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Abstract

We develop an accurate, highly efficient and scalable random batch sum-of-Gaussians
(RBSOG) method for molecular dynamics simulations of systems with long-range inter-
actions. The idea of the RBSOG method is based on a sum-of-Gaussians decomposition
of the Coulomb kernel, and then a random batch importance sampling on the Fourier
space is employed for approximating the summation of the Fourier expansion of the
Gaussians with large bandwidths (the long-range components). The importance sam-
pling significantly reduces the computational cost, resulting in a scalable algorithm by
avoiding the use of communication-intensive fast Fourier transform. Theoretical anal-
ysis is present to demonstrate the unbiasedness of the approximate force, the control-
lability of variance and the weak convergence of the algorithm. The resulting method
has O(N) complexity with low communication latency. Accurate simulation results
on both dynamical and equilibrium properties of benchmark problems are reported to
illustrate the attractive performance of the method. Simulations on parallel comput-
ing are also performed to show the high parallel efficiency. The RBSOG method can
be straightforwardly extended to more general interactions with long ranged kernels,
and thus is promising to construct fast algorithms of a series of molecular dynamics
methods for various interacting kernels.

Keywords: Molecular dynamics simulations, Electrostatic interactions, Sum of Gaussians,
Importance sampling.

AMS subject classifications 82M37; 65C35; 65T50;

1 Introduction

Molecular dynamics (MD) simulation has become one of the most popular tools for com-
putational study for properties of nano/micro scale systems in various areas. MD furnishes
kinetic and thermodynamic quantities of physical systems by the ensemble average of par-
ticle configurations produced by the integration of the Newton’s equations for each particle
which interacts with all other particles [2, 19]. One of the bottleneck problems in MD is the
low efficiency of evaluating electrostatic forces between charged particles due to the long-
range nature. Meanwhile, as the 3D domain decomposition has achieved great progresses in
massively high-performance computing, the long-range nature [52, 18] of the Coulomb in-
teraction leads to communication latency that significantly reducing the parallel efficiency.

Enormous efforts have been devoted to develop fast electrostatic solvers of MD, mostly
based on the classical Ewald method [16] where the 1/r Coulomb kernel is decomposed into
short-range (or near) and a smooth long-range (or far) parts. The long-range part is treated
in the Fourier space, which can be effectively calculated by the lattice sums with the fast
Fourier transform (FFT) acceleration, achieving an O(N logN)) complexity [12, 24, 15].
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There are also other fast algorithms such as the treecode algorithm [6], the fast multipole
method [21], the multigrid method [51], the Maxwell-equation molecular dynamics [39] and
the sum-of-Gaussians (SOG)-based u-series method [43], having been developed for MD
simulations. It is remarked that these algorithms achieve O(N) or O(N logN) scaling, but
confront low parallel scalability for large-scale simulations [4] due to the intensive global com-
munications. As an example, the FFT-based Ewald algorithms typically require six sequen-
tial communication rounds and expensive data-reshapes [5]. Recently, the random-batch
Ewald (RBE) method [29, 35] has been proposed as an alternative linear-scaling algorithm.
The RBE avoids the use of the FFT by employing a random importance sampling from
the Fourier space in calculating the long-range part of the Ewald sums. The resulted O(N)
cost is mathematically optimal among the Ewald-type algorithms. Besides, the stochastic
nature of the RBE well addresses the scalability issue, and excellent performance is shown
for benchmark simulations of systems with size up to 108 atoms [36].

It is noticed that the SOG is another splitting technique to decompose the 1/r kernel into
short-range and long-range parts, other than the Ewald splitting. The SOG approximates
the kernel by a sum of Gaussians and the interaction ranges depend on the bandwidths of
the Gaussians. The SOG approximation can be employed for many different kernels, and
the method is often used in convolution integrals and kernel summations [20, 11, 27]. The
SOG for the Coulomb kernel can be obtained by bilateral series approximation [8, 9], and
based on it Predescu et al. [43] developed the u-series method for MD simulations, which
reduces the communication cost of FFT in comparison to the Ewald-type lattice summation
at the expense of some overhead in communication bandwidth and computation, and has
been implemented on the Anton 3 supercomputer [48]. We remark that the SOG can be
potentially extended to systems with more complicated long-range interactions because of
its nice feature in constructing kernel decomposition for general kernels.

In this paper, we present a novel method for the calculation of long-range interactions in
MD simulations, which is an extension of the RBE but with an SOG approximation for the
interaction kernel. The so-called random batch SOG (RBSOG) method not only remains
the superscalability of the RBE [36], but also has the advantage for the applicability to more
general kernels. The SOG results in a continuously differentiable approximation at the cutoff,
and thus the magnitude of the truncation error is significantly decreased in comparison to
the Ewald decomposition. We systematically analyze the correction on the zero-frequency
mode term and the truncation error of the SOG decomposition. In the RBSOG, the near
part is directly evaluated, whereas the long-range part is approximated by introducing the
so-called random mini-batch sampling [29, 28] on the Fourier space such that the use of
the communication-intensive FFT is avoided, similar to the RBE. The resulting algorithm
reduces the computational complexity to O(N), and the communication cost between cores
is also significantly reduced. Our simulations on all-atom bulk water and ionic liquid systems
reveal that the spatiotemporal information for these systems on a broad range of time and
length scales as well as the thermodynamical quantities are quantitatively reproduced by
the RBSOG-based MD.

For another practical aspect, there is typically a substantial gap between algorithm and
implementation for highly efficient computer simulations [32]. Part of the problem is that
yet tailoring an algorithm to a modern computer requires an understanding of advanced
technologies, such as parallelism, vectorization, memory caching, and saving floating-point
operations. To overcome this gap, we present an optimized implementation strategy. A
core-shell structure is designed for efficiently tabulating the short-range part combining with
partial series expansion. A parallel sampling procedure based on message passing interface
(MPI) is also developed for the long-range part vectorized via the AVX512 instructions. We
implement our code into a modified version of the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) [42, 50], which is one of the mainstream MD package, by
achieving the 3D domain decomposition framework [50]. Our numerical experiments obtain
expected linear scaling cost, together with excellent performance in weak and strong scalings
for parallel computing, enhancing the computational speed by about two orders of magnitude
in comparison to the PPPM when 211 cores are employed.

The paper is organized as follows. In Section 2, we overview preliminary results on
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electrostatics and the kernel decomposition. In Section 3, we describe the RBSOG algorithm
in details. The complexity and theoretical analysis are provided in Section 4. Section 5
contains simulation results on all-atom systems. Concluding remarks are made in Section 6.

