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ABSTRACT

We propose a new physics guided machine learning (PGML) paradigm that leverages the variational
multiscale (VMS) framework and available data to dramatically increase the accuracy of reduced
order models (ROMs) at a modest computational cost. The hierarchical structure of the ROM basis
and the VMS framework enable a natural separation of the resolved and unresolved ROM spatial
scales. Modern PGML algorithms are used to construct novel models for the interaction among the
resolved and unresolved ROM scales. Specifically, the new framework builds ROM operators that
are closest to the true interaction terms in the VMS framework. Finally, machine learning is used
to reduce the projection error and further increase the ROM accuracy. Our numerical experiments
for a two-dimensional vorticity transport problem show that the novel PGML-VMS-ROM paradigm
maintains the low computational cost of current ROMs, while significantly increasing the ROM
accuracy.

Keywords Reduced order modeling, Variational multiscale method, Physics guided machine learning, Nonlinear
proper orthogonal decomposition, Autoencoder, Galerkin projection

1 Introduction

The behavior of physical systems can be generally described by physical principles (e.g., conservation of mass,
momentum, and energy) together with constitutive laws. The resulting models are often mathematically formulated as
partial differential equations (PDEs) (e.g., the Navier-Stokes equations). Solving them allows prediction and analysis of
the system’s dynamics. The applicability of analytic methods for solving PDEs is usually limited to simple cases with
special geometry and under severe assumptions. In practice, numerical approaches (e.g., finite difference, finite volume,
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spectral, and finite element methods) are utilized to discretize the governing equations and approximate the values of
the unknowns corresponding to a given grid. For turbulent flows, we need to deal with an exceedingly large number of
degrees of freedom due to the existence of a wide range of spatio-temporal scales to be resolved. Although such models,
called here full order models (FOMs), are capable of providing very accurate results, they can be computationally
demanding. Therefore, FOMs become impractical for applications that require multiple forward evaluations with
varying inputs (e.g., flow control [1–3], optimization [4–10], and digital twinning [11–16]) or studies requiring several
simulations like computational-aided clinical trials [17].

Reduced order models (ROMs) are defined as computationally light surrogates that can mimic the behavior of FOMs
with sufficient accuracy [18–22]. Projection-based ROMs have gained significant popularity in the past few decades
due to the increased amounts of collected data (either from actual experiments or numerical simulations) as well as
the development of system identification tools [23, 24]. Of particular interest, the combination of proper orthogonal
decomposition (POD) and Galerkin projection has been a powerful driver for ROM progress. The process comprises an
offline stage and an online stage. The offline stage starts with the collection of data corresponding to system realizations
(called snapshots) at different time instants and/or parameter values. With these data sets, POD provides a hierarchy of
basis functions (or modes) that capture the maximum amount of the underlying system’s energy (defined by the data
variance). The offline stage is concluded by performing a Galerkin projection of the FOM operators onto the subspace
spanned by a truncated set of POD modes to obtain a system of ordinary differential equations (ODEs) representing the
Galerkin ROM (GROM). Although this offline stage can be extremely expensive, the resulting GROM can be utilized
during the online deployment phase to efficiently predict the system’s behavior at parameter values and/or time instants
different from those in the data preparation process.

The GROM framework has been successful in many applications (e.g., [22, 25–32]), especially those dominated by
diffusion mechanisms or periodic dynamics. Those are often referred to as systems with a solution manifold that
is characterized by a small Kolmogorov n-width [33, 34]. In the POD context, this means that the dynamics can
be accurately represented by a few modes. However, for convection-dominated flows with strong nonlinearity, the
Kolmogorov n-width is often large with a slow decay, which hinders the linear reducibility of the underlying system.

The repercussions of a Galerkin truncation and projection are two-fold. First, the span of the retained POD basis
functions does not necessarily provide an accurate representation of the solution and it gives rise to the projection
error [35–37]. Second, the interactions between the truncated and the retained modes can be significant. These
interactions are ignored in the Galerkin projection step, and consequently the GROM cannot in general capture the
dynamics of the resolved modes accurately. This introduces a closure error [38–48]. Several efforts have been devoted
to address the closure problem. A recent survey covering a plethora of physics-based and data-driven ROM closure
methodologies can be found in [22].

The closure problem has been historically related to the stabilization of the ROM solution, drawing roots from large
eddy simulation (LES) studies, where the truncated small scales are thought of having diffusive effects on the larger
scales. Therefore, eddy viscosity-based frameworks have been often used in the ROM literature [49]. Nonetheless, it
was found that introducing eddy viscosity to all resolved scales can actually unnecessarily contaminate the dynamics of
the largest scales. To mitigate this problem, the variational multiscale (VMS) method, which was proposed by Hughes’
group [50–52] in the finite element setting (see, e.g., [53,54] for a survey), was utilized to add eddy viscosity dissipation
to only a portion of the ROM resolved scales in [38,55,56]. A data-driven version of VMS (DD-VMS) has been recently
proposed in [57], where the effects of the truncated modes onto the GROM dynamics are not restricted to be diffusive.

In the present study, we transform the DD-VMS [57, 58] and provide an alternative modular framework by utilizing
machine learning (ML) capabilities. We stress that this is a fundamental change in which the standard DD-VMS
regression is replaced by ML in order to better account for closure effects. Therefore, the proposed neural network
approach is essentially different from the regression based DD-VMS [57]. In particular, the DD-VMS ansatz of a
quadratic polynomial closure model is relieved by utilizing the deep neural network (DNN) functionality with memory
embedding. We also leverage the long short-term memory (LSTM) variant of recurrent neural networks (RNNs) to
approximate scale-aware closures. In essence, the use of LSTM encompasses a non-Markovian closure, supported by
the Mori-Zwanzig formalism [59–63]. Moreover, we adopt the physics guided machine learning (PGML) framework
introduced in [64–66] to reduce the uncertainty of the output results. In particular, we exploit concatenation layers
informed by the VMS-ROM arguments to enrich the neural network architecture and constrain the learning algorithm
to the manifold of physically-consistent solutions. Finally, for problems with a large Kolmogorov n-width, we utilize
the nonlinear POD (NLPOD) methodology [67] to reduce the projection error without affecting the computational
efficiency, by learning the correlations among the small unresolved scales to provide much fewer latent space variables.
We also perform a numerical investigation of the proposed strategies (ML-VMS-ROM, PGML-VMS-ROM, and
NLPOD-VMS-ROM), with a particular focus on the locality of scale interactions, which is a cornerstone of the VMS
framework.
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The rest of the paper is organized as follows: We briefly describe the reduced order modeling methodology by the nexus
of POD and Galerkin projection in Section 2. The relevant background information and notations for the VMS approach
are given in Section 3. The use of the PGML methodology to provide reliable predictions is explained in Section 4,
while the NLPOD approach is discussed in Section 5. The proposed NLPOD-PGML-VMS framework is tested for
the parametric unsteady vortex-merger problem, which exemplifies convection-dominated flow systems. Results and
discussions are presented in Section 6, followed by the concluding remarks in Section 7.

