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LARGE GLOBAL SOLUTIONS FOR ENERGY-CRITICAL NONLINEAR
SCHRODINGER EQUATION

RUOBING BAI, JIA SHEN, AND YIFEI WU

ABSTRACT. In this work, we consider the 3D defocusing energy-critical nonlinear Schrodinger
equation

i0pu + Au = |u[*u, (t,z) € R x R3.

Applying the outgoing and incoming decomposition presented in the recent work [2], we
prove that any radial function f with x<1f € H' and x>1f € H®* with % < 59 < 1,
there exists an outgoing component f (or incoming component f_) of f, such that when
the initial data is fy, then the corresponding solution is globally well-posed and scatters
forward in time; when the initial data is f_, then the corresponding solution is globally
well-posed and scatters backward in time.

1. INTRODUCTION

In this paper, we consider the Cauchy problem for the nonlinear Schrodinger equation
(NLS) in 3 spatial dimensions (3D)

10+ Au = plul*u, (1)
u(0, ) = uo(x),

with g = +1. Here u = u(t,7) : R x R® — C is a complex-valued function. The case yu = 1
is referred to the defocusing case, and the case u = —1 is referred to the focusing case.

The solution satisfies the conservation of mass and energy, defined respectively by

M (u(t)) == /RS lu(t, x)|*de = M (uy), (1.2)
and

E(u(t)) = % /R Vu(t, z)2dz + % /R lu(t, )%z = E(uo). (1.3)

The general form of the equation (L)) is the following
i0u + Au = plulPu, (t,r) € R*"
u(0, ) = ug(x).

The class of solutions to equation (L4)) is invariant under scaling

(1.4)

u(t,x) = uy(t,x) = )\%u()\Qt, Ax), A >0,
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which maps the initial data
u(0) = ux(0) := Apug(\z).

Denote
d 2
Se =35 —

2 p
then the scaling leaves H* norm invariant, that is,

[w(0) | zzse = [lux(O) grsc -

The well-posedness and scattering theory for the equation ((L4]) has been widely studied.
For the local well-posedness, Cazenave and Weissler [11] used the standard fixed point argu-
ment, and proved the equation (L4 is locally well-posed in H*(R%) when s > s.. Note that
in the case of s = s, (critical regime), the time of existence depends on the profile of initial
data rather than simply its norm. The fixed point argument can also be applied directly to
prove the global well-posedness and scattering for the equation (4] with small initial data
in H*(R?) when s > s..

Next, let us briefly review the large data global well-posedness and scattering theory
for energy-critical NLS (L4). Bourgain [6] firstly obtained such result for the 3D and 4D
defocusing energy critical NLS with radial data in H 1(R3) by introducing the induction on
energy method and spatial localized Morawetz estimate. Moreover, Grillakis [20] provided
a different proof for the global well-posedness part of the result by Bourgain [6]. Tao [30]
later generalized the results in [6,20] to general dimensions with radially symmetric data.
For non-radial problem, a major breakthrough was made by Colliander, Keel, Staffilani,
Takaoka, and Tao in [I2], where they obtained the related result for the 3D energy-critical
defocusing NLS for general large data in H'. Then, the result was generalized by Ryckman
and Visan [27] in dimension d = 4 and Visan [33] for higher dimensions. In the focusing case,
Kenig and Merle [21] introduced the concentration compactness method, and obtained the
global well-posedness and scattering in H'(R?) (d = 3,4, 5) for the energy-critical NLS with
radial initial data below the energy of ground state. Killip and Visan [23] later obtained the
related result for dimensions d > 5 without the radial assumption. Then, Donson [14] solved
the 4D non-radial problem. Here, we only mention the papers for energy critical equations
(C4), and some other results for (L)) can be found in [, 3 I5-18, 22, 26,28, 29] and the

references therein.

Although the equation (I4]) is ill-posed in super-critical spaces, there are still some
methods to study the well-posedness for a class of such data. The ill-posedness in some
cases can be circumvented by an appropriate probabilistic method. Bourgain [4,[5] obtained
the first almost sure local and global well-posedness results, which are based on the invariance
of Gibbs measure associated to NLS on torus in one and two space dimensions. The random
data approach has been further developed for the nonlinear dispersive equations, see for

example [7HIL[T3,19,24] and the references therein.

1.1. Main result. This paper aims to consider the global-wellposedness and scattering of
the energy-critical NLS with rough and determined initial data. This is a continuing work of
[2], where the authors constructed the incoming and outgoing waves for the linear Schrédinger
flow and obtained global well-posedness and scattering in the inter-critical case with suitable
rough data (the part near the origin of the initial data belongs to H!, and the part away
from the origin is rough).
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Next, we recall the the definitions of the incoming and outgoing components of functions
introduced in [2].

Definition 1.1 (Deformed Fourier transformation). Let o € R, 3 € R, and let f € S(RY)
with |z|?f € L} (R?). Define

loc
FHE) = I€l" [ e el fla)da,
R
Definition 1.2 (Definitions of outgoing and incoming components). Let o < 3, f > —3,
and the function f € L} (RY) is radial. Define the outgoing component of f as

loc

four(r) =177 /O - (J(pr) = K(pr)) p~*T2F f(p)dp,

the incoming component of f as

fin(r) =777 /0 - (J(=pr) + K(pr)) p~* > F f(p)dp,

where

™

J(r) = /2 eZmirsind 65046,
0

and
1 d—3

" omir (2mir)3 )’

K(r) = x>2(r) [ d=3,4,5.
Definition 1.3 (Definitions of modified outgoing and incoming components). Let the radial
function f € S(R?). Define the modified outgoing component of f as

1 1
fo=gPaf + o Poix<af + (PziXzeo.f)ous

the modified incoming component of f as

1

1
f-=gPaf + 5Peixzaf + (Pz1x>e0f in-

The main observation in [2] is that the decomposition allows us to cut the linear flow
e f into e f, and e f_ such that up to a smooth part, the former moves forward in
time and the latter moves backward in time, and the speed depends on the frequency which
is faster for rougher data. By using the decomposition, the authors obtained positively
(or negatively) global when the initial data is f, (or f_). From the definitions, we have
f = fo+ f_. Since f is rough, at least one of f, and f_ is rough. Therefore, the authors
obtained the global solutions for the defocusing energy-subcritical NLS, p < ﬁ, with a class
of initial data in the supercritical space in dimensions d = 3,4, 5.

