] to general dimensions with radially symmetric data.
For non-radial problem, a major breakthrough was made by Colliander, Keel, Staffilani,
Takaoka, and Tao in [12], where they obtained the related result for the 3D energy-critical
defocusing NLS for general large data in Ḣ1. Then, the result was generalized by Ryckman
and Visan [27] in dimension d = 4 and Visan [33] for higher dimensions. In the focusing case,
Kenig and Merle [21] introduced the concentration compactness method, and obtained the
global well-posedness and scattering in Ḣ1(Rd) (d = 3, 4, 5) for the energy-critical NLS with
radial initial data below the energy of ground state. Killip and Visan [23] later obtained the
related result for dimensions d ≥ 5 without the radial assumption. Then, Donson [14] solved
the 4D non-radial problem. Here, we only mention the papers for energy critical equations
(1.4), and some other results for (1.4) can be found in [1, 3, 15–18, 22, 26, 28, 29] and the
references therein.

Although the equation (1.4) is ill-posed in super-critical spaces, there are still some
methods to study the well-posedness for a class of such data. The ill-posedness in some
cases can be circumvented by an appropriate probabilistic method. Bourgain [4,5] obtained
the first almost sure local and global well-posedness results, which are based on the invariance
of Gibbs measure associated to NLS on torus in one and two space dimensions. The random
data approach has been further developed for the nonlinear dispersive equations, see for
example [7–9, 13, 19, 24] and the references therein.

1.1. Main result. This paper aims to consider the global-wellposedness and scattering of
the energy-critical NLS with rough and determined initial data. This is a continuing work of
[2], where the authors constructed the incoming and outgoing waves for the linear Schrödinger
flow and obtained global well-posedness and scattering in the inter-critical case with suitable
rough data (the part near the origin of the initial data belongs to H1, and the part away
from the origin is rough).
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Next, we recall the the definitions of the incoming and outgoing components of functions
introduced in [2].

Definition 1.1 (Deformed Fourier transformation). Let α ∈ R, β ∈ R, and let f ∈ S(Rd)
with |x|βf ∈ L1

loc(R
d). Define

Ff(ξ) = |ξ|α
∫

Rd

e−2πix·ξ|x|βf(x)dx.

Definition 1.2 (Definitions of outgoing and incoming components). Let α < 3, β > −3,
and the function f ∈ L1

loc(R
d) is radial. Define the outgoing component of f as

fout(r) = r−β

∫ +∞

0

(
J(ρr)−K(ρr)

)
ρ−α+2Ff(ρ)dρ,

the incoming component of f as

fin(r) = r−β

∫ +∞

0

(
J(−ρr) +K(ρr)

)
ρ−α+2Ff(ρ)dρ,

where

J(r) =

∫ π
2

0

e2πirsinθcosθdθ,

and

K(r) = χ≥2(r)
[
−

1

2πir
+

d− 3

(2πir)3

]
, d = 3, 4, 5.

Definition 1.3 (Definitions of modified outgoing and incoming components). Let the radial
function f ∈ S(Rd). Define the modified outgoing component of f as

f+ =
1

2
P≤1f +

1

2
P≥1χ≤ε0f + (P≥1χ≥ε0f)out;

the modified incoming component of f as

f− =
1

2
P≤1f +

1

2
P≥1χ≤ε0f + (P≥1χ≥ε0f)in.

The main observation in [2] is that the decomposition allows us to cut the linear flow
eit∆f into eit∆f+ and eit∆f− such that up to a smooth part, the former moves forward in
time and the latter moves backward in time, and the speed depends on the frequency which
is faster for rougher data. By using the decomposition, the authors obtained positively
(or negatively) global when the initial data is f+ (or f−). From the definitions, we have
f = f+ + f−. Since f is rough, at least one of f+ and f− is rough. Therefore, the authors
obtained the global solutions for the defocusing energy-subcritical NLS, p < 4

d−2
, with a class

of initial data in the supercritical space in dimensions d = 3, 4, 5.

In this paper, we further consider the energy-critical case when p = 4
d−2

. This is a more
complex scenario, since the local lifespan depends on the profile of initial data, and the new
difficulty is how to extend the solution globally. Moreover, we only consider the 3D case,
and the calculation is similar for other dimensional cases.

The following is our main result.
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Theorem 1.4. Let s0 ∈ (5
6
, 1). Suppose that f is a radial function and there exists ε0 > 0

such that

χ≤ε0f ∈ H1(R3), (1− χ≤ε0)f ∈ Hs0(R3).

Then the solution u to the equation (1.1) with the initial data

u0 = f+ (or u0 = f−)

is global forward (or backward) in time. Moreover, there exists u+ ∈ Hs0(R3) (or u− ∈
Hs0(R3)), such that

lim
t→+∞

‖u(t)− eit∆u+‖H1(R3) → 0 (or lim
t→−∞

‖u(t)− eit∆u−‖H1(R3) → 0).

We make several remarks regarding the above statements.

Remark 1.5. (1) Note that s0 < 1, we are able to construct the global solutions for
3D defocusing energy-critical NLS with a class of data in the supercritical space.
Moreover, there is no size restriction for the initial data.

(2) By rescaling, it suffices to prove Theorem 1.4 when ε0 = 1.

1.2. The key ingredients in the proofs. In this subsection, we describe the key ingredi-
ents of the proof for Theorem 1.4.

• A conditional perturbation theory. We consider the perturbation equation{
i∂tw +∆w = |v + w|4(v + w),

w(0, x) = w0(x) ∈ H1(R3).

Given the maximal lifespan [0, T ∗), under the hypothesis of

(a): v ∈ S(I); (b): w ∈ L∞
t ([0, T ∗);H1),

where S([0, T ∗)) is some suitably defined spacetime norm at Ḣ1 level, see (3.2) below, we
establish the spacetime estimate that

‖w‖S([0,T ∗)) < +∞.

Here the bound is independent of T ∗. This is a general theory on the scattering of the
solution to a perturbation equation, which is available in our case by splitting u into a linear
part v and a solution w of a perturbation equation.

To prove the general theory, we will adopt the perturbation theory to approximate w

by the solution of the original energy-critical NLS, which is inspired by [9, 19, 31]. The key
ingredient of perturbation theory is to construct a suitable auxiliary space S(I) that can
close the estimates for nonlinear interaction, and meanwhile it matches the smooth effect of
the linear flow benefited from the incoming/outgoing decomposition.

Based on the perturbation theory, it reduces to check the two hypotheses, namely to prove
some required spacetime estimates of the linear flow, and the uniform bound of perturbation
equation’s energy norm.

• Supercritical spacetime estimates of the linear flow. In this part, we check the hypoth-
esis (a) above. Noting that u0 merely belongs to Hs0, 5

6
< s0 < 1, the S(I)-estimates for

linear solution are supercritical. Hence, we need to obtain enough smoothing effect from the
incoming and outgoing decomposition by the delicate phase-space analysis method in [2].
However, the estimates presented in [2] is not sufficient in our case. Thus, we prove some
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finer estimates for the spacetime norm. In particular, these estimates imply that the solution
becomes better when the time is away from the origin, which is crucial in the proof of the a
priori estimate.