2 Electrostatic interactions and kernel decomposition

Consider a charged system of N particles located at {ri = (xi, yi, zi), i = 1, · · · , N} with
charge {qi, i = 1, · · · , N} in a cuboid domain Ω with side lengths Lx, Ly, and Lz, re-
spectively. The domain is specified with a 3D periodic boundary condition such that it
is replicated in all three directions so as to mimic the bulk environment. The system is
assumed to be charge neutrality

∑N
i=1 qi = 0. Given the charge distribution, the potential

on the ith particle has explicit expression of an infinite series,

Φi =

N∑
j=1

∑
n∈Z3

′ qj
|rj + n ◦L− ri|

(2.1)

where L = (Lx, Ly, Lz), the prime indicates that the case i = j with n zero vector is excluded
in the double summation, and “◦” represents the Hadamard product of two vectors. The
electrostatic force of the ith particle is evaluated from Fi = −∇riU , where U is the total
electrostatic energy of the system with the expression by superposition of energies on each
charge that

U =
1

2

N∑
i=1

qiΦi. (2.2)

Here the coefficient 1/2 is due to the double count of the interacting pairs.
The series (2.1) describes the electrostatic interactions between the ith charge and all

other source and image charges. It converges conditionally [19] due to the long-range na-
ture, and a direct cutoff to calculate the potential is less accurate in producing physically
meaningful solutions. Moreover, the Coulomb kernel has a singularity at the origin, as a
result the Fourier transform cannot be directly applied. The Ewald splitting [16] provides a
perfect solution of the two issues by dividing the Coulomb kernel into contributions of near
and far parts:

1

r

.
= N (r) + F(r) =

erfc(αr)

r
+

erf(αr)

r
, (2.3)

where erf(·) is the error function and erfc(·) is its complementary, and α is a positive param-
eter. The near part N (r) decays rapidly and the corresponding kernel summation problem
can be truncated at a certain cutoff distance rc where the interactions beyond this dis-
tance are ignored. The far part F(r) is now a smooth function and decays slowly. The
corresponding kernel summation is performed in the Fourier space as the Fourier series of a
smooth function decays rapidly. The convergence of series (2.1) can be handled by correctly
treating the zero frequency mode and the ignorance of this mode corresponds the use of the
tin-foil boundary conditions. Furthermore, the FFT can be employed for accelerating the
summation of the Fourier series, and one can take a large α such that the near part has a
small interacting range, leading to an O(N logN) cost in each step. These are ideas in most
of popular MD packages such as LAMMPS [50] and GROMACS [1].

Different from the Ewald splitting, the SOG [20, 17] approximates the interacting kernel
by a series of Gaussians such that the near and far parts are grouped with those with
small and large bandwidths, respectively. The SOG decomposition is particularly useful for
calculating the far-part interaction as the FFT will benefit from the Gaussians which permit
separation of variables. For the Coulomb kernel, one can use the integral identity for the
power function,

1

r2β
=

1

Γ(β)

∫ ∞
−∞

e−e
tr2+βtdt, (2.4)

with Γ(·) being the Gamma function and β = 1/2. Employing variable transformation
t = log

(
x2/2σ2

)
to the integral and applying the geometrically spaced quadrature x = b−`,
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one obtains the following bilateral series approximation [8, 9],

1

r
≈ 2 ln b√

2πσ2

∞∑
`=−∞

1

b`
exp

ï
−1

2

( r

b`σ

)2
ò
, (2.5)

which is an SOG expansion of 1/r. Here, b > 1 is a constant positive number and σ controls
the width of Gaussians. One important feature of Eq. (2.5) is that the relative error has the
asymptotic bound as b→ 1 for all r > 0 [43],∣∣∣∣∣∣1− 2r ln b√

2πσ2

∞∑
`=−∞

1

b`
exp

ï
−1

2

( r

b`σ

)2
ò∣∣∣∣∣∣ . 2

√
2 exp

Å
− π2

2 ln(b)

ã
. (2.6)

It is noted that other SOG methods including least-square based methods [20, 54] and semi-
analytic methods using Vallée-Poussin sums [34] are also developed where some of them are
kernel-independent.

The u-series [43] constructs a fast method by making use of the far part in bilateral series
approximation, i.e., the ` ≥ 0 terms in Eq. (2.5). This leads to a decomposition of 1/r into
a short-range term N σ

b (r) and a long-range term Fσb (r), where

N σ
b (r) =


1/r −Fσb (r), if r < rc

0, if r ≥ rc
(2.7)

and Fσb (r) is an SOG expansion which takes the positive part of the bilateral series approx-
imation (2.5) and truncates at ` = M ,

Fσb (r) =

M∑
`=0

ω`e
−r2/s2` (2.8)

with coefficients,
w` = (π/2)−1/2b−`σ−1 ln b, and s` =

√
2b`σ. (2.9)

The cutoff radius rc is chosen to be the smallest root of rFσb (r)− 1. The advantages of such
a decomposition are as follows. First, the potential is exact up to the cutoff radius and it
is continuous at the cutoff point where the condition rcFσb (rc)− 1 = 0 is satisfied. Second,
high-order continuity of the potential at rc could be also achieved, i.e, the C1 condition will
ensure the force continuity upon the condition

1

r2
c

− ∂rFσb (rc) = 0 (2.10)

is satisfied. For fixed b and σ, these continuous conditions can be conjointly reached by
tuning the weight of the narrowest Gaussian to be

ω0 =
1

e−r
2
c/s

2
0

ï
1

rc
−Fσb (rc)

ò
, (2.11)

and then solving the continuity equations to determine rc. The re-definition of the narrowest
Gaussian weight is necessary to prevent large error. Due to these nice features, the u-
series can produce the accuracy of the Ewald decomposition with a reduced computational
effort. Moreover, the separability of the Gaussian is beneficial to save half of the sequential
communication rounds if the FFT is used.

3 Random Batch sum-of-Gaussians method

In this section, we introduce the random mini-batch idea and apply it to electrostatic calcula-
tion based on the SOG decomposition, resulting in the RBSOG method for MD simulations.
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3.1 Fourier expansion of the far part

By the SOG decomposition Eq.(2.7) of Coulomb kernel, the potential energy (2.2) can be
decomposed as the sum of contributions from near and far parts, U := UN + UF with

UN =
1

2

∑
n

′
∑
i,j

qiqjN σ
b (|rij + n ◦L|) (3.1)

and

UF =
1

2

∑
n

′
∑
i,j

qiqjFσb (|rij + n ◦L|) (3.2)

where rij = ri − rj . The sum for UN converges absolutely and rapidly, and one can
truncate it at r = rc in real space to simplify the computation. The sum for UF converges
conditionally and is treated in Fourier space.