In this paper, we further consider the energy-critical case when p = ﬁ. This is a more
complex scenario, since the local lifespan depends on the profile of initial data, and the new
difficulty is how to extend the solution globally. Moreover, we only consider the 3D case,
and the calculation is similar for other dimensional cases.

The following is our main result.
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Theorem 1.4. Let sy € (%, 1). Suppose that f is a radial function and there exists g > 0
such that

XS€of € H1<R3)7 (1 - XSEO)f S HSO<R3>'
Then the solution u to the equation (L)) with the initial data

wo=fr (or uo=f)

is global forward (or backward) in time. Moreover, there exists uy € H*(R3) (or u_ €
H*(R3)), such that

: itA : itA
i [Jut) = ¢l =0 (o im [Ju(t) = ¢2u_ e — 0).

We make several remarks regarding the above statements.

Remark 1.5. (1) Note that sp < 1, we are able to construct the global solutions for
3D defocusing energy-critical NLS with a class of data in the supercritical space.
Moreover, there is no size restriction for the initial data.

(2) By rescaling, it suffices to prove Theorem [[L4] when gy = 1.

1.2. The key ingredients in the proofs. In this subsection, we describe the key ingredi-
ents of the proof for Theorem [I4]

e A conditional perturbation theory. We consider the perturbation equation
10w + Aw = v+ w|*(v + w),
{w(O,x) = wo(z) € H'(R?).
Given the maximal lifespan [0,7*), under the hypothesis of
(a): v e S(I);  (b):we L([0,77); HY),

where S([0,T%)) is some suitably defined spacetime norm at H* level, see [32) below, we
establish the spacetime estimate that

HwHS([O,T*)) < 400.

Here the bound is independent of 7. This is a general theory on the scattering of the
solution to a perturbation equation, which is available in our case by splitting u into a linear
part v and a solution w of a perturbation equation.

To prove the general theory, we will adopt the perturbation theory to approximate w
by the solution of the original energy-critical NLS, which is inspired by [9,[19,31]. The key
ingredient of perturbation theory is to construct a suitable auxiliary space S(/) that can
close the estimates for nonlinear interaction, and meanwhile it matches the smooth effect of
the linear flow benefited from the incoming/outgoing decomposition.

Based on the perturbation theory, it reduces to check the two hypotheses, namely to prove
some required spacetime estimates of the linear flow, and the uniform bound of perturbation
equation’s energy norm.

e Supercritical spacetime estimates of the linear flow. In this part, we check the hypoth-

esis (a) above. Noting that ug merely belongs to H*, 2 < sy < 1, the S(I)-estimates for

linear solution are supercritical. Hence, we need to obtain enough smoothing effect from the
incoming and outgoing decomposition by the delicate phase-space analysis method in [2].

However, the estimates presented in [2] is not sufficient in our case. Thus, we prove some
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finer estimates for the spacetime norm. In particular, these estimates imply that the solution
becomes better when the time is away from the origin, which is crucial in the proof of the a
priori estimate.

e A priori estimate. In this step, we shall obtain the a priori estimate of the solution w
to the perturbation equation in H' while the initial data is only in H*, % < 59 < 1. We first
make a decomposition of initial data, such that wy is in H!. Then, the proof of the a priori
estimate is based on the Morawetz estimates, energy estimates and bootstrap argument. In
the last step, we can obtain the [|[Vo|| 2 c-estimate for the linear flow v, which is sufficient
for controlling the energy increment. However, such estimate is only available when ¢ is away
from the origin. Therefore, we consider the short time and long time cases, separately.

As for the short time interval, the estimates for linear solution e®*“uy is not smooth

enough, but it still enables some H!-critical spacetime estimates while the initial data g
itself is below the energy regularity. Thus, applying the local theory, we expect that the
original solution v also has some H} level estimates, and then the energy increment can be
bounded suitably. Finally, we remark that the lower bound % of the regularity condition is

to ensure that the local H!-critical estimates hold.

The rest of the paper is organized as follows. In Section 2, we give some basic notations
and lemmas that will be used throughout this paper. In Section 3, we give a general the-
ory about the existence of the solution to a perturbation equation under suitable a priori
hypothesis. In Section 4, we give the framework for proof of Theorem [[L4l In Section 5, We
obtain the uniform bounded of linear solution v in the auxiliary space Y (I). In Section 6,
we prove the a priori estimate of solution w to the perturbation equation in H'.

2. PRELIMINARY

2.1. Notations. We write X <Y or Y 2 X to denote the estimate X < CY for some
constant C' > 0. Throughout the whole paper, the letter C' will denote different positive
constants which are not important in our analysis and may vary line by line. If C' depends
upon some additional parameters, we will indicate this with subscripts; for example, X <, Y
denotes the X < C'(a)Y assertion for some C(a) depending on a. The notation a+ denotes
a+ ¢ for some small e. We use the following norms to denote the mixed spaces L{L”, that is

1
fallze: = ( [l a)*.
When ¢ = r we abbreviate L{L? as L{ ,. We use x<, for a € R* to be the smooth function

L |z < a,

a\T) = 11
X<a() 0.2 > Lo
10

Moreover, we denote x>q = 1 — X<q and Xa<.<p = X<bp — X<a- We denote x, = X<24 — X<a
for short.

