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Nonconforming virtual elements for the biharmonic equation
with Morley degrees of freedom on polygonal meshes

Carsten Carstensen’ Rekha Khot! and Amiya K. Panif

Abstract

The lowest-order nonconforming virtual element extends the Morley triangular element
to polygons for the approximation of the weak solution u € V := H3(Q) to the bihar-
monic equation. The abstract framework allows (even a mixture of) two examples of the
local discrete spaces V4, (P) and a smoother allows rough source terms F' € V* = H™?(Q).
The a priori and a posteriori error analysis in this paper circumvents any trace of second
derivatives by some computable conforming companion operator J : V;, — V from the
nonconforming virtual element space V. The operator J is a right-inverse of the interpo-
lation operator and leads to optimal error estimates in piecewise Sobolev norms without
any additional regularity assumptions on v € V. As a smoother the companion opera-
tor modifies the discrete right-hand side and then allows a quasi-best approximation. An
explicit residual-based a posteriori error estimator is reliable and efficient up to data oscil-
lations. Numerical examples display the predicted empirical convergence rates for uniform
and optimal convergence rates for adaptive mesh-refinement.

Keywords: biharmonic equation, virtual elements, nonconforming, polytopes, enrichment,
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1 Introduction

The popular nonconforming Morley finite element method (FEM) for fourth-order problems
allows a generalization from triangular domains to polygons in the class of nonconforming virtual
element methods (ncVEM). Two ncVEM have been introduced in [2, 21, 35] for H® regular
solutions, while a medius analysis in [30] allows minimal regularity. In comparison to the existing
literature on ncVEM for biharmonic problems, this paper presents an abstract framework and
identifies two hypotheses (H1)-(H2) for a unified stability and a priori error analysis of at least
two different ncVEM each with an individual parameter r = —1,0,1,2 (r = —1 for original VE
spaces and r = 0, 1, 2 for enhanced VE spaces [1]) and even a mixture of those. This paper adds
a new analysis with a computable conforming companion that allows a quasi-best approximation

lu — Guplo,pw S min |u — Gupl2pw (1.1)
v EVY

with the local Galerkin projection G onto piecewise quadratics and a general source function with
a smoother for the first time in ncVEM and completes the a priori error convergence analysis
in piecewise energy and weaker Sobolev norms. The lower-order estimates are available in the
literature for enhanced VE spaces, e.g., Zhao et al. discuss piecewise H! error estimate in [35] for
an enhanced VE space (r = 0) and this paper proves it also for original VE spaces (r = —1). The
design of companion operators started in [13] for second-order and in [11, 20, 32] for fourth-order
problems. It is related to enrichments in multigrid methods [6] and to reliable a posteriori error
control [17]. Its role as a smoother in ncVEM generalizes [18, 19, 32] for the Morley FEM. The
first paper [16] on an a posteriori error analysis for ncVEM is restricted to second-order problems
and includes many references on an a posteriori error analysis for the conforming VEM. This is
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the first paper on an a posteriori virtual element error control for fourth-order problems with
reliable and efficient error estimators and a suggested adaptive mesh-refining algorithm. The
presented a posteriori error analysis also covers conforming VEM [10].

Main results. This paper contributes to the understanding of the ncVEM for a class of examples
that includes the two known examples of discrete VE spaces for fourth-order problems

e a computable conforming companion operator,
e q priori error estimates in piecewise H' and H? norms,

quasi-best approximation for a smoother for any source term F' € H2(1),

e reliable and (up to data oscillations) efficient a posteriori error control,
e adaptive mesh-refinement algorithm with improved empirical convergence rates.

The results are displayed for 2D and the lowest-order case only corresponding to the Morley
degrees of freedom, but the arguments allow a higher dimension and higher degrees.

Outline and organisation of the paper. Section 2 describes the admissible partitions of the domain
) into polygonal domains and defines the local and global Morley degrees of freedom. Subsection
2.2 establishes a Poincaré-Friedrichs inequality on polygons and Subsection 2.4 recall the local
Galerkin projection G and establish associated error estimates. Section 3 explains an abstract
framework with hypotheses (H1)-(H2) and presents two affirmative examples of virtual elements
V3, (P). The interpolation operator is defined in Subsection 3.3 and its error estimates follow in
Subsection 3.4. Section 4 designs a computable conforming companion operator, which is a
right-inverse of the interpolation operator, and provides the fundamental approximation error
estimates. Subsection 5.1 introduces the natural stabilization and Subsection 5.2 the discrete
problem with two choices for the right-hand side. Subsection 5.3 provides the a priori error
estimates in piecewise H' and H? norms in the best-approximation form up to data oscillations;
a smoother in the right-hand side eliminates the oscillations. Section 6 developes an explicit
residual-based reliable and (up to data oscillations) efficient error analysis for ncVEM that also
applies for the conforming VEM. The stabilization term is efficient with respect to the sum of
the error u — Guy, and u — uy, in their piecewise H? seminorms. Subsection 7.1 suggests an
adaptive mesh-refinement algorithm. Numerical results support the theoretical predictions in
Subsections 7.2-7.3 and provide striking numerical evidence of optimal empirical convergence
rates for adaptive mesh-refining. Supplement material accompanies this paper with details on
the local virtual element spaces and is referred to as Appendix A, B, and C throughout this paper.
This contains partly established or routine results that are somehow standard but seemingly not
available in the literature in this form.

Notation. Standard notation on Lebesgue and Sobolev spaces and norms applies throughout
this paper, e.g., || - ||s,p (resp. seminorm |- |sp) for s > 0 denotes norm on the Sobolev
space H*(D) := H*(int(D)) of order s € R defined in the interior int(D) of a domain D, while
(-;-)r2(py and || - || 2(py denote the L? scalar product and L? norm in D. Let |D| denote the
area of a domain D, and f, edz := |D|~! [, edx denote the integral mean on D. Define the
Sobolev space V = HZ(Q) := {v € H*(Q) : v = vy, = 0} for the derivative v, = Vv - n in
the direction of outward unit normal n along the boundary dD. The vector space C" (D) is the
set of C"-continuous functions defined on a domain D for r € Ny. Let Pi(D) denote the set
of polynomials of degree at most k € Ny defined on a domain D and Py (M) denote the set
of piecewise polynomials on an admissible partition M € M (defined in Subsection 2.1). The
piecewise seminorm and norm in H*(M) for s € R (see the definition of |- [s p = |- |gs(p) in,

1/2 1/2
e.g., [8, Chapter 14]) read |- [spw = (Xpem |- [2p) 7" and | llspw = (Xpendll - I2p) "
Let Iy denote the L? projection on Py (M) for k € Ny. The oscillation of f € L?(Q) reads

1/2
osca(f, M) i= (32 0sh(£,P)) T for osch(f, P) = (1~ Tl)f (.
PeM

Let S be the set of 2 x 2 symmetric matrices in R**? and let §;; denote the Kronecker delta
(0;4 =01if j # k and d;; = 1). Let a := (a1, a2) denote a multi-index with a; € Ny for j = 1,2



and || := a1 + a2. The outward normal and tangential derivatives of first and higher orders
are written as subscripts n, 7, nn, 77, n77 etc. for the exterior unit normal vector n and the
tangential vector 7 along the boundary 9P of the (polygonal Lipschitz) domain P € M € M
(from Subsection 2.1). An inequality A < B abbreviates A < CB for a generic constant C,
that exclusively depends on the domain  and on the mesh-parameter p (from (M2) below).

2 Virtual element method

2.1 Admissible partitions

Let M be a family of decompositions of € into polygonal domains satisfying the two mesh
conditions (M1)-(M2) with a universal positive constant p.

(M1) Admissibility. Any two distinct polygonal domains P and P’ in M € M are disjoint or
share a finite number of edges and vertices.

(M2) Mesh regularity. Every polygonal domain P of diameter hp is star-shaped with respect to
every point of a ball of radius greater than equal to php and every edge E of P has a length hg
greater than equal to php.

Here and throughout this paper, ha|p := hp := diam(P) denotes the piecewise constant
mesh-size hpg € Po(M) and hpax := maxpea hp denotes the maximum diameter over all
P e M e M. Let V(P) (resp. V) denote the set of vertices of P (resp. of M) and let £(P)
(resp. &) denote the set of edges of P (resp. of M). Denote the interior and boundary edges
of M by £(Q) and £(IN). Let V| (resp. |£|) denote the number of vertices (resp. edges) and
N := V| + €]

The standard notation of the polygonal domain P with Np edges and Np vertices is depicted in
Figure 2.1.a. Note that 3 < Np < M (p) for a global number M (p) that exclusively depends on
p [4]. We enumerate the vertices V(P) := {z1,...,2n,} and edges E(P) := {E(1),...,E(Np)}
consecutively, i.e., E(j) = conv{z;,zj41} for j = 1,...,Np with zn,.41 := 21 and enumerate
21,...,2Np counterclockwise along the boundary OP. (M2) implies that each polygonal domain
P € M can be divided into triangles T'(j) := conv{z, z;, 241} for all j = 1,..., Np and for
the midpoint zy of the ball from (M2) in Figure 2.1.b. It is known [7] that the resulting sub-
triangulation 7'|p := T (P) := U;V:F}T(j ) of P € M is uniformly shape-regular; i.e, the minimum
angle in each triangle T € T(P),P € M € M, is bounded below by some positive constant
wo > 0 that exclusively depends on p. Let V (resp. V(P)) denote the set of vertices and & (resp.
EA(P)) denote the set of edges in T (resp. T(P)).
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Figure 2.1: (a) Hexagon P with vertices z1,...,2¢ and edges E(1),...,E(6) (b) its sub-
triangulation 7 (P) and (¢) P with corner points (i, ..., {4 and sides v(1),...,v(4).

With a counterclockwise orientation along the polygonal boundary 0P, assign the piecewise
constant tangential unit vector 7p and the outer normal unit vector np. Define the local degrees
of freedom (dofs) dof; (v), ..., dofan, (v), for v € H?(P), by

dof (v) = v(z;) for j=1,...,Np, o
J fE(k)vndS forj=Np+1,...,2Np and k=j — Np .



with the vertices z; and the edges E(k) € £(P) of the polygonal domain P € M in Figure 2.1.a.
Given a polygonal domain P € M, the dofs in (2.1) are collected in the linear map Dof :=
(dOfl, R ,dOfQNP) : H2(P) — R2NP.

Fix the orientation of a unit normal vector ng to each edge E € £. The sign of the jump [e]g
across an edge E € £ follows from the subsequent convention of the orientation of a unit normal
vector ng along an edge F: Label the two neighbouring polygons Py sharing the interior edge
E = 0P, NOP- such that np, |p = ng and np_|p = —ng. This defines the sign in the jump
(o] := o|p, —e|p_across E € £(12). For a boundary edge E € £(09), set ng|p = ng and [e]p :=
o|p. For vy € Vye := {v € H?>(M) : v is continuous at interior vertices and zero at boundary
vertices of M, and [, [vn]lpds =0 for all E € £}, the global Morley dofs read

Une(25) forj=1,...,|V|,
dof (vne) = 2.2
ot (Unc) {fE(k)(’UnC)ndS for j=|V|+1,...,Nand k= j — |V|. (22)

The global degrees of freedom dof;(vnc) from (2.2) coincide with the local degrees of freedom
Dof(vnc|p) from (2.1) for each polygonal domain P € M up to a (known) change of signs of ng
and np|g for an interior edge E € £(Q).

Lemma 2.1. |- |2 pw defines a norm on Vi equivalent to || - ||2,pw-

Proof. This is shown in [2, Lemma 3.1] and in [35, Lemma 5.1] based on the Poincaré-Friedrichs
inequality for piecewise H? functions in [9]. O

2.2 Poincaré-Friedrichs inequality

This subsection provides a Poincaré-Friedrichs inequality for a polygonal domain P € M € M
with explicit constants that exclusively depend on p from Subsection 2.1.

Theorem 2.2 (Poincaré-Friedrichs inequality). There ezists a positive constant Cpr (that ex-
clusively depends on p) such that

(@) | £llz2(py < Corhp|fl1.p holds for any f € H'(P) with0 € conv{ Jow Fds - fom fds},

(b) 27171:0 h7£72|f|m1p < Cpp|fla,p holds for any f € H*(P) with 0 € conv{f(z1),..., f(znp)}
el I5) . .

and 0 € conv{fE(l) Ep%ds,...,fE(NP) a%ds} forj=1andj=2.

Proof. The proof of (a) is included in [16, Lemma 2.1]. The proof of (b) considers the sub-
triangulation T (P) of the polygonal domain P from Figure 2.1.b. Define the linear interpolation
Iif € S1(T(P)) := P1(T(P))NCY(P) with (f —I1f)(zx) =0 for all k = 0, ..., Np. The triangle
inequality shows

I fll2py < NIf = Lifllepy + Mo fllz2p)- (2.3)

The Bramble Hilbert lemma [7, 22] leads to a positive constant Cpy (that exclusively depends
on the shape of the triangles T'(1),...,T(Np) and so merely on p) in the error estimate

If = Iifllz2(py < Ceuhp|fl2.p. (2.4)

(Explicit formulas for Cpy in terms of the maximal angle in a triangle can be found in [14].) Let
©0, - --,9Np be the nodal basis functions of S1(7(P)) with @i (z¢) = dxe for k,£ = 0,...,Np;
whence I f = chvzpo f(zk)pr. The local mass matrix with entries [ A\jAr dz = (14 6;)[T'|/12
for j,k = 1,2,3 and the barycentric coordinates A1, A2, A3 in a triangle T' € T(P) has the
eigenvalues |T'|/12 (twice) and |T'|/3. Rayleigh quotients with the local mass matrix reveal

7|
Ly = D, I Y F@elliem < D 3 > )7
TET(P) zeV(T) TeT(P) ° 2eV(T)
13z 1P| &
DI ICILED DI ES ) PFICAE (2.5)
J=0 TeT(P) k=0
z;€V(T)



Since 0 € conv{f(z1),..., f(zn,)}, there exists convex coefficients 0 < p1,...,un, < 1 with
SV e = 1 and S0 puef(z¢) = 0. This implies minj-vjl f(z) <0< maxj-vz"l (z;) and so
x={f(z1),..., f(znp)} in [15, Lemma 4.2] guarantees

ST < 1) + MY () — F(ze0))? (2.6)
k=0 j=1

for the constant M := (2(1 — cos(7/Np)))~! (that exclusively depends on M(p) > Np and so

on p). The underlying inequality Zjvzpl a3 <M Zjvzpl (zj41 — x;)? with zn,41 = 21 follows for
¢ = min{zy,...,zn,} < 0 < max{x1,...,TNp} =: &y for some indices ¢,m € {1,...,Np}
immediately from max{|z1|,...,|znp|} < |ze| + |2m]| = |20 — 2] < Zjvzpl |zjp1 — x| <

N ]13/ 2 (Zjvfl |zj11 — x;]?)Y/? with triangle and Cauchy-Schwarz inequalities. The optimal con-
stants in [15] require little matrix analysis. The above coefficients u; and a Cauchy-Schwarz
inequality show that

f(z0)* = <Z pue(f(20) — f(ze))> < NpY (f(z0) = f(z0))*. (2.7)
=1 =1
The combination (2.6)-(2.7) results in
Np Np Np
> f(a)? N Y (f(20) = f(z0) + MY (f(27) = flz01))". (28)
k=0 =1 j=1

For any edge E = conv{a,b} € E(T(P)) with vertices a,b € V(E) C V(T (P)) and an aligned
triangle T'(F) = conv{zg, E} D F, the tangential derivative shows |f(a) — f(b)| = 'IE fr ds’.
The trace identity f, f ds = fT(E) fdz+ %fT(E)(x —20) - Vf(x)dzr [15, Lemma 2.6] implies that

+

MG T (E)| 1 f(a) — F(b)] < 2‘ /T L VI s

/ (r — z0) - D*f(2)7p dx
T(E)

A Cauchy-Schwarz inequality provides

|f(a) — f(b)] < hE|T(E>|71/2(|f|1,T(E) +hoey | florE))- (2.9)

Recall wg from Subsection 2.1 and note that sin(wo)h%(E) < 4|T(E)|. Thisand hg < hpp) < hp
for all E € £(P) lead in (2.9) to

8
sin(wo)

|[f(a) = FB)]* <

(1% 7y + P15 7 m))-

This applies to the triangles T'(E) = T'(j) € T(P) with the edges conv{a,b} = conv{z;, z;11}
and conv{zg, z;} for j =1,..., Np from Figure 2.1.b. Hence (2.8) shows that

. Np

_q SIn Wy

(Np+ M) == f)* < Y (R aem + B3l f B aem) = 130 + HolFI3.p.
k=0 Ec&(P)

This and (2.5) result in |11 fl|,2(py < C(p)(hp|flip + hB|fl2,p) with |[P| < wh3 from [?,
Lemma 1.12], Np < M(p) from Subsection 2.1, and C(p)? := 8r(Mp)+M) = The part (a) of

3sin(wo)
the lemma applies to df/0x; for j = 1 and for j = 2, and so controls the term |f|; p <
CPFhP|f|2,p. Consequently, ||Ilf||L2(P) < C(p)(l + CPF)h%)|f|27P. This and (2.3)—(2.4) show
[ fllz2py < (Cr + C(p)(1 + Cpr))hp|fl2,p and conclude the proof of (b) with a re-labelled

constant Cpp. [l
Recall Dof : H2(P) — R2M? for a polygonal domain P € M € M from (2.1).