Let us define the Fourier transform pairs as

f̃(k) :=

∫
Ω

f(r)e−ik·rdr and f(r) =
1

V

∑
k

f̃(k)eik·r, (3.3)

with k = 2π(mx/Lx,my/Ly,mz/Lz) and m = (mx,my,mz) ∈ Z3. The structure factor
ρ(k) for the particle distribution is given by the conjugate of the Fourier transform of the
charge density

ρ(k) :=

N∑
i=1

qie
ik·ri . (3.4)

The 3D Fourier transform of the SOG series (2.8) reads,‹Fσb (k) = π3/2
M∑
`=0

ω`s
3
`e
−s2`k

2/4, (3.5)

where k = |k|. The far-part energy in the Fourier space is then given by

UF = U∗F + U0
F − U

self
F , (3.6)

where U∗F is the following series,

U∗F =
∑
|k|6=0

‹Fσb (k)
|ρ(k)|2

2V
. (3.7)

The second term U0
F is the contribution from the zero-frequency mode, which vanishes when

the tinfoil boundary condtion is specified. U self
F in Eq. (3.6) corresponds to the contribution

from the self energies of Gaussians,

U self
F =

(b− b−M ) ln b√
2πσ2(b− 1)

N∑
i=1

q2
i . (3.8)

Note that U self
F →

∑N
i=1 q

2
i /
√

2πσ2 when b→ 1 together with M →∞.
With the Fourier expansion for the far-part energy, one can treat UN and UF in real and

Fourier spaces, respectively. Let rc be the cutoff radius for the real space, and I(i) be the
neighbor list of the ith particle, which is the set of particles within the cutoff radius. The
force acting on the ith particle, Fi, is composed of three contributions,

FN ,i =
∑
j∈I(i)

qiqj

(
1

2r3
ij

−
M∑
`=0

ω`
s2
`

e−r
2
ij/s

2
`

)
rij ,

FF,i =
∑
k 6=0

qik

V
· ‹Fσb (k) Im

(
e−ik·riρ(k)

)
,

(3.9)
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and F 0
i = −∇riU

0
F . It is noted that the self energy contribution vanishes, ∇riUself = 0, as

the particles are usually invariant for most physical ensembles.
Given the cutoff radius, the cost of computing the near part is proportional to the prod-

uct of N and the average neighbors within the volume 4πr3
c for each particle. In the u-series

method [43], the Fourier space has a cutoff kc which is set as O(1/s0), inversely proportional
to the bandwidth of the narrowest Gaussian, and the grid-based FFT is employed to accel-
erate the calculation. Let r0 = rcs0/

√
2 which is the smallest root of rF1

b (r)− 1. Since the
Fourier modes within the cutoff frequency is proportional k3

c = O(1/s3
0), the minimization

of the total computational cost leads to the O(r
3/2
0 ) complexity for the u-series method. For

the FFT, the mesh spacing of the grid is also proportional to s0, leading to the computa-
tional effort scaling at least linearly with the number of grid points O(1/s3

0) [47, 13]. In the
following, we will introduce a random batch strategy in the Fourier space to nicely handle
this problem by avoiding the use of FFT. The resulting RBSOG has linear O(N) complexity
and the computational cost is independent of the minimal bandwidth s0 of the SOG.

3.2 Analysis of the zero-frequency mode

The contribution from the zero-frequency mode, U0
F , is a divergent term and it needs to

be properly treated to satisfy the the macroscopic property of the system. This has been
discussed [49, 56, 26, 14] for Ewald-type methods, but remains unexplored for the SOG-type
methods.

For the Fourier transform, one performs the Taylor series expansion of U0
F with respect

to k, takes the k→ 0 limit, and then obtains,

U0
F =

π3/2

2V
lim
k→0

∑
i,j

qiqj

M∑
`=0

w`s
3
`

ï
1− s2

` |k|2/4 + ik · rij −
1

2
(k · ri,j)2 +O(|k|3)

ò
. (3.10)

In the summation, the first two terms vanishes due to the charge neutrality. It is noted that
even for a non-neutral system (e.g., a quasi-2D system with surface charge being treated
implicitly), these terms does not depend on r and thus can be renormalized. The third term
in Eq.(3.10) vanishes too due to the symmetry condition, k · rij = −k · rji. One then has,

U0
F = − 1

4V
lim
k→0

∑
i,j

qiqj(k · rij)2‹Fσb (0), (3.11)

which requires the knowledge of factor ‹Fσb (0).
The Fourier transform of the SOG Fσb (r) can be written as,‹Fσb (k) =

4π

k2
−
∫

Ωrc

ï
1

r
−Fσb (|r|)

ò
e−ik·rdr, (3.12)

where Ωrc is the ball of radius rc centered at the origin, and the 4π/k2 term is the Fourier

transform of Coulomb kernel. Clearly, the asymptotics of ‹Fσb (0) for k→ 0 is 4π/k2, thus,

U0
F = − π

V

∑
i,j

qiqj lim
k→0

(k · rij)2

k2
. (3.13)

Eq.(3.13) is consistent with that for the Ewald summation [26, 14]. This is not a surprise
as the k→ 0 term accounts for the long-rang electrostatic correlations at the limit |r| → ∞.
Since the SOG series with M → ∞ is exact for the far-field limit, it naturally gives this
consistency with the Ewald splitting.

If the tinfoil boundary conditions is specified for r → ∞, the dielectric permittivity
(throughout the paper it sets to be 1) becomes infinity and U0

F vanishes. In the case of
finite permitivity, one can assume a infinitely large crystal box built up along spherical
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radial distance by filling the azimuthal angle θ and the polar angle ϕ parts for each r. A
spherical infinite boundary term [26] can be obtained,

U0
F = − π

V

∑
i,j

qiqj lim
k→0

1

4πk2

∫ 2π

0

∫ π

0

(k · rij)2 sin θdθdϕ

=
2π

3V
(M2

x +M2
y +M2

z),

(3.14)

where (Mx,My,Mz) =
∑
i qiri is the dipole moment. This zero mode contribution cor-

responds to the case of the periodic system embedded in a medium with finite dielectric
permittivity.

Now suppose that one considers a system of a slab geometry with 2D periodicity along
the xy plane, where a planar infinite boundary term along the z direction is often required.
One can apply the conditions kx = ky = 0 and take the limit of kz = 0. This yields,

U0
F = − π

V

∑
i,j

qiqj lim
kz→0

ï
lim

kx,ky→0

(k · rij)2

|k|2

ò
=

2π

V
M2

z. (3.15)

This dipole-term contribuiton has been used for the Ewald3DC [56] to handle electrostatics
in charged systems with slab geometry. For other geometries, one can refer to Refs. [49, 14].
We remark that our discussion on the RBSOG will focus on 3D periodic systems, but the
algorithm can be easily extended to systems with other boundary conditions by taking into
account the correct correction from the zero-frequency mode energy. For example, if the
system is partially periodic in some directions with dielectric interfaces [40, 38] which is often
considered for nanopores and 2D materials, the extension of our algorithm is straightforward
by using the planar infinite boundary term (3.15).

3.3 Random batch importance sampling

We now work on conducting a fast method for evaluating the Fourier space force with O(N)
complexity and less communication cost. The basic idea is to use a random batch importance
sampling to approximate the force FF,i by a modification of the sampling for the RBE [29].