For each number N > 0, we define the Fourier multipliers P<y, Psy, Py as
Pon () = x=n () F(6),
Pon f(&) == x>n(€)f(E),
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Paf(€) = xn(6)f(6),

and similarly Pspy, P<y. These multipliers are usually used when N are dyadic numbers
(that is, of the form 2* for some integer k).

Moreover, we denote the Strichartz norm by

2 3 3
||| so(ry := sup {||u||L§L;(I><R3) : p + o= 5,2 <g<o00,2<r <6},
and the dual space of S°(I) by N°(I) and the corresponding norm is
: 2 3 3
||| wory == mf{”“HLg’L;/(MRS) : p + o= 5,2 <g<o00,2<r< 6}.

2.2. Basic lemmas. In this section, we state some useful lemmas which will be used in our
later sections. Firstly, we recall the well-known Strichartz estimates.

Lemma 2.1. (Strichartz’s estimates, see [10}]) Let I C R be a time interval. For all admis-
sible pairs (q;,7;),j = 1,2, satisfying

2 d d
2<gqj,r;<oo, —+—=—, and (q,r,d)#(2,00,2),
4G T 2
then the following statements hold:
HeitAfHijL;j([X]Rd) S ”fHLQ(Rdﬁ (2'1>

and

t
H / =95 P(5)ds (2.2)
0

1,1 11
whereq2+q,2—r2+r,2 1.

<
LA L (IxRd) ~ ||F||LféL;/2(1de)’

We also need the following radial Sobolev inequality.

Lemma 2.2. (see [39])Let o, p,q, s be the parameters which satisfy

da 1 1 1
a>—— —<-<-+4s 1<pqg<oo, 0<s<d
q 9 P 9
with L
a+s=d(-—-).
p q
Moreover, at most one of the equalities holds:
1 1
pzlv p = o0, QZL q=00, —=—-+s.
p g

Then for any radial function u,

21| gy S NIV oo

uHLq(Rd
The following result is the Hardy inequality.
Lemma 2.3. Let 1 <p < d. Then,

H ‘x|_1uHL£(Rd) S, ”quLZ(Rd)-
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3. A GENERAL PERTURBATION THEORY

In this section, we set up a general theory to give a sufficient condition for the existence
of the solution to the following perturbation equation

10w + Aw = |w + v[*(w + v), (3.1)
w(0,x) = wp(x). '
Before giving the main results, we need some auxiliary spaces. We denote the space S(I)
with the corresponding norm as follows
||U||S(I) = ||VU||L§L3(1xR3) + ||u||L§L}c2(I><R3)~ (3.2)
In this section, our main result is as follows.

Proposition 3.1. Let 0 € I C R and suppose that there exists a solution w € C(I; HL(R?))
of BI). Assume that there exists a constant Cy > 0, such that

[v]|s@+) < Co, (3.3)
and there exists a constant Eq > 0, such that
Stu?Hw(t)HH;(RS) < Ey. (3.4)
€

Then, there exists some C' = C(Cy, Ey) > 0 (independent of I) such that
|wllsy < C(Co, Ep).

To prove Proposition B.I] we shall use the perturbation theory, which shows that the
solution w of equation (B.1]) can stay close to the solution w of the original energy critical
equation:

{iatﬁ; + AT = |o|'®, (35)

w(0, ) = wo(x),
where w = w(t,z) : R x R® — C is a complex-valued function. From the result in [12], we

have that if @y € H 1(R3), then the equation (B.5)) is globally well-posed and scatters, and w
satisfies

IVllso@s) + lwlls@sy < CUlwoll grars))- (3.6)

Let g(t,x) := w(t,z) — w(t, x), then g satisfies the following equation:
{i@tg+Ag = F(g+v,w), (3.7)
9(0, ) = wo(x) — wo(x). '
Where we denote
Flg+v,w) =|g+v+a|'(g+v+w0) —|o]'w.
Then our perturbation result regarding to g is as follows.

Lemma 3.2. Let I C RY, 0 € I and Ey > 0. Let @ € C(I; HL(R?)) be the solution of (B3)
on I with

’&70 = Wop.
Then, there exists my = n1(Ey) with the following properties. Assume that

|vllsay < m, (3.8)
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and
[woll g1 sy < Eo, (3.9)
then there exists a solution g € C(I; HX(R®)) of @) with initial data gy = 0 satisfying
Hg”LgOH;(IxRS) + HQHS(I) < C(Eo,m)m.
To prove this lemma, we first derive the nonlinear estimates.
Lemma 3.3. Let I C R" be some compact interval and 0 € I. Then
IVE(g + v, @)l[wvory SUgllsay + Wllsa) Ulallsa + vllsa + 1@15a)
+Hll@lsa Ulallsa + 1vlsa)-
Proof. By the definition of N°(I) and Holder’s inequality, we have
IVuyus||wvoery S IIVurus]| p e rxes)
S ||VU1||L§Lg(IxR3)||U2||Ai§L;2(1xR3)
S lunllsen luzllsq-
Moreover, for the term F'(g + v, w), we have the pointwise estimates,
IVE(g+v,@)| = [V(lg+ v+l (g + v+ @) — |[@]'D)
< (IVgl+ [Vol)(lgl* + ol + [@]*) + [Va|(|g]* + [o]*).
Hence, this lemma follows by combining the above estimates. 0

Next, we give the proof of the perturbation theory.