2 Reduced Order Modeling

A Newtonian incompressible fluid flow in a domain Ω ⊂ Rd, where d defines the spatial dimension (i.e., d ∈ {2, 3}),
can be described by the Navier-Stokes equations (NSE). In order to eliminate the pressure term, we consider the NSE in
the vorticity-vector potential formulation. In particular, we consider the 2D case where the vector potential is reduced
to the streamfunction as follows:

∂tω − ν∆ω + (u · ∇)ω = 0, in Ω× [0, T ],

∆ψ + ω = 0, in Ω× [0, T ],
(1)

where ω(x, t) and ψ(x, t) denote the vorticity and streamfunction fields, respectively, for x ∈ Ω and t ∈ [0, T ], while
ν stands for the kinematic viscosity (diffusion coefficient). In dimensionless form, ν represents the reciprocal of the
Reynolds number, Re. The velocity vector field u(x, t) is related to the streamfunction as follows:

u = ∇⊥ψ, ∇⊥ = [∂y,−∂x]T . (2)

By using Eq. (2), Eq. Eq. (1) can be further rewritten as follows:

∂tω − ν∆ω + J(ω, ψ) = 0, in Ω× [0, T ], (3)

where J(·, ·) denotes the Jacobian operator, which is defined as follows:

J(ω, ψ) =
∂ω

∂x

∂ψ

∂y
− ∂ω

∂y

∂ψ

∂x
. (4)

The vorticity transport equation (Eq. Eq. (3)) is equipped with an initial condition and boundary conditions on Γ := ∂Ω.
For convenience and simplicity of presentation, we shall assume the following conditions:

IC : ω(x, 0) = ω0(x), in Ω,

BC (non− slip) : ψ(x, t) = 0,
∂ψ

∂n
= 0, in Γ× [0, T ].

(5)

In the remainder of this section, we describe the construction of the projection-based ROM of the vorticity transport
equation. This includes the use of POD to approximate the solution (Section 2.1), followed by the Galerkin method,
where the FOM operators in Eq. Eq. (1) are projected onto the POD subspace to define the sought GROM (Section 2.2).

2.1 Proper orthogonal decomposition

We consider a collection of system realizations defined by an ensemble of vorticity fields {ω(x, t0), ω(x, t1), . . . ,
ω(x, tM−1)}. These are often called snapshots and come from either experimental measurements or numerical
simulations of Eq. Eq. (1) or Eq. Eq. (3) using any of the standard discretization schemes (e.g., finite element, finite
difference or finite volume methods). Without loss of generality, we assume that these snapshots are sampled at

equidistant M (> 1) time instants with tm = m∆t, where m = 0, 1, . . . ,M − 1 and ∆t =
T

M − 1
. We note that, in

general, these snapshots can correspond to different types of parameters (e.g., operating conditions, physical properties,
and geometry).

In POD, we seek a low-dimensional basis {φ1, φ2, . . . , φR} that optimally approximates the space spanned by the
snapshots in the following sense [49]:

min

〈∥∥∥∥ω(·, ·)−
R∑
k=1

(
ω(·, ·), φk(·)

)
φk(·)

∥∥∥∥2
〉
,

subject to ‖φ‖ = 1,
(
φi(·), φj(·)

)
= δij ,

(6)
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where 〈·〉 denotes an average operation with respect to the parametrization, (·, ·) is an inner product, and ‖ · ‖ is the
corresponding norm. For example, an ensemble average based on temporal snapshots can be defined as follows:

〈ω〉 =
1

M

M−1∑
m=0

ω(·, tm). (7)

The snapshots represent the approximation of the quantity of interest on a specific grid. For example, a realization of
the vorticity field at a given time can be arranged in a column vector ω ∈ RN , where N is the number of grid points. It
can be shown that solving the optimization problem Eq. (6) amounts to solving the following eigenvalue problem [68]:

DΦ = ΦΛ, (8)

where the entries of the diagonal matrix Λ and the columns of Φ represent the eigenpairs of the spatial autocorrelation
matrix D ∈ RN×N with entries defined as [

D
]
ij

=

〈
ω(xi, ·)ω(xj , ·)

〉
, (9)

where ω(xi, ·) is the i-th entry of ω. For fluid flow problems, the length of the vector ω is often large, which makes the
eigenvalue problem in Eq. Eq. (8) computationally challenging.

Sirovich [69–71] proposed a numerical procedure, known as the method of snapshots, to reduce the computational cost
of solving Eq. Eq. (8). This approach is efficient, especially when the number of collected snapshots M is much smaller
than the number of degrees of freedom (i.e., M � N ), as it reduces the N ×N eigenvalue problem in Eq. Eq. (8) to
an M ×M problem. The spatial autocorrelation matrix D ∈ RN×N is replaced by the temporal snapshot correlation
matrix K ∈ RM×M with entries defined as follows:[

K
]
ij

=
1

M

(
ω(·, ti), ω(·, tj)

)
. (10)

The following eigenvalue problem is thus considered:

Kvk = λkvk, (11)

where vk is the kth eigenvector of K and λk is the associated eigenvalue. To obtain the hierarchy of the POD basis, the
eigenpairs are sorted in a descending order by their eigenvalues (i.e., λ1 ≥ λ2 · · · ≥ λM ≥ 0). Finally, the POD basis
functions can be computed as a linear superposition of the collected snapshots as follows [68]:

φk(·) =
1√
λk

M−1∑
m=0

[vk]mω(·, tm), (12)

where [vk]m denotes themth component of vk. It can be verified that the basis functions in Eq. Eq. (12) are orthonormal
(i.e., (φi(·), φj(·)) = δij), where δij is the Kronecker delta. The POD eigenvalues define the contribution of each mode
toward the total variance in the given snapshots. A metric that evaluates the quality of a given set of retained modes in
representing the system is the relative information content (RIC) [22], defined as follows:

RIC(k) =

∑k
l=1 λl∑M
l=1 λl

, (13)

where k is the POD index at which modal truncation takes place. We emphasize that the same approach can be applied
considering parameters other than time. In this case, the temporal correlation matrix is substituted by a generalized
parameter correlation matrix.