• A priori estimate. In this step, we shall obtain the a priori estimate of the solution w

to the perturbation equation in H1 while the initial data is only in Hs0, 5
6
< s0 < 1. We first

make a decomposition of initial data, such that w0 is in H1
x. Then, the proof of the a priori

estimate is based on the Morawetz estimates, energy estimates and bootstrap argument. In
the last step, we can obtain the ‖∇v‖L2

tL
∞

x
-estimate for the linear flow v, which is sufficient

for controlling the energy increment. However, such estimate is only available when t is away
from the origin. Therefore, we consider the short time and long time cases, separately.

As for the short time interval, the estimates for linear solution eit∆u0 is not smooth
enough, but it still enables some Ḣ1

x-critical spacetime estimates while the initial data u0

itself is below the energy regularity. Thus, applying the local theory, we expect that the
original solution u also has some Ḣ1

x level estimates, and then the energy increment can be
bounded suitably. Finally, we remark that the lower bound 5

6
of the regularity condition is

to ensure that the local Ḣ1
x-critical estimates hold.

The rest of the paper is organized as follows. In Section 2, we give some basic notations
and lemmas that will be used throughout this paper. In Section 3, we give a general the-
ory about the existence of the solution to a perturbation equation under suitable a priori
hypothesis. In Section 4, we give the framework for proof of Theorem 1.4. In Section 5, We
obtain the uniform bounded of linear solution v in the auxiliary space Y (I). In Section 6,
we prove the a priori estimate of solution w to the perturbation equation in H1.

2. Preliminary

2.1. Notations. We write X . Y or Y & X to denote the estimate X ≤ CY for some
constant C > 0. Throughout the whole paper, the letter C will denote different positive
constants which are not important in our analysis and may vary line by line. If C depends
upon some additional parameters, we will indicate this with subscripts; for example, X .a Y

denotes the X ≤ C(a)Y assertion for some C(a) depending on a. The notation a+ denotes
a+ ǫ for some small ǫ. We use the following norms to denote the mixed spaces Lq

tL
r
x, that is

‖u‖Lq
tL

r
x
=

( ∫
‖u‖qLr

x
dt
) 1

q .

When q = r we abbreviate L
q
tL

q
x as Lq

t,x. We use χ≤a for a ∈ R+ to be the smooth function

χ≤a(x) =




1, |x| ≤ a,

0, |x| ≥
11

10
a.

Moreover, we denote χ≥a = 1 − χ≤a and χa≤·≤b = χ≤b − χ≤a. We denote χa = χ≤2a − χ≤a

for short.

For each number N > 0, we define the Fourier multipliers P≤N , P>N , PN as

P̂≤Nf(ξ) := χ≤N(ξ)f̂(ξ),

P̂>Nf(ξ) := χ>N(ξ)f̂(ξ),
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P̂Nf(ξ) := χN(ξ)f̂(ξ),

and similarly P≥N , P<N . These multipliers are usually used when N are dyadic numbers

(that is, of the form 2k for some integer k).

Moreover, we denote the Strichartz norm by

‖u‖S0(I) := sup
{
‖u‖Lq

tL
r
x(I×R3) :

2

q
+

3

r
=

3

2
, 2 ≤ q ≤ ∞, 2 ≤ r ≤ 6

}
,

and the dual space of S0(I) by N0(I) and the corresponding norm is

‖u‖N0(I) := inf
{
‖u‖

Lq′

t Lr′
x (I×R3)

:
2

q
+

3

r
=

3

2
, 2 ≤ q ≤ ∞, 2 ≤ r ≤ 6

}
.

2.2. Basic lemmas. In this section, we state some useful lemmas which will be used in our
later sections. Firstly, we recall the well-known Strichartz estimates.

Lemma 2.1. (Strichartz’s estimates, see [10]) Let I ⊂ R be a time interval. For all admis-
sible pairs (qj, rj), j = 1, 2, satisfying

2 ≤ qj , rj ≤ ∞,
2

qj
+

d

rj
=

d

2
, and (q, r, d) 6= (2,∞, 2),

then the following statements hold:

‖eit∆f‖
L
qj
t L

rj
x (I×Rd)

. ‖f‖L2(Rd); (2.1)

and
∥∥∥
∫ t

0

ei(t−s)∆F (s)ds
∥∥∥
L
q1
t L

r1
x (I×Rd)

. ‖F‖
L
q′
2

t L
r′
2

x (I×Rd)
, (2.2)

where 1
q2
+ 1

q′
2

= 1
r2
+ 1

r′
2

= 1.

We also need the following radial Sobolev inequality.

Lemma 2.2. (see [32])Let α, p, q, s be the parameters which satisfy

α > −
d

q
,

1

q
≤

1

p
≤

1

q
+ s, 1 ≤ p, q ≤ ∞, 0 < s < d

with

α + s = d(
1

p
−

1

q
).

Moreover, at most one of the equalities holds:

p = 1, p = ∞, q = 1, q = ∞,
1

p
=

1

q
+ s.

Then for any radial function u,
∥∥|x|αu

∥∥
Lq(Rd)

. ‖|∇|su‖Lp(Rd).

The following result is the Hardy inequality.

Lemma 2.3. Let 1 < p < d. Then,
∥∥|x|−1u

∥∥
Lp
x(Rd)

. ‖∇u‖Lp
x(Rd).
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3. A general perturbation theory

In this section, we set up a general theory to give a sufficient condition for the existence
of the solution to the following perturbation equation{

i∂tw +∆w = |w + v|4(w + v),

w(0, x) = w0(x).
(3.1)

Before giving the main results, we need some auxiliary spaces. We denote the space S(I)
with the corresponding norm as follows

‖u‖S(I) := ‖∇u‖L2
tL

6
x(I×R3) + ‖u‖L8

tL
12
x (I×R3). (3.2)

In this section, our main result is as follows.

Proposition 3.1. Let 0 ∈ I ⊂ R+ and suppose that there exists a solution w ∈ C(I; Ḣ1
x(R

3))
of (3.1). Assume that there exists a constant C0 > 0, such that

‖v‖S(R+) ≤ C0, (3.3)

and there exists a constant E0 > 0, such that

sup
t∈I

‖w(t)‖Ḣ1
x(R

3) ≤ E0. (3.4)

Then, there exists some C = C(C0, E0) > 0 (independent of I) such that

‖w‖S(I) ≤ C(C0, E0).

To prove Proposition 3.1, we shall use the perturbation theory, which shows that the
solution w of equation (3.1) can stay close to the solution w̃ of the original energy critical
equation: {

i∂tw̃ +∆w̃ = |w̃|4w̃,

w̃(0, x) = w̃0(x),
(3.5)

where w̃ = w̃(t, x) : R × R3 → C is a complex-valued function. From the result in [12], we

have that if w̃0 ∈ Ḣ1
x(R

3), then the equation (3.5) is globally well-posed and scatters, and w̃

satisfies

‖∇w̃‖S0(R+) + ‖w̃‖S(R+) ≤ C(‖w̃0‖Ḣ1
x(R

3)). (3.6)

Let g(t, x) := w(t, x)− w̃(t, x), then g satisfies the following equation:
{
i∂tg +∆g = F (g + v, w̃),

g(0, x) = w0(x)− w̃0(x).
(3.7)

Where we denote

F (g + v, w̃) = |g + v + w̃|4(g + v + w̃)− |w̃|4w̃.