Proof of Lemma[34. By the assumption of ([B.9]), and ([B.0), we have
[wllsry < C(Eo). (3.10)

Fix some absolutely small 0 < 7, < 1, then we can split [ = U}I:l[j, I; = [tj_1,t5], to = 0,
such that

1 ~
57 < |l©||s(z;) < 02 (3.11)

Then J = J(Ey,1n9) is finite. We also take some 7; < 1, that will be decided later. The
proof of this lemma will now be accomplished in two steps.

Step 1. In this step, we are going to prove that under the assumption that for any j > 1,
lg(ti-0 g1 sy < n2s (3.12)

then there exists some suitable constant By > 1 independent of j, n;, and 75, such that
1911 L 3 1 sy + 191151y < Bolllg(t5-2)ll s esy + m)- (3.13)

To prove ([B.I3), first recall the Duhamel formula to the equation (3.7,

¢
g(t) = -8t ) — z/ e IAE (g 4+ v, W) (s)ds. (3.14)
ti—1
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Using Duhamel formula (3.14]), Lemma 2.1 and Sobolev inequality, we have

t
190y + Nl SNotts-lggany +]| [ € 2VF(g+ v @)s)as]
ti—1 J

o0l + [TF g+ 0,0 o (3.15)
Moreover, by the Lemma B3] ([B.8), and (B.11), we have
[V F(g+v,9)|| yor,y SUgllsay +n0)Ulgllse, +ni+m2) + m2lllgllse, +n)
Sz + 1lgllse,) lgllsay) + mms.
Further by (8.I3]) implies that
19l oo 1111, xrey + N9 llscry SNgE-0) sy + 0 + g5, gllsery) +m. (3.16)

Noting the assumptions of smallness conditions (B.12)), by (8:16) and the bootstrap method,
we can obtain

191l oo 1 1, xrsy + N9lls) S Ng (-0l sy + m (3.17)
Hence, we can choose suitable constant By > 1, such that (8.13) holds.

Step 2. Next, we shall to get the desired results through induction. To start with, we
take the parameter 7; such that

JBIm < . (3.18)
Therefore, 1; depends only on Fjy and the absolute small constant 7,.

First, we consider the subinterval I; = [0, #;]. In this case, go = wg — wy = 0. Thus, we
have

||90||H1(R3) = 0.
By the first step, we get the existence of g on [, and

191l 5o 1.1y <y + 19l sy < Boma- (3.19)

Secondly, we consider the subinterval I = [t1,%5]. In this case, by (B19) and (BI1),
19t 711 @e) < Bom < 1.
The above estimate satisfies the assumption ([B.12). Thus, by Step 1, we have
||9||L;>°H;(12x11§3) + [l9lls(z) < Bo(Bom +m) < 2B (3.20)

Now we start the induction procedure from 5. We aim to prove that for any j =
1,2,...,J,

191 e 73 1, sy + gl sz < TBam- (3.21)

For j = 2 case, we have that the above estimate holds. Next, for j = k case, we suppose the

above estimate (B.21)) holds, that is
1911 50 11 1 <) + g llsay < kB (3.22)
Hence, it suffices to prove the j = k + 1 case. Using (8.22)) and (B.1I8)), we obtain
19l 2 sy < kB{m < JBJm < . (3.23)
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By Step 1, we obtain the existence of g on I, and
191l 50 711 11y m) + 9 ll502500) < Bo(kBgm +m) < (k+1)Bg . (3.24)
Hence, by induction, we have (321]) holds for any j = 1,2,...,J.
Then, we have the existence of g on the whole interval I, and for any j,
HQHL§OH;(1ij3) + HQHS(Ij) < jBym < 1.
Summing this over all subintervals I;, we complete the proof of this lemma. O
Finally, we are in a position to prove Proposition Bl Although the perturbation theory
is a local result, we can apply it by iteration to proving that the global spacetime norms of
w is uniformly bounded.
Proof of Proposition[31l. For any fixed ty € I, we consider the following equation
10y + Aw = |w|*w,
(3.25)

w(tg, x) = w(ty, ).

By (B8), we have that there exists a global solution w(t,2) = w)(t,z) of the equation
B.23)) with

10 ls@+y < Clw(to)llm@s))- (3.26)

Now, let 71 = m1(Ep) be defined as in Lemma B2l By the assumption ([B3]), we can split
I=UL 0, I, =[n_1,7], 70 = 0, such that

1
o' < ||U||s(’fl) <M.

Then L(Cy, n) is finite. We consider subinterval L firstly. By (B.4), we can take to = 79 =0
for the equation ([B:2H]), and clearly have

||w0||H;(R3) < Ey.
Then, using Lemma [3.2] on fl, we obtain the existence of w € C(fl; H;(R?’))
Similarly as above, for I, we can take t, = 7; for the equation ([Z25). Using (B2 again,

sup [lw(t)|| 71y < Eo-
tE[Oﬂ'l]

Particularly,
[0 ()| 3 sy = Nlw(m)ll gy gsy < Eo

Then, we can apply Lemma [.2] on I, after translation in ¢ from the starting point 7y, and
obtained the well-posedness on .

Inductively, under the assumptions of Proposition B.I, we can obtain the existence of
w e C(I;; HX(R?)) for I =1,2,..., L. Moreover, from Lemma B.2 and (3.0), we have

|wl| sy < C(Co, Eq). (3.27)
Hence, we finish the proof of the proposition. O
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4. FRAMEWORK OF THE PROOF

4.1. Linear and nonlinear decomposition. Now, we turn to the proof of Theorem [L.4l
We consider the energy critical NLS (1)) with the initial data ug = f,. Fixing dp > 0, we
take N = N(dp) > 0, such that

| P>nxz1f || oo ms) < do. (4.1)

Denote vy := (Ps>nX>1/)out, and wg := 2 P<1 f + 2 Psix<1 f + (Pi<.<nX>1/)out- Then we split
the solution u of (LT]) as u = v + w, where

and w satisfies the equation

(4.2)

10w + Aw = |w + v[*(w + v),
w(0, x) = wp(x).