The Fourier transform ‹Fσb (k) in Eq. (3.5) is also an SOG series, which is summable and
can be normalized to a discrete probability distribution. Denote the sum of such factors by

S := π−
3
2

∑
k 6=0

‹Fσb (k) =

M∑
`=0

ω`s
3
`

(∏
d

Hd
` − 1

)
(3.16)

with

Hd
` :=

∑
m∈Z

e−s
2
`π

2m2/L2
d =

 
L2
d

πs2
`

∑
m∈Z

e−π
2m2L2

d/s
2
` (3.17)

where d ∈ {x, y, z} denotes the index of the Cartesian coordinate, and the second equality in
Eq.(3.17) holds due to the Poisson summation formula. Eq.(3.17) can be simply truncated
at some m = ±m such that mLd/s` = O(1) to obtain an easier-to-calculate form (generally
speaking, m = 2 is enough). Then, one can regard the sum as an expectation over the
probability distribution

Pk :=
‹Fσb (k)

π3/2S
. (3.18)

The distribution Eq.(3.18) is a summation of discrete Gaussian distributions. Compared to
the case of the RBE [29], Pk is by no means separable when M > 1, whereas it is still
summable and thus can be efficiently sampled by strategy below through an acceptance-
rejection criteria.

We apply the Metropolis–Hastings (MH) [23] algorithm to sample from the discrete
distribution Eq.(3.18). In the MH procedure, the proposal m∗ = (m∗x,m

∗
y,m

∗
z) is generated

by first drawing

m∗d ∼ N
Å

0,
1

2
(Ld/s0π)2

ã
, (3.19)
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from the normal distribution with mean zero and variance (Ld/s0π)2/2, separately. By
choosing m∗d as the normal distribution corresponding to the widest Gaussian rather than
other Gaussians, the advantages of importance sampling are threefold. First, m∗d is separable
and easy to sampling. Second, since the long wave modes are more important for the periodic
effects and are more likely to be chosen, this importance sampling strategy is efficient and
accurate by the measurement of the variance reduction. Third, the high frequency modes
have also decent probability to be selected since the widest Gaussian has slowest decaying
rate.

The new sample m∗ and its corresponding acceptance probability q(m∗|m) are denoted
by following the procedure in [29], expressed as,

m∗ = round(m∗x,m
∗
y,m

∗
z) (3.20)

and
q(m∗|m) =

∏
d

q(m∗d|md) (3.21)

where

q(m∗d|md) =

√
πs0

Ld

∫ m∗
d+1/2

m∗
d−1/2

e−(πs0m/Ld)2dm

=


erf

Å
πs0

2Ld

ã
, m∗d = 0,

1

2

ï
erf

Å
(m∗d + 1/2)πs0

2Ld

ã
− erf

Å
(m∗d − 1/2)πs0

2Ld

ãò
, m∗d 6= 0.

(3.22)

The acceptance rate is expected to be appropriate due to

p(m∗)

p(m)
≈ q(m∗|m)

q(m|m∗)
. (3.23)

Note that the samples with mx = my = mz = 0 will be discarded. In Section 3.4, we develop
a useful parallel strategy such that the sampling procedure can be efficiently performed.

The MD simulation can then be done via this random batch importance sampling strat-
egy. At each simulation step, one picks a number of batches P and draws P frequencies
{kη, η = 1, · · · , P} from the discrete distribution Pk using the MH procedure. Then the
far-field force FF,i can be approximated by the following random variable

F ∗F,i :=
S

P

P∑
η=1

π3/2qikη
V

Im
(
e−ikη·riρ(kη)

)
. (3.24)

In MD simulation, we use this stochastic force F ∗F,i to conduct simulation rather than
FF,i, resulting in a cheaper version with computational complexity O(PN) in comparison
to lattice-based Ewald-type methods. This implies that the RBSOG method has linear
complexity per timestep as P = O(1). We prove that F ∗F,i is an unbiased estimator of
FF,i with bounded variance in Section 4.2. The molecular dynamics method [19] using the
RBSOG is summarized in Algorithm 1.
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Algorithm 1 (Random batch sum-of-Gaussians algorithm)

1: Choose rc (the cutoffs in real space), ∆t (time step size), total simulation step NT ,
and batch size P . Construct applicable SOG decomposition as in Eq.(2.7). Initialize
positions and velocities of charges of all particles.

2: Sample sufficient number of nonzero k ∼Pk by the MH procedure to form a frequency
sequence.

3: for n in 1 : NT do
4: Integrate Newton’s equations for time ∆t with appropriate integration scheme and

some appropriate thermostat. The real part of the Coulomb forces is computed using
FN ,i as in Eq.(3.9). The Fourier part is then computed using the stochastic force F ∗F,i
as in Eq.(3.24) with the P frequencies selected from the frequency set in order.

5: end for

Note that the SOG decomposition in Eqs. (2.7) and (2.8) can be also calculated by a
lattice-based FFT [43]. In comparison to this method, the RBSOG algorithm has two mer-
its. First, the use of the random batch idea combined with importance sampling avoids
the communication-intensive framework FFT. Second, it is a mesh-free algorithm, and the
computational cost for evaluating multiple Gaussians is significantly reduced to O(MP ), in-
dependent of the particle number. For comparison, the FFT leads to an on-grid convolution
of Gaussians, which is computed in real space with O(MN) operations.

For the sampling of the Fourier modes, one can also treat the SOG Fσb (r) as the sum of

discrete Gaussian potentials ω`e
−r2/s2` , and each can be normalized to a discrete probabil-

ity distribution. One can build random mini-batch sampling proceduce for these Gaussian
potentials independently with adaptive batch sizes depending on the Gaussian bandwidths.
This is intuitive, but less efficient because the sampling processes are needed for all Gaus-
sians.

3.4 Implementation details

We present the optimized implementation details with distributed-memory parallelism and
vectorization for the RBSOG-based MD simulations. Our implementation is based on
the message passing interface (MPI) and the Intel 512-bit single-instruction multiple-data
(SIMD) instruction. Below we discuss the strategies for the short-range and long-range
components, respectively.

The near part FN ,i in Eq.(3.9) requires the computation of M Gaussians for each target-
source pair. This is expensive from the point of view of computational efficiency and we
should avoid direct calculation of Gaussians for each step, as well as the square root oper-
ation. Here, we introduce a core-shell structured kernel approximation by introducing an
additional cutoff radius rin which is smaller than rc, as is depicted in Fig.1 (A). We treat the
core neighbors by Q−terms partial Taylor expansion, i.e., the Gaussians are approximated
by Taylor expansion whereas the square root and reciprocal are directly computed,

1

2r3
−

M∑
`=0

ω`
s2
`

e−r
2/s2` =

1

2r3
−

Q∑
i=1

Air2i−2 +O
(
AQ+1r

2Q
)
, (3.25)

with

Ai =

M∑
`=0

ω`
(i− 1)!s2

`

Å
1

s2
`

ãi−1

(3.26)

being the precomputed Taylor coefficients. Since the Gaussian is smooth near the origin, a
small number of Taylor terms will give sufficient precision for a moderate rin.

The shell neighbors (particles between rin and rc) are treated by the bitmask-based
tabulating technique [55]. The expensive square root operation is avoided by using r2

ij as
the measure of choosing shell neighbors. Note that the binary representation of a single
float-point number typically contains a sign bit, 8 exponent bits, and a mantissa component
of 23 bits. We take a few low order bits (Bexp) from the exponent and some high order bits
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A B

Figure 1: Sketch map. (A) The core-shell structured kernel approximation technique applied
to the calculation of short-range part. (B) Parallel strategy in the Fourier space employing
the SIMD.