2.2 Galerkin projection

The GROM starts by the Galerkin truncation step, making use of the optimality criterion in Eq. Eq. (6) as follows:

ω(x, tm) ≈ ωR(x, tm) =

R∑
k=1

ak(tm)φk(x), (14)

where {ak}Rk=1 are the time-varying modal coefficients (weights), known as generalized coordinates. The optimal
values of these coefficients are defined by the true projection of the FOM trajectory onto the corresponding POD basis
function as follows:

ak(tm) =
(
ω(·, tm), φk(·)

)
. (15)

4
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Next, the vorticity field ω in Eq. Eq. (3) is replaced by its approximation ωR from Eq. Eq. (14). After this, the Galerkin
projection step comes into play, by defining the POD test subspace XR as follows:

XR := span{φ1, φ2, . . . , φR}. (16)

Finally, Eq. Eq. (3) with ω replaced by ωR is projected onto the POD space XR. This yields the GROM of the vorticity
transport equation: Find ωR ∈XR such that:

(∂tω, φ)− ν(∆ω, φ) +
(
J(ω, ψ), φ

)
= 0, ∀φ ∈XR. (17)

Equation Eq. (17) can be written in a tensorial form as follows:

ȧ = Aa + a>Ba, (18)

where a(t) ∈ RR is the vector of unknown coefficients {ak}Rk=1, while A ∈ RR×R and B ∈ RR×R×R are the matrix
and tensor corresponding to the linear and nonlinear terms, respectively.

The Galerkin truncation step restricts the approximation of the vorticity field to live in a low-rank subspace XR

(R � N ), which might not capture all the relevant flow structures. Therefore, a projection error is introduced.
Furthermore, the Galerkin projection step enforces the dynamics of the ROM to be defined using only the scales
supported by XR. Nonetheless, due to the coupling between different modes, the unresolved scales (i.e., the scales
modeled by {φk}k≥R+1) influence the dynamics of the resolved scales (i.e., the scales modeled by {φk}k≤R). By
neglecting these mutual interactions, the GROM becomes incapable of accurately describing the dynamics of the
retained modes, which is usually referred to as the closure problem [22].

Figure 1: Representation of the repercussions of modal truncation onto the ROM solution. The solid black curve
denotes the FOM trajectory, assuming that the full rank expansion is defined by a1, a2, and a3. The solid blue curve
defines the projection of the FOM trajectory onto a two-dimensional subspace. The vertical dashed blue lines refer to
the projection or representation error. Note that evaluating a1 and a2 still requires the knowledge of the FOM trajectory
(i.e.,a1, a2, and a3) at every point. In practice, we only have information regarding the resolved variables (i.e., a1 and
a2), so the contribution of a3 towards the dynamics of a1 and a2 is neglected. This yields a closure error, denoted by
the dashed red lines.

The projection error and closure error are illustrated in Fig. 1, for a toy system whose full-rank approximation can be
represented with 3 modes as follows:

ω(x, t) = a1(t)φ1(x) + a2(t)φ2(x) + a3(t)φ3(x). (19)

Assuming that the FOM is written in the following form:

ω̇ = F (ω), (20)
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then the dynamics of {ak}3k=1 can be described as ȧk = (F (ω), φk). Thus, the FOM trajectory can be written as
follows: [

ȧ1
ȧ2
ȧ3

]
=

[
f1(a1, a2, a3)
f2(a1, a2, a3)
f3(a1, a2, a3)

]
. (21)

In other words, evolving {ak}3k=1 using Eq. Eq. (21) and reconstructing ω with Eq. Eq. (19) recovers the FOM field
(equivalent to solving Eq. Eq. (20) using standard discretization schemes). For the sake of demonstration, we suppose
that we retain only 2 modes in the ROM approximation. This corresponds to removing the third row in Eq. Eq. (21) as
follows: [

ȧ1
ȧ2

]
=

[
f1(a1, a2, a3)
f2(a1, a2, a3)

]
. (22)

Approximating ω with just two modes results in losing the flow structures that are contained in the truncated mode (the
vertical direction in Fig. 1), which yields the projection error. Furthermore, we note that f1 and f2 are usually functions
of a1, a2, and a3 for systems with strong nonlinearity and coupling between different modes. However, during ROM
deployment, we do not usually have information regarding the unresolved dynamics (a3 in this example). Thus, in
GROM, the effects of the truncated scales onto the resolved scales are assumed to be negligible, as follows:[

ȧ1
ȧ2

]
=

[
f1(a1, a2, 0)
f2(a1, a2, 0)

]
. (23)

We denote the reference trajectory described by Eq. Eq. (22) as the true projection, which is related to Eq. Eq. (15). This
defines the best low-rank approximation that can be obtained for a given number of modes, assuming we have access to
the whole set of FOM scales. The difference between the GROM trajectory (corresponding to solving Eq. Eq. (23)) and
the true projection trajectory represents the closure error. In the present study, we address both the closure error and the
projection error. First, to tackle the closure problem, we leverage the VMS framework outlined in Section 3 to develop
the PGML methodology in Section 4. Then, we utilize the NLPOD approach in Section 5 to reduce the projection error
by learning a compressed latent space that encapsulates some of the truncated flow structures.

3 Variational Multiscale Method

The variational multiscale (VMS) methods are general numerical discretizations that significantly increase the accuracy
of classical Galerkin approximations in under-resolved simulations, e.g., on coarse meshes or when not enough basis
functions are available. The VMS framework, which was proposed by Hughes and coworkers [50–52], has made a
profound impact in many areas of computational mechanics (see, e.g., [53, 54] for a survey).

To illustrate the standard VMS methodology, we consider a general nonlinear partial differential equation

ω̇ = F (ω), (24)

whose weak (variational) form is
(ω̇, φ) = (F (ω), φ), ∀φ ∈X, (25)

where F is a general nonlinear function and X is an appropriate test space. To build the VMS framework, we start with
a sequence of hierarchical spaces of increasing resolutions: X1, X1 ⊕X2, X1 ⊕X2 ⊕X3, . . . . Next, we project
system Eq. (24) onto each of the spaces X1, X2, X3, . . . , which yields a separate equation for each space. From a
computational efficiency point of view, the goal is to solve for the ω component that lives in the coarsest space (i.e.,
X1), since this yields the lowest-dimensional system:

(ω̇, φ) = (F (ω), φ), ∀φ ∈X1. (26)

However, system Eq. (26) is not closed since its right-hand side involves ω components that do not belong to X1 (i.e.,
ω2 ∈X2, ω3 ∈X3, . . . ):

(F (ω), φ) = (F (ω1, ω2, ω3, . . . ), φ), ∀φ ∈X1. (27)

Thus, the VMS closure problem needs to be solved. That is, Eq. Eq. (27) needs to be replaced with an equation that
involves only terms that belong to X1. In general, the VMS system in Eq. Eq. (26) equipped with an appropriate closure
model (i.e., a model with components in X1 that captures the interaction between ω1 and the scales in X2,X3, . . .)
yields an accurate approximation of the X1 component of ω.