Now we need the following two hypotheses: assume that there exist constants Cy, Ey > 0,
(H1)

[v][s@+) < Co,
(H2) For any 0 € I € R*, if w € C(I; H:(R?)), then
igy!\w(t)!\y;(Rs> < Ep.
Then, under the above two hypotheses, the general theory in the third section is available

for our case, we can obtain that the solution w to the above perturbation equation is global
in H'. Hence, it suffices to verify the above two hypotheses (H1) and (H2).

4.2. Proof of Theorem [I.4] under the hypotheses (H1) and (H2). We are now in a
position to give the proof of Theorem [L.4l

Proof. First of all, by Proposition Bl under the hypotheses (H1) and (H2), we obtain the
global existence of w in the forward time and

[wlls@+y < C(Co, Eb). (4.3)
Next, we prove the scattering statement in Theorem [[4l Set
wo=fomi [ s
Then we have O
u(t) — eitAqu = i/+°° ei(t_s)A(|u|4u)(s)ds.
t

Now, we claim that u, — f, € H' and
Ju(t) — ™ uy| gigsy — 0, as t— +oo.

Indeed, it reduced to prove that

H /0 - ei@*sm(\u\‘*u)(s)ds)

< +o00. (4.4)
HE(R?)
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First, by Strichartz’s estimate (2.2 and Holder’s inequality, we have

+oo
| / D ([l ) (s)ds
0

S ||V(|U|4U)||LgL§(R+xR3)

HL(R3)
S ”quLng(RerRS)HUHi§L;2(R+xR3)- (4.5)

Moreover, by (H1) and (£3]), we have

IVull g2 o @+ xrey + [[ull s z@exrey S NVl 200 @+ ey + Wl 2spe@e xrs) + [Vl s@+
< C(Co, Ep). (4.6)

Combining (A1) with ([€4]), we get
+o0
| / 92 (Jufu) (5)ds|
0

Next, similarly as above, we have

H/ i(t=s)A( |u|4u)<s)ds)

) < +00.
HJ(R3)

S [llull]

L2(R3) L2L5 (R+ xR3)

S ||U||L§L;2(R+XR3) [wll e 2 r+ xm2)
< +00.

Hence, we obtain (£4]). This proves the scattering statement and thus finishes the proof of
Theorem [L4] O

5. LINEAR ESTIMATES

In this section, we give the proof of the validity of hypothesis (H1).
Proposition 5.1. Let sg € (2,1). Then there exists a constant Cy > 0, such that
[vlls@+) < Co.

First of all, we need the frequency restricted incoming component of f as follows, for
any fixed integer k

fonilr) =78 / " (T(=pr) + K (pr) xar ()02 F f (p)dps

correspondingly, the frequency restricted outgoing component of f as follows
+oo
falr) =17 [ (=) = K(pn) s (0)o™ o)y
0

5.1. Known results from [2]. Next, we recall some useful lemmas, see Proposition 3.11,
Lemma 3.12, Proposition 4.1 and Proposition 4.3 in [2] for the proof.

Lemma 5.2. Suppose that f € L*(R3), then
| fout/inll 22y S [ f || 22(r).-

The next lemma shows that if a function f has high frequency f = Py f, then its incom-
ing/outgoing component will have almost the same frequency plus a smooth perturbation.
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Lemma 5.3. Let k > 0 be an integer. Suppose that f € L*(R3) with suppf C {x : |z| > 1},
then

(Por (X>10))outjin = (Por (X>1f))out/ink—1<-<k+1 + I,
where hy, satisfies the following estimate,
1]l 2 es) S 27 %1 Por (1 )| 22 g
Moreover,
X <1 (Por (X2 1.))out/in k1< <kl m2@s) S 27| Por (21 f) || 2.
The following result is the incoming/outgoing linear flow’s estimate related to the inside
region.

Lemma 5.4. Let k > 0 be an integer. Then there exists & > 0, such that for any triple
(v, q,7) satisfying that

the following estimates holds,
H |V|V[X§5(1+2kt)eim<x2i (Por(X21f))out k-1<-<h+1)] HL?L;(RJr xR3)

(9 (y_2_3
52 (2-(r—3 T))k”PQk(le.f)HLQ(RS)'

The same estimate holds when e A

and o, are replaced by e~ and ;,, respectively.

The following result is the incoming/outgoing linear flow’s estimate related to the outside
region.

Lemma 5.5. Let k > 0 be an integer. Moreover, let r, 1, 72, s be the parameters satisfying

11 3 3
T>27 71>27 72207 5_'__2_7 71+S:___-
r 2 2 r
Then for any t > 0,
V12 x50 200 € (Xo 1 (Por (X2 1.))out k-1.<k41)]] L1 (R9)

S (L4 28) 720K Py (o f) | ooy

The same estimate holds when e and . are replaced by e~ and ;,, respectively.
5.2. Further estimates. Now, we can obtain the following space-time estimates based on

the above lemma.

Corollary 5.6. Let (v,q,r) be the triple satisfying

1 2
vy>0, ¢=1, r>2, -—-<1--,
q r

then the following estimate holds,
H |V|V[X25(1+2kt) 6itA(X>

1
=1

_1_1.1
S 20 R P (o ) ey (5.1)

(sz (Xz1f))out,k—1§~gk+1)] HLng(RmRa)
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Moreover, for any § > 0,

H \V |7 [X25(1+2kt)€im(

Ss 2<7%ﬂ+)k”sz(lef)HL%RS)- (5.2)

X1 (Por (xz1))outb-1- b | 2 12 (5.4 00) )

The same estimate holds when e and . are replaced by e > and ;,, respectively.