(Bman) from the mantissa. Fig.1 (A) depicts each component of the index bits. The total
table size is 2Bexp+Bman . A linear interpolation is used to approximate the data between
successive points in the table.

Here are two remarks for the tabulating technique. First, the choice of table length is a
tradeoff between accuracy and speed. A larger size provides more accurate force calculations,
but requires more memory which can slow down the simulation. The analysis on the local
and accumulated errors is referred to [55, 3]. Second, the tabulated error will increase when
the kernel tends to be singular, but is well solved by setting a core region.

We next describe the sampling and domain decomposion approaches for the far part.
Each MD step requires a serial importance sampling procedure and a global broadcast
operation, and this cost can be eliminated by the designed non-jammed communication
and computation/communication overlapping. Fig.1(B) describes the following procedure.
Suppose that λ MPI ranks are employed. The λ independent sampling processes are first
executed in parallel within each rank. Then the 1-st MPI rank broadcasts the samples to
other ranks using blocking operation. And then, the computation step of the Coulomb inter-
action is executed, whereas the samples in the 2-nd MPI rank is concurrently broadcasted.
The above two steps are then repeated for λ−1 times followed by a new sampling loop. This
sampling strategy evaluates and updates the samples every λ steps. It is easy to implement,
but significantly improves the scalability.

On the approximation of the far-field force by Eq.(3.24), the samples and the particle
positions are packaged into 512-bit vectors when the structure factors ρ(k) are evaluated
using the local atoms of each MPI rank. Only one global operation, MPI Allreduce, is
required for all the structure factors. The approximated force F ∗F,i of each particle is then
obtained from the structure factors. For better demonstration of the performance of RBSOG,
we also implement the state-of-the-art techniques [50] including the domain decomposition,
the ghost-atom communication, and the construction of neighbor lists combined with a
multiple-page data structure.
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4 Error analysis

In this section, we provide some error analysis on the RBSOG method, including the error
estimate of the truncated Gaussian series, the error in the near-field energy, and the artificial
variance in the random mini-batch approximation.

4.1 Truncation errors and parameter determination

To estimate the errors of the near- and far-field energies (3.1) and (3.6), we introduce the
relative errors by

RN (M) :=
∣∣UNerr/UN

∣∣ , and RF (M) :=
∣∣UFerr/U

∗
F
∣∣ , (4.1)

where UNerr is the truncation error due to the cutoff of interactions in real space,

UNerr =
1

2

∑
|rij+n◦L|>rc

qiqjN σ
b (|rij + n ◦L|), (4.2)

and UFerr is the error by truncating the infinite SOG for the Fourier series,

UFerr =
∑
|k|6=0

[
lim
M→∞

‹Fσb (|k|)− ‹Fσb (|k|)
] |ρ(k)|2

2V
, (4.3)

where ‹Fσb (|k|) is defined via Eq.(3.12). Theorem 1 presents an estimate for RF (M), which
is from Ref. [43], but with a slight difference as the coefficient ω0 here is modified to satisfy
the continuous conditions by Eq. (2.11).

Theorem 1. Given parameters b and σ for the SOG decomposition as (2.7), the error UFerr
due to the truncation of the SOG at ` = M can be estimated by

RF (M) ≤ b2Me−2(b2M−1)(πbσ/L)2 (4.4)

with L = max{Lx, Ly, Lz} being the maximal edge of the simulation box.

Proof. Note that the parameters of Gaussians have the recursive relations ω`+1 = b−1ω` and
s`+1 = bs` for ` ≥ 0, respectively. By Eq. (4.3), an upper bound of the error for truncating
the SOG series at ` = M is,

∣∣UFerr

∣∣ =
∑
|k|6=0

π3/2 |ρ(k)|2

2V

∞∑
`=M+1

ω`s
3
`e
−s2` |k|

2/4

=
b2M

2V

∑
|k|6=0

π3/2 |ρ(k)|2

2V

∞∑
`=1

ω`s
3
`e
−s2` |k|

2/4e−(b2M−1)s2` |k|
2/4

≤b2Me−2(b2M−1)(πbσ/L)2 |U∗F | ,

(4.5)

where the second identity is due to the use of the recursive relations with the index `
switching from M + 1 to 0, and the inequality follows from |k| ≥ 2π/L and ` ≥ 1.

For the near-field truncation error UNerr, a theoretical estimate remains open. It is known
in the liquid-state theory [41, 53] that the fluctuation in the long-range force is not sensitive
to affect the dynamical properties. Thus, one would expect that the relative error RN (M)
will be at the same level as the uniformly bounded pointwise error by Eq.(2.6) upon M large
enough. To validate it, we conduct numerical calculation of a NaCl cubic-like crystalline
lattice with lattice size 4nm, where the periodic images can be accurately calculated until
convergence. The results are displayed in Fig. 2. Here rc = 1nm is set. The results clearly
illustrate the following error estimate:

lim
M→∞

RN (M) ≈ 2
√

2e−π
2/2 ln b (4.6)
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Figure 2: UNerr as a function of the number of truncated terms, M , for different b. Here rc is
fixed as 1nm and the corresponding σ are shown in Table 1. The dash-dotted lines indicate
the corresponding pointwise error given in Eq.(2.6).

in ageement with the pointwise error (2.6).
One can determine the parameters of the SOG decomposition by the error estimates (4.5)

and (4.6) using the following procedure. Let the cutoff radius rc and the error tolerance
εrel be given apriori. Select b and σ such that conditions rcFσb (rc) − 1 = 0 and Eq.(2.10)
are satisfied, where b also satisfies Eq. (4.6). The truncation number M for the SOG is
chosen such that max

{
RN (M), RF (M)

}
≤ εrel. Table 1 shows the errors for five groups

of parameters with respect to rc = 1nm which is often used for practical simulations. We
remark that the choice of M in Table 1 is slightly larger than those in Ref. [43], since we
also consider the influence of UNerr. One shall also note that a large M has only minor
effects on the algorithm efficiency in both real space and Fourier space by using advanced
implementation techniques described in Section 3.4.

Table 1: Parameter sets for the SOG decomposition with C1 continuity of the kernel at
rc = 1nm. M is the minimum number of terms satisfying the error criteria.

b σ w0 εrel M

2 5.027010924194599 0.994446492762232252 2.289e− 3 6

1.62976708826776469 3.633717409009413 1.00780697934380681 1.158e− 4 16

1.48783512395703226 2.662784519725113 0.991911705759818 1.142e− 5 30

1.32070036405934420 2.277149356440992 1.00188914114811980 5.583e− 8 64

1.21812525709410644 1.774456369233284 1.00090146156033341 3.389e− 11 102

4.2 Convergence and algorithm complexity

We provide some theoretic evidence for the convergence and complexity of the RBSOG
algorithm. We will prove that the MD simulation using stochastic force F ∗F,i by Eq. (3.24)
can well approximate the results of using exact force FF,i.
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Denote the fluctuation of the random batch approximation for the Fourier part of the
force on particle i by

Ξi = F ∗F,i − FF,i. (4.7)

By a direct calculation of its expactation and valance, one has the following Lemma 1.