The POD procedure in Section 2.1 yields a hierarchy of orthogonal basis functions, sorted by their contribution to the
total energy. Therefore, it provides a natural fit to the VMS framework. Next, we illustrate the adoption of VMS in
GROM settings to define a multi-level VMS ROM. In particular, we detail the two-scale and the three-scale VMS
ROMs, while further extensions become straightforward.
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3.1 Two-scale VMS ROM

The two-scale VMS (VMS-2) ROM utilizes two orthogonal spaces, X1 and X2, defined as follows:

X1 := span{φ1, φ2, . . . , φR},
X2 := span{φR+1, φR+2, . . . , φN},

(28)

where X1 represents the span of the resolved ROM scales and X2 is the span of the unresolved scales. Thus, ω can be
written as follows:

ω =

R∑
k=1

akφk +

N∑
k=R+1

akφk = ωR︸︷︷︸
resolved

+ ω′︸︷︷︸
unresolved

, (29)

where ωR ∈ X1 is the resolved ROM component of ω, while ω′ ∈ X2 is the unresolved component. Using this
decomposition, Eq. Eq. (26) can be rewritten as follows:(

ω̇R, φk
)

=
(
F (ωR), φk

)
+

[(
F (ω), φk

)
−
(
F (ωR), φk

)]
︸ ︷︷ ︸

VMS-2 closure term

, ∀k ∈ {1, . . . , R}. (30)

The bracketed term in Eq. Eq. (30) is the VMS-2 closure term, which models the interaction between the ROM modes
and the discarded modes. Since the unresolved component of ω, ω′, is not available during online deployment stage, it
is not possible to exactly compute the closure term in practical settings. Instead, the closure term can be approximated
using a generic function G(ωR) as follows:(

G(ωR), φk) ≈
(
F (ω), φk

)
−
(
F (ωR), φk

)
, (31)

and the VMS-2 ROM can be written as(
ω̇R, φk

)
=
(
F (ωR), φk

)
+
(
G(ωR), φk). (32)

The form and parameters of G will be defined in Section 4.

3.2 Three-scale VMS ROM

The locality of modal interactions is a cornerstone of the VMS framework. It states that neighboring modes have more
mutual interactions than those who are far apart in the energy spectrum. For this reason, it is natural to distinguish
between neighboring and far modes when closure modeling is performed. To this end, the flexibility of the hierarchical
structure of the ROM space is leveraged to perform a three-scale decomposition of ω, leading to a three-scale VMS
(VMS-3) ROM, which aims at increasing the VMS-2 ROM accuracy. To construct the VMS-3 ROM, we first build
three orthogonal spaces, X1, X2, and X3, as follows:

X1 := span{φ1, φ2, . . . , φr},
X2 := span{φr+1, φr+2, . . . , φR},
X3 := span{φR+1, φR+2, . . . , φN}.

(33)

Compared to the decomposition into resolved and unresolved scales in Section 3.1, X1 now represents the large
resolved ROM scales, X2 represents the small resolved ROM scales, while X3 denotes the unresolved ROM scales.
With these definitions, ω can be written as follows:

ω =

r∑
k=1

akφk +

R∑
k=r+1

akφk +

N∑
k=R+1

akφk

= ωL︸︷︷︸
large resolved

+ ωS︸︷︷︸
small resolved

+ ω′︸︷︷︸
unresolved

.
(34)

This is similar to Eq. Eq. (29) with ωR = ωL + ωS . To construct the VMS-3 ROM, we project system Eq. (24) onto
each of the spaces X1 and X2, as follows:(

ω̇L, φk
)

=
(
F (ωL + ωS), φk

)
+

[(
F (ω), φk

)
−
(
F (ωL + ωS), φk

)]
, k = 1, . . . , r, (35)

(
ω̇S , φk

)
=
(
F (ωL + ωS), φk

)
+

[(
F (ω), φk

)
−
(
F (ωL + ωS), φk

)]
, k = r + 1, . . . , R. (36)

7
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Although the two bracketed terms in Eq. Eq. (35) and Eq. Eq. (36) defining the VMS-3 closure terms look similar, they
have different roles. The first term models basically the interaction between the large and the small resolved modes,
because the interaction large-unresolved is assumed to be negligible (according to the VMS principle of locality of
modal interactions). The second term models the interaction between the small resolved and the unresolved ROM
modes. This allows great flexibility in choosing the structure of the different VMS ROM closure terms. This concept is
investigated numerically in Section 6.

4 Physics Guided Machine Learning

In this section, the VMS-2 and VMS-3 closure terms defined in Section 3 are approximated using only the information
in the resolved scales. Specifically, we utilize a purely data-driven approach to compute the parameters of the closure
models. However, instead of relying on heuristics or ad-hoc arguments to define the specific structure of the closure
model (as in the standard DD-VMS [57]), we exploit the capabilities of deep neural network (DNN) in approximating
arbitrary functions. In particular, we use the long short-term memory (LSTM) variant of recurrent neural networks
(RNNs), which has shown substantial success in data-driven modeling of time series [72–74]. We emphasize that,
to mitigate well-known drawbacks of data-driven modeling (e.g., sensitivity to noise in input data), the VMS ROM
framework utilizes data to model only the VMS ROM closure operators, but all the other ROM operators are built by
using classical Galerkin projection. Thus, our VMS ROM framework incorporates “data-driven closure,” rather than
“data-driven modeling” for the resolved scales.

4.1 ML-VMS ROM

The VMS-2 ROM in Eq. Eq. (32) can be rewritten as follows:

ȧ = f(a) + c(a), (37)

where a = [a1, a2, . . . , aR]T ∈ RR is the vector of coefficients for resolved POD modes, f(a) =
[
(
F (ωR), φ1

)
,
(
F (ωR), φ2

)
, . . . ,

(
F (ωR), φR

)
] represents the Galerkin projection of the FOM operators onto the POD

subspace, and c(a) = [c1, c2, . . . , cR]R ∈ RR is the vector of the closure (correction) terms, i.e., ck = (G(ωR), φk). In
the present study, we use DNN to represent the closure model, i.e., c(·) ≈ πθ(a), where θ denotes the parameterization
of the LSTM. The general functional form of the DNN models used for temporal forecasting can be written as follows:

h(n) = fhh (a(n),h(n−1)),

c(n) = foh(h(n)),
(38)

where a(n) := a(tn) ∈ RR is the vector of modal coefficients at time tn and c(n) ∈ RR is the corresponding closure
term, defining the input and output of the DNN, respectively. In Eq. Eq. (38), h ∈ RH represents the hidden-state of the
neural network, fhh and foh the hidden-to-hidden and hidden-to-output mappings, respectively, and H the dimension of
the hidden state. The Mori-Zwanzig formulation [44, 75–78] shows that non-Markovian terms are required to account
for the effects of the unresolved scales onto the resolved scales. Thus, the closure operators are modeled as functions of
the time history of the resolved scales. We emphasize that employing a non-Markovian closure model is a key feature
of the proposed PGML-VMS-ROM that is in stark contrast with the DD-VMS in [57, 58], which considers only the
Markovian effects.