Lemma 2.3. Any v € H?(P) with Dof(v) = 0 satisfies h;2||v|\Lz(p) + hpt vl < Cpr|v)2.p.



Proof. If n := (ng,n,) is an outward unit normal to an edge E, then the unit tangential vector
along E is T := (7, Ty) = (—1ny,n,). This leads to the split Vv = van + v-7. An integration
along F(k) of the tangential derivative implies for all k = 1,..., Np that

/ Vouds = (/ Un ds)nE(k) + (v(zry1) — v(2k))TE®M) - (2.10)
E(k) E(k)
This and the re-summation Zivzpl (v(2kt1) — v(2k))TE®R) = Zivzpl (TBE(k—1) — TE®))V(2k) lead to
/( : Vuds = dofn, 1k (v)ngu) + (Tek—1) — TE®) )dofk(v). (2.11)
E(k

If Dof(v) = 0, then fE(k) Vuds =0forallk=1,..., Np from (2.11). This and v(z;) = dof;(v) =
0 for all j =1,..., Np allow the Poincaré-Friedrichs inequality in Theorem 2.2.b. O

2.3 Biharmonic model problem

Define the scalar product a(,-) : V x V — R for u,v € V = H3(Q) by

a(u,v) := [ D*u:D*vdx with D*u := R (2.12)
Q U2 U2

with D?u : D?v := u11v11 + 2u12v12 + U22v92. The subscripts o, 8 = 1,2 abbreviate the second-
3*u

6Iaam[—3

denote the corresponding piecewise versions (with respect to a partition M or T suppressed in

the notation). The local contribution a®’(-,-) is the semi-scalar product

order partial derivatives uqg := . The bilinear form ayy, and the differential operator Dgw

a’ (u,v) ::/D2u:D21}d1' for u,v € H*(P).
P

The scalar product a(-,-) induces the energy norm |v|z.q := a(v,v)'/? equivalent to the Sobolev
norm || - ||2,o owing to the Friedrichs inequality [8, Sec. 10.6] and (V,a(:,-)) is a Hilbert space.
Given any F € V* = H~2(Q), the Riesz representation is the weak solution u € V' to

a(u,v) = F(v) forallveV. (2.13)
Elliptic regularity. For the fixed polygonal bounded Lipschitz domain €, there exist positive

constants oyeg > 1/2 and Cheg [3, 5, 19] such that F € H™*(Q}) and 2 —0 < s < 2 for 0 :=
min{oyeg, 1} imply v € V. N H*~% and

lulli-s@ < Cregl Fll-s.0. (2.14)

2.4 Galerkin projection

The H? elliptic projection operator G' : H?(P) — Po(P) is defined, for any v € H?(P), by
Gv € P2(P) and

a(Gv,x) = af(v,x) for all x € Py(P) (2.15)
with the additional conditions (i.e., three equations to fix the affine contribution)
1 & 1 &
N—P;Gv(zj) = N—Pj;v(zj) and - VGuds = - Vv ds. (2.16)

Equation (2.15) determines Gv € Pa(P) up to affine functions and the additional three equations
in (2.16) define Gv € P2(P) uniquely for v € H?(P). The linear operator G : H?(P) — P2(P)
is a projection onto Py(P). An integration by parts and (2.16) imply, for all v € H?(P), that

1 1
yD*v=— [ Vovds=— [ VGuvds=I1yD*Gv= D*Gv. (2.17)
|P| Jop |P| Jop



Lemma 2.4 (approximation error of G). Any v € H?(P) with Gv € Po(P) from (2.15)-(2.16)
satisfies C’FTI% Z:n:o h}?_2|v — GU|m,p < |v—Gola,p < |v|2,p and there exists a positive constant
Chapx (that exclusively depends on p) such that v — Gula,p < Capxh|v|oys p for v € H*T5(P)
and 0 < s < 1.

Proof. The condition (2.16) implies that Zjvzpl (v — Gv)(z;) = 0 and [,, V(v — Gv)ds = 0.
Hence the Poincaré-Friedrichs inequality in Theorem 2.2.b proves that C’PTFl 27171:0 h}?_2|v —
Gvlpm,p < |v — Gulg p. The Pythagoras identity [v — Gu|3 p + |Gv|3 p = |v]3 p from (2.15)
provides |[v — Gu|a p < |v|2,p. The definition of G in (2.15) shows that |v — Gu|2 p < |v — X|2,p
for any x € P2(P). The Bramble-Hilbert lemma [25, Thm. 6.1] concludes the proof. O

Recall Dof : H2(P) — R2M? for a polygonal domain P € M € M from (2.1).

Lemma 2.5 (boundedness of Dof). There exists a positive constant Cy (that exclusively depends
on p) such that any v € H?(P) satisfies |Dof(v — Gv)|gz < Cyhp|v — Gula p.

Proof. The scaled Sobolev inequality from [7, Sec. 2.1.3] leads for w := v — Gv to

2
w(zo)| < [lwllpoe(py < Cs Y K™ wlm,p (2.18)

m=0
with a positive constant Cg (that exclusively depends on p). A Cauchy-Schwarz inequality and
the trace inequality [|wl[|7 ) < C’T(hngwHQN(P) + hpl|Vw|Z2p)) (e.g., from [7, p. 554]) for
any edge E € £(P) result in

| /Ewn ds| < WY wallizop) < Or(hulyp + hsluls p). (2.19)

The combination of (2.18)-(2.19) and Lemma 2.4 imply that
[0(z0)| < Cs(1 + Cor)hplulp and | /Ewn ds| < Or(1 4 Corhplulsp. (220)
This concludes the proof of the lemma with Cy := (Cs + Cr)(1 + Cpr). O

The following lemma estimates |Gv|m, p for m = 0,1,2 and the Galerkin projection G in
terms of dofs of v for any v € H?(P).

Lemma 2.6 (G as a function of Dof). The projection operator Gv is computable in terms of the
degrees of freedom Dof(v) € R2NP for any v € H*(P) and anzo BB G|, p < Cg|Dof(v)]2
holds with a positive constant C, (that exclusively depends on p).

Proof. Antonietti et al. discuss the proof [2, Lemma 3.3] of the computability of the projection

operator G in terms of the dofs from (2.1). Appendix A provides details of this first part and
the proof of the estimates of |Gv|y,, p for m =0, 1, 2. O

3 Abstract framework and fundamental estimates

3.1 Hypotheses
Given any polygonal domain P € M € M, recall the geometry and the local degrees of freedom
from Subsection 2.1 and merely suppose the hypotheses (H1)-(H2) throughout this paper.

(H1) The vector space V;,(P) is of dimension 2Np, satisfies Po(P) C V3, (P) € H?(P), and the
triplet (P, Vi, (P), (dofy,...,dofan,)) is a finite element in the sense of Ciarlet.

The unique existence of a nodal basis ¥1,...,¢¥an, of Vi (P) with dofy(v;) = d;; for all j, k =
1,...,2Np is a consequence for any finite element in the sense of Ciarlet [8, Chapter 3].

A

1/2
(H2) The aforementioned nodal basis functions 1, ..., ¥an, satisfy hp(Z?ZZVf W’j@,P) <
Cstab for a positive constant Cyiap (that exclusively depends on p).
Notice that (H1)-(H2) also imply the uniform stability of the discrete problem for the natural
stabilization term sp, in (5.1) below. The road map of the proofs in the two examples below is

outlined in the seminal contribution [21] for a related virtual element space V(P). Appendix B
and C independently provide details for the two examples below.



3.2 Examples of the discrete space V,(P)
This subsection presents two examples [2, 35] of the local discrete space Vj,(P) with (H1)-(H2).

Recall that P,.(P) is the vector space of polynomials of degree < r regarded as functions in P,
and fix the parameter r = —1,0, 1,2 with the convention P_;(P) = {0}.
3.2.1 First example of V},(P) from [2, 21]

The discrete space in [2, Sec. 3] and in [21, Sec. 2.3] solves the biharmonic problem with boundary
conditions for Py(E(P)) :={q € L*(OP) : VE € E(P) q|g € Po(E)},

ve H*(P):3 feP.(P)3gePo(E(P)) Jay,...,an, €ER

~ _ Np -
Vh(P) : Ywe H2(P) aP(’U,’LU) = (f,’w)L2(p) + (g,’wn)Lz(ap) + Zajw(zj) ) (3 1)
Vi(P) :={v € Vi(P) :v— Gv L P(P) in L*(P)}. (3.2)

Proposition 3.1. The discrete space V3, (P) from (3.1)-(3.2) satisfies (H1)-(H2).

Proof. The arguments in [21, Lemma 3.4-3.5] and in [21, Appendix A] can be adopted for the
proof of (H1) and of (H2) for » = —1. Appendix B presents a simpler proof that also covers
r=0,1,2. O

3.2.2 Second example of V},(P) generalizes [35]

Recall the set E(P) = {E(1),...,E(Np)} of edges and the set V(P) = {z1,...,2n, } of vertices
along the polygon P = E(1) U --- U E(Np) as in Subsection 2.1. The following generaliza-
tion of Vi, (P) in [35, Sec. 4] requires further notation with corners as depicted in Figure 2.1.c.
The boundary of the polygon 0P := szlconv{gj, Cj+1} is also a polygon of the corner points
Cly--5Cr CHz1,. o5 2np } with indices (5 = zi(j), (1 = 2r(j)+m(5), k(G +1) = k() +m(j), and
kE(J +1) := k(1). By definition, the interior angle at a corner (; is different from 0, 7, 27, while
it is equal to 7 at all other vertices z; € V(P) \ {(1,...,(s}. Given the one-dimensional side
() == conv{¢j, a1} = E(k(j)) U---U E(k(j) + m(j)), consider the (m(j) + 2)-dimensional
quadratic C! spline space

S(j) =P () NC () forj=1,...,J

The vertices zj(j), ..., Zx(j)+m(;) on Y(j) lead to a partition of v(j), written as £(v(j)), and
the subset of functions in S(j) that vanish at all those vertices form a one-dimensional subspace
span{;} of S(j). This is elementary to verify and Appendix C exploits pictures and norms of ;.
It turns out that two conditions on the sign ;| p(x(j)) > 0 and on the scaling [|1); || o)) =1
determine 1; uniquely. So ¢; € S(j) is fixed by the geometry of P in Figure 2.1.c. The second
class of VEs is generalized through a linear functional A; : S(j) — R with the normalization
A;(¢;) = 1 and the boundedness ||A;|| < Cy of the operator norm ||A;|| := sup{A;(f) : f €
S(5)s 1 fll e (v()) = 1} of Aj, provided S(j) is endowed with the maximum norm. We suppose
that the upper bound Cy exclusively depends on p. Abbreviate W := HJ (P)NH?(P) and define

. we H*(P) :wlpp € CO°(OP), Vj=1,....,J wlyy €5(j), and
Wa(P) = 3f € Po(P) 3ge€Po(E(P)) VYoeW . (33)
af(w,8) = (f,d)r2(py + (9, n)L2(5P)

Wa(P): Vj=1,....0 Aj((w—Guw)|,;)=0and

p).—JweEWn IRRRE J () . 4
Wa(P) { w—Gw L P.(P) inL*(P) (3-4)
Proposition 3.2. The discrete space Wy (P) from (3.3)-(3.4) satisfies (H1)-(H2).

Proof. The proof of (H1) for A; from Example 3.4 below and for r = —1 is given in [35,

Lemma 4.1]. A proof of (H2) with clear dependence of the constant Cytap on the mesh regularity
parameter p seems missing in the literature. Appendix C contains further details for the general
case and the proof of (H2) with explicit constant. O



Example 3.3 (Example of A;). Given the first edge E(k(j)) iny(j), define Aj(v) := %fE(k(j)) vds
for v e LY(y(4)). Then A;(;) =1 and ||A;|| < Cpr =3/2.

Example 3.4 (Comparison with [35]). Zhao et al. consider merely convex polygons in [35]
and we interpret that this implies that the sides are the edges ((; = z; for all j =1,...,J and
J = Np; all interior angles in P are different from w). Then their choice Aj(e) = fE(j) eds

coincides with Example 3.3 and recovers Vi, (P) in [35] for certain geometries.

We continue the more general discussion and point out that, for each P € M, V,,(P) can
even be selected from either (3.1)-(3.2) or (3.3)-(3.4) and a mixture is allowed in the abstract
framework at hand. In particular, for different polygons P € M, the space V3 (P) and the
parameter r could be different.

3.3 Interpolation

Given P € M € M, recall from (H1)-(H2) the nodal basis (¢1,...,%an,) of Vi(P) with
dof;(vr) = 6% for j,k=1,...,2Np.

Definition 3.5 (local interpolation operator). Define I}’ : H?(P) — V,(P) by

2Np

Ifv="dofj(v)y; forallve H*(P). (3.5)
j=1

Recall the notation V. from Subsection 2.1 for M € M.

Definition 3.6 (global discrete space). The (nonconforming) global virtual element space is the
collection of all local spaces Vj,(P) for P € M with well-defined global dofs from (2.2), namely

= {vaVnC: VPeM ’Uh|p€Vh(P)}.

Definition 3.7 (global interpolation operator). Define the global interpolation operator I :
Vae = Vi by (Invne)|p := I} (vne|p) for all P € M. (The global interpolation I, is well-defined
because the dofs from (2.1) are uniquely defined for any vy € Vi..)

3.4 Interpolation error estimates

The main results about I;, are summarized as follows.

Theorem 3.8 (interpolation). There exists a positive constant Cy (that exclusively depends on
p) such that any v € H?(P) and its interpolation Ifv € V},(P) from Definition 3.5 satisfy

(a) Dpy(v—1Iv) LPo(P;S) in L*(P;S),

2
(b) GIFv=Gv and Y WP *lv — GI vlm.p < (1+ Cpr)|v — Gola,p,

m=0

(¢) U v|a.p < Crlv)2.p,

2
(d) > v = I vlm.p < Cilv — Gula.p < CiCapxhp|vl24s.p

m=0
provided v € H***(P) for 0 < s <1 in the last estimate in (d) with Capx from Lemma 2.4.