Proof. (510) was proved by Corollary 4.4 in [2]. In addition, we also need the result (5.2)).
From Lemma 5.5 we have

H ‘V|V[Xz5(1+2kt)eitA(X2i (Por (X21))out h-1<<k41)] HLEL;@([&,Jroo)xRS)

< 2030k (1 2°0) 7 | 215,400 1 Pox (X21.) || L2(29) -
Furthermore, we have
(1 + th)_l”L%([é,—l—oo)) <s27h
Combining the above two estimates, we prove the corollary. O

Next, we gather some space-time norms that will be used below. Define the Y (I) space
by its norm

_5_ _ 71 _
[olly(ry :=N>"e ||VU||L§L3(1xR3)+Ns° 2 ||U||L§L;2(1xR3)

_1_ _
+ N*737 ||v|| poe Lo (1xr3) + N*° ||'U||L%Lgo([><R3).

Then, by the above Lemmas and Corollary, we have

Lemma 5.7. Let N > 1, % < 8o < 1, then the following estimates hold,

[vlly@s) S 1P>nX>1f] 50 ®s).-

Moreover, for any d > 0,

el
V]l 12 1oe (15, 200) xk3) S N ™72 7| Poyxo1 fll oo m3)-

Proof. The estimates above v on Rt was proved by Proposition 4.5 in [2], we only sketch
the proof for completeness, and prove the spacetime estimate of v on [, +00). Let N = 2*o
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for some ky € N. By Lemma [5.3] we write

v :eitA(P>NX>1f)out

= Z P2k X>1f))out

= Z "B (2 (P (X1 )outh-1<-<ki1) + Y €Shy

k=ko k=ko
+ 3 e (a1 (P (X1 f)outk1<<11)
k*ko
= Z €Zm sz(X>1f))0utk 1<<k+1) + Z 2
k= ko k= kO

+ )Xoz (Xa 1 (P (X1 ) )out k-1< <k 41)

k*ko

1

4

+ Z X>5(1+201)€ (X> (B (X21))outk—1<-<h41)-
k=ko

Then by Lemma 2.1l and Lemma [5.3] we obtain

Z HeztA|v‘ i P2’“<X21f))0w5,k*1§'§k+1>HL%Lg(Rﬁ—XRS)
k=ko

S Z ||X§i(PQ’“(XZlf))out,k—1§~§k+1||H2(R3)
k=ko

< Z Q*QkHng (Xz1)l L2 ms)

k=ko
SN2 Poyxs1f]| oo re)- (5.3)

In the same way as above, we can also obtain
o0
D € BV il 2 xrsy S N 7270 Ponxsr f o) (5.4)
k=ko
Next, by Lemma [5.4] noting that % < 509 < 1, we have

Z H VI [X§6(1+2kt)6im(x

k=ko

< 2 RO Py (o1 ) | 2y
k=ko

SN0 3| Poyxo1 f || oo es) - (5.5)

i(PQk (X>1f))out k—1<-<k+1 ] HL2L6 (R+ xRR3)
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Finally, from Corollary [(£.6] noting that % < 89 < 1, we obtain that

> IV Dzsasane™ (o1
k=ko

<3 2 P (o f) ey
k=ko

SN Ponxs1 £ o ). (5.6)
Then collecting the estimates (B.3))-(5.0]), we get

_ 5
IVl 200+ xra) S N ™06 Ponxs1 | oo s)-

Similarly as above, by Lemma I Lemma (.3, Lemma 54l Corollary B.6, and Sobolev
inequality, we can obtain

(Por (XZlf))out,k—1§~§k+1)] HLng(w «R3)

_ 7
”UHL§L;2(R+xR3) SN s°+24+HP2NX21f’ H50(R3),

_ 1
[0l oo Lo mt xr3) S N0T55 | Ponxor fl oo w3y,

and

0]l 12 Lo et xr3) S N 70T Ponxz1fll oo s)-

Next, we will estimate the term ||V vl| 12100 (15 400)xr3), the proof is similar as above. By
Lemma 2.1, Lemma and Lemma 5.4l we have

> [V (X<2 (Por(X21S))out k—1<-<k+1) HLngo([&ﬂo)Xm

k=ko
-+ Z H |V| [XS(;(H_th)eitA(XZi (PZk (XZlf))out,k—1§-§k+1)] HL%L;"([S,—l—oo)x]Rg’)
k=ko
+ Z ”eitA|v‘hk‘”Lng°([5,+oo)><]R3)
k=ko

SN2 Ponxo1 fll moes)-
Furthermore, by Corollary 5.6, we obtain

kzk: H V| [X25(1+2kt)€im(x2i (P2’“(lef))vutvk—léékﬂ)} HL%LgO([&—f—oo)XR:*)
atat]

§N_S°+%+HPzNlefHHSo(R?’)-

Hence, by the above two estimates, we obtain

el
IVl 12 1oe (15, 200) xk3) S N ™02 T Pon X1 fll oo ms)-

Thus, we get the desired estimates and complete the proof of the lemma. 0

Hence, by Lemma [5.7] we can obtain Proposition 5] by choosing a suitable constant
C() > 0.
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6. A PRIORI ESTIMATE

In this section, we give the proof of the validity of a priori assumptions (H2). To this
end, we define the working space Xy (I) for I C RT by its norm

1l (ry = Nl o gra rmsy + NEO VRl s 1xm)-
Then we have
||h||L;>°H;(IxR3) < Ng(l_SO)HhHXN(I)’
T (T T e (6.1)
The following is the main result in this section.