For memory embedding, we let c be a function of the short time history of the resolved POD coefficients, i.e.,
c(n)(·) ≈ πθ(a(n),a(n−1), . . . ,a(n−τ)) = πθ(a

(n):(n−τ)), where τ defines the length of the time history of a that is
required for estimating the closure term. The LSTM allows modeling non-Markovian processes while mitigating the
issue with vanishing (or exploding) gradient by employing gating mechanisms. In particular, the hidden-to-hidden
mapping fhh is defined using the following equations:

g
(n)
f = σf (Wf [h(n−1),a(n)] + bf ),

g
(n)
i = σi(Wi[h

(n−1),a(n)] + bi),

s̃(n) = tanh (Ws[h
(n−1),a(n)] + bs),

s(n) = g
(n)
f � s(n−1) + g

(n)
i � s̃(n),

g(n)
o = σo(Wo[h

(n−1),a(n)] + bo),

h(n) = g(n)
o � tanh (s(n)),

(39)

8
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where gf ,gi,go ∈ RH are the forget gate, input gate, and output gate, respectively, with the corresponding
Wf ,Wi,Wo ∈ RH×(H+R) weight matrices, and bf ,bi,bo ∈ RH bias vectors. s ∈ RH is the cell state with
a weight matrix Ws ∈ RH×(H+R) and bias vector bs ∈ RH . Finally, σ is the sigmoid activation function, and �
denotes the element-wise multiplication.

We stack l LSTM layers to define the hidden states, followed by a fully connected layer with a linear activation function
to represent the hidden-to-output mapping. Thus, the ML-VMS-2 closure model can be written as

c(n) ≈ L(·) ◦ h(n)
l (·) ◦ h(n):(n−τ)

l−1 (·) ◦ · · · ◦ h(n):(n−τ)
1 (·) ◦ I(a(n):(n−τ)), (40)

where L(·) represents the output layer with linear activation, and I(·) denotes the input layer. Note that each of the
internal LSTM layers (i = 1, 2, . . . , l − 1) produces a sequence of hidden states h(n):(n−τ)

i , while the the lth layer
passes only the hidden state at the final time h

(n)
l to the output layer.

To summarize, Eqs. (37), (38), (39), and (40) yield the ML-VMS-2 ROM. In order to make use of the locality of modal
interactions, the VMS-3 ROM is written as [

ȧL
ȧS

]
= f(a) +

[
cL(a)
cS(a)

]
, (41)

where two separate terms are dedicated to model the closure for the resolved large scales and resolved small scales. For
the ML-VMS-3, the closure terms are defined as follows:

c
(n)
L ≈ πL,θ(a(n):(n−τ))

≈ L
L

(·) ◦ h(n)
lL

(·) ◦ h(n):(n−τ)
l−1L (·) ◦ · · · ◦ h(n):(n−τ)

1L
(·) ◦ I(a(n):(n−τ)),

c
(n)
S ≈ πS,θ(a(n):(n−τ))

≈ L
S
(·) ◦ h(n)

lS
(·) ◦ h(n):(n−τ)

l−1S (·) ◦ · · · ◦ h(n):(n−τ)
1S

(·) ◦ I(a(n):(n−τ)).

(42)

We note that we have more flexibility in ML-VMS-3 than in ML-VMS-2. Hence, it is possible to make richer
descriptions of the interactions between large resolved, small resolved, and unresolved scales.

4.2 PGML-VMS ROM

Critical aspects that should be considered during the adoption of ML based approach include their reliability, robustness,
and trustworthiness. Previous studies [64–66] have reported high levels of uncertainty in the predictions of vanilla-type
ML methods, especially for sparse data and incomplete governing equations regimes. In order to mitigate this issue, we
utilize the physics-guided machine learning (PGML) paradigm to incorporate known physical arguments and constraints
into the learning process. In particular, we exploit a modular approach to modify the neural network architectures
through layer concatenation to inject physical information at different points in the latent space of the given DNN. This
adaptation augments the performance during both the training and the deployment phases, and results in significant
reduction in the uncertainty levels of the model prediction, as we demonstrate in Section 6.

In the PGML framework, the features extracted from the physics-based model are embedded into the generic ith
intermediate hidden layer along with the latent variables. In order to build the PGML-VMS framework, we consider the
Galerkin projection of the governing equations onto different POD modes to define the physics-based features (since
they are derived from physical principles). Thus, the PGML-VMS-2 closure model can be written as

c(n) ≈ L(·) ◦ h(n)
l (·) ◦ · · · ◦ C

(
h
(n):(n−τ)
i (·),f (n):(n−τ)

)
◦ h(n):(n−τ)

i−1 (·) ◦ · · · ◦ h(n):(n−τ)
1 (·) ◦ I(a(n):(n−τ)),

(43)
where C(·, ·) represents the concatenation operation, and f (n):(n−τ) is the time history of projecting the FOM operators
onto the truncated POD subspace. We highlight that there is no significant computational load for the calculation of
f := Aa + a>Ba, since A and B are already precomputed.

A schematic illustration of the PGML adaptation of the standard LSTM architecture is depicted in Fig. 2. In this figure,
3 LSTM layers are used (i.e., l = 3), followed by a dense layer to provide the mapping from hidden state to the closure
terms. The physics-based features are injected into the LSTM latent space after two hidden layers. One of the main
advantages of the novel PGML framework in Fig. 2 is its modularity and simplicity. For example, based on the level of
fidelity and our confidence in the injected features, we can promptly change the layer at which we embed them.

9



A PREPRINT

x +

x x

x +

x x

x +

x x

x +

x x

x +

x x

x +

x x

Figure 2: Illustration of the PGML methodology with concatenated LSTM layers. In this figure, a time history of 2
time steps is used while physics-based features (yellow circles in the figure) are injected into the LSTM latent space
after the second hidden layer (i = 2).