Proof of (a). Since v and I’ v coincide at the vertices from Definition 3.5 of I}, their tangential
derivatives satisfy

/E(va).,. ds = I,fv(zz) — va(zl) =v(z2) —v(z1) = /Ev.,. ds (3.6)



for the vertices z1, z3 of an edge E directed from 21 to zo = 21 + hpTr. An integration by parts
proves the first step and the split Vo = vyn 4+ v-7 proves the second step in

/ D*vdx = Z (/ Vvds) ®np|lg = Z (/ (U + v, T) ds) ®npl|g. (3.7)
r peg(p) M F Eeep) M F
The combination of (3.6)-(3.7) and [, (I} v)n ds = [, (v)n ds from Definition 3.5 shows
/ D*vdr = ) (/ (Ifv)an + (IFv),7) ds> ®@np|p :/ D21 v dx (3.8)
P pesp) \VE P
with the split for VI/'v = (IFv)an + (Ifv),7 and an integration by parts in the last step. [

Proof of (b). Since the dofs of I7v and v coincide by Definition 3.5 and G is uniquely determined
by Lemma 2.6, GIZv = Gov for v € H?(P). Hence Lemma 2.4 concludes the proof. O

Proof of (¢). Since If'v — Guv € Vj,(P) for any v € H?(P), the nodal basis functions v; € Vj,(P)
for j=1,...,2Np and the dofs from (2.1) with Dof(I}/v) = Dof(v) lead to

2Np 2Np
IFv—Gu="> dof;(Iv— Gu)ip; = Y _ dof;(v — Gv)y;.
j=1 j=1

1/2
The Cauchy-Schwarz inequality |IFv — Gulap < hp'|Dof(v — G’U)le2hp(2?£f |1/Jj|%yp) ,
Lemma 2.4-2.5, and (H2) result in

[IFv — Gula,p < CyCltab|v]2.p- (3.9)

Since |Gv|2,p < |v]2,p (from (2.15)), (3.9) and the triangle inequality [I/v]o p < |I[Fv—Guolo p+
|Gvl2,p conclude the proof with Cry, := 1 + CyCltab- O

Proof of (d). Substitute w := v—I}fv € H*(P) for v in (b) and observe I}'w = 0, so GI}'w = 0,
to derive

2
(1+Cpp)™ ' > WP wlmp < [w = Gulap < |[v—Gola.p + [If v — GI} ]2 p (3.10)

m=0

with a triangle inequality in the last step. Let g := v — GIFv € H?(P) with IF g = I'v— GI} v
from I7(GI}v) = GIFv. Then (b)-(c) result in [IFgls p < Cip|gl2,p < Cip|v — G|z, p. This and
(3.10) conclude the proof of (d) with Ct := (14 Cpr)(1 4+ Cr). O

4 Conforming companion

Recall that T is a shape-regular sub-triangulation of the polygonal mesh M € M of the domain
Q from Subsection 2.1 with the set of edges £ D £.

4.1 Morley interpolation
The Morley finite element space M(T) is defined as
vM € P2(T): o is continuous at interior vertices and zero at boundary
M(T) := vertices of T, and (vp)n is continuous at midpoints of interior

edges and zero at midpoints of boundary edges of £

The Morley interpolation operator Iy : V3, — M(T) is (uniquely) defined by

Iavn(z) = vp(2) at z € Vand /

(Ingvn)n ds = / (Uh)nds onE € €. (4.1)
E

E

10



A well-known consequence of (4.1) [19, Lemma 3.1] (follows as the proof of Theorem 3.8.a) is
D? (v, — Ivvy) L Po(T3S)  in L*(;S). (4.2)
The interpolation error estimate from [11, Theorem 3] (for functions in H?(T')) implies

2
Z |hr7rl_2(vh — Inn) lm,pw < |vn — GUnl2,pw- (4.3)

m=0

N | =

Lemma 4.1 (conforming companion for Morley [27]). There exists a linear map J' : M(T) —
HZ(Q) and a constant Cy: (that exclusively depends on p) such that any vm € M(T) satisfies

(a) J'vm(z) = vm(z) at all vertices z € V, (b) f5(J'om)nds = f5(vn)nds on all edges E € €,
(c) D?,W(’UM —J'om) L Po(T;S) in L2(%S),
2

() D B2 (ot = J'0n0) e < Cr i org — vl - O

m=0

4.2 Computable Morley interpolation

The virtual element function v, € Vj is given implicitly such that the computation of Iyjvp
is possible in principle, but too costly. The aim in this section is the analysis of a function
vm € M(T) that is computable in terms of dofs of vy, € V3. Given any vy, € V}, set

Jun(z)atz eV, _J [z(vn)ndson E € &,
o(2) = {th(z) atze V\V and /E(UM)H s = {fE(G’Uh)n dson E €&\ E. (4.4)

Notice that vy € M(T) is well-defined and computable in terms of the dofs of v, € V}, (for
z €V, E € &) and from Guy, € P2(T) with Lemma 2.6 (for z € V\V,E € £\ £). The following
estimates control the difference between I, and vy in M(T) for vy € V.

Lemma 4.2 (key). There exists a positive constant Cyt (that exclusively depends on p) with
2

> R (Inon = 1) lm.pw < Cntlvn — Gonlapw  for any vn € Vi and vy € M(T) with, (4.4)
m=0

Proof. Recall the sub-triangulation 7 (P) of P with mid-point zo and the set of edges £(P) (resp.
E(P)) in T(P) (resp. P) from Subsection 2.1 for a polygonal domain P € M. Let ¢, and ¢g
be the nodal basis functions of M(7) for z € V and E € &, and write Iyjvp, —vm € M(T) as

(Invor, — om)|p = (v — Gup)(20)¥2, + Z (][ (v — GUp)n ds) VE. (4.5)
BeE(PNeP) O
The basis functions v, and g are written explicitly, e.g., in [12, Sec. 6] and scale like
[Vl = h ™ and  |[Yplnr ~ b3 ™ form =0,1,2 (4.6)

in a triangle T € T(P) with E C 0T. Note that the integral means of normal derivatives of
g over edges enter (4.5) and not the dofs for the ncVEM from (2.1). Lemma 2.5 with integral
means along edges E € £(P) \ £(P) in (2.20) and hp < p~'hg from (M2) imply that

hp! (v — Gup) (20)| + ‘][ (v, — Gup)nds| < o, — Gopla,p. (4.7)
E
The combination (4.5)-(4.7) concludes the proof. O

4.3 Computable companion for VEM

The new tool in this paper is the conforming companion operator J established in Theorem 4.3.
The estimate in part (c¢) of which is sharp in the sense that the reverse inequality also holds
(with a multiplicative constant 2 from a triangle inequality).
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Theorem 4.3 (companion operator for VEM). There exist a linear map J : Vi, — HZ(Q), which
is a right-inverse to the interpolation operator I, and a universal constant Cj (that exclusively
depends on p) such that any vy, € Vj, satisfies (a)-(c).
(a) D2, (vn — Jun) L Po(M;S) in L*(€%S), (b) Gup, — Jup, L Po(M)  in L2(Q),

2

(c) Z (lh%_Q(GUh — JUn)m,pw + |h§\n/1_2(vh = Jon)|mpw) < CJ(lvh_thllpW"’gg‘I} vn _U|2,pW)-

m=0

Proof. Construction of J. For a given vj, € V},, a composite function J'vy belongs to V = HE ()
and we need a modification to achieve (b). For each T € T(P) from Subsection 2.1, the cubic
bubble-function by := 27A\1 A2 A3 € H}(T') for the barycentric co-ordinates A1, A2, A3 € P1(T) of
T, leads to b3, € Hg(T) with 0 < b3 < 1 and £,b3 dz = 81/280. Hence f, bp dz = 1 follows for

280
bp:="— > b €H;(P)CH;(Q) forPeM. (4.8)
TeT(P)

Let vp € P3(P) be the Riesz representation of the linear functional Po(P) — R, wy +
(Gvp, — J'um, wa) 2(py in the Hilbert space P2(P) endowed with the weighted scalar product
(bpe,®)r2(py. In other words, given v, € Vi, v € Po(M) with va|p := vp satisfies

(bPUM, ’LUQ)Lz(Q) = (G’Uh — JIUM, ’LUQ)L2(Q) for all Wy € PQ(M); (4.9)

whence Iy (Gvp, — J'vm) = Ha(bpvp). Given vy, € V3, with v € Po(M) define

Jop == Jom+ Y bpuy € V. (4.10)
PeM

Proof of (a). The definitions of J and bp € HZ(P) imply for any vertex z € V and for any edge
E € & that Jup(z) = J'vm(z) and 5 (Jup)n ds = f5(J vm)n ds. This, Lemma 4.1.a-b as V C V
and £ C £, and (4.4) lead to

Jup(2) = J'om(z) = om(z) = vp(2), (4.11)
][ (Jop)n ds :][ (J'vp)n ds :][ (vM)n ds :][ (v )n ds. (4.12)
E E E E
The proof of (a) follows from (4.11)-(4.12) as in the proof of Theorem 3.8.a. O
Proof of (b). The definition of J in (4.10) directly shows IIa(Guy) = Iz (Jvp). O

Proof of (c). Abbreviate 7 := Np' Zjvzpl v(z;) for any v € H?(P). The definition of G in (2.16)
and (4.11) imply Gup, — Jup, = Gup, — vp +vp — Jup, = 0. The split VJup, := (Jop)nn+ (Jup) -7
and an integration of the tangential component show for k = 1,..., Np that

VJuy, ds = / (Jvh)nnE(k) ds + (Jvh(zkﬂ) — Jvh(zk)))TE(k)
E(k) E(k)

= / (’Uh)nnE(k) ds + (Uh(ZkJrl) — ’Uh(zk)))TE(k) = / Vuy, ds (413)
E(k) E(k)

with (4.11)-(4.12) in the second step and Voup, := (vp)nn + (vp)-7 in the last step. This and
(2.16) lead to [,p V(Gup — Jup)ds = [y V(Gup, —vn)ds + [,p V(vn — Jup) ds = 0. Hence the
Poincaré-Friedrich inequality in Theorem 2.2.b implies

2
> WA (Gon = Jon) lmpw < (1+ Cpr)|Gun — Jonla,pw- (4.14)

m=0

It remains to control |Guy, — Jup |2, pw. There exists a positive constant Cj in the inverse estimates

Cy HIxlZzpy <(bp, X L2p) < CollxlIZ2(p) (4.15)

2
Cy HIxllzzpy <Y BEIbpXIm,p < Colix|lL2p)  for any x € Pa(P). (4.16)
m=0
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The inequalities (4.15)-(4.16) are standard inverse estimates for a (shape-regular) triangle (re-
place P by T € T(P) therein) and (4.8) reveals (4.15)-(4.16) as a sum of those. Hence Cj
depends exclusively on p. The definition of J in (4.10) shows |J'vm — Juple,p = |bpuple,p and
the inverse inequality (4.16) proves |bpvplo p < Cphp?||vp||r2(py- The first inequality in (4.15)
and the definition of vp € Pa(P) in (4.9) lead to
o HlopllZzpy < (bpvp,vp)2py = (Gon — J'ont, vp) p2(py < ||Gon — J'omll L2 el L2 (p)
with a Cauchy-Schwarz inequality in the last step. Hence |[vp|lz2py < Cpl|Gup, — J'uml|12(p)
and the combination with the above estimates verifies
|J/UM — J’Uh|27p = |bp’Up|2,p S Cgh;QH(G’U}L — J/'UM)HLZ(P)-

Triangle inequalities and Lemma 4.1.d lead, for any v € V', to

2|J”UM J’Uh|2 pw < < Hh/\/( (G’Uh 7]M’l)h)HL2(Q) + ||h (IM’Uh 7’UM)||L2(Q)
+ Cy(Jum — Imvnl2,pw + IR — UR|2,pw + [Uh — ]2, pw)- (4.17)
The estimation of the upper bound in (4.17) involves a few arguments like the triangle inequal-
ity Hh/\/l (th - IM'Uh)HLQ(Q < Hh/\/l (th — Up HLZ(Q + Hh/\/[ (Uh — Ivvn) HLZ(Q Hh/\/l (th —
'Uh)||L2(Q) < CPF|Uh - G’Uh|27pw from Lemma 2.4, ||h ( Vp — IM’Uh)HLz(Q) + |’Uh — IMUh|2,pw <
2|vp, — Gopl2,pw from (4.3), and |om — Imvp| < Cum|vn, — Gupl2,pw from Lemma 4.2, This and the
fact that v € V is arbitrary eventually result in

|J/’UM — Jvh|21pw < 05(2 + Cpr + Cyu + Cye (2 + CM)) <|Uh — th|21pw + gél‘I/l |’Uh — v|27pw)
(4.18)

as well as |’UM — Uh|2,pw < |’UM — IM'Uh|2,pw + |IM’Uh — 'Uh|2,pw < (2 + CM)|’Uh — G’Uh|21pw. The
latter estimate, Lemma 4.1.d, and a triangle inequality lead, for any v € V| to
CJ_,1|1)M — J'oml2pw < Jom — V|2pw < (24 Om)lvn — Gupl2.pw + [0n — V]2, pw- (4.19)

Recall [Invn, — vMml2,pw < Cmlvn, — Gupl2,pw from Lemma 4.2 and deduce |Gv, — Imvp|2,pw <
|y, — Gup|2,pw from (4.2). The aforementioned estimates and (4.18)-(4.19) allow the estimation
of all terms in the upper bound of the triangle inequality

|Gon, — Jopl2,pw < |Gon — Invn|2.pw + [ Imvs — vM|2.pw + [om — J'OM |2 pw + [T oM — Jupl2.0

< Cyp(|lvn — Gunlopw + gg‘l;l [vn = vl2,pw)

with Cyp =1+ Cnm+ Cy(2+ Cym) + CZ(2 + Cpr + Cum + Cy/ (2 + Cy)). This and (4.14) show

2
Z |h%_2(th — Jvn)|mpw < (1 + Cpr)Crp (Jon — Guplzpw + gél‘r/l v — v]2,pw)- (4.20)

m=0

Lemma 2.4, (4.20), and triangle inequalities

2 2 2
S R 0n = o) lmpw <> IR0 = Gunlimpw + Y 1R (Gon — Jop) | pw

m=0 m=0 m=0

conclude the proof of (¢) with C; := (14 Cpr)(1 + Cyp). O

Proof of IJ = id in V},. Recall N = |V| + |€| from Subsection 2.1. Definition 3.6 and (H1)-
(H2) imply the existence of a (global) nodal basis (11, ...,¥n) of V}, with dof;(¢x) = 05 for
j.k=1,...,N. Definition 3.7 of I}, and dof;(Juvy) = dof;(vp) from (4.11)-(4.12) show that

n(Jup) = Zdof (Jop)hy = Zdof oR)j = vy 0

Remark 1 (another companion). The properties (a)-(c) in Theorem 4.3 can also be satisfied
by other smoothers, e.g., by J'Iy;. The latter is not immediately computable; whence the new
definition of J is adopted in this paper to be used as a smoother @) in Section 5.