Lemma 1. The fluctuation in force Ξi is unbiased, i.e., EΞi = 0, and the variance is
expressed by,

E|Ξi|2 =
1

P

4π3q2
i S|k|2

V 2

∑
k 6=0

‹Fσb (|k|)
∣∣∣Im (e−ik·ri · ρ(k)

)∣∣∣2 − |FF,i|2
 . (4.8)

The unbiased property in Lemma 1 implies consistency of the random batch sampling.
Eq.(4.8) illustrates that the variance of F ∗F,i scales as O(P−1). More precisely, we have the
following theorem under the mean-field assumption.

Theorem 2. Let ρr = N/V be the density of particles. Under the Debye-Hückel (DH)
theory, the variance of the random force scales as O(1/P ), which is independent of both the
number of particles N and the bandwidths of Gaussians.

Proof. By the Debye-Hückel theory, the term of the structure factor in Eq. (4.8) can be
bounded by a constant C [28], ∣∣∣Im (e−ik·ri · ρ(k)

)∣∣∣2 ≤ C. (4.9)

By this inequality, one has

E|Ξi|2 ≤
1

P

4π3q2
iCS|k|2

V 2
·
∑
k 6=0

‹Fσb (|k|)− |FF,i|2


.
S

P

4π2q2
iC

V 2

M∑
`=0

ω`s
3
`

∫ ∞
0

V

(2π)3
· 4πk2 · e− 1

4 s
2
`k

2

dk

=
S

P

4
√
πq2
iC

V

M∑
`=0

w`.

(4.10)

Here, by the definition Eq. (3.16), S has the following estimate:

S = π−3/2V

M∑
`=0

ω`
∑
md∈Z

e
−π2 ∑

d

m2
dL

2
d/s

2
` − π−3/2‹Fσb (0), (4.11)

and thus S = O(V ). Substituting it into Eq.(4.10) gives E|Ξi|2 = O(1/P ), and Eq. (4.10)
clearly shows the independence of the estimate on the particle numbers and the Gaussian
bandwidths.

We now consider the convergence of the MD. Let ∆t be the time step of the integration
methods (for example, the velocity-Verlet algorithm). Let (ri,vi) be the solution of the
underdamped Langevin dynamics equations of motion,

dri = vidt,

midvi = [Fi − γvi] dt+
»

2γ/βdWi,
(4.12)

where {Wi} are independently identically distributed Wiener processes and ri and vi denote
the coordinates and the velocities of the ith particle, mi is the mass of the particle, γ is the
reciprocal characteristic time associated with the thermostat, β = 1/kBT is the reciprocal
of thermal energy with kB the Boltzmann constant. Let (r∗i ,v

∗
i ) be the solution with the
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force Fi approximated by Fi+Ξi with the same initial data. Let us define the Wasserstein-2
distance [46] as

W2(µ, ν) =

Å
inf

γ∈Π(µ,ν)

∫
R3×R3

|x− y|dγ
ã1/2

, (4.13)

where Π(µ, ν) is the adjoint distribution with marginal distributions µ and ν, respectively.
Theorem 3 indicates that RBSOG under the Langevin thermostat [19] is valid in capturing
the finite time structure and dynamic properties. The proof of Theorem 3 can be obtained
by simply following those in previous work [33, 37], and will not present here.

Theorem 3. Suppose that the forces Fi are bounded and Lipschitz and EΞi = 0. Let Q
be the initial configuration of the system, and denote Y (Q, ·) and Y ∗(Q, ·) by the transition
probabilities of the SDEs driven by the exact force Eq.(4.12) and the RBSOG stochastic force,
respectively. Then, for any time t∗ > 0, there exists a constant C(t∗) independent of N such
that the Wasserstain-2 distance of the two probabilities has the following bound:

sup
R

W2(Y, Y ∗) ≤ C(t∗)
»

Λ∆t+ (1 +D2)∆t2 (4.14)

where D = γ/β and Λ = ‖E|Ξ|2‖∞.

Remark 1. Typically, the Nosé–Hoover (NH) thermostat [25] is often adpoted for the heat
bath of the NVT and NPT ensembles, instead of the Langevin thermostat. The rigorous
proof for the convergence of the NH thermostat remains open, however, we conjecture that a
similar error bound as Eq. (4.14) exists considering that the variance term from the random
batch sampling will be well controlled by the damping factor in the NH[29].

We analyze the complexity of the RBSOG method for each time step. Given a cutoff
radius rc, the complexity for the near part is certainly linear to the particle number N .
The random batch sampling Eq.(3.24) for approximating the force results in P terms of the
Fourier modes to be summated. In each step, we need to calculate P structure factors ρ(kη)
for η = 1, · · · , P , which are used for all particles, thus the complexity for the far part is
O(PN). Furthermore, Theorems 2 and 3 have indicated that the error of the RBSOG does
not grow with the increase of N for a fixed density and P = O(1). By these analysis, the
RBSOG method has linear complexity per time step.

5 Numerical results

In this section, we perform all-atom simulations with the RBSOG-based MD under the
NVT ensemble to validate both the accuracy and efficiency of the proposed method, with
two benchmark systems including the bulk water and the LiTFSI ionic liquid. In all the
RBSOG results, the SOG decomposition uses the parameters listed in the second row of
Table 1 such that the error is at the level of 10−4. For the near field, the parameters for
the core-shell structured tabulation are set as Q = 4, rin = 0.2nm, Bexp = 3 and Bman = 9.
All the simulations were conducted by our method implemented in the LAMMPS [42, 50]
(version 29Oct2020), and were performed on the “Siyuan Mark-I” cluster at Shanghai Jiao
Tong University, which comprises 936 nodes with 2 × Intel Xeon ICX Platinum 8358 CPU
(2.6 GHz, 32 cores) and 512 GB memory per node.

5.1 Accuracy for water systems

We first perform MD simulations on all-atom bulk water system using the extended simple
point charge (SPC/E) [7] force field to examine the accuracy of the RBSOG, compared to
the reference PPPM solutions. The system includes 24327 SPC/E water molecules confined
in a cubic box of initial side length 9nm. For each case, a short equilibration run of 200 ps
is first conducted, at reference temperature 298 K, with the integration step size ∆t = 1 fs.
The relaxation times are set to γi = 0.1 ps for each particle i together with a NH thermostat.
The production phase lasts 2 ns, and the configurations are saved every 200 steps (0.2 ps) for
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statistics. The velocity is initially generated according to a Maxwell distribution function.
All chemical bonds are converted to constraints using the SHAKE algorithm [31] to allow
a time step of 1 fs. During the equilibration process, the short-range part of the Coulomb
interaction of the PPPM and the LJ interaction each with a cutoff parameter of 1nm is
considered with periodic boundary conditions and the splitting parameter α = 0.26. The
estimated relative error level of the PPPM is about 10−4 [30] which is consistency with the
estimated level of RBSOG.
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Figure 3: The RDFs of O-O (A), H-H (B), and O-H (C), total energy per molecule (D),
MSD (E) and VACF (F) of the bulk water system. The simulation results use the RBSOG
method with different batch sizes P = 100, 200 and 500, compared to the PPPM. In the
violin plot (D), the white point and the two endpoints of black bar within each violin indicate
the mean value and two quartiles, respectively. The subplot in (D) shows the convergence
on the mean-value errors of the total energy per molecule (including P = 1000 data).