Finally, the PGML-VMS-3 closure models can be written as

c
(n)
L ≈ L

L
(·) ◦ h(n)

lL
(·) ◦ · · · ◦ C

(
h
(n):(n−τ)
iL

(·),f (n):(n−τ)
L

)
◦ h(n):(n−τ)

i−1L (·) ◦ · · · ◦ h(n):(n−τ)
1L

(·) ◦ I(a(n):(n−τ)),

c
(n)
S ≈ L

S
(·) ◦ h(n)

lS
(·) ◦ · · · ◦ C

(
h
(n):(n−τ)
iS

(·),f (n):(n−τ)
S

)
◦ h(n):(n−τ)

i−1S (·) ◦ · · · ◦ h(n):(n−τ)
1S

(·) ◦ I(a(n):(n−τ)).

(44)
Note that in Eq. Eq. (44), we enjoy higher flexibility in choosing the physics-based features injected for each of the large
and small scale closure models. For instance, in the present study, we benefit from the locality of modal interactions by
embedding the Galerkin propagator of only a few relevant neighboring modes (i.e., f

L
and f

S
in Eq. (44)), rather than

including all of them in the LSTM learning (i.e., f in Eq. (43)).
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5 Nonlinear POD

In Section 3 and Section 4, we addressed the closure problem. That is, we aimed at correcting the ROM equations for
the dynamics of the resolved scales including the effects of the unresolved scales onto the dynamics of the resolved
scales. However, the reconstructed flow fields were approximated within the span of the retained modes, as shown in
Eq. Eq. (14). Nonetheless, for turbulent flows the important flow structures generally span a large number of modes.
Thus, truncating the solution beyond a small number of modes results in a large projection error. In other words, the
component ω′ =

∑N
k=R+1 akφk that cannot be approximated by the resolved POD basis becomes significant. In this

section, we adapt the nonlinear POD (NLPOD) framework, introduced in [67], to model the unresolved part of the field.
Fig. 3 presents a schematic representation of the PGML-VMS-3 model for the large and small resolved scales combined
with NLPOD for enhanced field reconstruction. Note that, although both the PGML-VMS-3 and the NLPOD aim at
increasing the ROM accuracy, they target different error sources: the PGML-VMS-3 aims at mitigating the closure
error, whereas the NLPOD aims at alleviating the projection error.

The NLPOD methodology is based on combining POD with autoencoder (AE) techniques from ML to learn a latent
representation of the POD expansion. It leverages the predefined hierarchy of POD basis functions, which satisfy the
conservation laws and physical constraints, together with the capabilities of DNN to reveal the nonlinear correlations
between the modes. Rather than using the NLPOD for the compression of the total set of POD coefficients, we constrain
it to learn a few latent variables, which represent only the unresolved scales. To construct the NLPOD, we first define
b = {ak}Kk=R+1 corresponding to an almost full-rank POD expansion, where K ≤ N can be defined using the RIC
spectrum (e.g., RIC(K) ≥ 99.99%). The goal is to learn z = {zk}qk=1, where q � K denotes the dimension of the
AE latent space.

The AE starts with an encoding process that involves applying a series of nonlinear mappings onto the input data to
shrink the dimensionality down to a bottleneck layer representing the low rank or latent space embedding. An inverse
mapping from the latent space variables to the same input is performed by another set of nonlinear mappings, defining
the decoding part. For the NLPOD, the encoder and decoder can be represented as follows:

Encoder η : b ∈ RK−R 7→ z ∈ Rq, Decoder ζ : z ∈ Rq 7→ b ∈ RK−R, (45)

and they are trained jointly to minimize the following objective function:

J =

Ntrain∑
n=1

‖b(n) − (η ◦ ζ)(b(n))‖, (46)

where Ntrain is the number of training samples.

In order to temporally propagate z, we can use any of the regression tools, including sparse regression, Gaussian process
regression, Seq2seq algorithms, temporal fusion transformers, and auto-regression methods. In the present study, we
use LSTM architectures that are similar to the ones used in Section 4 to learn the one time-step mapping from z(n) to
z(n+1), as follows:

z(n+1) ≈ L(·) ◦ h(n)
l (·) ◦ h(n):(n−τ)

l−1 (·) ◦ · · · ◦ h(n):(n−τ)
1 (·) ◦ I(z(n):(n−τ)). (47)

Note that the number of layers, l, and the length of time history, τ , are not necessarily equal to those in Section 4.
Moreover, the LSTM and AE can be trained either jointly or separately. In the present study, we train them separately
for the sake of simplicity and to facilitate the NLPOD combination with other time series prediction tools.
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PGMLPGML

Encoder LSTM Propagator

NLPOD

Decoder

Figure 3: Schematic representation of the PGML-VMS-3 model for the large and small resolved scales, combined with
NLPOD for enhanced field reconstruction. We note that PGML-VMS-3 is built upon a GROM for the first R modes
and mitigates the closure error (i.e., the effect of the truncated scales onto the resolved scales). In a complementary
fashion, NLPOD implements an equation-free model for the truncated scales to reduce the projection error (i.e., the
effect of the truncated scales onto the flow field reconstruction).
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6 Results and Discussion

In this section, we perform a numerical investigation of the proposed PGML-VMS-ROM methodologies (with and
without the NLPOD extension) using the two dimensional (2D) vortex merger problem [79], governed by the following
vorticity transport equation:

∂tω + J(ω, ψ) =
1

Re
∆ω, in Ω× [0, T ]. (48)

We consider a spatial domain of dimensions (2π × 2π) with periodic boundary conditions. The flow is initialized with
a pair of co-rotating Gaussian vortices with equal strengths centered at (x1, y1) = (5π/4, π) and (x2, y2) = (3π/4, π)
as follows:

ω(x, y, 0) = exp
(
−ρ
[
(x− x1)2 + (y − y1)2

])
+ exp

(
−ρ
[
(x− x2)2 + (y − y2)2

])
, (49)

where ρ is a parameter that controls the mutual interactions between the two vortical motions, set at ρ = π in
the present study. For the FOM simulations, we consider a regular Cartesian grid resolution of 256 × 256 (i.e.,
∆x = ∆y = 2π/256), with a time-step of 0.001. Vorticity snapshots are collected every 100 time-steps for t ∈ [0, 30],
totalling 300 snapshots. The evolution of the vortex merger problem at selected values of the Reynolds number is
depicted in Fig. 4, which illustrates the convective and interactive mechanisms affecting the transport and development
of the two vortices.

In terms of POD analysis, we use R = 6 to define the total number of resolved scales. For the three-scale VMS
investigation, we split the resolved modes into 2 resolved large scales (i.e., r = 2) and 4 resolved small scales. For
the NLPOD study, we find that K = 20 corresponds to near full-rank approximation of the flow field at all values of
the Reynolds number. This is illustrated by the plot of the RIC values as a function of the number of POD modes at
Re = 3000 in Fig. 5.