Proposition 6.1. Let sy € (2,1). Let w € C(I; HL(R®)) be the solution of the equation

@Bd). Then there exists a constant Ey = Eo(N) > 0, such that

sup||w(t) || g1 zsy < Eo-
tel

To prove Proposition [6.1], we need some spacetime norms of w are uniformly bounded.
First of all, we have the initial data w is in H'. Indeed, by Bernstein’s inequality, we have

[P<1f + Poix<ifll sy S Ix<afllmes) + [[x>1f]
Moreover, by Lemmas and 5.3, we have

0

I(Prccnxz1Houtlin@sy S D (1P (o1 outsk—1<-<hn) | gy + 12kl g1 gs))

Hs0 (RS) .

=

k=0
ko

SN (2P (o1 )l z2rey + 27| Poe (X1 ) | 22R2))
k=0

SN o fllaso@sy + X1 |0 @s)

< leso

Hence, combining the above two estimates, we have
lwoll g gy S N7 (6.2)

Next, we have that the L°L2(I x R3) norm of w is uniformly bounded. In fact, by the
conservation of mass (L2) and Lemma , we obtain

HwHLgOLg(IxRS) S HUHL;;OLg(IxRS) =+ HUHLgOLg(IxRS)
S fellzzsy + 1L Nl oo ey
S N o w3y (6.3)

Now, we start with the Morawetz estimates.

6.1. Morawetz estimates. In this subsection, we consider the Morawetz-type estimate by

Lin-Strauss [25].

Lemma 6.2. Let 2 < so <1 and ||w||xymr) > 1, then

it .
[ [ e e s N ol + ol )
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Proof. Let

M(t) =Im -Vw(t,x)w(t, z)dx.

R3 \xl

By integration-by-parts, we have

M'(t) = Im i |x| - (Vwaw + Vwwy)dx
R
2
=(—DIm | (—ww + — - Vow,)dz + Im
Rs || |93| ws ||

1
= 2Im (i -Vw + —w)wdz.
re || ||

By the equation (Z.2])
w; = —iAW + i|ul*u
= —iAW + i|w|*w + i|u|*T — i|w|*w

From the above two equalities, we have

M'(t) =2Im ( -Vw + — ! w)(—iAW)dx

re | ] |z]

1
+ 2Im ( -V + —w)(ijw|*w)ds
R® |9€| 7]

1
+ 2Im ( YV + —w)(i|u|*u — i|w|*w)ds

re | ] |z
=L+ L+ 1.
For I, by integration-by-parts, we have
I = / ] ([Vw]? — ‘?‘ wa)d:p + 2m|w(t,0)]* > 0.

For I, by integration-by-parts again, we have

92 6
I — _/ lwt,2)P ,
3 Jrs ||

For I3, by Holder’s inequality and Lemma 2.3 we have
1
|| < ’Im/ (i Vw4 —w) (i|u| T — i|w|*w )da:’
RS || ]

S IVwllze || luls = [w*wl] , g

Hence, by the above three estimates and integrating in time in (6.4]), we can obtain

w(t, z)|°
/z s P g < supM(t) + [ Veollzsgarn |[Jul*e = fwl*e]|

|z]

For the first term, by (61]), (6.3]) and Holder’s inequality

Stlel?M(t) S ”wHL?’Lg(lxRP’)”wHL;XJH;(IxR% < NB(I*SO)”U}HXN(I)

- Vwwidx

(6.5)

(6.6)
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Next, for the term H lu|*u — |w|41,UHL1L2 noting that © = w + v, by Holder’s inequality

2 (I xR3)’
we have

4 4 4
H|u| U= |w| wHL%L%(IXRC*) S H|u + w| |u B w|HLng(1xR3)
S H (Jwl* + |v‘4>|U‘HLt1L§(I><]R3)
S ”UHL5L10 Ixr3) T HU”LngO(IXRS)HwHigz(IxE@)'
For the estimates about v, by Lemma [5.7] interpolation inequality and (AII), we have
[0ll L2 oo (rxmsy S N0 o,
and
2 3 el
||U||L§L;0(IxR3) N ||v||szgo([XR3)||U||zgoLg(ij3) SN 0544,
Further, by (6.1]) and the above three estimates, we obtain that

. L 901
|| *u — \w|4wHLgL§(szs) S Nootlhge 4 Nt g N2l °)Hw|’§(N(1)

_ 11 9
SN0 5wk o

S 5o||w||§(N(1)- (6.7)
Hence, by (6.1)), (€5), (6.6) and (€71), we have

w(t, z)[° s
[ e e < ot iy + a0
R3 X
This finishes the proof. O

From the above lemma we have the following result.

Corollary 6.3. Under the same assumptions as in Lemmal6.2, then
(1—s0) 3 1 7
lollzs msy S N2 (Jall ) + 38 lll )

Proof. By Hélder’s inequality,

/ i, )P dudt = // [l ot
RS
. lw(t,z)|°
- — 1 7 daxdt.
N!!|x\2w}}sz(sz3>[43 || !