Then our perturbation result regarding to g is as follows.

Lemma 3.2. Let I ⊂ R+, 0 ∈ I and E0 > 0. Let w̃ ∈ C(I; Ḣ1
x(R

3)) be the solution of (3.5)
on I with

w̃0 = w0.

Then, there exists η1 = η1(E0) with the following properties. Assume that

‖v‖S(I) ≤ η1, (3.8)
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and

‖w0‖Ḣ1
x(R

3) ≤ E0, (3.9)

then there exists a solution g ∈ C(I; Ḣ1
x(R

3)) of (3.1) with initial data g0 = 0 satisfying

‖g‖L∞

t Ḣ1
x(I×R3) + ‖g‖S(I) ≤ C(E0, η1)η1.

To prove this lemma, we first derive the nonlinear estimates.

Lemma 3.3. Let I ⊂ R+ be some compact interval and 0 ∈ I. Then

‖∇F (g + v, w̃)‖N0(I) .(‖g‖S(I) + ‖v‖S(I))(‖g‖
4
S(I) + ‖v‖4S(I) + ‖w̃‖4S(I))

+ ‖w̃‖S(I)(‖g‖
4
S(I) + ‖v‖4S(I)).

Proof. By the definition of N0(I) and Hölder’s inequality, we have

‖∇u1u
4
2‖N0(I) . ‖∇u1u

4
2‖L1

tL
2
x(I×R3)

. ‖∇u1‖L2
tL

6
x(I×R3)‖u2‖

4
L8
tL

12
x (I×R3)

. ‖u1‖S(I)‖u2‖
4
S(I).

Moreover, for the term F (g + v, w̃), we have the pointwise estimates,

|∇F (g + v, w̃)| = |∇(|g + v + w̃|4(g + v + w̃)− |w̃|4w̃)|

. (|∇g|+ |∇v|)(|g|4 + |v|4 + |w̃|4) + |∇w̃|(|g|4 + |v|4).

Hence, this lemma follows by combining the above estimates. �

Next, we give the proof of the perturbation theory.

Proof of Lemma 3.2. By the assumption of (3.9), and (3.6), we have

‖w̃‖S(I) ≤ C(E0). (3.10)

Fix some absolutely small 0 < η2 ≪ 1, then we can split I = ∪J
j=1Ij , Ij = [tj−1, tj], t0 = 0,

such that

1

2
η2 ≤ ‖w̃‖S(Ij) ≤ η2. (3.11)

Then J = J(E0, η2) is finite. We also take some η1 ≤ η2 that will be decided later. The
proof of this lemma will now be accomplished in two steps.

Step 1. In this step, we are going to prove that under the assumption that for any j ≥ 1,

‖g(tj−1)‖Ḣ1
x(R

3) ≤ η2, (3.12)

then there exists some suitable constant B0 > 1 independent of j, η1, and η2, such that

‖g‖L∞

t Ḣ1
x(Ij×R3) + ‖g‖S(Ij) ≤ B0(‖g(tj−1)‖Ḣ1

x(R
3) + η1). (3.13)

To prove (3.13), first recall the Duhamel formula to the equation (3.7),

g(t) = ei(t−tj−1)∆g(tj−1)− i

∫ t

tj−1

ei(t−s)∆F (g + v, w̃)(s)ds. (3.14)
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Using Duhamel formula (3.14), Lemma 2.1, and Sobolev inequality, we have

‖g‖L∞

t Ḣ1
x(Ij×R3) + ‖g‖S(Ij) .‖g(tj−1)‖Ḣ1

x(R
3) +

∥∥∥
∫ t

tj−1

ei(t−s)∆∇F (g + v, w̃)(s)ds
∥∥∥
S0(Ij)

.‖g(tj−1)‖Ḣ1
x(R

3) +
∥∥∇F (g + v, w̃)

∥∥
N0(Ij)

. (3.15)

Moreover, by the Lemma 3.3, (3.8), and (3.11), we have
∥∥∇F (g + v, w̃)

∥∥
N0(Ij)

.(‖g‖S(Ij) + η1)(‖g‖
4
S(Ij)

+ η41 + η42) + η2(‖g‖
4
S(Ij)

+ η41)

.(η42 + ‖g‖4S(Ij))‖g‖S(Ij) + η1η
4
2.

Further by (3.15) implies that

‖g‖L∞

t Ḣ1
x(Ij×R3) + ‖g‖S(Ij) .‖g(tj−1)‖Ḣ1

x(R
3) + (η41 + ‖g‖4S(Ij))‖g‖S(Ij) + η1. (3.16)

Noting the assumptions of smallness conditions (3.12), by (3.16) and the bootstrap method,
we can obtain

‖g‖L∞

t Ḣ1
x(Ij×R3) + ‖g‖S(Ij) . ‖g(tj−1)‖Ḣ1

x(R
3) + η1. (3.17)

Hence, we can choose suitable constant B0 > 1, such that (3.13) holds.

Step 2. Next, we shall to get the desired results through induction. To start with, we
take the parameter η1 such that

JBJ
0 η1 ≤ η2. (3.18)

Therefore, η1 depends only on E0 and the absolute small constant η2.

First, we consider the subinterval I1 = [0, t1]. In this case, g0 = w0 − w̃0 = 0. Thus, we
have

‖g0‖Ḣ1(R3) = 0.

By the first step, we get the existence of g on I1, and

‖g‖L∞

t Ḣ1
x(I1×R3) + ‖g‖S(I1) ≤ B0η1. (3.19)

Secondly, we consider the subinterval I2 = [t1, t2]. In this case, by (3.19) and (3.18),

‖g(t1)‖Ḣ1
x(R

3) ≤ B0η1 ≤ η2.

The above estimate satisfies the assumption (3.12). Thus, by Step 1, we have

‖g‖L∞

t Ḣ1
x(I2×R3) + ‖g‖S(I2) ≤ B0(B0η1 + η1) ≤ 2B2

0η1. (3.20)

Now we start the induction procedure from I2. We aim to prove that for any j =
1, 2, . . . , J ,

‖g‖L∞

t Ḣ1
x(Ij×R3) + ‖g‖S(Ij) ≤ jB

j
0η1. (3.21)

For j = 2 case, we have that the above estimate holds. Next, for j = k case, we suppose the
above estimate (3.21) holds, that is

‖g‖L∞

t Ḣ1
x(Ik×R3) + ‖g‖S(Ik) ≤ kBk

0η1. (3.22)

Hence, it suffices to prove the j = k + 1 case. Using (3.22) and (3.18), we obtain

‖g(tk)‖Ḣ1
x(R

3) ≤ kBk
0η1 ≤ JBJ

0 η1 ≤ η2. (3.23)
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By Step 1, we obtain the existence of g on Ik+1, and

‖g‖L∞

t Ḣ1
x(Ik+1×R3) + ‖g‖S(Ik+1) ≤ B0(kB

k
0η1 + η1) ≤ (k + 1)Bk+1

0 η1. (3.24)

Hence, by induction, we have (3.21) holds for any j = 1, 2, . . . , J .