Remark 2 (generalizations). Any linear operator J : V3, — V with (a)-(c) allow the a priori and
a posteriori error estimates in Section 5-6. The analog design of such a conforming companion
is possible in 3D with the Morley companion operator J’ from [20] in 3D.
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5 Discrete problem and a priori error analysis

5.1 Stabilization

The discrete VE functions vy, € V}, will not be computed explicitly, but Guv;, will. The resulting
discrete counterpart ap(-,-) in Vj, of the scalar product a(-,-) in (2.12) requires a stabilization.
Recall the semi-scalar product a” from Subsection 2.3, the number Np of vertices for P € M,
dofy, ..., dofan, from (2.1), and define the semi-scalar product ST : Vj,(P) x V;,(P) — R,

2Np
ST (vp,wp) = hip? Z dof; (vy,)dof; (wy)  for vy, wy, € Vi (P). (5.1)

j=1
Lemma 5.1. There exists a positive constant Cs (that exclusively depends on p) such that
-

S

Yol (wp,wn) < ST (wh, wy) < Csa® (wp,wy)  for allwy, € (1 — G)Vi(P). (5.2)
Proof. For any wy, = Zfivf dof; (wp)y; € Vi (P) with the nodal basis functions 1, ..., ¥on, of
V3 (P) from (H1)-(H2), a Cauchy-Schwarz inequality and (H2) show that

2Np 1/2
|whl2,p < [Dof(wp) ez ( > |1/)j|§,p) < Cutanhp! [Dof(wy,)] 2.

j=1

The sum over all squared estimates for P € M proves the first inequality in (5.2) for Cs = C2,, .
Note that Gwp, = 0 for each wy, € (1 — G)V,(P) and Lemma 2.4-2.5 result in

h;1|DOf(wh)|g2 = h;1|D0f(wh — Gwh)|22 < Cd|wh — Gwh|2,p < Cd|wh|27p.

The sum over all squared estimates for P € M proves the second inequality in (5.2). This
concludes the proof with Cy := max{C2,,,C3}. O

Remark 3 (generalization). The a priori and a posteriori error analysis in Section 5-6 hold for
any semi-scalar product ST : V},(P) x V,,(P) — R with (5.2).
5.2 Discrete problem

Recall apy from Subsection 2.3 and (ST : P € M) from (5.1). Define the discrete semi-scalar
products, for vy, wy € Vi, by

ap(vp,wp) == Z aﬁ(vh,wh) = apw (Gun, Gwy) + sp(vn, wh), (5.3)
PeEM

Sh(Uh, wh) = Z SP((l — G)up, (1 — G)wh). (5.4)
PeM

Recall that | - |2 pw defines a norm in V3 (cf. Lemma 2.1), so ap(-,-) is a scalar product in V},.
Lemma 5.2 (boundedness and ellipticity of ap). Any vp,wn € Vi, satisfy
an(vh, wn) < (14 Cs)|vnlopwlwnlopw  and  CTMonl3 by < an(on, o).

Proof. The boundedness follows from the definition of aj and (5.2). The ellipticity follows from
(5.2),(2.15), and the Pythagoras identity |vn |5 p = [(1 — G)vn|3 p + |Goal3 p. O

The Riesz representation theorem guarantees the unique existence of a solution u, € Vj, to
ah(uh,vh) = Fh(’l)h) for all v, € V}, (55)

for the right-hand side Fj(v) := F(Qup) with @Q = G (standard VEM) or Q = J (smoother).
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5.3 A priori error estimates

This subsection establishes an error estimate with respect to the norms | - |2 pw and | - |1,pw-
Recall elliptic regularity and 0 < o < 1 from (2.14) for the weak solution u € HZ(2) N H2T7 ()
to (B.15) provided f € L*(Q) with F(:) := (f,)r2(e) in V. Let up € V3 solve (5.5) and recall
the maximal mesh-size hpyax. The second part of the assertion implies (1.1).

Theorem 5.3 (error estimates). There exist positive constants C1 and Cs (that exclusively
depend on p) such that f € L?(Q) and Q = G or Q = J imply

hoaa(lw = unl1,pw + |4 — Gupli pw) + [ — upl2pw + [u — Gup|2,pw
< C1(Ju — Gulg,pw + 0sca(f, M) < Cah7, ol fll 20

For F € V* = H=%(Q) and solely for Q = J, it holds (even without extra regularity of u € V)
Pmaa([t = tn|1,pw + [u = Gualipw) + [t — usl2,pw + [ = Gualzpw < Cilu — Gulz,pw.

Proof. Key identity. Let ey := Ipu — up € Vp and vy € Vj, with the interpolation I from
Definition 3.7 and GIpu = Gu from Theorem 3.8.b. The discrete problem (5.5) and (5.3) imply

ap(en,vp) = apw(Gu, Gup) + sp(Inu, vy) — F(Qup) = apw (Gu, Jup) + sp(Inu, vp) — F(Qup,)

with apw(Gu, Gup) = apw(Gu,vn) = apw(Gu, Juy) from (2.15) and Theorem 4.3.a in the last
step. The continuous problem (B.15) with a test function v = Juvy, reveals

an(en, vn) = apw(Gu — u, Jur) + sp(Ipu, vp) + F(Jop) — F(Qup). (5.6)

Estimate of apw(Gu—u, Juy,). A triangle inequality, Theorem 4.3.c, and |vy, — Gup|2,pw < |[Un|2,pw
(cf. Lemma 2.4) show

[Jvnl2.0 < vn = Jonl2pw + [vn]2,pw < Co(|vn = Guala,pw + [Un]2,pw) + |Ur]2,pw < (142C7)[0n]2,pw-
This and a Cauchy-Schwarz inequality provide
apw(Gu — u, Jup) < (14 2C)|u — Gulz,pw|vn|2,pw- (5.7)

Estimates of sp(Ipu,vp). A Cauchy-Schwarz inequality for the semi-scalar product s (-, ) and
(5.2) provide C; sy, (Ipu, vp) < |(1 — G)Ipul2 pw|(1 — G)vnla,pw- A triangle equality, Lemma 2.4,
and Theorem 3.8.b-d in the end result in

C sn(Inu, va) < (Ju— Tnula pw + |t — Gula pw) [nl2,pw < (14 CD)lt — Gulapw|vn|2pw- (5.8)

FEstimate of F(Jvp) — F(Qup). The term F(Juvy) — F(Quy) vanishes for @ = J, so let @ = G.
The orthogonality Jvy, — Guy, L Pa(M) in L?(Q) from Theorem 4.3.b result in

F(Jup) — F(Quy) = (K3 (f — o f), ki (Jvn — Gup))p2(a) < 2C 08c2(f, M)|vpl2pw.  (5.9)

The last step follows from a Cauchy-Schwarz inequality, Theorem 4.3.c, and Lemma 2.4.
Estimate of |u — upla,pw. The key identity (5.6) with v, = ej, the coercivity of aj from
Lemma 5.2, and (5.7)-(5.8) lead to C3 :=1+2C; 4+ Cs(1 + Ch)) in

lenl2,pw < C3(|u — Gula pw + 0sca(f, M)). (5.10)
A triangle inequality for u — up, = (u — Ipu) + ep, Theorem 3.8.d, and (5.10) show that
[u — upl2,pw < (C1 + Cs)(|u — Gu|2,pw + 0sca(f, M)). (5.11)

Recall that osca(f, M) can be omitted in (5.9)-(5.11) (and below in (5.18)-(5.19)) if Q = J.
Duality solution and its regularity. Let z € HZ(2) N H2T7(Q) be the weak solution to A%z =
—AJep, € L?(Q) and recall ||z]ja10.0 < CreglAJen|—1.0 < CreglJen|1,0 from (2.14). The weak
formulation of A%z = —AJey, € L*(Q) leads to |Jen|T o = a(Jen, 2).

Reduction to the key term ap(en, Inz). Elementary algebra reveals (with GIpz = G=z)

[Jenlt o = apw(Jen — en, 2) + apw(en, 2 — Gz) + apw(en, Gz). (5.12)
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Theorem 4.3.a implies apw(Jen, — en,2) = apw(Jen — en, 2 — Gz). Hence a Cauchy-Schwarz
inequality and Theorem 4.3.c imply that

apw(Jen — en, 2) < (len — Genlz pw| + [enl2,pw)|z — Gzl2,pw
< 2Capxc-]hg1ax|eh|2,pw|z|2+a,§2 (513)

with Lemma 2.4 in the end. A Cauchy-Schwarz inequality and Lemma 2.4 show
apw(€en, 2 — Gz) < |enl2pwlz = Gzlo.pw < Capxhiaxlen 2 pwlzl240.0- (5.14)
Key identity revisited. The definition (5.3) and the identity (5.6) lead, for v, = Iz, to
apw(en, Gz) = an(en, Inz) — sn(en, Inz) = apw(Gu — u, JIpz) + F(JInz) — F(QInz).

Estimate of apw(Gu — u,JIpz). The definition of G in (2.15) shows apw(Gu — u, JIpz) =
apw(Gu — u, JInz — GI,z). Theorem 4.3.c (with v, = I,z and v = z) and Theorem 3.8.b imply
|JI1z — GInzla,pw < Cy(|Inz — Gzla,pw + |Inz — 2|2,pw). A triangle inequality reveals

O Iz — GInzlapw < (2|2 — Inz| + |2 — Gzla,pw) < (2C1 + Capx)hax|2|240.0 (5.15)

with Theorem 3.8.d and Lemma 2.4 in the last step. This and a Cauchy-Schwarz inequality
prove

apw(Gu — u, JIz) < Cj(2C1 + Capx) R ax e — G2 pw|2|2+0,0- (5.16)

Estimate of F(JInz) — F(QIpz). The term F(JInz) — F(QIyz) vanishes for Q = J, so let
@ = G. The estimate (5.9) for vj, = Iz provides F(JI,z) — F(QIz) < osca(f, M)||hi (J Iz —
GInz)||L2(q)- Theorem 4.3.c (with v = z), Theorem 3.8.b, and (5.15) show

F(JInz) — F(QIyz) < Cyosca(f, M)(|Inz — Gz|2.pw + [Inz — 2|2,pw)
< CJ(2CI + Capx)hglaxOSCQ(f, M)|Z|2+G—7Q. (517)

Estimate of |u — up|1,pw. The combination of (5.12)-(5.14) and (5.16)-(5.17) imply
[Jenl: o < Cahdyu(Ju — Gula py + 0sca(f, M))|z]240.0
with Cy := Coapx (1 +2Cy) + C5(2Ct 4 Capx)). This and the aforementioned regularity show
|Jenl1,0 < CregCahl . (|u — Gula pw + 0sca(f, M)). (5.18)

A triangle inequality for u —up, = (u — Inu) + (ep, — Jer) + Jep, Theorem 3.8.d for the first term,
Theorem 4.3.c and (5.10) for the second term, and (5.18) for the last term result in

|u - Uh|1,pw S Clhmax|u - GU|2,pw + 2C.Ihmax|eh|2,pw + |Jeh|1,§2
< (CI +2C;C5 + C4Creg)hg1ax(|u — G’U,|2,pw + OSCQ(f, M)) (519)

Estimate of |u — Gup|2,pw- Recall that | - |4 := sp(-,-)"/2 for s,(-,-) from Subsection 4.1 defines
a seminorm in V}, that is equivalent to [(1 — G) - |2,pw owing to (5.2). It follows that

lup — Gupla,p < CH2SP((1 = G)un, (1 — G)up)*/2. (5.20)

This, triangle inequalities, and [(1 — G)(up — Ipu)|2,pw < |un — Ipul2 pw from Lemma 2.4 with
Theorem 3.8.b show

lunls < |up — Inuls + [Thuls < Ci”(luh - Ihu|2,pw + (1 - G)Ihu|2,pW)
< CY2(Jup, — Tnulo,pw + [u — Inulapw + [ — Gulopw).  (5.21)

The combination of (5.10)-(5.11) and (5.20)-(5.21) with the triangle inequality |u — Gup|2,pw <
|u — up|2,pw + [un — Gupl2,pw results in

lu — Gup|2,pw < (Cs + (14 Cs)(C1 + C3))(Ju — Gulz,pw + 0sca(f, M)).
Estimate of |[u — Gup|1,pw. A triangle inequality and Lemma 2.4 provide
|’U, - Guhll,pw < |u - Uh|1,pw + CPFhmax|Uh - Guh|2,pw-

This and the combination of (5.19)-(5.21) conclude the proof. O
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6 A posteriori error analysis

This section establishes a reliable and (up to data oscillations) efficient explicit residual-based a
posteriori error estimator for a source term f € L?(Q) for both cases Q = G and Q = J. Given
any polygon P € M and the discrete solution uj, € Vj, to (5.5), define the computable terms

np = hpllfl7ep) (volume residual),
(% :=SP((1 - Gun, (1 — G)up) (stabilization),
=5 = e (M5 NGmEla ) + 5 I(Gundulelasy)  (nonconformity),
wh =%+ (b + 5% (error estimator).

Those local quantities e|p form a family (e|p : P € M) over the index set M and their Euclid
vector norms e|x enter the upper error bounds

= (Y mp) P = ()0 YR Eae= (D0 ERYE = () i)
PeM PeM PeM PeM

Theorem 6.1 (reliability). There exist positive constants Cy1 and Cyo (that exclusively depend
on p), such that, for m =1,2,

C;?(|u — uh|72n,pw + Ju— Guh|,2n,pw) < Z hQPU(Q’m),uQP. (6.1)
PeM
The proof of Theorem 6.1 uses an enrichment operator Ej, : Po(T) — HZ(Q) from [28].
Lemma 6.2. There exists a positive constant C,, (that exclusively depends on p) such that any
vy € Po(T) satisfies
[v2 = Bnval3 g < C2 3 (520l ml ey + h5 02Dl I3y )- (6.2)

Eeg

Proof. There exists a positive constant C, (that exclusively depends on p) such that any ve €
Po(T) and its enrichment Envy € H}(Q) from [28, Lemma 3.1] satisfy

vz = Brval r < C2 7 (h5°lvalslliee, + 5t l1@)alel3cs))-
EcE

The constant C, depends on the shape-regularity of the sub-triangulation 7 from Subsection 2.1
and so depends on p. Since any edge E € £ is unrefined in the sub-triangulation 7, the above
inequality reduces to (6.2) for any vep € H?(P) and P € M. This concludes the proof. O

The composition Ej o G : Vj, — V connects a given function v, € V}, to a conforming function,

G Pa(M) < Po(T) Eh

Vi 1%

Proof of Theorem 6.1 for m =2. Let e := u — E,Gup, € V = HZ(Q). The scalar product
a(-,-) and the continuous problem (B.15) lead to |u — ExGupl3 o = a(u — E,Gup,e) = F(e) —
a(EnGup, e). Recall apw(Gup, GIne) = apw(Gup, Ine) = apw(Gup,e) from (2.15) and Theo-
rem 3.8.a. This and the discrete problem (5.5) result in
lu — EpGuals o = F(e) — F(QIne) + apw(Gun — ErGun, €) + sp(un, Ine). (6.3)
FEstimate of F(e) — F(QIne). Case 1 (Q = G). Theorem 3.8.b and Lemma 2.4 show
He — GIheHL2(p) S Cth%|€ — G€|27p S Cpph?g|€|27p.

Case 2 (Q = J). A triangle inequality and Theorem 4.3.c lead to

||€ — JIh€||L2(p) < He — IheHLZ(p) 4+ CJh/%)(|Ih€ — th€|27p 4+ |Ih€|27p).
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Theorem 3.8.c and Lemma 2.4 show |Ipe — GIpelap + |[Inel2,p < 2Cmwlel2,p. The previous

estimates and Theorem 3.8.d result in [le — JIpe|r2py < (Cr + 2C;Cm)h% el p. A Cauchy-
Schwarz inequality in the right-hand side of F'(e) — F'(QIne) = (f,e — QIne)r2(q) and the above
estimates in case @ = G or Q = J provide an estimate for each P € M. Their sum reads
F(e) — F(QIne) < (Cpr + C1 + 2C;Cr)nmlel2,0- (6.4)
Estimate of apw(Gup — EnGup, e). A Cauchy-Schwarz inequality and Lemma 6.2 lead to
apw(Guh — EnGuy, 6) < CQEM|€|27Q. (6.5)
FEstimate of sp(up, Ine). A Cauchy-Schwarz inequality and (5.2) result in

sn(n, Ine) < CH28)2 (up, up)|(1 — G)Inelapw < CH2Crosy’? (un, up)lel2.o (6.6)

with |[(1—G)Ine|2,pw < [Tne|2,pw < Cible|2.o from Lemma 2.4 and Theorem 3.8.c in the last step.