We measure the properties of the simulation system by the radial distribution function
(RDF), the total energy per molecule, the mean square displacement (MSD), and the velocity
autocorrelation function (VACF), where the RDF characterizes the equilibrium structure of
water molecules, and the MSD and the VACF are two quantities for measuring the dynamical
properties of water. The formulas for these quantities are given in Appendix A. The
results are shown in Fig. 3 where panels (A-D) display the RDFs of oxygen-oxygen (O-O),
hydrogen-hydrogen (H-H), and oxygen-hydrogen (O-H) and the total energy per molecule.
The RBSOG and the PPPM produce statistically identical results on all of the three RDFs.
The distributions of Fig.3 (D) present the desired Boltzmann distribution, further confirming
the accuracy of our RBSOG method. In the subplots of Fig.3 (D), the convergence of total
energy shows the O(P−1) rate, in consistent with our priori error estimate. Panels (E) and
(F) display the comparisons on the MSD and VACF. The agreement between the RBSOG
and the PPPM confirms that dynamical properties are properly reproduced when P ≥ 200.

5.2 Accuracy for ionic liquids

The second example is the LiTFSI ionic liquid system with the optimized potentials for
liquid simulations all-atom (OPLS-AA) force field for Li+ [45] and TFSI− [10], and the
TIP3P model [44] for water molecules. This benchmark example was studied by the RBE
[36]. The system is first equilibrated in the NPT ensemble with the PPPM at 298 K and
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1 bar for 500 ns, followed by 200 ns production MD in the NVT using the NH thermostat
with the PPPM and RBSOG, respectively. The system contains 15803 atoms, including 320
Li+, 320 TFSI−, and 3561 H2O. A cubic simulation box of size 5.67nm is initially used with
periodic boundary conditions. The setup for the PPPM is the same as that for the water
system. The batch size of the RBSOG takes P = 500.
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Figure 4: MD simulation results from the RBSOG and the PPPM for the concentrated
LiTFSI ionic solution. (A) MD snapshot of the LiTSFI system; (B-D) The nitrogen-nitrogen,
oxygen-oxygen and hydrogen-hydrogen RDFs.

Fig. 4(A) illustrates an MD snapshot for the electrolyte, revealing the nano-heterogeneity
of the system. The structural information, i.e., the RDFs of the center atom (nitrogen, oxy-
gen and hydrogen in H2O) of the anions, on this concentrated electrolyte derived from both
RBSOG and PPPM are shown in Fig. 4(B-D). The dynamics and fluctuations of the system,
including the MSD of oxygen atoms in solvent, total energy, heat conductivity, and viscosity
are presented in Fig. 5 (A-D), respectively. The viscosity is a measure of how viscous a fluid
is, and the heat conductivity refers to the ability of liquid to conduct/transfer heat. The
calculation methods of the viscosity and heat conductivity are displayed in Appendix A. As
it can be seen, the spatiotemporal features of the system derived from the two methods are
essentially the same. These results indicate that the RBSOG with P = 500 has comparable
accuracy compared with the PPPM at the 10−4 error level in this ionic liquid system.

5.3 Time performance of the MD algorithm

The performance comparisons between the RBSOG and the PPPM were carried out by using
LAMMPS on atom simulation of SPC/E pure water systems. To access a fair comparison,
the estimated relative force errors is chosen as 10−4. The parameters of the PPPM are
chosen automatically in LAMMPS based on the error estimates [13]. The simulations of
the system were conducted for 1000 steps to estimate the average CPU time per step. The
density of water molecules is fixed to 1g/cm3. The real space cutoff for both Coulomb and
LJ potential is set as rc = 1nm for both the RBSOG and PPPM.
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Figure 5: Comparison of dynamical and thermal properties by MD simulations with the
PPPM (blue) and RBSOG (pink) for the LiTFSI system. (A) The O-O MSD of water
molecules; (B) the total energy per atom; (C) the thermal conductivity; and (D) the viscosity.

We first characterize the time scaling with increasing number of particles N . In Fig.
6 (A-B), 512 CPU cores are used, and the computational times for the RBSOG method
are shown for system size up to N = 106, where the solid lines present the linear fitting of
the data in log-log scale. The results clearly illustrate the O(N) complexity of the RBSOG
method. For the FFT-based methods, the proportion of the CPU time of the real space
and the Fourier space part are roughly the same. It is observed that the RBSOG has
significant computation saving of the Fourier part over a whole range of particle numbers,
demonstrating the attractive performance of the algorithm. Note that the first several points
of the far part in Fig. 6 are not linearly scaled, because the number of particles is small and
the communication dominates the cost.

The algorithm scalability is one of key issues limiting both system scale and time scale of
MD simulations. It is well known that the FFT for evaluating Coulomb interactions requires
intensive communication costs, which asymptotically takes more than 95% of runtime on
hybrid systems [5, 4]. Hence, it is critical to qualify a novel Coulomb solver by examining
how the scalability can be improved. In this work, we measure the scalability of the RBSOG
by both the weak scaling and the strong scaling. The weak scaling characterizes the parallel
performance tuning the number of processors (and the system size) by fixing a average
number of particles per processor. The Gustafson’s law [22] indicates that an algorithm
with a perfectly weak scaling has a speedup of 1 and stationary running time for large scale
systems. Alternatively, the strong scaling remains the system size, and tunes the number of
CPU cores. Let η be the core number and T (η) is the corresponding run time. The strong
scaling is defined by

η(λ) =
λmin

λ
· Tmin

T (λ)
, (5.1)
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with 512 cores and with the increase of N for P = 200 and 500. (CD) are the results with
the increase of cores and with a fixed average particle (2703 per core).
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Figure 7: CPU time and strong scalability for comparison between the RBSOG and the
PPPM with the number of CPU cores up to 2048. The total number of atoms is 72981.
Data are shown for CPU time per step (A-C) and strong scalability (D-F) of the near part
(short), the far part (long), and the total force (total).
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where Tmin = T (λmin) and λmin is the minimal number of cores in the calculation.
The results of weak scalability on massive high-performance cluster with up to about

one thousand cores are present in Fig. 6(CD). The weak scalability and the corresponding
average CPU time per step show that the RBSOG achieves near-perfect weak scaling for
both real space and Fourier space parts, as well as the total (i.e., real+Fourier) CPU cost,
in spite that the average number of particles on one core is relatively small (2703 particles
per core). The weak scaling of the Fourier component slightly deviates from 1 due to the
increasing of the ratio between the communication cost to the total cost. Fig.7 (A-F) show
the CPU performance and strong scaling of the simulation results by the RBSOG and the
PPPM. When the core number is small, the RBSOG has almost the same performance as
the PPPM. The RBSOG outperforms the PPPM with the increase of the core number, and
the advangtage becomes significant for λ > 100. When λ = 2048, the total computational
speed of the RBSOG is two order of magnitude faster than that of the PPPM. The strong
scalability of the RBSOG remains over 90% when 2048 CPU cores are employed, significantly
outperforming that of the PPPM which drops to 1% for the same system. These results
demonstrate the great performance of the RBSOG in parallel scalability. It is mentionable
that the RBSOG has ∼ 5% improvement in the near-part calculation over that of the PPPM.
This owes to the core-shell structured tabulation technique.