Then, we have the existence of g on the whole interval I, and for any j,

‖g‖L∞

t Ḣ1
x(Ij×R3) + ‖g‖S(Ij) ≤ jB

j
0η1 ≤ η2.

Summing this over all subintervals Ij, we complete the proof of this lemma. �

Finally, we are in a position to prove Proposition 3.1. Although the perturbation theory
is a local result, we can apply it by iteration to proving that the global spacetime norms of
w is uniformly bounded.

Proof of Proposition 3.1. For any fixed t0 ∈ I, we consider the following equation
{
i∂tw̃ +∆w̃ = |w̃|4w̃,

w̃(t0, x) = w(t0, x).
(3.25)

By (3.6), we have that there exists a global solution w̃(t, x) = w̃(t0)(t, x) of the equation
(3.25) with

‖w̃(t0)‖S(R+) ≤ C(‖w(t0)‖Ḣ1
x(R

3)). (3.26)

Now, let η1 = η1(E0) be defined as in Lemma 3.2. By the assumption (3.3), we can split

I = ∪L
l=1Ĩl, Ĩl = [τl−1, τl], τ0 = 0, such that

1

2
η1 ≤ ‖v‖S(Ĩl) ≤ η1.

Then L(C0, η1) is finite. We consider subinterval Ĩ1 firstly. By (3.4), we can take t0 = τ0 = 0
for the equation (3.25), and clearly have

‖w0‖Ḣ1
x(R

3) ≤ E0.

Then, using Lemma 3.2 on Ĩ1, we obtain the existence of w ∈ C
(
Ĩ1; Ḣ

1
x(R

3)
)
.

Similarly as above, for Ĩ2, we can take t0 = τ1 for the equation (3.25). Using (3.4) again,

sup
t∈[0,τ1]

‖w(t)‖Ḣ1
x(R

3) ≤ E0.

Particularly,

‖w̃(τ1)‖Ḣ1
x(R

3) = ‖w(τ1)‖Ḣ1
x(R

3) ≤ E0.

Then, we can apply Lemma 3.2 on Ĩ2 after translation in t from the starting point τ1, and

obtained the well-posedness on Ĩ2.

Inductively, under the assumptions of Proposition 3.1, we can obtain the existence of

w ∈ C
(
Ĩl; Ḣ

1
x(R

3)
)
for l = 1, 2, . . . , L. Moreover, from Lemma 3.2 and (3.6), we have

‖w‖S(I) ≤ C(C0, E0). (3.27)

Hence, we finish the proof of the proposition. �
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4. Framework of the proof

4.1. Linear and nonlinear decomposition. Now, we turn to the proof of Theorem 1.4.
We consider the energy critical NLS (1.1) with the initial data u0 = f+. Fixing δ0 > 0, we
take N = N(δ0) > 0, such that

‖P≥Nχ≥1f‖Hs0 (R3) ≤ δ0. (4.1)

Denote v0 := (P≥Nχ≥1f)out, and w0 :=
1
2
P≤1f +

1
2
P≥1χ≤1f +(P1≤·≤Nχ≥1f)out. Then we split

the solution u of (1.1) as u = v + w, where

v = eit∆v0,

and w satisfies the equation
{
i∂tw +∆w = |w + v|4(w + v),

w(0, x) = w0(x).
(4.2)

Now we need the following two hypotheses: assume that there exist constants C0, E0 > 0,
(H1)

‖v‖S(R+) ≤ C0,

(H2) For any 0 ∈ I ⊂ R+, if w ∈ C(I; Ḣ1
x(R

3)), then

sup
t∈I

‖w(t)‖Ḣ1
x(R

3) ≤ E0.

Then, under the above two hypotheses, the general theory in the third section is available
for our case, we can obtain that the solution w to the above perturbation equation is global
in Ḣ1. Hence, it suffices to verify the above two hypotheses (H1) and (H2).

4.2. Proof of Theorem 1.4 under the hypotheses (H1) and (H2). We are now in a
position to give the proof of Theorem 1.4.

Proof. First of all, by Proposition 3.1, under the hypotheses (H1) and (H2), we obtain the
global existence of w in the forward time and

‖w‖S(R+) ≤ C(C0, E0). (4.3)

Next, we prove the scattering statement in Theorem 1.4. Set

u+ = f+ − i

∫ +∞

0

e−is∆(|u|4u)(s)ds.

Then we have

u(t)− eit∆u+ = i

∫ +∞

t

ei(t−s)∆(|u|4u)(s)ds.

Now, we claim that u+ − f+ ∈ H1 and

‖u(t)− eit∆u+‖H1
x(R

3) → 0, as t → +∞.

Indeed, it reduced to prove that
∥∥∥
∫ +∞

0

ei(t−s)∆(|u|4u)(s)ds
∥∥∥
H1

x(R
3)
< +∞. (4.4)
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First, by Strichartz’s estimate (2.2) and Hölder’s inequality, we have
∥∥∥
∫ +∞

0

ei(t−s)∆(|u|4u)(s)ds
∥∥∥
Ḣ1

x(R
3)
. ‖∇(|u|4u)‖L1

tL
2
x(R

+×R3)

. ‖∇u‖L2
tL

6
x(R

+×R3)‖u‖
4
L8
tL

12
x (R+×R3). (4.5)

Moreover, by (H1) and (4.3), we have

‖∇u‖L2
tL

6
x(R

+×R3) + ‖u‖L8
tL

12
x (R+×R3) . ‖∇w‖L2

tL
6
x(R

+×R3) + ‖w‖L8
tL

12
x (R+×R3) + ‖v‖S(R+)

≤ C(C0, E0). (4.6)

Combining (4.5) with (4.6), we get
∥∥∥
∫ +∞

0

ei(t−s)∆(|u|4u)(s)ds
∥∥∥
Ḣ1

x(R
3)
< +∞.

Next, similarly as above, we have
∥∥∥
∫ +∞

0

ei(t−s)∆(|u|4u)(s)ds
∥∥∥
L2
x(R

3)
.

∥∥|u|4u
∥∥
L2
tL

6
5
x (R+×R3)

. ‖u‖4L8
tL

12
x (R+×R3)‖u‖L∞

t L2
x(R

+×R3)

< +∞.

Hence, we obtain (4.4). This proves the scattering statement and thus finishes the proof of
Theorem 1.4. �

5. Linear estimates

In this section, we give the proof of the validity of hypothesis (H1).

Proposition 5.1. Let s0 ∈ (5
6
, 1). Then there exists a constant C0 > 0, such that

‖v‖S(R+) ≤ C0.