1
H‘x|2wHL§<’I(IXR3) 5 ”wHL;X’H;(IXR?’) 5 N3 (1=20) ”wHXN

By Lemma 22l and (GI), we have

Hence, by Lemma and the above estimates, we obtain
/1 g w(t, z)Pdedt < N ([lw]% oy + ollwl ),

which gives the desired estimate. U
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6.2. Energy estimate.
Lemma 6.4. Let 3 < 5o <1 and ||w|xy@) > 1, then

1 5
lwll oo a1 xmay S NP0 (1 65 lwll3 )
Proof. For snnphmty, we denote I = [0,7) and for any t € I, let

/\thx\d:c—l— /|ut:c6dx

Taking product with w; on the equation (B.I]) and integration-by-parts, we have

d ~
—E(t) =Re [ |u]*utdz.
dt R3
Since v is a linear solution, we further obtain
d ~
—E{t)=Im [ |u|*uAvdz.
dt R3

Integrating the above equality in time from t, to ¢, we get

t

E(t) = E(ty) + Im/ |u|*uAvdzdt’, (6.8)
to JR3

where ty will be determined later.

For the first term E(fo) in [G8), by Sobolev inequality, we have
Eto) S lw(to) 13y s + llulto)lI%e e

S ”vw”Lg’oL%([O,to]xR?’) + ”vw”Lg’oL%([O,to]xR?’) + Hv|’6L§’°Lg([0,to}><R3)' (6.9)

Now, we estimate the term [|[Vw/||pecr2(j0,40)xrs)- First of all, by Lemma 2.1l and Lemma 5.7
we have

Ve ugll p2rs (1xmsy S IV (Parf + Porx<if)llrzrsrxrey + IV ™ (Po1xz1 Joutll 2 s (rxe)
S P f + Poix<ifllgsy + [[Poixs1f|
S lIx<afllaes) + lIx1f]

Hence, given small constant & > 0, by choosing to = to(uo, Ix<1fllmr @)+ x>1f]
small enough, we have

H#0(R3)

HS0 (RS) .

HSO(RS)) >0

||veitAu0||LfL§([0,to]><]R3) < do.
Then using the standard fixed point argument, we can obtain
IVl z2s (0,t0) xR < do- (6.10)
By (A1), (610), Lemma 2.1 and Lemma .7, we have

4
Vw512 (000 xr%) S Nlwoll gz sy + 1V (Jul “)”LgLE([O,tO}xRB)

SN IVl 2o o,to) ey |6l e 18 (0,00] x5

5 NI*SO + 50(”va%?°[1%([0¢0}><]1{3) + HvHif"Lg([O,to]XRS))
—5 I 5o e 3

5 Nl 0 + 50||vw||%§OL%([O7tO]XR3) + 5ON 4 o+3+5§

< N0 4 50|]Vw|!igoLg([o,tolxR3)'
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Further, by the bootstrap argument,
1—
IVl ez o.o)xms) S N7

Hence, by ([63), (6I1) and Lemma 7 we obtain

E(to) SNQ(l_SO) + N6(1_80) + N_680+2+58
<N6(1—80).

Next, we consider the second term in (6.8), by integration-by-parts, we have

t ¢
Im/ |u|4uAvdxdt/§/ / lu| | Vu||Vo|dedt!
to JR3 to JR3

T T
§/ / |u|4\VwHVv\da:dt/+/ / |u|*| Vv |2dzdt
to R3 to R3

3211 + IQ.

21

(6.11)

(6.12)

(6.13)

We consider the term [; firstly. By (41]), Lemma [5.7 and interpolation inequality, we have

il
IVl 22 Lo (10,1 3) S N 07276,

and

1 3 -~ 1
||v||L§7x([to7T}><R3) 5 Hsz%Lgo([XRa)||v||}1,§>oLg([><R3) 5 N SO+4+50-

Further, by using (6.1)), (€I4) and (6I5]), we obtain

I SNVl zzree o, m1xm) V0| o2y ullzs 7y
S HVUHLngo([tmT}xm)HVwHL;’%g(IxH@)(Hw”igzuxu@) + HUHigz([xu@))
S NG - N0y - (N2 [y gy + NTH0F167)
SNy - N - N3O oy
SN Gl %
< N80 lwll X ()-
Next, we consider the term I. By (L2)), (1), (614) and Lemma 57 we obtain
I SHVUHingo([tO,T]XR?:)HUHL?’L?E(MRS)”u”ig%g(fxﬂz?:)
SN-ZotlEg2 (Ng(kso)Hw”%(N(I) + NS g3
SN GG lwl %y ()

SN0 53wl % (-
Hence, combining (6.8), (6.12), (€.I13), (6.16) with (617), we can obtain
SUpE(t) S N0 (1 + dol|wl| %y (1) + 85 lwlie ()

< Nﬁ(l_so)(l + 5o||w||§(zv(1))'

(6.14)

(6.15)

(6.16)

(6.17)
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Further, from the definition of E(t), we have

NI

Hw”Lt‘X’H;(IXR?’) S (Stlel?E@))

15
S N (1468 wll 3 )

This completes the proof of this lemma. U

Now, we aim to prove Proposition [6I], which shows the assumption (H2) is valid.

Proof of Proposition[61l. First, we show that for any I such that 0 € I ¢ R,

Jwllxym S 1. (6.18)

Indeed, if ||w||xy ) < 1, then (G.I8) already holds. Therefore, we can assume ||w||x, ) > 1.
Using Corollary [6.3] Lemma [6.4] and Young’s inequality, we obtain

_3(1—s ~9(1-s
|w| xym =N 3 O)HUJHL;XJH;(IXW) + N0 0)HwHLiw(MW)
1 5 3 1 7
< CO+ &Il oy + Tl + 08 I0ll% )
1 5 1 1
< O+ Cog 1wl oy + lwllxwa + 06 llwllxwa

1 5 1
< C+Cd; ||w||)2(1v(1) + §||w||XN(I)'

Then, we get

1 5
lwllxnm S 1+ 11wl X0y

By the usual bootstrap argument, we obtain (6.I8). Hence, we finish the proof of Proposition

0. 1]

1]

t
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