Estimate of |u — Gupl2,pw. The combination of (6.3)-(6.6) shows C5 := Crp, + C1 + 2C;Chy, +
C, + C;/QCH, in |u — EpGupl2.0 < Cspaqg. This, Lemma 6.2, and a triangle inequality for the
error 4 — Gup, = (u — EpGup) + (EpGup, — Gup,) reveal

|u — Guh|21pw < (05 + Ca)[LM. (67)

Estimate of |u — up2,pw. Recall (5.20) in the form C§/2|uh — Gupl2,pw < (. This, (6.7), and a
triangle inequality lead to

|’LL - Uh|2,pw S |U - Guh|2,pw + |Uh - Guh|2,pw S (05 + C’a + 051/2)/14\/(

This and (6.7) verify (6.1) for m = 2 with Cya 1= v/3(2(Cs + C,) + CL/?). O

Proof of Theorem 6.1 for m = 1. Let ¥ € V = H3(f) solve the dual problem a(v, ¥) = (A(u —
J'Intun), v) 2(0) for all v € V. Elliptic regularity (2.14) provides ¥ € H?%7(2) and the estimate

H\II”QJrU,Q < Creg|u - J/IMuh|1,Q- (68)
The test function v = u — J'Iyjuy, € V in the dual problem shows
|u — J'IMuh|iQ = a(u — J’IMuh, \I/) = F(‘I’) — F(QI}L\I/) + ah(uh, Ih\I/) — a(J'IMuh, \I/) (69)
with the continuous problem (B.15) and the discrete problem (5.5) in the last step. Theorem 3.8.b
provides GI;, ¥ = G¥ and (2.15) shows apw(Gup, GIn¥) = apw(Gup, ¥). Notice that apy (Gup, —
J' g, G¥) = apw (Gup, —un, G) 4 apyw (up, — Imtn, G) + apw (Imun, — J' Imuy, G¥) = 0 follows
from (2.15), (4.2), and Lemma 4.1.c. This and (6.9) result in
|u - J/IM’LLhﬁﬂ = F(\If) - F(th‘lf) + apW(Guh - J'IMuh, v — G\I/) + sh(uh, Ih\I/). (610)
FEstimate of F(¥) — F(QI,¥). Casel (Q = G). Theorem 3.8.b and Lemma 2.4 show that
|V — GIn¥||L2py < CPFCapxh§3+a|‘If|2+a,P-
Case 2 (Q = J). A triangle inequality and Theorem 4.3.c (with v = W) reveal that

|0 — J1a¥| 2y < |¥ = In¥ || 12(py + Cohp([In® — GInV|op + [,V — ¥y, p)
< (CI + 01(201 + Capx))h?)+o|\ll|2+a,P
with Theorem 3.8.d and (5.15) in the last step. The two estimates for ||¥ — QIy V| 2(p) (for

Q@ = G and Q = J) and the Cauchy-Schwarz inequality [, f(¥ — QI ) dx < ||f|lr2p)||¥ —
QInV| r2(py prove an estimate for each P € M. The sum of all those provides

F(¥) = F(QIn¥) < (CppCapx + C1 + Cs(2C1 + Caps))|¥l2400 Y hpmp. (6.11)
rPemM
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Estimate of apw(Gun — J' Ivup, ¥ — G¥). A triangle inequality and Lemma 4.1.d (with v =
EhGuh) imply |Guh - J’IMuh|27pW S |Guh - IMuh|21pw + CJ/|IMuh - EhGuh|21pw. This and
|Gur, — Inupl2,pw < |un — Gupla,pw from (4.2) lead to

|Gup, — J' Ivunl2.pw < (14 Cy)|un — Gupl2,pw + Cyr |Gup — EpGupla,pw
<A+ C)CY2 0 + CrCuBpm (6.12)

with (5.20) and Lemma 6.2 in the last step. A Cauchy-Schwarz inequality, (6.12), and Lemma 2.4
prove with Cg := Capx ((1 + C'J/)C'sl/2 + CyC,) that

A (Gup, — J' Inun, ¥ — GU) < Co|¥)a400 > hp(Cp +Ep). (6.13)
PeM

Estimate of sp(un, In¥). Argue as in (6.6) for the stability term and proceed with |(1 —
G)ILY |2 pw < [InV — G¥|y by from Theorem 3.8.b to deduce that

sn(un, W) < CL2Cu|In¥ — GU|y py < CY?(Cr 4 Caps) [Plato0 Y, hECp (6.14)
PeM

with a triangle inequality, Theorem 3.8.d, and Lemma 2.4 in the last step.
Estimate of |[u — Gup|1,pw. The combination of (6.10)-(6.11) and (6.13)-(6.14) provides

ju— T Ivunlf o < Co|¥ay00 > hpup (6.15)
PeM

with Cr := CppCapx + C1 + C(2C1 + Capx) + Co + C2/*(C1 + Capx). Argue as in (4.13) to
prove [y, V(J' Inup —up) ds = 0 so that the Poincaré-Friedrichs inequality from Theorem 2.2.a
applies. This and the triangle inequality |u — Gun|1,pw < |u — J' Imun|i,0 + |J Imun — Guplipw
result in

[u — Gupl1,pw < [u— J Iaunli,o + Cpelham (I Tvun — Gun)2,pw-

The regularity estimate (6.8), (6.15), and (6.12) lead in the previous displayed estimate to

|t — Gunlpw < Creg(Cr + Cpp((1+ Cp)CH2 + CpCa)) > hppp.
PeM

Estimate of |u — up|1,pw. The triangle inequality |u — up |1 pw < | — Gupl1,pw + |Gun — Upl1,pw,
Lemma 2.4, and (5.20) conclude the proof of (6.1) for m = 1 with Cyy 1= v/3(2C,eq(C7+Crr((1+
C;)C? 4+ CpCy) + CHP). O

Let z € V be a vertex in M with the neighbouring polygons M(z) := {P' € M : z € P’} and
define the vertex patch w, := int(UM(z)) and the larger neighbourhood Q(P) := U.cy(p)w-.
The edge patch M(E) := {P' € M : E C 9P’} consists of one or two neighbouring polygons
that share an edge FE € £ and this defines w(E) := int(UM(E)).

Theorem 6.3 (local efficiency up to data oscillations). For any P € M it holds

G S lu—wnl}p + lu = Gunly p, (6.16)
1 S lu— Gunlg p +osc3(/, P), (6.17)
25 Y Y (u-whe - Gule). (6.18)

E€E(P) P'eQ(w(E))
Proof of (6.16). The upper bound in (5.2) and a triangle inequality lead to
(P < Cs|(1 = Ghunlz p < 2Cs(Ju — unl3 p + [u— Gupl3 p). O

Proof of (6.17). Abbreviate 0p := (f — Iz f)|p, recall the bubble-function bp from (4.8), and
substitute v = bpllof € V in (B.15) to obtain

(Mo f,v)2(py = a® (u,v) — (0p,v)r2(p) = a” (u — Gup,v) — (Op,v)r2(p)
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with af (Gup,v) = af (Gup, Gv) = 0 from (2.15) and Gv = 0 (from Lemma 2.6 for Dof(v) = 0)
in the last step. This and Cauchy-Schwarz inequalities show

(2 f,v)r2(p) < [u = Gunl2,p|vl2,p + [|0p 2P [0] L2(P)- (6.19)

The first inequality in (4.15) shows Cgl||H2fH%2(p) < (ILaf,v)2(py and the second inequality
in (4.16) verifies 27271:0 hE|v|2,p < Cp|[Il2 f]|12(p). Those estimates prove in (6.19) that

C;Qh%)HHQfHLZ(P) S |u — GUh|2,P + OSCg(f, P).

This and the triangle inequality |3 || 2(py < A5 (f — o f) || L2(py + [|WH 2 f]| L2(p) conclude the
proof of (6.17). O

Proof of (6.18). Since [Gup|g = [Gup — J'Ivup] g, the trace inequality leads to
Cq_“l”[GUh]EHL?(E) < h51/2||Guh — JIIMU;LHL2(w(E)) + h1E/2||VpW(Guh - J/IMUh)”L?(w(E))-

Rewrite Gup, — J' Ivun = (Gup —up) 4 (up — Imun) + (Imun, — J' Inuy). Abbreviate |- [ 7(pry ==
>rer(pry | |2 for P/€ M. Lemma 2.4, (4.3), and Lemma 4.1.d for P" € M(E) lead to

Cr' b P N[Gunlsllzey < 2+ Crr) > (lun — Gupla,pr + (1 = J') Iagunlo,r(py)- (6.20)
P eM(E)

There exists a local version of Lemma 4.1.d established in [20, Lemma 5.1] with a positive
constant Cg (that exclusively depends on the shape regularity of 7) such that

(1= T) Daunlo,7(pry < Csmin || DG, (haun = v)l|2ep) < Csl| Dy (Inun = u)l 2 (er))-
A triangle inequality shows

[(1 = J") Daunlo,7py < Cs(II D3 (Inun — un)l| L2y + 1D (un — u)|| L2 (pr))-
This estimate for each P’ € M(E), |up — Imupl2,pw < |un — Gupl2 pw from(4.2), (6.20), and a
triangle inequality imply

P NGunlpll sy < Cr(2+ Cor) (14 Cs) > ([u—unlop + [u— Guplo,pr). (6.21)
P eQ(M(E))

It remains to control the term h;1/2|\[(Guh)n]EHLz(E) for each E € £(P). Since u — up, € Vi,
ap = f5(u—up)nds € R is uniquely defined. Rewrite [(Gup)nlp = [(Gun — u)n + ap]p for
E € £(P). The triangle inequality ||[(Gun —u)n+agle|L2z) < |[(Gun—un)alellL2 e+ [(un—
u)n + ap|E| L2(p) and the trace inequality lead to

—-1/2 _
e P I(Gun)nlBll 2y S (5 IV (Gun — un)l| 12wy + 1D2 (Gun — un)ll 2 (my)
+ (hp" 1 (un — wn + Bl L2@@E) + 1 Do (4 — wn)l L2@we)). (6.22)

Since [, ((un — u)n + ap)ds = 0, the Poincaré-Friedrichs inequality in Theorem 2.2.a applies
to ng - V(up, —u) + ap = [ in each P’ € M(E) and asserts |[(un — u)n + ap||L2wE) <
CPFhPHDgW('UJh — u)HLz(w(E)). This, hg > phps from (MQ), and Lemma 2.4 show
~1/2
P I1(Gun)nlBll 2y S ID2(Gun — wn)l L2 (wmy) + D2 (w — wn) || 2w (my)-

This and a triangle inequality result in

e P I(Gun)al Bl 2(m) < > (lu—unlap + Ju— Guplap). O
P'eM(E)

Remark 4 (efficiency of H! error control). The upper bounds in (6.16)-(6.18) with a multipli-
cation factor h%" for 0 < o <1 in front of ,u%g show that the error estimators in (6.1) for m =1
converge (at least) with the expected convergence rate of the piecewise H! error.
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Remark 5 (higher-order ncVEM and 3D). The upper bound (6.1) for the error |u—up|2 pw can
be generalized to ncVEM of higher order r > 3 (see [2] for the discrete setting). The enrichment
operator Ej, can be defined from the piecewise polynomial space P,.(7T) to HZ(2) [28] and the
arguments in this section hold in the three-dimensional case as well.

Remark 6 (conforming VEM). There are papers on the a priori error estimates for the con-
forming VEM, but there is no work on the a posteriori VE analysis for the biharmonic problem
in the current literature. The analysis in Section 6 applies to the conforming case with £ oG =1
and J' o Iy = 1 in the proof of (6.1) for m = 2 and m = 1. This establishes the reliable and
efficient a posteriori error estimator naq + (aq for the conforming VEM.

Remark 7 (extensions). The source term F is assumed to be an L? function in the main
parts of this paper for simplicity and brevity. A class of more general sources F' € H~2(Q) is
discussed in Theorem 5.3 only for the smoother () = J in the discrete problem and then avoids
the data oscillations. More examples on a class of right-hand sides F' are discussed in [18] and,
in particular, the a posteriori error estimates can be generalized for this class of source terms as
well. The arguments of [18] apply here as well and further details are omitted for brevity.

7 Numerical results

This section discusses two numerical experiments with uniform and adaptive mesh-refinement.

7.1 Adaptive algorithm

A standard adaptive algorithm with the loop Solve — Estimate — Mark — Refine from [16,
Sec. 6.1] is performed in two computational benchmarks.

Step 1 (SOLVE). Find the solution wy to (5.5) for @ = G in the right-hand side and com-
pute the errors Hle and H2e, Hme := |u — Gup|m, pw for m = 1,2, using polygauss quadrature
rule [31] for the input parameter n = 10.

Step 2 (ESTIMATE). Compute the local residuals in Theorem 6.1 and collect all these con-

tributions for P € M to obtain the upper bound H1p and H2u, Hmp? := 3 5 h?f(%m),u%
for the piecewise H™ error for m = 1,2. Abbreviate the number of degrees of freedom by ndof.

Step 3 (MARK). The Dorfler marking strategy [33] detemines D,,, C M for m = 1,2 with

Hmp? < 0.5 Z h2pg(27m)/ﬁ;.
PeDy,

Step 4 (REFINE). A refinement strategy in VEM divides the marked polygonal domains by
connecting the mid-points of the edges to the centroid and allow at most one hanging node per
edge; cf. [34] for further details on a MATLAB implementation.

7.2 Numerical example in L-shaped domain

This subsection considers an L-shaped domain of Figure 7.1 with the exact solution of the model
problem in polar co-ordinates (r, §)

u(r,0) = r°/sin (%9) inQ=(-1,1)%\[0,1) x (—1,0].

In this example, both v and uy, are not zero along the boundary 052 and f = 0. The upper bound
for inhomogeneous boundary data can be established with minor modifications: The term =Zp
in the error estimator for P € M, which share a boundary edge, changes to

1 1
b= Y (GrliGumlsliae + I Gunnlelae)
B E
Ee&(P)NE(R)

1 1
> (gl — sl + - lGun — walsliam )
Ecg(P)NEDQ) B

[1]
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Figure 7.1 displays strong local mesh-refinement at the re-entry corner in the adaptive mesh-
refining. Figure 7.2 shows that uniform refinement yields the sub-optimal convergence rate,
whereas adaptive refinements recover the optimal convergence rate.

Figure 7.1: Output M1, Mg, My5 of the adaptive algorithm in Subsection 7.2.

10! ‘ ‘
—a— H2e(uniform) —=—H le(unifor.m)
—o— H2e(adaptive) 100 +Hle(adafpt1ve)
—2— H2p(uniform) 3 —_ —A Hlugunlfor@)) 3
—+— H2u(adaptive) A —+— H1pu(adaptive
100 i N\&,&*
1072 ¢
107
1072 : : : 107 ) - )
102 103 104 105 102 103 104 105

Figure 7.2: Convergence history plot of the errors resp. error estimators H2e resp. H2u (left)
and Hle resp. H1p (right) vs ndof for the L-shaped domain in Subsection 7.2.

7.3 Numerical example in Z-shaped domain

The subsection considers the polygonal domain  with the vertices (0,0), (1,0), (1,1), (—1,1),
(—=1,-1),(1,—1) of Figure 7.3. Define the right-hand side function f in the polar co-ordinates
(r,0) with the exact solution

u(r,0) = (1 — 12 cos?(0))? (1 — r2sin?(9))%r+2) g(0).