First of all, we need the frequency restricted incoming component of f as follows, for
any fixed integer k

fin,k(r) = r−β

∫ +∞

0

(
J(−ρr) +K(ρr)

)
χ2k(ρ)ρ

−α+2Ff(ρ)dρ;

correspondingly, the frequency restricted outgoing component of f as follows

fout,k(r) = r−β

∫ +∞

0

(
J(−ρr)−K(ρr)

)
χ2k(ρ)ρ

−α+2Ff(ρ)dρ.

5.1. Known results from [2]. Next, we recall some useful lemmas, see Proposition 3.11,
Lemma 3.12, Proposition 4.1 and Proposition 4.3 in [2] for the proof.

Lemma 5.2. Suppose that f ∈ L2(R3), then

‖fout/in‖L2(R3) . ‖f‖L2(R3).

The next lemma shows that if a function f has high frequency f = P2kf , then its incom-
ing/outgoing component will have almost the same frequency plus a smooth perturbation.
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Lemma 5.3. Let k ≥ 0 be an integer. Suppose that f ∈ L2(R3) with suppf ⊂ {x : |x| ≥ 1},
then

(P2k(χ≥1f))out/in = (P2k(χ≥1f))out/in,k−1≤·≤k+1 + hk,

where hk satisfies the following estimate,

‖hk‖H2(R3) . 2−10k‖P2k(χ≥1f)‖L2(R3).

Moreover,

‖χ≤ 1

4

(P2k(χ≥1f))out/in,k−1≤·≤k+1‖H2(R3) . 2−2k‖P2k(χ≥1f)‖L2(R3).

The following result is the incoming/outgoing linear flow’s estimate related to the inside
region.

Lemma 5.4. Let k ≥ 0 be an integer. Then there exists δ > 0, such that for any triple
(γ, q, r) satisfying that

q ≥ 2, r > 2, 0 ≤ γ ≤ 1,
2

q
+

5

r
<

5

2
,

the following estimates holds,
∥∥|∇|γ[χ≤δ(1+2kt)e

it∆(χ≥ 1

4

(P2k(χ≥1f))out,k−1≤·≤k+1)]
∥∥
Lq
tL

r
x(R

+×R3)

. 2−(2−(γ− 2

q
− 3

r
))k‖P2k(χ≥1f)‖L2(R3).

The same estimate holds when eit∆ and out are replaced by e−it∆ and in, respectively.

The following result is the incoming/outgoing linear flow’s estimate related to the outside
region.

Lemma 5.5. Let k ≥ 0 be an integer. Moreover, let r, γ1, γ2, s be the parameters satisfying

r > 2, γ1 > 2, γ2 ≥ 0, s+
1

r
≥

1

2
, γ1 + s =

3

2
−

3

r
.

Then for any t > 0,
∥∥|∇|γ2 [χ≥δ(1+2kt)e

it∆(χ≥ 1

4

(P2k(χ≥1f))out,k−1≤·≤k+1)]
∥∥
Lr
x(R

3)

. (1 + 2kt)−γ12(γ2+s+)k‖P2k(χ≥1f)‖L2(R3).

The same estimate holds when eit∆ and out are replaced by e−it∆ and in, respectively.

5.2. Further estimates. Now, we can obtain the following space-time estimates based on
the above lemma.

Corollary 5.6. Let (γ, q, r) be the triple satisfying

γ ≥ 0, q ≥ 1, r > 2,
1

q
< 1−

2

r
,

then the following estimate holds,
∥∥|∇|γ[χ≥δ(1+2kt)e

it∆(χ≥ 1

4

(P2k(χ≥1f))out,k−1≤·≤k+1)]
∥∥
Lq
tL

r
x(R

+×R3)

. 2(−
1

q
−

1

r
+ 1

2
+γ+)k‖P2k(χ≥1f)‖L2(R3). (5.1)
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Moreover, for any δ > 0,

∥∥|∇|γ[χ≥δ(1+2kt)e
it∆(χ≥

1

4

(P2k(χ≥1f))out,k−1≤·≤k+1)]
∥∥
L2
tL

∞
x ([δ,+∞)×R3)

.δ 2
(− 1

2
+γ+)k‖P2k(χ≥1f)‖L2(R3). (5.2)

The same estimate holds when eit∆ and out are replaced by e−it∆ and in, respectively.

Proof. (5.1) was proved by Corollary 4.4 in [2]. In addition, we also need the result (5.2).

From Lemma 5.5, we have

∥∥|∇|γ[χ≥δ(1+2kt)e
it∆(χ≥ 1

4

(P2k(χ≥1f))out,k−1≤·≤k+1)]
∥∥
L2
tL

∞

x ([δ,+∞)×R3)

. 2(γ+
1

2
+)k‖(1 + 2kt)−1‖L2

t ([δ,+∞))‖P2k(χ≥1f)‖L2(R3).

Furthermore, we have

‖(1 + 2kt)−1‖L2
t ([δ,+∞)) .δ 2

−k.

Combining the above two estimates, we prove the corollary. �

Next, we gather some space-time norms that will be used below. Define the Y (I) space
by its norm

‖v‖Y (I) :=N s0−
5

6
−‖∇v‖L2

tL
6
x(I×R3) +N s0−

7

24
−‖v‖L8

tL
12
x (I×R3)

+N s0−
1

3
−‖v‖L∞

t L6
x(I×R3) +N s0−‖v‖L2

tL
∞

x (I×R3).

Then, by the above Lemmas and Corollary, we have

Lemma 5.7. Let N ≥ 1, 5
6
< s0 < 1, then the following estimates hold,

‖v‖Y (R+) . ‖P≥Nχ≥1f‖Hs0(R3).

Moreover, for any δ > 0,

‖∇v‖L2
tL

∞

x ([δ,+∞)×R3) . N−s0+
1

2
+‖P≥Nχ≥1f‖Hs0(R3).

Proof. The estimates above v on R+ was proved by Proposition 4.5 in [2], we only sketch
the proof for completeness, and prove the spacetime estimate of v on [δ,+∞). Let N = 2k0
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for some k0 ∈ N. By Lemma 5.3, we write

v =eit∆(P≥Nχ≥1f)out

=
∞∑

k=k0

eit∆(P2k(χ≥1f))out

=
∞∑

k=k0

eit∆(χ≤ 1

4

(P2k(χ≥1f))out,k−1≤·≤k+1) +
∞∑

k=k0

eit∆hk

+
∞∑

k=k0

eit∆(χ≥ 1

4

(P2k(χ≥1f))out,k−1≤·≤k+1)

=

∞∑

k=k0

eit∆(χ≤
1

4

(P2k(χ≥1f))out,k−1≤·≤k+1) +

∞∑

k=k0

eit∆hk

+

∞∑

k=k0

χ≤δ(1+2kt)e
it∆(χ≥ 1

4

(P2k(χ≥1f))out,k−1≤·≤k+1)

+

∞∑

k=k0

χ≥δ(1+2kt)e
it∆(χ≥ 1

4

(P2k(χ≥1f))out,k−1≤·≤k+1).