Following a systematic approach, in Section 6.1, we first present our computational results for ML-VMS-2 and PGML-
VMS-2 to quantitatively demonstrate the benefit of incorporating the physics guided machine learning approach. We
then present the results for PGML-VMS-3 to highlight the flexibility and accuracy gain of the three-scale approach.
Finally, in Section 6.2, we reveal the additional role of the NLPOD approach by illustrating the performance of the
PGML-VMS-3+NLPOD approach.

6.1 Multi-level VMS closure for resolved scales

We store data corresponding to Re ∈ {500, 750, 1000, . . . , 3000} (in increments of 250), but we use only the data
collected at Re ∈ {500, 750, 1000} for neural network training, while the remaining data is reserved for testing purposes.
First, we explore the combination of multi-level variational multiscale methods with machine learning. Fig. 6 displays
the results of applying the ML-VMS-2 framework to model the closure term at Re = 3000. In particular, we run a
group of 10 LSTMs with different initializations of the neural network weights and utilize the deep ensemble method to
quantify the uncertainty in the predictions. On the average, the ML-VMS-2 method provides accurate results compared
to the GROM results. However, the uncertainty levels, described by the standard deviation in the ensemble predictions,
are high. This is especially evident at the late time instants as the uncertainty propagates and grows with time.

In order to increase the closure model robustness and reduce the uncertainty levels, we apply the PGML to inject
physics-based features, as detailed in Section 4. Fig. 7 shows the evolution of the first 6 POD modal coefficients using
the PGML-VMS-2. We can observe a significant reduction in the uncertainty levels as depicted by the shaded area,
compared to the ML-VMS-2. It is also clear that the GROM yields inaccurate predictions. Moreover, we can observe
that the deviations of the GROM trajectory from the true projections are larger for the latest resolved modes. In fact,
this observation also applies to the ML-VMS-2 and PGML-VMS-2, which provide better results for the first two or
three modes than the remaining ones.

In Fig. 8, we plot the ROM propagator ȧ computed by the Galerkin method (i.e., with truncation, with no access to
the unresolved scales, and without correction) against the true propagator (assuming access to all the flow scales). We
find that the GROM equations can adequately describe the dynamics of the first modes, but fail to do so for the last
ones. This can be explained by locality of information transfer, which is one of the main concepts used in the VMS
development. Such locality indicates that the neighboring modes exhibit larger mutual interactions than the modes
which are far apart. Thus, describing the dynamics of the leading modes requires more information from the first
few scales than from the remaining scales. In other words, the resolved scales become almost sufficient to define the
propagator of the leading modes. On the other hand, the last modes are adjacent to the unresolved scales.Thus, the
mode truncation considerably affects the dynamics of the last modes.
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Figure 4: Samples of temporal snapshots of the vorticity field for the vortex merger problem at different values of
Reynolds number.

In order to improve the quality of the closure model, we leverage the locality of modal interactions and apply the
three-level VMS closure to correct the ROM dynamics. In particular, we split the resolved scales into two parts: the
first 2 modes represent the largest resolved scales, while the remaining 4 modes represent the small resolved scales. The
ML-VMS-3 predictions of the temporal dynamics for the first 6 modes are shown in Fig. 9. Compared to Fig. 6, the
ML-VMS-3 provides more accurate results than the ML-VMS-2, even in terms of uncertainty levels.

Finally, the PGML-VMS-3 results are shown in Fig. 10, where we can see improved results across all the resolved
scales with very low levels of uncertainty. The mean squared error (MSE) between the true projection values of the
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Figure 5: RIC values as a function of the modal truncation for the vortex merger problem at Re = 3000.
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Figure 6: The time evolution of the first 6 modes of the vortex merger problem with the two-level VMS using ML
closure, compared to the true projection and GROM (without closure) predictions. The solid line represents the mean
values (µ) from an ensemble of 10 different LSTM neural networks trained with different weight initalizations, while
the shaded area defines the uncertainty bounds using standard deviation (σ) values. For better visualization, the shaded
band is plotted with µ± 5σ.

resolved scales and the prediction of the ROM with and without various closure models is shown in Fig. 11. We can see
that the VMS closure provides at least one order of magnitude better predictions than the baseline GROM. Moreover,
the PGML-VMS is superior to the ML-VMS, especially for Reynolds number values that are not included in the LSTM
training. This can be attributed to the fact that PGML employs physics-based features derived from the governing
equations, resulting in improved extrapolatory capabilities of the overall model. Finally, the three-level variant of
VMS is providing more accurate ROMs than VMS-2, making use of the locality of information transfer to build more
localized closure models.

15



A PREPRINT

0 10 20 30
t

0

20
a

1
(t

)

True Projection GROM PGML–VMS–2

0 10 20 30
t

−20

−10

0

10

a
2
(t

)

0 10 20 30
t

0

10

a
3
(t

)

0 10 20 30
t

−10

0

a
4
(t

)

0 10 20 30
t

−5

0

5

a
5
(t

)

0 10 20 30
t

−5

0

5

a
6
(t

)

Figure 7: The time evolution of the first 6 modes of the vortex merger problem with the two-level VMS using PGML
closure, compared to the true projection and GROM (without closure) predictions. The solid line represents the mean
values (µ) from an ensemble of 10 different LSTM neural networks trained with different weight initalizations, while
the shaded area defines the uncertainty bounds using standard deviation (σ) values. For better visualization, the shaded
band is plotted with µ± 5σ.
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Figure 8: Comparison between the ROM propagator computed by Galerkin projection (with truncation, i.e., ȧk =
(−J(ωR, ψR) + ∇2ωR, φk), against the true (FOM projection) propagator (i.e., ȧk = (−J(ω, ψ) + ∇2ω, φk) at
Re = 3000, and R = 6. We notice that the Galerkin projection accurately captures the dynamics of the first modes, but
a discrepancy appears at the latest modes, which motivates the use of multi-level VMS closure.
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Figure 9: The time evolution of the first 6 modes of the vortex merger problem with the three-level VMS using ML
closure, compared to the true projection and GROM (without closure) predictions. The solid line represents the mean
values (µ) from an ensemble of 10 different LSTM neural networks trained with different weight initalizations, while
the shaded area defines the uncertainty bounds using standard deviation (σ) values. For better visualization, the shaded
band is plotted with µ± 5σ.
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Figure 10: The time evolution of the first 6 modes of the vortex merger problem with the three-level VMS using PGML
closure, compared to the true projection and GROM (without closure) predictions. The solid line represents the mean
values (µ) from an ensemble of 10 different LSTM neural networks trained with different weight initalizations, while
the shaded area defines the uncertainty bounds using standard deviation (σ) values. For better visualization, the shaded
band is plotted with µ± 5σ.
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Figure 11: Mean squared error (MSE) between the true values of modal coefficients and the predictions of GROM,
ML-VMS-2, ML-VMS-3, PGML-VMS-2, and PGML-VMS-3.