Here z = 0.505009698896589 is a noncharacteristic root of sin?(zw) = 22 sin*(w),w = 77/4 and
g(0) is as given in [29, p. 107]. Figure 7.3 and 7.4 display the numerical results.

Figure 7.3: Output My, Mg, M5 of the adaptive algorithm in Subsection 7.3.
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—o— IlIQe(uniform) —o— Hle(uniform)
—+— H2e(adaptive) 100l S — Hle(ade.xptive) ]
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ndof ndof

Figure 7.4: Convergence history plot of the errors resp. error estimators H2e resp. H2u (left)
and Hle resp. H1p (right) vs ndof for the Z-shaped domain in Subsection 7.3.

7.4 Evaluation

Empirical convergence rates. The two domains from Subsection 7.2 resp. 7.3 have weak solutions
u € H?*T7=¢(Q) for any € > 0 with the typical corner singularity for o = 2/3 resp. o = z = 0.505
and hence we expect and observe the empirical convergence rates in the H? norm (resp. H®
norm) o/2 (resp. o) in terms of ndof /% for uniform mesh-refinements. The adaptive mesh-
refining improves the empirical convergence rates to the optimal values 1/2 (resp. (1 4+ 0)/2).

Efficiency indices. The ratio of the error estimator and the total error (effectivity index) in the
piecewise H2 and H'! norm remains bounded: 3 < H2u/H2e < 5 and 5.5 < Hlu/Hle < 7 in
both examples. This confirms empirically that the error estimator mimics the behaviour of the
total error and also validates Theorem 6.1.

Dominant error contributions. Figure 7.5 displays the individual components ng,gg,E},E? in
the error estimator, which abbreviate na4,, (a,, E}W , 53\4[ and shows the dominance of E}. The
remaining part =2 of =, := =} + =2 and the volume residual 7, converge more rapidly. The error
estimator components for the H! error in the adaptive refinement behave similar.

10%

100 4 10t L

1071t 100 L

1072 s 2 s 3 L 1 - 1071 L L L
10 10 10 10 102 103 104 105

ndof ndof

Figure 7.5: Convergence history plot of the error estimator components corresponding to H2e
for adaptive mesh-refinement vs ndof in Subsection 7.2 (left) and 7.3 (right).
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A  Proof of Lemma 2.6

The integral a”(v,w) = [, D?v : D*wdz for v € H*(P) and w € H?*(P) allows an inte-
gration by parts formula [2, Sec. 2.1] with the boundary terms Mnun(v) = van, T(v) =
(AV)n+vnrr, Mnr(v) := vn, from [2] and the abbreviations [Myur (v)].; 1= Mnr(v)|g-1)(25) —
M+ (v)| () (24) with E(0) :== E(Np) for a cyclic notation along 0P. Those boundary terms are
well-defined as traces of a smooth function v € H*(P) and then the formula reads

a® (v, w) = (A0, w) p2(py + (Mun(0), wn) r2(op) = (T(0),w) 12(0p) + Y [Mar (v)]2;w(2)).

The boundary terms require a smooth function v like the quadratic polynomial y € Py(P) with
A%y = 0 = T(x) and with piecewise constants Mnn(X)|g(k) = Xanleg) and Mar(X)|grx) =
Xnr|Bk) for K =1,..., Np, which are computable in terms of D?y € S and of the geometry of P
from Figure 2.1.a. This and the definition of G' from (2.15) lead, for x € P2(P) and w € H?(P)
in (A.1), to

Np

aP(Gw, X) = aP(X,w) = (Mnn(X)vwn)Lz(aP) =+ Z[MHT(X)]ZJ-U’(ZJ')' (A.2)

j=1

The dofs of w from (2.1) allow for a re-writing of the right-hand side of (A.2), namely

Np Np
a”’(Gw, x) = Z Xnn|E(k)dofnp 1 (w) + Z(Xn‘r|E(j—1) — Xnr|B(j))dof; (w). (A.3)
k=1 j=1

This defines Gw € P2(P) up to an affine contribution fixed in (2.16). The first condition in
(2.16) reads

Np Np Np
Np' ) Gu(z) = Np' > w(z) = Np' ) dofj(w). (A.4)
j=1 j=1 j=1

For the second condition in (2.16), the identity fE(k) Vwds = dofy, rx(w)nggy + (Teg—1) —
Tik))dofy(w) for k =1,..., Np from (2.11) shows

Np Np

Vwds = Z ( Vw ds) = Z(dopr+k(w)nE(k) + (TBE(k—1) — TE@K))dofr(w)). (A.5)
op 1 \JEk) par

The equations (A.3)-(A.5) form a linear system of 6 equations for Gw € Py(P) and the right-
hand sides in (A.3)-(A.5) are computable in terms of dof; (w), ..., dofan, (w) for any w € H?(P).
Hence its solution Gw is computable in terms of the dofs of w. It is elementary to see that Gw is
uniquely determined and the 6 x 6 coefficient matrix in the resulting linear system of equations
is regular. (Another proof for this follows from the estimates in the second part of the proof
below.) This proves the first part of the lemma.

The second part part of the proof estimates |Gw|m,, p for m = 0,1,2 in terms of Dof(w) =
(dofy (w), ..., dofan, (w)). The definition of G with x = Gw € P2(P) in (2.15) and (A.3) imply

NP NP
|Gwl3 p = a” (w,Gw) < Ixanl sy ||dofnprr(w) + Y (IXar|eG-1) = Xar|B() |)dof; (w)].
k=1 j=1

Cauchy-Schwarz inequalities and |xan|p() |, [Xnr|E@)| < [D?X]| reveal

2Np
(Gul3 p < 2ID°x| Y [dofj(w)| < v/8Np|P|~"/2|Guwla,p|Dof(w)| =

j=1
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The bounds |P|~Y/2 < 7=Y2C;2hp" (cf. [4, Chap. 1]) with a shape regularity constant Cy, of
T(P) (that exclusively depends on p) and Np < M(p) from Subsection 2.1 show

|Gz p < /87T 1C5* M (p)h ! [Dof(w)] 2. (A.6)

Define a := N* Z;V:Pl w(zj) € R, B:=[0P|™! [,, Vwds € R?, and the affine function g(z) :=

a+ Bz — Np* Z;V:Pl zj) to control the lower-order terms 27171:0 h5 | Gw|pm,p. The definition
(2.16) of G provides

Np Np
Z(Gw —9)(zj) = (Zw(z])) —aNp =0, V(Gw —g)ds = / Vwds — |0P|B = 0.
= = oP oP

The Poincaré-Friedrichs inequality from Theorem 2.2.b, therefore, shows for Gw — ¢ that
hp?|Gw = gl L2(py + hp' |Gw — gl1,p < Cpr|Gula p. (A7)

The Cauchy-Schwarz inequality implies |a| < N;1/2|Dof(w)|g2. Since [npgy| = 1 = |Tem)l,
(A.5) shows that | [, , Vwds| < 22?51’ |dof; (w)|. A Cauchy-Schwarz inequality and |0P|~! <
N;'p=1hz! from (M2) imply that |B| < 2v2Np"/?p=1h5" Dof(w)|s2. The definition of g and
the previous two estimates for |a| and |B| result in

™ \1/2 _
gl 2y < 1PI"2(la] + hp|B]) < (N—P) (1 +2v2p7 ) hp [Dof(w)) 2 (A.8)

with the coarse bound |P| < wh% in the last step. This and the inverse estimate for |g|1 p
(collected from an inverse estimate in the triangle T € T(P) and so with a well-established
bound for Cipy) show

_ ™ \1/2 _
e < Condli gl 20 < (37)'72(1 4 2920™) Cim [Dot(w)] . (A.9)

Triangle inequalities an:o R 2| Gw|m,p < anzo RE2(|Gw = glm,p + 19lm,p), (A.7)-(A.9),
and the abbreviation Cy := 1 + Cpp + (1 + Ciny)7/2(1 + 2v/2p 1) prove

2
> W GW|m p < Co(hp|Guwls,p + [Dof(w)]2) < CyDof(w)|e

m=0

with (A.6) and C, := Cy(1 + /87" 1C5*M(p)) in the last step. This concludes the proof.

(Notice that, in particular, Dof(w) = 0 implies Gw = 0 and this proves that the linear system
of equations (A.3)-(A.5) involves a regular coefficient matrix as announced.) O

B Proof of Proposition 3.1

Step 1 defines an HCT finite element space. Recall the sub-triangulation 7 (P) from Subsec-
tion 2.1 and decompose any triangle T' € T (P) further into three sub-triangles X(T') depicted
in Figure B.1.c. Then the Hsieh-Clough-Tocher (HCT) finite element space [22] reads

HCT(T(P)):={0 € H*(P):YT €T d|r € Ps(K(T))}.

(b)

Figure B.1: (a) Triangle T', (b) Morley, (c) HCT.
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The standard degrees of freedom (dofs) in the HCT finite element (cf. [22, Chap. 6] or [27,
Sec. 2.3]) are the nodal values of the function and its first-order derivatives at each vertex and
the mid-point values of the normal derivatives along each edge of a triangle as depicted in
Figure B.1.c. This paper utilizes the integral means instead of the mid-point values of normal
derivatives along edges and all other dofs (i.e., nodal values) are unchanged. Let PHCT 7¢§1€E
be the 2Np nodal basis functions in HCT(T(P)) with Vi¥T(z,) = 0 for all j = 1,...,2Np

and, for all k,¢=1,..., Np,

G ) b @ nds =0, and WE, () =0, f (S mds = 0. (B)
E(6) E(f)

In contrast to this, let z/;?fgp € HCT(T(P)) be a nodal basis function in the standard HCT

finite element with z/;?fgp (mid(E(¢))) =1 for £ =1,..., Np, while all other dofs vanish. Then

4 ) s(1—s)ds = 2/3 leads to ¢}IOF = 3¢HOT for Fo WEN, nds =L and £ = 1,..., Np.

This observation, the scaling of the standard HCT basis functions from [27, Prop. 2.5, and

the bound h;' < p~'hp! from (M2) for all T € T(P) provide a positive constant Ccr (that
exclusively depends on p) in

r]?axhph/)k HOT)y p + max 1 [UpN 2. < Crer. (B.2)
Step 2 constructs an HCT interpolation. Recall the nodal basis functions ¢HCT, ... ,7,/1;{]\(,33 of

HCT(T (P)) selected in Step 1. The HCT interpolation wyct € HCT(T(P)) of a given w €
H?(P) reads

Np

wrer = 3 (T 4 z (][ n ds) Jher ©23)
k=1

The duality relations (B.1) imply for m = 1,...,Np in (B.3) that wgcr(zm) = w(zm) and

fE(m)(wHCT)n ds = fE(m) wy ds. In other words, Dof(wycr) = Dof(w) for the vector Dof with

components from (2.1).

Step 3 defines the Hilbert space (Vo,a®). The kernel of the linear map Dof : H?(P) — R2VP is
the closed subspace

VO::{ € H*(P): (J)—Oz/ Un ds forj:l,...,Np}
E(7)

of the Hilbert space H?(P) and so complete. Hence (Vp,a”) is a Hilbert space. Notice that
w — wper € Vp for any w € H?(P) from Step 2 and Gw = 0 for w € V; (from Lemma 2.6 with
Dof(w) = 0 as explained in Appendix A).

Step 4 proves that Vg- == {v € H?*(P) : aP(v,w) = 0 forall w € Vp} C Vi(P). Given
any v € V5- and w € H?(P), define the HCT interpolation wict of w from Step 2. Then
w — whct € Vp from Step 3 implies that

Np Np

a” (v,w) = a” (v, waer) =Y a® (0, N w(z) + Y af (v, PN, )b hs /E(e) wn ds.  (B.4)

k=1 =1

Define f := 0 € P_1(P), az := a”(v,¢}'T), and g € Po(E(P)) by glu) = a” (v, V5N ) g
for £=1,..., Np to rewrite the right-hand side in (B.4) as

Np
a® (v, w) = (g, Wn) 2 (opP) + Z apw(ze) for allw € H*(P).
=1
This implies v € V,(P) for 7 = —1 and concludes the proof of Step 4. O
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Step 5 proves that Dof : ‘7h(P) R2N? s surjective. Given any x = (21,...,Tan,) € R2VP
and the functions T, ... yHCT selected in Step 1, define upc := Z2NP RHCT € H2(P)
with Dof(upc) = z from Step 2. Let ug € Vp denote the Riesz representation of af’ (upc,-) in
(Vo,a?), ie., a¥(uo,-) = a¥ (upc,-) in Vy. Since a’ (ug — upc,-) = 0 in Vo, Step 4 shows that
Up, := upc — ug € Vi (P). Recall Dof(upc) = 2 and Dof(ug) = 0 to deduce Dof(i) = . O

Step 6 establishes an inclusion in ‘7h(P) with a non-zero f. Given f € P.(P), the Riesz-
representation theorem guarantees the unique existence of the weak solution u(f) € V4 to

a”(u(f),v) = (f,v)r2(py forallv € Vj. (B.5)

Recall that r is a fixed parameter in {—1,0,1,2} and » = —1 is trivial in this step. Since (B.5)
implies A2u(f) = f in P, it remains to prove that u(f) € V,(P). Given any w € H?(P) with
whgeT from (B3) w — whet € Vp leads in (B 5) to aP( (f), w — wHCT) = (f,w — ’wHCT)L2(p).
Hence

a” (u(f),w) = (f,w — wacr)2py + o’ (w(f), waer) = (f, w)r2(py + AMwner) (B.6)

with the linear functional A(v) := a” (u(f),v) — (f,v)r2(p) for any v € H?(P). The representa-
tion (B.3) of whct shows

aP(u(f),w):(f,w)Lz(p)JrZw(zk) SHOT) +Z (][
k=1

Wn ds) A(/l/}é_l“rcjgp)

E(f)

Np
= (f,w)r2(p) + (9, wn)r2(op) + Y _ axw(zi) for allw € H*(P) (B.7)

k=1

with the definition of a; := A(¢f'°T) and g € Po(E(P)) by glpw) = [EWC)|T'AWESR,) for

¢=1,...,Np. This implies that u(f) € Vi (P). Notice that u(f) depends linearly on f € P,(P)

and so Pp(P) — Vi (P), f > u(f) defines a linear map.

Step 7 proves that L : Pr.(P) — P.(P), f — I, u(f) is an isomorphism. For any f € P.(P) with
Lf =0, the orthogonality (1—1IL,)u(f) L P.(P) in L*(P) shows 0 = [,(Lf)f dx = [, u(f)f dz.
This and v = u(f) in (B.5) result in 0 = af(u(f),u(f)) = |u(f)|2.p. Consequently u(f) €
P1(P)NVy and so u(f) = 0. Thus f = A%u(f) =0 and L is injective; whence bijective. O

Step 8 proves that Dof : Vi,(P) — R*V? s an isomorphism.

Proof of surjectivity. Given any x € R?NP | there exists 1, € \A/h(P) with Dof(uy) = « from Step
4. This leads to g := I, Guy, — IL,4y, € P.(P). Since L is bijective in P,.(P) (from Step 7), there
exists f € PT(P) with IT,u(f) = g. Recall that u(f) € V; implies Dof(u(f)) = 0 and Gu(f) = 0.
Altogether, ul := u(f) +up € Vh( ) satisfies Dof (uf) = x and I, Guf =11, Gay, = g+ 11,4y, =
u(f) + 1,4y, = ,ul . Hence uj, € V,(P). O
Proof of injectivity. Suppose v, € Vi, (P) satisfies Dof(vy) = 0. Recall v, € Vj,(P) N Vp and
Guvp, = 0 from Step 3. The definition (3.1) (for v = v with Dof(v) = 0) leads for some
f € Py(P) such that a” (vs,vn) = (f,vn)r2(p). This and (3.2) reveal

lonls p = a” (vn, o) = (f,on) 2Py = (f; Thwn) 2Py = (f, T-Gun) L2 (p) = 0.