Then by Lemma 2.1 and Lemma 5.3, we obtain

∞∑

k=k0

∥∥eit∆|∇|(χ≤ 1

4

(P2k(χ≥1f))out,k−1≤·≤k+1)
∥∥
L2
tL

6
x(R

+×R3)

.

∞∑

k=k0

‖χ≤ 1

4

(P2k(χ≥1f))out,k−1≤·≤k+1‖H2(R3)

.

∞∑

k=k0

2−2k‖P2k(χ≥1f)‖L2(R3)

.N−2−s0‖P≥Nχ≥1f‖Hs0 (R3). (5.3)

In the same way as above, we can also obtain

∞∑

k=k0

‖eit∆|∇|hk‖L2
tL

6
x(R

+×R3) . N−2−s0‖P≥Nχ≥1f‖Hs0 (R3). (5.4)

Next, by Lemma 5.4, noting that 5
6
< s0 < 1, we have

∞∑

k=k0

∥∥|∇|
[
χ≤δ(1+2kt)e

it∆(χ≥ 1

4

(P2k(χ≥1f))out,k−1≤·≤k+1)
]∥∥

L2
tL

6
x(R

+×R3)

.

∞∑

k=k0

2−(2−(1− 2

2
− 3

6
))k‖P2k(χ≥1f)‖L2(R3)

.N−s0−
5

2‖P≥Nχ≥1f‖Hs0(R3). (5.5)
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Finally, from Corollary 5.6, noting that 5
6
< s0 < 1, we obtain that

∞∑

k=k0

∥∥|∇|
[
χ≥δ(1+2kt)e

it∆(χ≥ 1

4

(P2k(χ≥1f))out,k−1≤·≤k+1)
]∥∥

L2
tL

6
x(R

+×R3)

.

∞∑

k=k0

2(−
1

2
− 1

6
+ 1

2
+1+)k‖P2k(χ≥1f)‖L2(R3)

.N−(s0−
5

6
)+‖P≥Nχ≥1f‖Hs0 (R3). (5.6)

Then collecting the estimates (5.3)-(5.6), we get

‖∇v‖L2
tL

6
x(R

+×R3) . N−s0+
5

6
+‖P≥Nχ≥1f‖Hs0(R3).

Similarly as above, by Lemma 2.1, Lemma 5.3, Lemma 5.4, Corollary 5.6, and Sobolev
inequality, we can obtain

‖v‖L8
tL

12
x (R+×R3) . N−s0+

7

24
+‖P≥Nχ≥1f‖Hs0(R3),

‖v‖L∞

t L6
x(R

+×R3) . N−s0+
1

3
+‖P≥Nχ≥1f‖Hs0(R3),

and

‖v‖L2
tL

∞
x (R+×R3) . N−s0+‖P≥Nχ≥1f‖Hs0(R3).

Next, we will estimate the term ‖∇v‖L2
tL

∞
x ([δ,+∞)×R3), the proof is similar as above. By

Lemma 2.1, Lemma 5.3 and Lemma 5.4, we have
∞∑

k=k0

∥∥eit∆|∇|(χ≤ 1

4

(P2k(χ≥1f))out,k−1≤·≤k+1)
∥∥
L2
tL

∞
x ([δ,+∞)×R3)

+

∞∑

k=k0

∥∥|∇|
[
χ≤δ(1+2kt)e

it∆(χ≥
1

4

(P2k(χ≥1f))out,k−1≤·≤k+1)
]∥∥

L2
tL

∞
x ([δ,+∞)×R3)

+

∞∑

k=k0

‖eit∆|∇|hk‖L2
tL

∞
x ([δ,+∞)×R3)

.N−2−s0‖P≥Nχ≥1f‖Hs0(R3).

Furthermore, by Corollary 5.6, we obtain

∞∑

k=k0

∥∥|∇|
[
χ≥δ(1+2kt)e

it∆(χ≥ 1

4

(P2k(χ≥1f))out,k−1≤·≤k+1)
]∥∥

L2
tL

∞

x ([δ,+∞)×R3)

.N−s0+
1

2
+‖P≥Nχ≥1f‖Hs0(R3).

Hence, by the above two estimates, we obtain

‖∇v‖L2
tL

∞
x ([δ,+∞)×R3) . N−s0+

1

2
+‖P≥Nχ≥1f‖Hs0(R3).

Thus, we get the desired estimates and complete the proof of the lemma. �

Hence, by Lemma 5.7, we can obtain Proposition 5.1 by choosing a suitable constant
C0 > 0.
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6. A priori estimate

In this section, we give the proof of the validity of a priori assumptions (H2). To this
end, we define the working space XN(I) for I ⊂ R+ by its norm

‖h‖XN (I) = N3(s0−1)‖h‖L∞

t Ḣ1
x(I×R3) +N

9

8
(s0−1)‖h‖L8

t,x(I×R3).

Then we have

‖h‖L∞

t Ḣ1
x(I×R3) ≤ N3(1−s0)‖h‖XN (I),

‖h‖L8
t,x(I×R3) ≤ N

9

8
(1−s0)‖h‖XN (I). (6.1)

The following is the main result in this section.

Proposition 6.1. Let s0 ∈ (5
6
, 1). Let w ∈ C(I; Ḣ1

x(R
3)) be the solution of the equation

(3.1). Then there exists a constant E0 = E0(N) > 0, such that

sup
t∈I

‖w(t)‖Ḣ1
x(R

3) ≤ E0.

To prove Proposition 6.1, we need some spacetime norms of w are uniformly bounded.
First of all, we have the initial data w0 is in Ḣ1. Indeed, by Bernstein’s inequality, we have

‖P≤1f + P≥1χ≤1f‖Ḣ1(R3) . ‖χ≤1f‖H1(R3) + ‖χ≥1f‖Hs0(R3).

Moreover, by Lemmas 5.2 and 5.3, we have

‖(P1≤·≤Nχ≥1f)out‖Ḣ1(R3) .

k0∑

k=0

(
‖(P2k(χ≥1f))out,k−1≤·≤k+1)‖Ḣ1(R3) + ‖hk‖Ḣ1(R3)

)

.

k0∑

k=0

(
2k‖P2k(χ≥1f)‖L2(R3) + 2−10k‖P2k(χ≥1f)‖L2(R3)

)

. N1−s0‖χ≥1f‖Hs0(R3) + ‖χ≥1f‖Hs0 (R3)

. N1−s0 .

Hence, combining the above two estimates, we have

‖w0‖Ḣ1(R3) . N1−s0 . (6.2)

Next, we have that the L∞
t L2

x(I × R3) norm of w is uniformly bounded. In fact, by the
conservation of mass (1.2) and Lemma 5.2 , we obtain

‖w‖L∞

t L2
x(I×R3) . ‖u‖L∞

t L2
x(I×R3) + ‖v‖L∞

t L2
x(I×R3)

. ‖f+‖L2(R3) + ‖f‖Hs0(R3)

. ‖f‖Hs0(R3). (6.3)

Now, we start with the Morawetz estimates.