6.2 NLPOD for unresolved scales

The reconstructed vorticity fields from GROM, true projection, and PGML-VMS-3 at final time (i.e., t = 30) at
Re = 3000 are visualized in Fig. 12. We can see that the GROM field is significantly inaccurate. In contrast, the
PGML-VMS-3 is very close to the true projection field. This suggests that the PGML-VMS-3 is successful in providing
accurate closure terms in such a way that the resulting ROM trajectory converges to the best linear approximation
with 6 modes. Nonetheless, compared to the FOM solution, it is clear that 6 POD modes are not enough to capture
all the relevant flow structures, especially at large values of the Reynolds number. On the other hand, building a
projection-based ROM with increased number of modes will result in an undesired higher computational burden. In
order to cure this limitation, we apply the NLPOD methodology from Section 5 to learn a latent space representation
of important unresolved scales. We find that the value K = 20 corresponds to RIC ≥ 99.99%, so we consider
b = {ak}20k=7 ∈ R14 in the NLPOD extension. We use the NLPOD to learn a two-dimensional compression of the
resolved scales, i.e., z = {zk}2k=1 ∈ R2. Fig. 13 displays the reconstructed vorticity fields at the final time from the
true projection of the FOM field onto the first 6 and the first 20 POD modes. We notice that the FOM flow scales can be
adequately captured by the subspace spanned by the first 20 POD modes. Furthermore, the plots clearly show that the
combination of PGML-VMS-3 for the first 6 modes and NLPOD for the subsequent 14 modes (i.e., a total of 20 modes)
provides improved field reconstruction. We highlight that the computational overhead of the online deployment of the
PGML-VMS closure and NLPOD is negligible compared to solving the projection-based ROM with 6 modes.

The CPU times for different portions of the FOM and ROMs are listed in Table 1. For the ROMs, we can see that
the majority of the time is spent to train the neural networks during the offline stage. We note that this time can be
significantly reduced by considering parallel training algorithms that make use of distributed hardware facilities. We
also notice that the three-level VMS framework takes about twice the time taken by the two-level VMS due to the use
of two distinct neural networks, which doubles the training and testing time. Nonetheless, we see that considerable
computational gains are achieved compared to the FOM, by offloading most of the expensive computations to the offline
stage resulting in computationally light models that can be used efficiently in the online stage. Moreover, we notice
that the costs of the ML and PGML frameworks are of the same order, which implies that incorporating physics-based
features into the neural network latent space comes with negligible overheads.

7 Conclusions and Future Work

We propose a hybrid hierarchical learning approach for the reduced order modeling of nonlinear fluid flow systems.
The core component of the proposed method comprises a multi-level variational multiscale (VMS) framework for
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Figure 12: Comparison between the FOM vorticity field at the final time (i.e., t = 30) and the reconstruction from true
projection (i.e., optimal reconstruction), GROM, and PGML-VMS-3. Note that the PGML-VMS-3 field is very similar
to the true projection field, which implies that the closure error is minimized. However, there are clear differences
between the FOM and PGML-VMS-3 results, which suggest a significant projection error in the PGML-VMS-3 model.

Table 1: Comparison of the CPU times for the offline and online stages for FOM and ROMs. Note that the PGML-
VMS-3+NLPOD model yields a level of accuracy which is similar to the GROM (R = 20) model with only a fraction
of computational overhead (i.e., with a total computational online execution time of 63.876 s for the PGML-VMS-
3+NLPOD model).

Offline CPU Time [s] Online CPU Time [s]
POD Basis 0.646 FOM 1860.056
GROM Operators 0.246 GROM (R = 6) 20.226
ML-VMS-2 Training 71.641 ML-VMS-2 (R = 6) 32.289
ML-VMS-3 Training 148.057 ML-VMS-3 (R = 6) 45.055
PGML-VMS-2 Training 65.324 PGML-VMS-2 (R = 6) 33.358
PGML-VMS-3 Training 139.863 PGML-VMS-3 (R = 6) 51.545
NLPOD Training (AE) 111.543 NLPOD (R = 6,K = 20) 12.331
NLPOD Training (LSTM) 85.234 GROM (R = 20) 604.427

the natural separation of the resolved modes of different length scales and unresolved modes. We develop a modular
physics-guided machine learning (PGML) paradigm through the concatenation of neural network layers to enable the
convergence of the ROM trajectory of resolved scales to the optimal low-rank approximation. We use the projection
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Figure 13: Comparison between the FOM vorticity field at final time (i.e., t = 30) and the reconstruction from true
projection (i.e., optimal reconstruction) at two different values of modal truncation, as well as the predictions of the
PGML-VMS-3 for the dynamics of the first 6 modes, augmented with NLPOD for the following 14 modes (i.e., a total
of K = 20 modes) to reduce the projection error.

of the governing equations onto the POD modes as physics-based features to constrain the output to a manifold of
the physically realizable solutions. For a vorticity transport problem with high Reynolds numbers, we numerically
demonstrate that this injection of physical information yields more robust and reliable ROM closures with reduced
uncertainty levels. Moreover, we showcase the benefits of exploiting the locality of information transfer by building a
three-level VMS, which centers around the scale-separation of the resolved modes into large resolved scales and small
resolved scales. The numerical results show that the VMS-3 provides significant flexibility in defining the closure terms
and is superior to the classical VMS-2 model used in previous studies. Finally, to decrease the projection error, we
adapt the nonlinear proper orthogonal decomposition approach to learn a latent space representation of the unresolved
ROM scales that yield a near-full rank approximation of the flow field.

Further investigations are required to optimize the layer(s) at which physics-based features are injected in the PGML
framework. For example, we can add the injection at multiple points in the latent space, rather than a single point.
Moreover, we may fuse various information from different models by repeating the concatenation operator for each
piece of information. It is worth noting that advanced hyperparameter tuning approaches for the automated design of
neural network architectures (e.g., using genetic algorithms) can be utilized to find the optimal layer(s) to inject the
physics in the PGML architectures. In the present study, the ML-VMS, PGML-VMS, and NLPOD components of the
hybrid framework are treated separately. In other words, the training of each neural network takes place independently
of other neural networks in the framework. In a follow-up study, we plan to explore the simultaneous training of these
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neural networks to ensure that these models are integrated seamlessly in the computational workflow. Finally, the
truncated scales that are recovered by NLPOD can be further embedded in the PGML-VMS architecture to improve the
approximation of the closure model.
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