Hence vy, € Vo NP1 (P) and so vy = 0. O

Proof of (H1). The key observation from Step 8 is that V},(P) has the dimension 2Np and
dofy,...,dofoy, from (2.1) are linear independent. Consequently (P, Vj,(P), (dofy, ..., dofan,))
is a finite element in the sense of Ciarlet. O

Step 9 provides the scaling of an HC'T interpolation. Let ¢y, = 1, be a nodal basis function of the

finite element (P, V},(P), Dof) for some p € {1,...,2Np} and let ¥gcr be its HCT interpolation
from Step 2, namely

Np
P = S (T +z (][ )w?f];fp. ®3)
k=1
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The definition of a nodal basis function v, shows that ¢y, (zx) and fE(e) (¥n)n ds are zero or one

for k,¢ =1,...,Np. The scaling of $}!°T, ... ¢HCT from (B.2), and the bound hy' < p~'hp'
for all E € £(P) from (M2) lead to

[Yucrle.p < Cucr(L+p~Hhp'. (B.9)

Step 10 controls a nodal basis function in Vi, (P) by its HCT interpolation. For a given nodal
basis function vy, € Vi, (P), its HCT interpolation et from (B.8), Dof(¢)r, — Yucr) = 0 from
Step 3, and the test function w = ¥, — Yucr lead in (3.1) to

a” (¢n, Yn — Yuer) = (f,¥n — YrCT) L2(P) (B.10)

for some f € P.(P). The definition of the L? projection II, and the relation IL,.G1y, = IL.4y,
from (3.2) for r = —1,0, 1,2 show that

(f,¥n)r2py = (L, 1oGYn) 2 (py = (f, IL,GY¥ncr) L2 (p)

with G, = Gypcer from Dof(¢r,) = Dof(ucr) and Lemma 2.6 in the last step. This, (B.10),
and a Cauchy-Schwarz inequality imply that

[nl3.p < |¥nl2.plvucrle,p + | fll2ce) T GYuct — Yucrtl r2p).- (B.11)

Recall f = 0 for r = —1 so suppose r = 0, 1, 2 for the time being. Since fp(l —1II,.)GyYycr dr =0
from the definition of the L? projection II,. for r = 0,1,2, the Poincaré inequality from [7,
Subsec. 2.1.5] shows that [|(1—1II,)GYucT|22(P) < Crhp|GY¥nct|1,p With a positive constant Cp
(that exclusively depends on p). Since 9, is a nodal basis function, [, (YucT)nds = [5(¥n)n ds
for all E € £(P) imply that [, (¢Yucr)nds = 0 for all but at most one E € £(P) and the
Poincaré-Friedrichs inequality from Theorem 2.2.a shows |¢Yuct|1,p < Cprhp|tucr|2,p. This,
Lemma 2.4, and a triangle inequality result in |GwHCT|1,P < |GwHCT — wHCT|1,P + |¢HCT|1,P <
2Cprhp|tuct|2,p. Hence the previous estimates lead to

(1 = T0,)Gymorl| L2 (py < 2CeCrrhd|vncr|a,p-

This, Lemma 2.4, and H(l - H’I‘G)wHCTHLZ(P) S H(l - HT)G’L/JHCTHLQ(ID) + ||(1 — G)’L/JHCTHLQ(p)
result in

(1 = ILG)Yucrllr2p) < Cpr(l + 2Cp)hp |YucT]2,P- (B.12)

Step 11 bounds the term || f||2(py. Recall the bubble-function bp from the proof of Theorem 4.3.
The substitution of x = f € P,(P) in the first estimate of (4.15) proves that

Cy M lf12py < (Fbpf) L2y = o (Yn, bef)

with w = bpf € H3(P) in (3.1) in the last step. A Cauchy-Schwarz inequality and the second
inverse estimate of (4.16) imply

Cy N f1Z2py < 1¥nla,plorfla,p < Cohp?|nle,p|l fL2(p)-
Consequently, [|f]1z2(py < C2h5? nlo,p.
Proof of (H2). The last estimate and the combination of (B.11)-(B.12) result in

[¥nl2.p < (1+ Cf (Cer(1 + 2Cp)))|ducr2.p
for r = 0,1,2. For r = =1, f = 0 and (B.10) show |[¢nl2,p < |¢ucr|2,p. The combination

with (B.9) verifies (H2) with Csap := Chor (1 + p7 1) (1 4+ CZ(Cpr(1 + 2Cp))) for a nodal basis
function 4, in V3, (P) from (3.1)-(3.2) and concludes the proof. O

Remark 8 (trace of H? functions). The trace operator tr := (y9,v1) : H2(P) — H3/?(9P) x
H'/2(QP) for a polygon P is not surjective, i.e., v|gp and vy|sp are not independent of each other
[23, 26]. One consequence for weak solutions is that we cannot immediately split the boundary
conditions in the weak form (A.1) into the two strong formulations Man(vs)|op € Po(E(P)) and
T(’Uh)|ap =0 for vy, € Vh(P).
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Remark 9 (weak and strong formulations of VE functions). Compared to the current VE
literature on fourth-order problems [2, 21, 24, 30, 35], the definition of V4 (P) in (3.1)-(3.2) or
(3.3)-(3.4) looks different. In Example 1, for instance, the analog to V,(P) in [2, 21] reads

V,LS(P) :: {’Uh S H2(P) : AQ'Uh € PT(P), Mnn(vh)|ap S PO((C/‘(P)) and } - (B_13)

T (vn)lop € P-1(8P), vy — Goy L Pp(P) in L*(P)

We refer to this as the strong formulation, but utilize the weak form of V,(P) in (3.1)-(3.2)
throughout this paper. The point is the regularity of the weak solution v € H2(P)/P1(P) to

Np

a” (v, w) = (f,w)r2(py + (9, wn)L20p) + 3 ajw(z;) for allw € H*(P). (B.14)
j=1

The weak solution v € H?(P) is unique up to affine functions P;(P) and the right-hand side
displays a given f € P,.(P),g € Po(E(P)) and a1, ...,an, € R. The integration by parts formula
from (A.1) exploits the formula (B.14) as

Jj=1

that holds for smooth v € H*(P) and for all w € H?(P). The technical issue is that only for
smooth v, it holds Mun(v)|ap € Po(E(P)) and T'(v)|sp € P—1(0P) and, to the best knowledge
of the authors, it is unclear whether the weak solution v € H2(P)NC>(int(P)) to (B.14) allows
a weak definition of the individual terms Mnn(v)|sp and T'(v)|sp on the boundary 9P despite
the fact that elliptic regularity guarantees that v € C*°(int(P)) is smooth inside the polygonal
domain P. A routine argument with a test function w € D(int(P)) leads to

Np Np
(g, wn)LQ(BP) + Zajw(zj) = (Mnn(v)vwn)LZ(aP) — (T'(v), w)LZ(BP) + Z[MHT(U)]ij(Zj)

(B.15)

provided Mpun(v)|op and T'(v)|gp can be defined well. Remark 8 already gives a warning for
this and the consequence in the literature on fourth-order problems is, cf., e.g. [26], that only
the sum of the right-hand side in (B.15) is a well-defined linear functional and it is never split
into Man(v)|ap and T'(v)|sp. Clearly, once we knew that both Myn(v)|sp and T'(v)|op are
distributions, the identity (B.15) might reveal that g = Mnn(v)|op and T'(v)|gp = 0, but we do
not know that. On the formal level, if we have the information that v € Vj,(P) is smooth up
to the boundary, then v € V;?(P) would follow. In this sense, the notation V;?(P) is interpreted
as a strong formulation of V3 (P) from (3.1)-(3.2). We understand that, with the substitution of
Vi (P) from (B.13) as V,(P), the results of [2, 21] are well-defined and remain valid. At least
the paper [21] already adopts this point of view in [21, Lemma 3.4].

Analog remarks apply to [35] and Example 2 in this paper.

C Proof of Proposition 3.2

C.1 Omne-dimensional finite element

Recall the vertices z1,...,zn, and the edges E(1),...,E(Np), the corners (1,...,(; and the
sides v(1),...,7(J) of a polygonal domain P € M, and recall the vector space S(j) and a
linear functional A; for j =1,...,J from Subsection 3.2.2. Change the coordinate system to let
v(j) = (0, L) belong to the real axis R x {0} and identify (z(j), - -, Zk()+m()) = (0,81, .., Sm)
with a quasi-uniform partition 0 = sy < s1 < -++ < s, = L. Then S(j) = P2(£(v(4))) NC*0, L]
has a known B2 spline basis, while we define ¢, € S(j) for £ =0,...,m by

we(se) = 1,¢95(s0) =0 =p(s) forallk=0,...,mandk # /.
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Lemma C.1 (construction of ¢;). The functions o, ..., om belong to S(j) and there exists a
positive constant Cig (that exclusively depends on p) such that

||g04||Loo(,y(j)) < ClO fOTE = 0, ey M.

Proof. The construction of ¢y first determines the piecewise quadratic ¢, uniquely in the intervals
(se—1,s¢) and (sg, s¢+1). This determines the derivative ¢} at the end points s,—1 and sg+1. The
values oy (s¢—1) and @g(sg—2) = 0 = @e(s¢—1) lead to a unique quadratic polynomial e (s, , s, ,)-
A successive application of this argument to the remaining intervals leads to a ¢, € S(j). Let
he == s¢g — sp—1 for £ =1,...;m. A direct computation of ¢, ..., @, displayed in Figure C.1
and C.2 controls the extrema ||@e||Lo(y(;)) < max{l, maxy 4—o,...m hp/(2hq)}. It follows from
(M2) that hy =~ L and so |@¢||pe(yyy < Cio for £ = 0,...,m with a positive constant Cig
that exclusively depends on p. O

Sm =1L
Figure C.1: The nodal basis function ¢g.
— 2 h
1 slope = —7 ﬁ
S R VAR
0 S1 S2 S3 Sm = L

hom

hg 2ho

2h2 [ slope = %

Figure C.2: The nodal basis function ¢;.

Define 1 with (0) = 0 = t(s1) and ¢ (h;/2) = 1 in the first interval (0,s;). Then compute the
slope —4/hy at s1 and define ¢ uniquely in (sy, s3) with ¢/(s1) = —4/hy and ¥ (s1) = 0 = ¥(s).
Continue the procedure by preassigning the derivative values (—1)*~'4/h; at the left vertex
s(¢ — 1) and function values ¢ (sp—1) = 0 = th(s¢) for all £ = 2,...,m so that ¢ € S(j), and
verify that extrema in each interval (s¢_1,s¢) is (—1)*"'hg/hy. Since ||QZ||L00(.Y(]')) > 1, rescale

= i so(y(i)) = 1.
P = to derive ||¥]|L ()
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=_4 N = 77
1 slope s ha =
hy
h1 R ha
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S1 S2 h3 53 hyg Sm = L
ha hq
h1 fslope = ﬁ

Figure C.3: The nodal basis function ¢ with [|¢|| e (y(j)) = 1 (here hy = maxj>, hy).

Lemma C.2 (basis of S(j)). The functions o, ..., om,¥ form a basis of S(j).

Proof. Let a, a, ..., € Rosatisfy >, appe + atp = 0. This implies, for any k = 0,...,m,
that

0= Zaggpg sk) + arp(sk) Zagékg = Q.
£=0

The function 1 attains a positive value at the midpoint h1/2. So aip(hy/2) = 0 shows that
a = 0. Consequently, ¢o,...,om,® are linearly independent. Since dim(S(j)) = m + 2, they
form a basis of S(j). O

Given the basis functions ¢y, ..., ©m, ¥ as in Lemma C.2, define

Vo= — Nj(pe)yp foralll=0,...,m and Ymi1:=1.

Lemma C.3 (finite element and 1D stability). The triple (v(5), S(5), (dofy(jys - - - s dofi(j)+m(s)>»
Aj)) forms a finite element in the sense of Ciarlet. The functions o, ..., "¥m+1 form a nodal

basis of S(j) and
1 < |[Yellpoe vy < Cr1 for all =0,...,m+1
holds with a positive constant Cy1 (that exclusively depends on p).
Proof. The functions vy, ..., ¥m41 satisfy, for all k£, =0,...,m, the duality relations
dofy,(Ye) = Ye(sk) = we(sk) = Oke,  dofk(Ymi1) = Pmt1(sk) = P(sk) = 0,
Aj(e) = Aj(de) = Aj(de) A (¥) = 0, Aj(Ymyr) = Aj(4h) = 1.

Hence the functions o, . . . , ¥, 41 form a nodal basis of S(j). Consequently the triple (v(j), S(j),
(dofy(j), - - -, AOfk(j)4m(j), Aj) forms a finite element in the sense of Ciarlet. Recall H'l/)”Loo(,y(]))

1 and notlce lVUma1llLoe(vy) = Il Lee(v(j)) = 1. The definitions of ¢, show, for £ = 0,...,m,
that

L < |[9ell e (vgy) < Nlpellnoe vy + 14 (0e)] < (14 Ca)lleell L)) < (14 Ca)Cro

with the assumption ||A;]| < Cx from Subsection 3.2.2 in the second last step and |[e]| Lo (v(j)) <
C1p from Lemma C.1 in the last step.

C.2 Proof of (H1)

Recall Dof(e) = (dofi(e),...,dofan, (e)) from Subsection 2.1 for the polygon P with Np edges
and J sides and recall Ay,..., Ay from Subsection 3.2.2. Let A(e) := (Ai(e),...,As(e)) and
abbreviate Dof @ A := (dofy, . ..,dofan,, A1, ..., Ay) : H>(P) — R2Ne+7,

Step 1 designs an HCT interpolation. Given wy, € Wy (P), its trace wal, ;) € S(j) € CH(v(j))
allows for well-defined tangential derivatives at all the vertices, that are utilized to define the
HCT interpolation as follows. Define the normal derivative of wpct € HCT(T (P)) to be zero
at any vertex z, which is not a corner. This and the tangential derivative uniquely define
Vwy(z) = Vwncr(z). There are two linearly independent tangential derivatives at a corner (;
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along v(j) and y(j+1) and they uniquely define a vector Vwy,({;) = Vwncr((;) for j =1,...,J.
Those values and the point evaluations wp(z) = wnuer(z) at z € V(P) allow for the HCT
interpolation wyct € HCT(T (P)) of wy, € Wy (P) with

waet(zr) = wn(zk), Vwnacer(zk) = Vwn(zk), and ][ (whCT)n ds :][ (wp)n ds
E(¢) E(¢)

for all k,¢ = 1,..., Np, while all other dofs of wycr in the HCT finite element space vanish.

Let wHCT, ..., 3I¢T denote the 4Np nodal basis functions in HCT(7(P)) with 1T, ... o8FT
from Step 1 in Appendix B. For any k = 2Np + 1,...,4Np, define some remaining nodal basis
functions ST € HCT(T(P)) uniquely by ’l/)HCT(Zg) =0= JEE(E) CMudsfor £ =1,...,Np,
and

O (VT (20) = S(—anpyes Oy “T)(20) =0 ifk=2Np+1,...,3Np,
O (VM) (20) = 0,  0y()(20) = O(h—anpye ifk=3Np+1,....4Np.
The scaling of the standard HCT basis functions from [27, Prop. 2.5], the observation from

Step 1 in Appendix B for the scaling of $11°T, ... HCT and the bound hz' < p~th' for all
T € T(P) from (M2) provide a positive constant Ccr (that exclusively depends on p) in

N 3N
I}QéthPW Tlop + ma& [V Npl2.p < Crer. (C.1)

(This extends (B.2) with a possibly different constant Cycr for additional 2Np nodal basis

functions YEFT ... ¢FT.) Then, given wy, € Wy (P), the HCT interpolation wgcr reads
2Np 3Np
wheT = Zdofk (wn )T + Z dofy( wh)hE(,C Np) HOT Z O (wn) (zh—2np )URCT
k=1 k=Np+1 k=2Np+1
ANp
+ ) Oy(wn)(ze-sne )R
k=3Np+1

Step 2 defines the Hilbert space Wy. The kernel {v € H*(P) : ¥/ =1,...,Np fE(é) vnds =0}

of the linear map (dofy,11,...,dofan,) : H2(P)N HE(P) — RM? is a Hilbert space H?(P) and
its intersection

WO:{UGW:/ tnds =0 for£1,...,Np}cw:H01(P)ﬁH2(P)
E(£)

is complete. Therefore (Wy, a’) is a Hilbert space.