6.1. Morawetz estimates. In this subsection, we consider the Morawetz-type estimate by
Lin-Strauss [25].

Lemma 6.2. Let 5
6
< s0 < 1 and ‖w‖XN (I) ≥ 1, then

∫

I

∫

R3

|w(t, x)|6

|x|
dxdt . N3(1−s0)(‖w‖XN (I) + δ0‖w‖

5
XN (I)).
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Proof. Let

M(t) = Im

∫

R3

x

|x|
· ∇w(t, x)w(t, x)dx.

By integration-by-parts, we have

M ′(t) = Im

∫

R3

x

|x|
· (∇wtw +∇wwt)dx

= (−1)Im

∫

R3

(
2

|x|
wtw +

x

|x|
· ∇wwt)dx+ Im

∫

R3

x

|x|
· ∇wwtdx

= 2Im

∫

R3

(
x

|x|
· ∇w +

1

|x|
w)wtdx.

By the equation (4.2)

wt = −i∆w + i|u|4u

= −i∆w + i|w|4w + i|u|4u− i|w|4w.

From the above two equalities, we have

M ′(t) =2Im

∫

R3

(
x

|x|
· ∇w +

1

|x|
w)(−i∆w)dx

+ 2Im

∫

R3

(
x

|x|
· ∇w +

1

|x|
w)(i|w|4w)dx

+ 2Im

∫

R3

(
x

|x|
· ∇w +

1

|x|
w)(i|u|4u− i|w|4w)dx

: = I1 + I2 + I3. (6.4)

For I1, by integration-by-parts, we have

I1 =

∫

R3

1

|x|

(
|∇w|2 −

∣∣ x
|x|

· ∇w
∣∣2)dx+ 2π|w(t, 0)|2 ≥ 0.

For I2, by integration-by-parts again, we have

I2 =
2

3

∫

R3

|w(t, x)|6

|x|
dx.

For I3, by Hölder’s inequality and Lemma 2.3, we have

|I3| .
∣∣∣Im

∫

R3

(
x

|x|
· ∇w +

1

|x|
w)(i|u|4u− i|w|4w)dx

∣∣∣

. ‖∇w‖L2
x(R

3)

∥∥|u|4u− |w|4w
∥∥
L2
x(R

3)
.

Hence, by the above three estimates and integrating in time in (6.4), we can obtain
∫

I

∫

R3

|w(t, x)|6

|x|
dxdt . sup

t∈I
M(t) + ‖∇w‖L∞

t L2
x(I×R3)

∥∥|u|4u− |w|4w
∥∥
L1
tL

2
x(I×R3)

. (6.5)

For the first term, by (6.1), (6.3) and Hölder’s inequality

sup
t∈I

M(t) . ‖w‖L∞

t L2
x(I×R3)‖w‖L∞

t Ḣ1
x(I×R3) . N3(1−s0)‖w‖XN (I). (6.6)
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Next, for the term
∥∥|u|4u− |w|4w

∥∥
L1
tL

2
x(I×R3)

, noting that u = w + v, by Hölder’s inequality

we have
∥∥|u|4u− |w|4w

∥∥
L1
tL

2
x(I×R3)

.
∥∥|u+ w|4|u− w|

∥∥
L1
tL

2
x(I×R3)

.
∥∥(|w|4 + |v|4)|v|

∥∥
L1
tL

2
x(I×R3)

. ‖v‖5L5
tL

10
x (I×R3) + ‖v‖L2

tL
∞
x (I×R3)‖w‖

4
L8
t,x(I×R3).

For the estimates about v, by Lemma 5.7, interpolation inequality and (4.1), we have

‖v‖L2
tL

∞
x (I×R3) . N−s0+δ0,

and

‖v‖L5
tL

10
x (I×R3) . ‖v‖

2

5

L2
tL

∞

x (I×R3)
‖v‖

3

5

L∞

t L6
x(I×R3) . N−s0+

1

5
+δ0.

Further, by (6.1) and the above three estimates, we obtain that
∥∥|u|4u− |w|4w

∥∥
L1
tL

2
x(I×R3)

. N−5s0+1+δ50 +N−s0+δ0N
9

2
(1−s0)‖w‖4XN(I)

. N− 11

2
s0+

9

2
+δ0‖w‖

4
XN(I)

. δ0‖w‖
4
XN (I). (6.7)

Hence, by (6.1), (6.5), (6.6) and (6.7), we have
∫

I

∫

R3

|w(t, x)|6

|x|
dxdt . N3(1−s0)(‖w‖XN (I) + δ0‖w‖

5
XN (I)).

This finishes the proof. �

From the above lemma we have the following result.

Corollary 6.3. Under the same assumptions as in Lemma 6.2, then

‖w‖L8
t,x(I×R3) . N

9

8
(1−s0)

(
‖w‖

3

8

XN (I) + δ
1

8

0 ‖w‖
7

8

XN (I)

)
.

Proof. By Hölder’s inequality,
∫

I

∫

R3

|w(t, x)|8dxdt =

∫

I

∫

R3

|w|6

|x|
|x||w|2dxdt

.
∥∥|x| 12w

∥∥2

L∞

t,x(I×R3)

∫

I

∫

R3

|w(t, x)|6

|x|
dxdt.

By Lemma 2.2 and (6.1), we have
∥∥|x| 12w

∥∥
L∞

t,x(I×R3)
. ‖w‖L∞

t Ḣ1
x(I×R3) . N3(1−s0)‖w‖XN (I).

Hence, by Lemma 6.2 and the above estimates, we obtain
∫

I

∫

R3

|w(t, x)|8dxdt . N9(1−s0)(‖w‖3XN (I) + δ0‖w‖
7
XN (I)),

which gives the desired estimate. �
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6.2. Energy estimate.

Lemma 6.4. Let 5
6
< s0 < 1 and ‖w‖XN (I) ≥ 1, then

‖w‖L∞

t Ḣ1
x(I×R3) . N3(1−s0)

(
1 + δ

1

2

0 ‖w‖
5

2

XN (I)

)
.

Proof. For simplicity, we denote I = [0, T ) and for any t ∈ I, let

Ẽ(t) :=
1

2

∫

R3

|∇w(t, x)|2dx+
1

6

∫

R3

|u(t, x)|6dx.

Taking product with wt on the equation (3.1) and integration-by-parts, we have

d

dt
Ẽ(t) = Re

∫

R3

|u|4uvtdx.

Since v is a linear solution, we further obtain

d

dt
Ẽ(t) = Im

∫

R3

|u|4u∆v̄dx.

Integrating the above equality in time from t0 to t, we get

Ẽ(t) = Ẽ(t0) + Im

∫ t

t0

∫

R3

|u|4u∆v̄dxdt′, (6.8)

where t0 will be determined later.