6 Concluding remarks

We have developed a novel RBSOG algorithm that is accurate and efficient for the MD simu-
lations with long-range Coulomb interactions which requires O(N) operations each step and
less communication costs. The RBSOG is based on the SOG decomposition which splits the
Coulomb kernel as two parts. One is an SOG which is long-ranged, and another is 1/r minus
the SOG which is short-ranged. The resulting decomposition is smooth on the entire real
axis, and is exact up to a cutoff radius rc. The RBSOG builds the random mini-batch strat-
egy into the Fourier space for the long-range forces, together with an importance sampling
for the Fourier modes, so that it takes O(N) operations per time step. Discussions on infinite
boundary term, error analysis, and implementation are provided. The all-atom simulations
on bulk water and ionic liquid systems show that the RBSOG algorithm can quantitatively
reproduce the spatiotemporal information and thermodynamic quantities, and shows attrac-
tive performance regarding the efficiency and scalability on massive supercomputer cluster.

We perform the comparison of the RBSOG results with the PPPM, and demonstrating
the advantages of the algorithm. It is noted that the RBE has a similar performance as the
RBSOG, and the systematical comparison between the RBE and the PPPM was reported
[36]. We remark that in comparison with the Ewald splitting, the SOG decomposition has a
better smoothness near the cutoff, and thus the truncation error can be reduced. Also, the
force valence by the random batch sampling may be different between the two methods, and
the RBSOG may achieve a smaller variance due to the possible use of a bigger bandwidth
lowerbound as was pointed [43]. The investigation on these issues from both computational
and theoretical points of view shall be conducted in the future.

The RBSOG can be easily extended to other kernels. Different from the bilateral series
approximation, one can achieve it by developing kernel-independent SOG methods such
that the Gaussian bandwidths have controllable upperbound. Incorporating such a SOG
technique for MD simulations with non-Coulomb long-range kernels is also the goal of our
subsequent works.
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Appendix

A Physical quantities calculated in results

The RDF grdf(r) at distance r is defined by

grdf =
1

Nρr

N∑
i=1

∑
j 6=i

〈δ(rij − r)〉
4πr2

(A.1)

where δ(·) is the Dirac delta function and the bracket represents the ensemble average. The
MSD ηmsd(t) at time t is defined as

ηmsd(t) = 〈|r(t+ t0)− r(t0)|2〉 (A.2)

with the bracket representing the ensemble average over t0. The VACF ηvacf (t) at time t is
defined as

ηvacf (t) = 〈v(t0)v(t)〉 (A.3)

with the bracket representing the ensemble average over t0. The total energy is defined as
the sum of potential energy and kinetic energy. The potential energy is the sum of bond,
angle, dihedral, improper, Coulomb, LJ and constrain components.

The viscosity is calculated by using the Green-Kubo relation

Cη =
V

6kBT

∑
α≤β

∫ ∞
0

〈Pαβ(t) · Pαβ(0)〉dt (A.4)

where V is the system volume, T is the temperature, and Pαβ denotes an element αβ of
pressure tensor with α, β ∈ {1, 2, 3}. Here the pressure is stored as a 6-element tensor, and
is defined as follows:

Pαβ =
1

V

N∑
i=1

(mivi,αvi,β + ri,αfi,β) (A.5)

where vi,α, ri,α, and fi,α are the α-th component of the velocity v, the position r, and the
force f of particle i, respectively. The two components in each term come from the kenetic
energy and the virial contributions, respectively. The heat conductivity, which is related to
the ensemble average of the auto-correlation of the heat flux J , is given via the Green-Kubo
formula

Cκ =
V

3kBT 2

∫ ∞
0

〈J(0) · J(t)〉dt. (A.6)

Here the heat flux J is defined as

J =
1

V

 N∑
i=1

eivi +
1

2

N∑
i,j=1
i<j

(fij · (vi + vj))rij

 (A.7)

where ei is the per-atom energy (potential and kinetic).
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(2015), p. 94.

[47] Y. Shan, J. L. Klepeis, M. P. Eastwood, R. O. Dror, and D. E. Shaw,
Gaussian split Ewald: A fast Ewald mesh method for molecular simulation, J. Chem.
Phys., 122 (2005), p. 054101.

[48] D. E. Shaw, P. J. Adams, A. Azaria, J. A. Bank, B. Batson, A. Bell,
M. Bergdorf, J. Bhatt, J. A. Butts, T. Correia, et al., Anton 3: twenty
microseconds of molecular dynamics simulation before lunch, in Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis, 2021, pp. 1–11.

[49] E. R. Smith, Electrostatic energy in ionic crystals, Proc. R. Soc. London, 375 (1981),
pp. 475–505.

[50] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M.
Brown, P. S. Crozier, P. J. in’t Veld, A. Kohlmeyer, S. G. Moore, T. D.
Nguyen, et al., LAMMPS-a flexible simulation tool for particle-based materials mod-
eling at the atomic, meso, and continuum scales, Comput. Phys. Commun., 271 (2022),
p. 108171.

[51] U. Trottenberg, C. W. Oosterlee, and A. Schuller, Multigrid, Elsevier, 2000.

[52] D. A. Walker, B. Kowalczyk, M. O. de la Cruz, and B. A. Grzybowski,
Electrostatics at the nanoscale, Nanoscale, 3 (2011), pp. 1316–1344.

[53] J. D. Weeks, D. Chandler, and H. C. Andersen, Role of repulsive forces in
determining the equilibrium structure of simple liquids, J. Chem. Phys., 54 (1971),
pp. 5237–5247.

[54] W. Wiscombe and J. Evans, Exponential-sum fitting of radiative transmission func-
tions, J. Comput. Phys., 24 (1977), pp. 416–444.

[55] D. Wolff and W. Rudd, Tabulated potentials in molecular dynamics simulations,
Comput. Phys. Commun., 120 (1999), pp. 20–32.

[56] I.-C. Yeh and M. L. Berkowitz, Ewald summation for systems with slab geometry,
J. Chem. Phys., 111 (1999), pp. 3155–3162.

23


	1 Introduction
	2 Electrostatic interactions and kernel decomposition
	3 Random Batch sum-of-Gaussians method
	3.1 Fourier expansion of the far part
	3.2 Analysis of the zero-frequency mode
	3.3 Random batch importance sampling
	3.4 Implementation details

	4 Error analysis
	4.1 Truncation errors and parameter determination
	4.2 Convergence and algorithm complexity

	5 Numerical results
	5.1 Accuracy for water systems
	5.2 Accuracy for ionic liquids
	5.3 Time performance of the MD algorithm

	6 Concluding remarks
	A Physical quantities calculated in results