Step 3 proves wp, — wuct € Wy for any wy, € Wi(P) and its HCT interpolation wpct €
HCT(T (P)) from Step 1. The design leads to (wn — wrct)|y(j) € Ps(E(7(4))). Step 1 shows

that (wp, — wner)(2x) and V(wp, — wper)(2x) vanish for all & = 0,...,m. These values and
(wh — wher)ly () € Ps(E(v(4))) N CH(y(j)) uniquely determine (wp, — wer)|y () = 0 for j =
1,...,J and so (wp, — wher)|sp = 0. Consequently, w, — wuct € W. Since fE(e) (wher)n ds =
fE nds for all £ = 1,..., Np (by design of wycr), wn, — wacr € Wy follows from the
deﬁmmon of Wy in Step 2. |

Step 4 establishes a sufficient criterion for the inclusion in ﬁ/\h (P): Ifw € H?>(P) and f € P.(P)
satisfy a” (w, ¢o) = (f, do)r2(p) for all ¢g € Wy, then there exists g € Py(E(P)) such that

af (w,6) = (f,0)12(p) + (9, #n)r20p) for all g € W.
Proof: Let ¢, € SY(T(P)) := {v € CO(T(P)) : VT € T(P) wv|r € P1(T)} be the nodal basis

functions in the Courant FEM (P; conforming) associated with the vertices z; and define the
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quadratic edge-bubble function bg ) := 4pepey1 with support T'(E(£)) depicted in Figure 2.1.b.
Define ¢1,...,¢n, € W by

Ye(x) = %(z —mid(E(¢))) ~nE(g)b2E(e)(z) forallz € P

so that fE(k)(wg)n ds = 0 for all k,¢ =1,..., Np. Given any ¢ € W, define

Np

b0 = — b ds )1 € W.
0 ; ( » s)we € Wo
Then a” (w, ¢) = a”(w, ¢o) + a” (w, ¢ — ¢o) and the assumption a” (w, ¢o) = (f, Po)L2(p) imply
Np
a”(w,8) = (f, ¢o)r2(p) + Z ( . ®n dS) a”(w,¥¢) = (f, ) r2(p) + (9, bn) 12(6P)
=1

for g € Po(E(P)) with g|g) := a® (w, ) — (f, Ye)r2(p) for £ =1,..., Np in the last step. This
concludes the proof of the claim. O

Step 5 proves that Dof® A : Wh(P) — R2NPH+T s surjective. Given any € R2VP*/ Lemma C.3
leads to some w; € S(j) such that dofy;)4¢(w;) = 2p)4e for £ =0,...,m(j) and Aj(w;) =
ToNp+j. This holds for all j = 1,...,.J and defines a continuous w € P?(E(P)) N C°(OP) with
wly(j) = w; € S(j) on the boundary P. Since w € C°(9P) satisfies w|, ;) € C(v(j)) for all
j=1,...,J, the tangential derivatives of w define Vw((;) at each corner point (;, while at each
other vertex z € V(P) (that is not a corner) the tangential derivative w’(z) = w-(z) and the
vanishing normal derivative determine a unique vector Vw(z) € R2. Given those values of w
and Vw at all vertices in V(P), define an HCT interpolation ugct € HCT(T(P)) as in Step 1
with

unct(zx) = w(zk), Vuncr(z) = Vw(zi), and ][ (uncT)n ds = Teynp
E(0)

for k,£ =1,..., Np, while all other dofs vanish. This and Step 3 reveal that uncr|op = w|sp.
Let ug € Wy denote the Riesz representation of the linear functional a (upcT, +) in the Hilbert
space (Wo,a”), i.e., a(uo,-) = a” (unpcr, ) in Wy. Let @y, := ugcrt — uo and deduce up|op =
uncrlop € S?(E(P)) from uglgp = 0. Since af (i, po) = 0 for all py € D(int(P)), it follows
A%y, =0 in P. Step 4 with f =0 € P_1(P) implies the existence of g € Py(E(P)) with

a” (n, ) = (9, ¢n)L2(0p) for all g € W

and proves that i, € W, (P). Recall (Dof & A)(up) = x from the design of w and wycr in the
very beginning of the proof. O

Step 6 establishes an inclusion in Wh(P) with a non-zero f. Given f € P.(P), the Riesz
representation theorem guarantees the unique existence of the weak solution u(f) € Wy to

aP(u(f),v) = (f,v)r2(py for allv € Wy. (C.2)
Consequently A%u(f) = f in P. This and Step 4 show that u(f) € ﬁ/\h(P).

Step 7 proves that L : Pr(P) — Pr(P), f — ILu(f) is an isomorphism. For any f € P,(P)
with £f = 0, the orthogonality (1 — IL.)u(f) L Pr(P) in L?*(P) shows 0 = [,(Lf)fdx =
Jpu(f)f de. This and v = u(f) in (C.2) result in 0 = a”(u(f),u(f)) = [u(f)]3 p. Consequently
u(f) € P1(P)N Wy and so u(f) = 0. Thus f = A2?u(f) = 0 and £ is injective; whence
bijective. O

Step 8 proves that Dof : Wy, (P) — R*N? s an isomorphism.

Proof of surjectivity: Given x € R2NP | there exists some v € H?(P) with Dof(v) = x (for a proof
we may utilize Step 5 for (z,0,...,0) € R*2¥?+7 and obtain at least one v € Wj,(P) C H%(P)).
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Given v € H%(P), let x := Gv € P2(P) and notice  is computable with Lemma 2.6 from
x in a unique way. Set y; := Aj(x|,)) € R for all j = 1,...,J. Step 5 proves that given
Y= (21,...,ZaNp Y1, .-, ys) € RZNPH there exists some @), € W), (P) with (Dof @ A)(p) = v,
ie., Dof(up) = « and Aj(tp|,(j)) = y; for j =1,...,J. Since Gy, = Gv = x for any v € H?*(P)
with Dof(v) = z from Lemma 2.6, A;(unly(;)) = v = Aj(xly()) = Aj(GUnly))- This leads to
g := IL.Guy, — I, up, € P.(P). Since L is bijective in P.(P) (from Step 7), there exists f € P,.(P)
with IT,u(f) = g. Recall u(f) € Wh(P) N Wy from Step 6 and Dof(u(f)) = 0, G(u(f)) =0, and
A(u(f)) = 0. Altogether, uf’ := u(f)+uy € Wh(P) satisfies Dof(uf) = o, A(uf — Guf) =0
and HrGuﬁ = IL.Guy, = g + I, u, = Hruf. This concludes the proof of uﬁ € Wy (P) with
Dof(u}) = =. O

Proof of injectivity. Suppose wy, € Wj(P) satisfies Dof(wp) = 0. This and Lemma 2.6 im-
ply Gwp, = 0 and hence the condition Aj((wn — Gwn)lyj)) = 0 in (3.4) shows Aj(wp) = 0.
Lemma C.3 implies that Dof(wy) and A; (wh) umquely determine wy|, ;) = 0forall j =1,...,J;
whence wp|gp = 0. The substitution of w = ¢ = wy, in (3.3), the L? orthogonality of II,.,
f € P.(P), and IL,wy, =11, (Gwp) = 0 from (3.4) result in

lwal3.p = a” (wn, wn) = (f,wa)2(py = (f, 1 (Gw)) r2(p) = 0.
Consequently wy, € P1(P) N Wy, whence wy, = 0. O

Proof of (H1). The key observation from Step 8 is that Wj(P) has the dimension 2Np and
dofy, ..., dofan, from (2.1) are linear independent. Consequently (P, Wp,(P), (dofy, ..., dofan,))
is a finite element in the sense of Ciarlet. O

C.3 Proof of (H2)

Step 1 defines an HCT interpolation of a nodal basis function of Wy, (P). Let ¥y, = ¢, be a nodal
basis function of the finite element (P, W} (P),Dof) for some p € {1,...,2Np} and let ¥gcr be
its HCT interpolation as in Step 1 from Subsection C.2, namely

2Np 3Np

uJHCTdeofk )T+ Y dofk (W) hp ey PR+ Y Oa(tn) (Br-anp )T
k=1 k=Np+1 k=2Np+1
4NP
+ D Oy (n) (zrosnp T
k=3Np+1

Step 2 proves that |V(vn)(z)| < hp' for k = 1,...,Np. Recall from Step 1 in Subsec-
tion C.2 that the two linearly independent tangential derivatives uniquely define Vi, (¢) at
each corner (, and the tangential derivative and vanishing normal derivative uniquely define
V¢n(z) at each vertex z, which is not a corner. Expand 3|,y in terms of the finite element
(v(4),8(5), (dofrjy, - - dofk(])+m(J),A )) from Lemma C.3, write (-)’ := (-), for the derivative
along ~v(j), and deduce that

(d’h)‘rh(j) = ZdOfé(wh)wé + A (¢h|v(j))1/’;n+1- (C.3)

The definition of ¢, shows that |dof,(¢n)| < 1 for £ =0,...,m. The definition of W} (P) from
(3.4) and of ||A;|| from Subsection 3.2.2 imply

1A (Ul )] = 185 (GUnly ()] < CallGUnll L)) < CACiw L™ 2||GYnl L2+ ()

with an inverse estimate for Gin|,(;) € P2(7(j)) in the last step. This and the trace inequality
[7, p. 554] show |A;(Yn]y()] < CaCinCr (L™ |Gnl L2(py + |Gonl1,p). Consequently, L=! <
p~thp' from (M2), Lemma 2.6, and |Dof(¢3)|s2 = 1 result in

1A (Wnly ()] € CaCinyCrCy(1+ p~)|Dof(9hp) ]2 < CaCiny OrCy(1+p 7). (C.4)
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The inverse inequality for the piecewise quadratic polynomial ¢y € Po(E(y(j))) with hp' <
p~thp' and Lemma C.3 lead, for £ =0,...,m + 1, to

[el1,00,8 < Cinvp ™ *hp Yol Lo () < Cinvp *C11hp" for all E € E(v(j)).

The above estimate for each £ = 0, ..., m, the combination (C.3)-(C.4), and 1+m < Np < M (p)
from Subsection 2.1 prove for a positive constant Cia := CinyC11p~ ' M (p)(1+Ca Ciny CrCy) (that
exclusively depends on p) that

[(n) =) (58)] < [¥nl1oon() < Crohp' fork=0,...,m. (C.5)

Since the normal derivative at a vertex sp (= 2x(j)+k), Which is not a corner is zero for k =
1,...,m—1, (C.5) shows that |V (1) (s1)| < Ciohp' for k = 1,...,m—1. The expansion in (C.3)
for (7/)h>-:-|7(j—1) leads to |(7/’h>"'|v(j—1)(<j)| < C’uh;l. This and (C.5) prove that |V (n)((;)] <
C(w;)hp" with a positive constant C'(w;) that depends on Cj2 and on the interior angle w; # 7
at the corner ;. This holds for all j =1,...,J and concludes the proof. O

Step 8 provides the scaling of the HCT interpolation. The definition of ¢y, shows dofy (¥n) = dkp
for k,p=1,...,2Np. The scaling of T from (C.1) for the first 2Np indices k = 1,...,2Np
and hi,' < p~thp! for E € £(P) from (M2) show

Np 2Np
D ldofi(Wr) [ T lap + Y [dofk () A gy 0K lop < Caor (1 + p~ hp'.
k=1 k=Np+1

The scaling |1/1,I;ICT|2,p < Cper from (C.1) and from Step 2 for the remaining 2Np indices

k=2Np+1,...,4Np prove with C13 := C(w1) + -+ + C(wy) + C12M(p) that

3Np 4Np
> 10(Wn) Geoan e[V e+ Y 10y (Wn) (zh-anp) [T |2.p
k=2Np+1 k=3Np+1
Np
< CHcr Z |Vbn(20)] < CucrCishp'.
=1

The previous two displayed estimates lead in the representation of ¥gcr from Step 1 to

[Yucrl2,p < Cucr(l+p~ " + Ciz)hp'. (C.6)

Proof of (H2). Step 3 in Subsection C.2 shows for the nodal basis function ¢, € Wy, (P) that
(Yn — Yucr)|logp = 0. Hence the test function ¢ = ¢y, — Yucr leads in (3.3) to

a” (¢n, Yn — Yuer) = (f,¥n — YrCT) L2(P) (C.7)

and it remains to control || f||zzpy S hp2|4n ]2, p. The analogous arguments in Step 10-11 from
Appendix B apply to ¢, € Wj(P) and its HCT interpolation ¢ycr € HCT(T(P)) from Step 1.
This leads here to (f,v¥n — YucT)r2p) = (f, 1:GYrcT — YHCT)L2(P)- The arguments in Step
10 of Appendix B pI‘OVide ||HTG'¢HCT — Q/JHCTHL?(P) S CPF(l + 2Cp)h%3|’leCT|2,p. The sole
modification in the arguments concerns the equality (f,bpf)r2(p)y = a® (¢, f), which follows
from ¢ = bpf € HZ(P) in (3.3). The remaining arguments in Step 11 apply here verbatim
and lead to || f|z2(p) < C2hp2|Wnl2,p. These estimates, Cauchy-Schwarz inequalities, and (C.7)
result in

[nla.p < (14 CZ(Cpr(1 + 20p)))|[YucT|2,p-

The combination with (C.6) shows [t |2.p < Cstanhp With Cstan := Crcr(1 + p~ 1 + C13)(1 +
C?(Cpr(1+2Cp))). This verifies (H2) for a nodal basis function 1, in Wj,(P) from (3.3)-(3.4)
and concludes the proof. O

Remark 10 (comparison with [35]). The discrete space in [35] reads

vy € H*(P) : A2vy € Pr(P) vnlop € P2(E(P)) Auvplop € Po(E(P)), } . (C.8)

Vir (P) = { VE €E(P) [yunds= [, Gunds, vy—Guy LPp(P)in L3 (P)
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Recall the sides v(j) of a polygonal domain P € M for j = 1,...,J from Subsection 3.2.2.
First notice that, for v, € V;¥(P) in (C.8), up|,(j) belongs to C'(y(j)) and so V;¥(P) from (C.8)
allows only the polygons without hanging nodes (i.e., all vertices are corner points). Second,
as discussed in Remark 8-9, we avoid the strong formulation Auvplgp € Po(E(P)) and solely
consider the weak formulation (3.3)-(3.4). Hanging nodes (i.e., vertices that are not corners on
OP) are important for a more flexible mesh-design to allow obligatory adaptive mesh-refining.

Remark 11 (individual parameters). The selection of the linear functional Af =A;:5() =R
resp. of the parameter rp = r = —1,0, 1,2 is individually for each polygon P € M and may be
labelled with an index P to underline this. Given an interior side v(j) C dPy N P— shared by
two polygons Py, P_ € M, Af* and Af’ resp. rp, and rp_ could be different in general. A
single selection Af* = Af’ is also possible and could be even more appealing; but it does not
imply C° conformity: The jump [w]. ;) € span{v;} for w € Vi with w|p, € Wj(P) cannot be
expected to vanish; so the schemes are fully nonconforming.
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