For the first term Ẽ(t0) in (6.8), by Sobolev inequality, we have

Ẽ(t0) . ‖w(t0)‖
2
Ḣ1

x(R
3)
+ ‖u(t0)‖

6
L6
x(R

3)

. ‖∇w‖2L∞

t L2
x([0,t0]×R3) + ‖∇w‖6L∞

t L2
x([0,t0]×R3) + ‖v‖6L∞

t L6
x([0,t0]×R3). (6.9)

Now, we estimate the term ‖∇w‖L∞

t L2
x([0,t0]×R3). First of all, by Lemma 2.1 and Lemma 5.7,

we have

‖∇eit∆u0‖L2
tL

6
x(I×R3) . ‖∇eit∆(P≤1f + P≥1χ≤1f)‖L2

tL
6
x(I×R3) + ‖∇eit∆(P≥1χ≥1f)out‖L2

tL
6
x(I×R3)

. ‖P≤1f + P≥1χ≤1f‖Ḣ1(R3) + ‖P≥1χ≥1f‖Hs0(R3)

. ‖χ≤1f‖H1(R3) + ‖χ≥1f‖Hs0 (R3).

Hence, given small constant δ̃0 > 0, by choosing t0 = t0(u0, ‖χ≤1f‖H1(R3)+‖χ≥1f‖Hs0(R3)) > 0
small enough, we have

‖∇eit∆u0‖L2
tL

6
x([0,t0]×R3) ≤ δ̃0.

Then using the standard fixed point argument, we can obtain

‖∇u‖L2
tL

6
x([0,t0]×R3) . δ̃0. (6.10)

By (4.1), (6.10), Lemma 2.1 and Lemma 5.7, we have

‖∇w‖L∞

t L2
x([0,t0]×R3) . ‖w0‖Ḣ1

x(R
3) + ‖∇(|u|4u)‖

L2
tL

6
5
x ([0,t0]×R3)

. N1−s0 + ‖∇u‖L2
tL

6
x([0,t0]×R3)‖u‖

4
L∞

t L6
x([0,t0]×R3)

. N1−s0 + δ̃0
(
‖∇w‖4L∞

t L2
x([0,t0]×R3) + ‖v‖4L∞

t L6
x([0,t0]×R3)

)

. N1−s0 + δ̃0‖∇w‖4L∞

t L2
x([0,t0]×R3) + δ̃0N

−4s0+
4

3
+δ40

. N1−s0 + δ̃0‖∇w‖4L∞

t L2
x([0,t0]×R3).
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Further, by the bootstrap argument,

‖∇w‖L∞

t L2
x([0,t0]×R3) . N1−s0 . (6.11)

Hence, by (6.9), (6.11) and Lemma 5.7, we obtain

Ẽ(t0) .N2(1−s0) +N6(1−s0) +N−6s0+2+δ60

.N6(1−s0). (6.12)

Next, we consider the second term in (6.8), by integration-by-parts, we have

Im

∫ t

t0

∫

R3

|u|4u∆v̄dxdt′ .

∫ t

t0

∫

R3

|u|4|∇u||∇v|dxdt′

.

∫ T

t0

∫

R3

|u|4|∇w||∇v|dxdt′ +

∫ T

t0

∫

R3

|u|4|∇v|2dxdt′

:=I1 + I2. (6.13)

We consider the term I1 firstly. By (4.1), Lemma 5.7 and interpolation inequality, we have

‖∇v‖L2
tL

∞
x ([t0,T ]×R3) . N−s0+

1

2
+δ0, (6.14)

and

‖v‖L8
t,x([t0,T ]×R3) . ‖v‖

1

4

L2
tL

∞

x (I×R3)
‖v‖

3

4

L∞

t L6
x(I×R3) . N−s0+

1

4
+δ0. (6.15)

Further, by using (6.1), (6.14) and (6.15), we obtain

I1 . ‖∇v‖L2
tL

∞

x ([t0,T ]×R3)‖∇w‖L∞

t L2
x(I×R3)‖u‖

4
L8
t,x(I×R3)

. ‖∇v‖L2
tL

∞

x ([t0,T ]×R3)‖∇w‖L∞

t L2
x(I×R3)

(
‖w‖4L8

t,x(I×R3) + ‖v‖4L8
t,x(I×R3)

)

. N−s0+
1

2
+δ0 ·N

3(1−s0)‖w‖XN (I) ·
(
N

9

2
(1−s0)‖w‖4XN (I) +N−4s0+1+δ40

)

. N−s0+
1

2
+δ0 ·N

3(1−s0)‖w‖XN (I) ·N
9

2
(1−s0)‖w‖4XN(I)

. N− 17

2
s0+8+δ0‖w‖

5
XN (I)

. N6(1−s0)δ0‖w‖
5
XN (I). (6.16)

Next, we consider the term I2. By (1.2), (4.1), (6.14) and Lemma 5.7, we obtain

I2 .‖∇v‖2L2
tL

∞
x ([t0,T ]×R3)‖u‖L∞

t L2
x(I×R3)‖u‖

3
L∞

t L6
x(I×R3)

.N−2s0+1+δ20 ·
(
N9(1−s0)‖w‖3XN (I) +N−3s0+1+δ30

)

.N−11s0+10+δ20‖w‖
3
XN (I)

.N6(1−s0)δ20‖w‖
3
XN (I). (6.17)

Hence, combining (6.8), (6.12), (6.13), (6.16) with (6.17), we can obtain

sup
t∈I

Ẽ(t) . N6(1−s0)
(
1 + δ0‖w‖

5
XN (I) + δ20‖w‖

3
XN(I)

)

. N6(1−s0)
(
1 + δ0‖w‖

5
XN (I)

)
.
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Further, from the definition of Ẽ(t), we have

‖w‖L∞

t Ḣ1
x(I×R3) .

(
sup
t∈I

Ẽ(t)
) 1

2

. N3(1−s0)
(
1 + δ

1

2

0 ‖w‖
5

2

XN (I)

)
.

This completes the proof of this lemma. �

Now, we aim to prove Proposition 6.1, which shows the assumption (H2) is valid.

Proof of Proposition 6.1. First, we show that for any I such that 0 ∈ I ⊂ R+,

‖w‖XN (I) . 1. (6.18)

Indeed, if ‖w‖XN (I) ≤ 1, then (6.18) already holds. Therefore, we can assume ‖w‖XN(I) ≥ 1.
Using Corollary 6.3, Lemma 6.4, and Young’s inequality, we obtain

‖w‖XN (I) = N−3(1−s0)‖w‖L∞

t Ḣ1
x(I×R3) +N− 9

8
(1−s0)‖w‖L8

t,x(I×R3)

≤ C(1 + δ
1

2

0 ‖w‖
5

2

XN(I) + ‖w‖
3

8

XN (I) + δ
1

8

0 ‖w‖
7

8

XN(I))

≤ C + Cδ
1

2

0 ‖w‖
5

2

XN (I) +
1

4
‖w‖XN (I) + δ

1

7

0 ‖w‖XN (I)

≤ C + Cδ
1

2

0 ‖w‖
5

2

XN (I) +
1

2
‖w‖XN (I).

Then, we get

‖w‖XN (I) . 1 + δ
1

2

0 ‖w‖
5

2

XN (I).

By the usual bootstrap argument, we obtain (6.18). Hence, we finish the proof of Proposition
6.1. �
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